JP6863799B2 - Exhaust gas purification catalyst - Google Patents

Exhaust gas purification catalyst Download PDF

Info

Publication number
JP6863799B2
JP6863799B2 JP2017072467A JP2017072467A JP6863799B2 JP 6863799 B2 JP6863799 B2 JP 6863799B2 JP 2017072467 A JP2017072467 A JP 2017072467A JP 2017072467 A JP2017072467 A JP 2017072467A JP 6863799 B2 JP6863799 B2 JP 6863799B2
Authority
JP
Japan
Prior art keywords
catalyst
ceria
zirconia
exhaust gas
composite oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017072467A
Other languages
Japanese (ja)
Other versions
JP2018038999A (en
Inventor
良典 齊藤
良典 齊藤
真秀 三浦
真秀 三浦
聖次 仲東
聖次 仲東
鈴木 宏昌
宏昌 鈴木
鈴木 貴博
貴博 鈴木
光祐 飯塚
光祐 飯塚
伊藤 実
実 伊藤
諒太 中島
諒太 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cataler Corp
Toyota Motor Corp
Original Assignee
Cataler Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cataler Corp, Toyota Motor Corp filed Critical Cataler Corp
Priority to US15/663,952 priority Critical patent/US10058846B2/en
Priority to EP17184910.2A priority patent/EP3290112B1/en
Priority to CN201710786111.3A priority patent/CN107790119B/en
Publication of JP2018038999A publication Critical patent/JP2018038999A/en
Application granted granted Critical
Publication of JP6863799B2 publication Critical patent/JP6863799B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は排ガス浄化用触媒に関する。 The present invention relates to a catalyst for purifying exhaust gas.

自動車等の内燃機関から排出される排ガスには、一酸化炭素(CO)、窒素酸化物(NOx)、未燃の炭化水素(HC)等の有害ガスが含まれている。そのような有害ガスを分解する排ガス浄化用触媒(いわゆる三元触媒)には、酸素貯蔵能(OSC:Oxygen Storage Capacity)を有する助触媒としてセリア−ジルコニア系複合酸化物等が用いられる。セリア−ジルコニア系複合酸化物等の酸素貯蔵材(OSC材)は、酸素を吸放出することによりミクロな空間で空燃比(A/F)を制御し、排ガス組成変動に伴う浄化率の低下を抑制する効果を有する。 Exhaust gas emitted from an internal combustion engine of an automobile or the like contains harmful gases such as carbon monoxide (CO), nitrogen oxides (NOx), and unburned hydrocarbons (HC). As an exhaust gas purification catalyst (so-called three-way catalyst) that decomposes such harmful gas, a ceria-zirconia-based composite oxide or the like is used as an auxiliary catalyst having an oxygen storage capacity (OSC: Oxygen Storage Capacity). Oxygen storage materials (OSC materials) such as ceria-zirconia composite oxides control the air-fuel ratio (A / F) in a micro space by absorbing and releasing oxygen, and reduce the purification rate due to fluctuations in exhaust gas composition. Has a suppressive effect.

従来、排ガス浄化用触媒に用いられるOSC材には、長時間にわたって酸素吸放出能を維持するための十分な酸素貯蔵容量及び耐熱性を有し、さらに、高温に長時間晒された後においても十分に優れた酸素貯蔵能を発揮することが求められていた。この要求に対し、特許文献1では、セリア−ジルコニア系複合酸化物の一次粒子径や、セリウムとジルコニウムとの含有比率等を特定した、パイロクロア構造を有するセリア−ジルコニア系複合酸化物が提案されており、具体的には、セリア−ジルコニア系複合酸化物における粒子径1.5〜4.5μmの一次粒子が該複合酸化物の全一次粒子に対して粒子数基準で50%以上であり、セリア−ジルコニア系複合酸化物におけるセリウムとジルコニウムとの含有比率がモル比([セリウム]:[ジルコニウム])で43:57〜55:45の範囲にあり、かつ、大気中、1100℃の温度条件で5時間加熱後のX線回折測定により得られるCuKαを用いたX線回折パターンから求められる2θ=14.5°の回折線と2θ=29°の回折線との強度比{I(14/29)値}及び2θ=28.5°の回折線と2θ=29°の回折線との強度比{I(28/29)値}がそれぞれ以下の条件:I(14/29)値≧0.015、I(28/29)値≦0.08を満たすものであることを特徴とするセリア−ジルコニア系複合酸化物が記載されている。特許文献1に記載されるセリア−ジルコニア系複合酸化物では、その一次粒子径が特定されているが、二次粒子径については具体的に記載されていない。 Conventionally, the OSC material used as a catalyst for purifying exhaust gas has sufficient oxygen storage capacity and heat resistance to maintain oxygen absorption / release ability for a long period of time, and further, even after being exposed to a high temperature for a long time. It was required to exhibit sufficiently excellent oxygen storage capacity. In response to this requirement, Patent Document 1 proposes a ceria-zirconia-based composite oxide having a pyrochloro structure, which specifies the primary particle size of the ceria-zirconia-based composite oxide, the content ratio of cerium and zirconium, and the like. Specifically, the primary particles having a particle size of 1.5 to 4.5 μm in the ceria-zirconia-based composite oxide are 50% or more of all the primary particles of the composite oxide on the basis of the number of particles, and ceria. -The content ratio of cerium and zirconium in the zirconia-based composite oxide is in the range of 43:57 to 55:45 in terms of molar ratio ([cerium]: [zirconium]), and at a temperature condition of 1100 ° C. in the atmosphere. Intensity ratio of 2θ = 14.5 ° diffraction line and 2θ = 29 ° diffraction line determined from the X-ray diffraction pattern using CuKα obtained by X-ray diffraction measurement after heating for 5 hours {I (14/29) ) Value} and the intensity ratio {I (28/29) value} of the 2θ = 28.5 ° diffraction line and the 2θ = 29 ° diffraction line are as follows: I (14/29) value ≧ 0. 015, a ceria-zirconia-based composite oxide characterized by satisfying an I (28/29) value ≤ 0.08 is described. The primary particle size of the ceria-zirconia-based composite oxide described in Patent Document 1 is specified, but the secondary particle size is not specifically described.

また、特許文献2には、セリア−ジルコニア系複合酸化物のパイロクロア構造を有する結晶粒子と、前記粒子表面に存在するセリア−ジルコニア系複合酸化物の蛍石構造を有する結晶とを含み、前記セリア−ジルコニア系複合酸化物の蛍石構造を有する結晶が、セリアよりもジルコニアを多く含み、かつ前記セリア−ジルコニア系複合酸化物のパイロクロア構造を有する結晶粒子と一体化されていることを特徴とする複合酸化物材料が記載されており、平均二次粒子径11μmのパイロクロア構造を有するセリア−ジルコニア系複合酸化物を調製したことが記載されている。 Further, Patent Document 2 includes crystal particles having a pyrochloro structure of a ceria-zirconia-based composite oxide and crystals having a fluorite structure of a ceria-zirconia-based composite oxide existing on the surface of the particles, and the ceria A crystal having a fluorite structure of a zirconia-based composite oxide is characterized by containing more zirconia than ceria and being integrated with crystal particles having a pyrochloro structure of the ceria-zirconia-based composite oxide. The composite oxide material is described, and it is described that a ceria-zirconia-based composite oxide having a pyrochlor structure having an average secondary particle diameter of 11 μm was prepared.

最近、触媒の低体格化に伴い、排ガス浄化用触媒に用いられるOSC材について、十分な耐熱性及び酸素貯蔵容量を有するだけでなく、より速い挙動を示すために酸素吸放出速度も十分に大きいことが求められている。 Recently, as the catalyst has become smaller, the OSC material used for the exhaust gas purification catalyst not only has sufficient heat resistance and oxygen storage capacity, but also has a sufficiently high oxygen absorption / release rate in order to exhibit faster behavior. Is required.

しかし、従来のセリア−ジルコニア系複合酸化物では、その結晶構造が蛍石構造のものでは、酸素吸放出速度は大きいものの、酸素貯蔵容量が小さく、また、その結晶構造がパイロクロア構造のものでは、酸素貯蔵容量が大きいものの、酸素吸放出速度が小さく、酸素貯蔵容量及び酸素吸放出速度の両立はこれまで困難であった。 However, in the conventional ceria-zirconia-based composite oxide, if the crystal structure is a fluorite structure, the oxygen absorption / release rate is high, but the oxygen storage capacity is small, and if the crystal structure is a pyrochlor structure, Although the oxygen storage capacity is large, the oxygen absorption / release rate is low, and it has been difficult to achieve both the oxygen storage capacity and the oxygen absorption / release rate at the same time.

特開2015−34113号公報Japanese Unexamined Patent Publication No. 2015-34113 特開2014−114196号公報Japanese Unexamined Patent Publication No. 2014-114196

前記のように、従来の排ガス浄化用触媒では、OSC材として用いられるセリア−ジルコニア系複合酸化物において、結晶構造が蛍石構造のものでは、酸素吸放出速度は大きいものの、酸素貯蔵容量が小さく、また、結晶構造がパイロクロア構造のものでは、酸素貯蔵容量が大きいものの、酸素吸放出速度が小さいため、十分な耐熱性を有しつつ、酸素貯蔵容量及び酸素吸放出速度を両立することは困難であった。それ故、本発明は、十分な耐熱性を有しつつ、酸素貯蔵容量及び酸素吸放出速度を両立したOCS材を用いた排ガス浄化用触媒を提供することを目的とする。 As described above, in the conventional exhaust gas purification catalyst, in the ceria-zirconia-based composite oxide used as an OSC material, when the crystal structure is a fluorite structure, the oxygen absorption / release rate is high, but the oxygen storage capacity is small. In addition, when the crystal structure is a pyrochloro structure, although the oxygen storage capacity is large, the oxygen absorption / release rate is low, so it is difficult to achieve both the oxygen storage capacity and the oxygen absorption / release rate while having sufficient heat resistance. Met. Therefore, an object of the present invention is to provide a catalyst for purifying exhaust gas using an OCS material having both an oxygen storage capacity and an oxygen absorption / release rate while having sufficient heat resistance.

本発明者らは、前記課題を解決するための手段を種々検討した結果、パイロクロア構造を有するセリア−ジルコニア系複合酸化物の二次粒子径(D50)を特定の範囲とすることで、該複合酸化物において、十分な耐熱性を有しつつ、酸素貯蔵容量及び酸素吸放出速度を両立できることを見出し、本発明を完成した。 As a result of various studies on means for solving the above-mentioned problems, the present inventors have set the secondary particle size (D50) of the ceria-zirconia-based composite oxide having a pyrochlore structure within a specific range. The present invention has been completed by finding that an oxide can have both an oxygen storage capacity and an oxygen absorption / release rate while having sufficient heat resistance.

すなわち、本発明の要旨は以下の通りである。
(1)基材と、該基材上に形成された触媒コート層を有する排ガス浄化用触媒であって、パイロクロア構造を有するセリア−ジルコニア系複合酸化物を基材容量に対して5〜100g/Lの量で触媒コート層中に含み、セリア−ジルコニア系複合酸化物の二次粒子径(D50)が3〜7μmであり、セリア−ジルコニア系複合酸化物がプラセオジムを含んでいてもよい、前記排ガス浄化用触媒。
(2)排ガス浄化用触媒が、スタートアップ触媒(S/C)と、排ガスの流れ方向に対して前記S/Cよりも後方に設置されたアンダーフロア触媒(UF/C)を含む排ガス浄化用触媒システムのS/C又はUF/Cである、(1)に記載の排ガス浄化用触媒。
(3)排ガス浄化用触媒がS/Cであり、該S/Cが、少なくとも2層の触媒コート層を有し、前記セリア−ジルコニア系複合酸化物を基材容量に対して5〜50g/Lの量で触媒コート層の最上層に含む、(2)に記載の排ガス浄化用触媒。
(4)排ガス浄化用触媒がS/Cであり、該S/Cが、少なくとも2層の触媒コート層を有し、前記セリア−ジルコニア系複合酸化物を基材容量に対して5〜30g/Lの量で触媒コート層の最上層以外の少なくとも1層に含む、(2)に記載の排ガス浄化用触媒。
(5)排ガス浄化用触媒がUF/Cであり、該UF/Cが、少なくとも2層の触媒コート層を有し、前記セリア−ジルコニア系複合酸化物を基材容量に対して5〜20g/Lの量で触媒コート層の最上層に含む、(2)に記載の排ガス浄化用触媒。
That is, the gist of the present invention is as follows.
(1) A catalyst for purifying exhaust gas having a base material and a catalyst coat layer formed on the base material, and containing 5 to 100 g / g of a ceria-zirconia-based composite oxide having a pyrochloro structure with respect to the base material capacity. The amount of L contained in the catalyst coat layer, the secondary particle size (D50) of the ceria-zirconia-based composite oxide may be 3 to 7 μm, and the ceria-zirconia-based composite oxide may contain placeodim. Catalyst for purifying exhaust gas.
(2) The exhaust gas purification catalyst includes an exhaust gas purification catalyst (S / C) and an underfloor catalyst (UF / C) installed behind the S / C with respect to the flow direction of the exhaust gas. The exhaust gas purification catalyst according to (1), which is the S / C or UF / C of the system.
(3) The catalyst for purifying exhaust gas is S / C, and the S / C has at least two catalyst coat layers, and the ceria-zirconia-based composite oxide is 5 to 50 g / g / of the substrate capacity. The exhaust gas purification catalyst according to (2), which is contained in the uppermost layer of the catalyst coat layer in an amount of L.
(4) The catalyst for purifying exhaust gas is S / C, and the S / C has at least two catalyst coat layers, and the ceria-zirconia-based composite oxide is 5 to 30 g / g / of the substrate capacity. The exhaust gas purification catalyst according to (2), which is contained in at least one layer other than the uppermost layer of the catalyst coat layer in an amount of L.
(5) The catalyst for purifying exhaust gas is UF / C, and the UF / C has at least two catalyst coat layers, and the ceria-zirconia-based composite oxide is 5 to 20 g / g / of the substrate capacity. The exhaust gas purification catalyst according to (2), which is contained in the uppermost layer of the catalyst coat layer in an amount of L.

本発明により、十分な耐熱性を有しつつ、酸素貯蔵容量及び酸素吸放出速度を両立したOSC材を用いた排ガス浄化用触媒を提供することが可能となる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide an exhaust gas purification catalyst using an OSC material having both an oxygen storage capacity and an oxygen absorption / release rate while having sufficient heat resistance.

図1は、実施例1−2及び比較例1−5のセリア−ジルコニア系複合酸化物の初期の酸素吸放出量(OSC)(棒グラフ)と、これらの複合酸化物を用いた排ガス浄化用触媒の最大酸素吸蔵量(Cmax)(折れ線グラフ)を示す。FIG. 1 shows the initial oxygen absorption / release amount (OSC) (bar graph) of the ceria-zirconia-based composite oxides of Examples 1-2 and Comparative Example 1-5, and the exhaust gas purification catalyst using these composite oxides. The maximum oxygen storage amount (Cmax) (line graph) of is shown. 図2は、初期(0〜13秒)の酸素吸放出量(OSC)と最大酸素吸蔵量(Cmax)の関係を示す。FIG. 2 shows the relationship between the initial oxygen uptake / release amount (OSC) and the maximum oxygen uptake amount (Cmax). 図3は、実施例4及び7、並びに比較例6−10のS/Cの最大酸素吸蔵量(Cmax)を示す。FIG. 3 shows the maximum oxygen uptake (Cmax) of S / C of Examples 4 and 7 and Comparative Example 6-10. 図4は、上層コート中のOSC材(実施例2のセリア−ジルコニア系複合酸化物)の添加量と、最大酸素吸蔵量(Cmax)との関係を示す。FIG. 4 shows the relationship between the amount of the OSC material (ceria-zirconia-based composite oxide of Example 2) added in the upper coat and the maximum oxygen uptake (Cmax). 図5は、上層コート中のOSC材(実施例2のセリア−ジルコニア系複合酸化物)の添加量と、T50−NOxとの関係を示す。FIG. 5 shows the relationship between the amount of the OSC material (ceria-zirconia-based composite oxide of Example 2) added in the upper coat and T50-NOx. 図6は、下層コート中のOSC材(実施例2のセリア−ジルコニア系複合酸化物)の添加量と、A/F切り替え時のNOx排出量との関係を示す。FIG. 6 shows the relationship between the addition amount of the OSC material (ceria-zirconia-based composite oxide of Example 2) in the lower coat and the NOx emission amount at the time of A / F switching. 図7は、下層コート中のOSC材(実施例2のセリア−ジルコニア系複合酸化物)の添加量と、定常NOx浄化率との関係を示す。FIG. 7 shows the relationship between the amount of the OSC material (ceria-zirconia-based composite oxide of Example 2) added in the lower coat and the steady-state NOx purification rate. 図8は、実施例13及び17、並びに比較例16−18のUF/Cの定常HC浄化率を示す。FIG. 8 shows the steady HC purification rates of UF / C in Examples 13 and 17 and Comparative Examples 16-18. 図9は、上層コート中のOSC材(実施例2のセリア−ジルコニア系複合酸化物)の添加量と、定常HC浄化率との関係を示す。FIG. 9 shows the relationship between the amount of the OSC material (ceria-zirconia-based composite oxide of Example 2) added in the upper coat and the steady-state HC purification rate. 図10は、上層コート中のOSC材(実施例2のセリア−ジルコニア系複合酸化物)の添加量と、T50−NOxとの関係を示す。FIG. 10 shows the relationship between the amount of the OSC material (ceria-zirconia-based composite oxide of Example 2) added in the upper coat and T50-NOx.

以下、本発明の好ましい実施形態について詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail.

本発明の排ガス浄化用触媒は、基材と、該基材上に形成され、パイロクロア構造を有するセリア−ジルコニア系複合酸化物(CeZr:以下、パイロクロア型セリア−ジルコニア系複合酸化物又はパイロクロアCZとも称する)を所定量含む触媒コート層とを有する。 The catalyst for purifying exhaust gas of the present invention is a base material and a ceria-zirconia-based composite oxide (Ce 2 Zr 2 O 7 : hereinafter, pyrochlore-type ceria-zirconia-based composite oxide) formed on the base material and having a pyrochlore structure. It has a catalyst coat layer containing a predetermined amount (also referred to as a substance or pyrochlore CZ).

セリア−ジルコニア系複合酸化物において「パイロクロア構造を有する」とは、セリウムイオンとジルコニウムイオンとによるパイロクロア型の規則配列構造を有する結晶相(パイロクロア相)が構成されていることを意味する。セリウムイオン及びジルコニウムイオンは、その一部がプラセオジム等の追加の元素により置換されていてもよい。パイロクロア相の配列構造は、CuKαを用いたX線回折パターンの2θ角が14.5°、28°、37°、44.5°及び51°の位置にそれぞれピークを有することにより特定することができる。ここで、「ピーク」とは、ベースラインからピークトップまでの高さが30cps以上のものをいう。また、回折線強度を求める際には、各回折線強度の値から、バックグラウンド値として2θ=10〜12゜の平均回折線強度を差し引いて計算する。 "Having a pyrochlore structure" in a ceria-zirconia-based composite oxide means that a crystal phase (pyrochlore phase) having a pyrochlore-type ordered structure consisting of cerium ions and zirconium ions is formed. The cerium ion and the zirconium ion may be partially substituted with an additional element such as praseodymium. The arrangement structure of the pyrochlore phase can be specified by having peaks at 2θ angles of 14.5 °, 28 °, 37 °, 44.5 ° and 51 ° of the X-ray diffraction pattern using CuKα, respectively. it can. Here, the “peak” means that the height from the baseline to the peak top is 30 cps or more. Further, when the diffraction line intensity is obtained, the average diffraction line intensity of 2θ = 10 to 12 ° is subtracted from the value of each diffraction line intensity as a background value.

パイロクロア構造を有するセリア−ジルコニア系複合酸化物において、X線回折パターンのピーク強度比により求められる全結晶相に対するパイロクロア型に規則配列した結晶相の含有比率は50%以上、特に80%以上であることが好ましい。パイロクロア構造を有するセリア−ジルコニア系複合酸化物の調製方法は当業者に公知である。 In the ceria-zirconia-based composite oxide having a pyrochlore structure, the content ratio of the crystal phases regularly arranged in a pyrochlore type to the total crystal phase determined by the peak intensity ratio of the X-ray diffraction pattern is 50% or more, particularly 80% or more. Is preferable. A method for preparing a ceria-zirconia-based composite oxide having a pyrochlore structure is known to those skilled in the art.

セリア−ジルコニア系複合酸化物のパイロクロア相(CeZr)は酸素欠陥サイトを有し、そのサイトに酸素原子が入り込むとパイロクロア相はκ相(CeZr)に相変化する。一方、κ相は酸素原子を放出することによりパイロクロア相に相変化することができる。セリア−ジルコニア系複合酸化物の酸素貯蔵能は、パイロクロア相とκ相との間で相互に相変化して酸素を吸放出することによるものである。 The pyrochlore phase (Ce 2 Zr 2 O 7 ) of the ceria-zirconia complex oxide has an oxygen defect site, and when an oxygen atom enters the site, the pyrochlore phase changes to the κ phase (Ce 2 Zr 2 O 8). To do. On the other hand, the κ phase can change to the pyrochlore phase by releasing an oxygen atom. The oxygen storage capacity of the ceria-zirconia complex oxide is due to the mutual phase change between the pyrochlore phase and the κ phase to absorb and release oxygen.

ここで、セリア−ジルコニア系複合酸化物のκ相は、再配列により蛍石構造を有する結晶相(CeZrO:蛍石型相)に相変化することが知られており、リーン時、特に高温リーン時には、パイロクロアCZは、κ相を経て、蛍石型相に相変化しやすくなる。 Here, it is known that the κ phase of the ceria-zirconia complex oxide undergoes a phase change to a crystal phase having a fluorite structure (CeZrO 4 : fluorite type phase) due to rearrangement, and is particularly hot during leaning. At the time of leaning, the pyrochlor CZ tends to undergo a phase change to a fluorite-type phase via the κ phase.

セリア−ジルコニア系複合酸化物の結晶相のCuKαを用いたX線回折(XRD)測定において、2θ=14.5°の回折線は規則相(κ相)の(111)面に帰属する回折線であり、2θ=29°の回折線は規則相の(222)面に帰属する回折線とパイロクロア相を有しないセリア−ジルコニア固溶体の(111)面に帰属する回折線とが重なったものであるため、両者の回折線の強度比であるI(14/29)値を規則相の存在率を示す指標とすることができる。なお、本発明において、XRD測定は、通常、測定対象のセリア−ジルコニア系複合酸化物を大気中、1100℃で5時間加熱した(高温耐久試験)後に行う。本発明において、セリア−ジルコニア系複合酸化物における、大気中、1100℃で5時間加熱した後のX線回折測定により得られるCuKαを用いたX線回折パターンから求められる2θ=14.5°の回折線と2θ=29°の回折線との強度比I(14/29)値は、良好な規則相の維持及び耐久試験後の酸素貯蔵能の観点から、好ましくは、0.017以上である。なお、κ相のPDFカード(PDF2:01−070−4048)及びパイロクロア相のPDFカード(PDF2:01−075−2694)に基づき、完全なκ相のI(14/29)値は0.04、完全なパイロクロア相のI(14/29)値は0.05と計算することができる。また、セリア−ジルコニア系複合酸化物の結晶相のCuKαを用いたXRD測定において、2θ=28.5゜の回折線はCeO単体の(111)面に帰属する回折線であるため、2θ=28.5゜の回折線と2θ=29゜の回折線の強度比であるI(28/29)値を、複合酸化物からCeOが分相している程度を示す指標とすることができる。本発明において、セリア−ジルコニア系複合酸化物における、大気中、1100℃で5時間加熱した後のX線回折測定により得られるCuKαを用いたX線回折パターンから求められる2θ=28.5°の回折線と2θ=29°の回折線との強度比I(28/29)値は、セリアの分相の抑制及び耐久試験後の酸素貯蔵能の観点から、好ましくは、0.05以下である。 In the X-ray diffraction (XRD) measurement using CuKα of the crystal phase of the ceria-zirconia composite oxide, the diffraction line of 2θ = 14.5 ° is the diffraction line belonging to the (111) plane of the regular phase (κ phase). The diffraction line of 2θ = 29 ° is an overlap of the diffraction line belonging to the (222) plane of the regular phase and the diffraction line belonging to the (111) plane of the ceria-zirconia solid solution having no pyrochroma phase. Therefore, the I (14/29) value, which is the intensity ratio of the diffraction lines of both, can be used as an index showing the abundance rate of the ordered phase. In the present invention, the XRD measurement is usually performed after heating the ceria-zirconia-based composite oxide to be measured in the air at 1100 ° C. for 5 hours (high temperature durability test). In the present invention, 2θ = 14.5 ° obtained from an X-ray diffraction pattern using CuKα obtained by X-ray diffraction measurement after heating in the air at 1100 ° C. for 5 hours in a ceria-zirconia-based composite oxide. The intensity ratio I (14/29) value between the diffraction line and the diffraction line at 2θ = 29 ° is preferably 0.017 or more from the viewpoint of maintaining a good ordered phase and the oxygen storage capacity after the durability test. .. Based on the κ phase PDF card (PDF 2: 01-070-4048) and the pyrochlore phase PDF card (PDF 2: 01-075-2649), the I (14/29) value of the complete κ phase is 0.04. , The I (14/29) value of the complete pyrochlore phase can be calculated as 0.05. Further, in the XRD measurement using CuKα of the crystal phase of the ceria-zirconia-based composite oxide, the diffraction line of 2θ = 28.5 ° is the diffraction line belonging to the (111) plane of CeO 2 alone, so 2θ = The I (28/29) value, which is the intensity ratio of the 28.5 ° diffraction line and the 2θ = 29 ° diffraction line, can be used as an index indicating the degree of phase separation of CeO 2 from the composite oxide. .. In the present invention, 2θ = 28.5 ° obtained from an X-ray diffraction pattern using CuKα obtained by X-ray diffraction measurement after heating in the air at 1100 ° C. for 5 hours in a ceria-zirconia-based composite oxide. The intensity ratio I (28/29) value between the diffraction line and the diffraction line at 2θ = 29 ° is preferably 0.05 or less from the viewpoint of suppressing the phase separation of ceria and the oxygen storage capacity after the durability test. ..

パイロクロア構造を有するセリア−ジルコニア系複合酸化物は、二次粒子径(D50)が3〜7μmであり、好ましくは3〜6μmであり、より好ましくは3〜5μmである。パイロクロアCZが、この範囲の二次粒子径(D50)を有すると、二次粒子径(D50)がこの範囲にないものと比較して、十分な耐熱性を有しつつ、高い酸素貯蔵容量を維持したまま、酸素吸放出速度を有意に向上させることができる。なお、蛍石構造を有するセリア−ジルコニア系複合酸化物では、二次粒子径と酸素吸放出速度との間にこのような関係がないため、パイロクロアCZにおいて二次粒子径(D50)を特定の範囲とすることで酸素吸放出速度が有意に向上することは、パイロクロアCZに特異的な予想外の効果である。パイロクロアCZでは、パイロクロア構造特有の酸素内部拡散が速い特性により二次粒子径の影響が非常に大きく、一方、トレードオフの関係にある耐熱性は、二次粒子径に対して酸素吸放出速度とは異なる感度を示し、十分に高い耐熱性が維持されるため、結果として、パイロクロアCZにおいて二次粒子径(D50)を特定の範囲とすることで、高い耐熱性を有しつつ、高い酸素貯蔵容量を維持したまま、酸素吸放出速度を有意に向上させることができたと推測される。よって、本発明では、パイロクロアCZが3〜7μmの二次粒子径(D50)を有することにより、十分な耐熱性を有しつつ、酸素貯蔵容量及び酸素吸放出速度を両立でき、特に、酸素吸放出速度を有意に向上させることができる。 The ceria-zirconia-based composite oxide having a pyrochlore structure has a secondary particle size (D50) of 3 to 7 μm, preferably 3 to 6 μm, and more preferably 3 to 5 μm. When the pyrochlore CZ has a secondary particle size (D50) in this range, it has sufficient heat resistance and a high oxygen storage capacity as compared with those having a secondary particle size (D50) in this range. The oxygen absorption / release rate can be significantly improved while maintaining the oxygen absorption / release rate. In the ceria-zirconia-based composite oxide having a fluorite structure, since there is no such relationship between the secondary particle size and the oxygen absorption / release rate, the secondary particle size (D50) is specified in pyrochlore CZ. It is an unexpected effect specific to pyrochlore CZ that the oxygen absorption / release rate is significantly improved by setting the range. In pyrochlore CZ, the influence of the secondary particle size is very large due to the characteristic of rapid oxygen internal diffusion peculiar to the pyrochlore structure, while the heat resistance, which is in a trade-off relationship, is the oxygen absorption / release rate with respect to the secondary particle size. Show different sensitivities and maintain sufficiently high heat resistance. As a result, by setting the secondary particle size (D50) in a specific range in pyrochlore CZ, high oxygen storage while having high heat resistance is achieved. It is presumed that the oxygen absorption / release rate could be significantly improved while maintaining the capacity. Therefore, in the present invention, since the pyrochlore CZ has a secondary particle size (D50) of 3 to 7 μm, it is possible to achieve both an oxygen storage capacity and an oxygen absorption / release rate while having sufficient heat resistance, and in particular, oxygen absorption. The release rate can be significantly improved.

本発明において、「二次粒子」とは、一次粒子が集合したものであり、「一次粒子」とは、一般的に粉末を構成する最も小さい粒子のことをいう。一次粒子は、走査型電子顕微鏡(SEM)等の電子顕微鏡により観察して判断することができる。本発明において、パイロクロアCZの一次粒子径は、通常、二次粒子径よりも小さく、一次粒子径(D50)は、好ましくは、1.5〜6.0μmであり、より好ましくは、1.70〜5.0μmである。ここで、一次粒子径(D50)とは、個数分布を測定した際の平均一次粒子径のことを意味する。一方、本発明において、二次粒子径(D50)とは、二次粒子径が50%累積粒子径(メジアン径又はD50とも呼ばれる)であることを意味する。二次粒子径(D50)は、例えば、レーザー回折散乱法により測定して得られた体積基準粒度分布において、全体積を100%とした累積体積分布曲線における50%となる体積の粒子径(すなわち体積基準累積50%径)である。 In the present invention, the "secondary particles" are aggregates of primary particles, and the "primary particles" generally refer to the smallest particles constituting the powder. The primary particles can be determined by observing with an electron microscope such as a scanning electron microscope (SEM). In the present invention, the primary particle size of the pyrochlore CZ is usually smaller than the secondary particle size, and the primary particle size (D50) is preferably 1.5 to 6.0 μm, more preferably 1.70. It is ~ 5.0 μm. Here, the primary particle size (D50) means the average primary particle size when the number distribution is measured. On the other hand, in the present invention, the secondary particle size (D50) means that the secondary particle size is a 50% cumulative particle size (also referred to as median size or D50). The secondary particle size (D50) is, for example, a particle size having a volume of 50% in the cumulative volume distribution curve with the total volume as 100% in the volume-based particle size distribution obtained by measuring by the laser diffraction / scattering method (that is,). Volume-based cumulative 50% diameter).

特定の範囲の二次粒子径(D50)を有するパイロクロアCZは、例えば、原料を混合して沈殿を得、得られた沈殿を乾燥及び焼成し、粉砕して粉末を得、得られた粉末を加圧成型し、還元処理を施した後、所定の二次粒子径(D50)となるように粉砕することによって得られる。成型体の粉砕は、例えば、ボールミル、振動ミル、ストリームミル及びピンミル等によって行うことができる。 Pyrochlor CZ having a secondary particle size (D50) in a specific range is obtained by, for example, mixing raw materials to obtain a precipitate, drying and calcining the obtained precipitate, and pulverizing to obtain a powder. It is obtained by pressure molding, reduction treatment, and then pulverization to a predetermined secondary particle size (D50). The molded body can be pulverized by, for example, a ball mill, a vibration mill, a stream mill, a pin mill, or the like.

パイロクロアCZにおいて、ジルコニウム(Zr)とセリウム(Ce)のモル比(Zr/Ce)は1.13<Zr/Ce<1.30である。 In pyrochlore CZ, the molar ratio (Zr / Ce) of zirconium (Zr) to cerium (Ce) is 1.13 <Zr / Ce <1.30.

パイロクロアCZは、プラセオジム(Pr)を含んでいてもよく、好ましくは、セリウム及びジルコニウムに加えてプラセオジムを含む。プラセオジムは、式:Pr11→3Pr+Oで表される還元反応のΔG(ギブズの自由エネルギー)が負であるため、ΔGが正である、式:2CeO→Ce+0.5Oで表されるCeOの還元反応を起こりやすくするものと考えられる。パイロクロアCZがプラセオジムを含む場合、パイロクロアCZは、好ましくは、全陽イオン合計量に対して0.5〜5モル%のプラセオジムを含有し、また、Zrと(Ce+Pr)のモル比は、好ましくは1.13<Zr/(Ce+Pr)<1.30である。 Pyrochlore CZ may contain praseodymium (Pr), preferably praseodymium in addition to cerium and zirconium. Praseodymium has a positive ΔG because the reduction reaction ΔG (Gibbs free energy) represented by the formula: Pr 6 O 113 Pr 2 O 3 + O 2 is negative, the formula: 2CeO 2 → Ce 2 O It is considered that the reduction reaction of CeO 2 represented by 3 + 0.5O 2 is likely to occur. When the pyrochlore CZ contains praseodymium, the pyrochlore CZ preferably contains 0.5-5 mol% of praseodymium with respect to the total amount of total cations, and the molar ratio of Zr to (Ce + Pr) is preferably 1.13 <Zr / (Ce + Pr) <1.30.

パイロクロアCZは、セリウム(Ce)及びジルコニウム(Zr)以外の追加の元素として、プラセオジム(Pr)以外の元素を含んでいてもよい。プラセオジム以外の追加の元素としては、特に限定されずに、例えば、セリウム及びプラセオジム以外の希土類元素やアルカリ土類金属が挙げられる。セリウム及びプラセオジム以外の希土類元素としては、スカンジウム(Sc)、イットリウム(Y)、ランタン(La)、ネオジム(Nd)、サマリウム(Sm)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、イッテルビウム(Yb)、ルテチウム(Lu)等が挙げられ、中でも、貴金属を担持させた際に貴金属との相互作用が強くなり、親和性が大きくなる傾向にあるという観点から、La、Nd、Y、Scが好ましい。また、アルカリ土類金属元素としては、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)、ラジウム(Ra)が挙げられ、中でも、貴金属を担持させた際に、貴金属との相互作用が強くなり、親和性が大きくなる傾向にあるという観点から、Mg、Ca、Baが好ましい。追加の元素の含有量は、通常、パイロクロアCZの全陽イオン合計量に対して5モル%以下である。 Pyrochlore CZ may contain an element other than praseodymium (Pr) as an additional element other than cerium (Ce) and zirconium (Zr). The additional element other than praseodymium is not particularly limited, and examples thereof include rare earth elements and alkaline earth metals other than cerium and praseodymium. Rare earth elements other than cerium and placeodium include scandium (Sc), yttrium (Y), lantern (La), neodymium (Nd), samarium (Sm), gadolinium (Gd), terbium (Tb), dysprosium (Dy), and so on. Examples include yttrium (Yb) and lutetium (Lu). Among them, La, Nd, Y, from the viewpoint that the interaction with the noble metal becomes stronger and the affinity tends to increase when the noble metal is supported. Sc is preferred. Examples of the alkaline earth metal element include magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), and radium (Ra). Mg, Ca, and Ba are preferable from the viewpoint that the interaction between the two is strong and the affinity tends to be large. The content of additional elements is typically 5 mol% or less relative to the total total cation content of pyrochlore CZ.

パイロクロアCZの比表面積は、良好な貴金属との相互作用、酸素貯蔵能及び耐熱性の観点から、好ましくは、5m/g以下である。比表面積は、吸着等温線からBET等温吸着式を用いてBET比表面積として算出することができる。 The specific surface area of pyrochlore CZ is preferably 5 m 2 / g or less from the viewpoint of good interaction with noble metals, oxygen storage capacity and heat resistance. The specific surface area can be calculated as the BET specific surface area from the adsorption isotherm using the BET isotherm adsorption formula.

パイロクロアCZのタップ密度は、好ましくは、1.5g/cc〜2.5g/ccである。 The tap density of pyrochlore CZ is preferably 1.5 g / cc to 2.5 g / cc.

触媒コート層に用いられる触媒金属としては、COやHCの酸化及び/又はNOxの還元に対して触媒活性を示す任意の触媒金属を使用することができ、例えば、白金族貴金属が挙げられる。白金族貴金属としては、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、オスミウム(Os)、イリジウム(Ir)及び白金(Pt)が挙げられ、特にRh、Pt及びPdを用いることが好ましい。その担持量は従来の排ガス浄化用触媒と同様でよいが、排ガス浄化用触媒に対して0.01〜5重量%であることが好ましい。触媒コート層において、パイロクロアCZは、触媒金属を担持する担体として用いてもよい。また、触媒コート層は、担体としてパイロクロアCZ以外の担体材料を含んでいてもよい。パイロクロアCZ以外の担体材料としては、一般的に触媒担体として用いられる任意の金属酸化物、例えばアルミナ(Al)、セリア(CeO)、ジルコニア(ZrO)、シリカ(SiO)、チタニア(TiO)、ランタナ(La)又はそれらの組み合わせ等を用いることができる。担持方法は、含浸担持法、吸着担持法及び吸水担持法等の一般的な担持法を利用することができる。 As the catalyst metal used for the catalyst coat layer, any catalyst metal that exhibits catalytic activity for the oxidation of CO and HC and / or the reduction of NOx can be used, and examples thereof include platinum group noble metals. Examples of the platinum group noble metal include ruthenium (Ru), rhodium (Rh), palladium (Pd), osmium (Os), iridium (Ir) and platinum (Pt), and it is particularly preferable to use Rh, Pt and Pd. .. The supported amount may be the same as that of the conventional exhaust gas purification catalyst, but is preferably 0.01 to 5% by weight with respect to the exhaust gas purification catalyst. In the catalyst coat layer, pyrochlore CZ may be used as a carrier for supporting the catalyst metal. Further, the catalyst coat layer may contain a carrier material other than pyrochlore CZ as a carrier. As the carrier material other than pyrochloro CZ, any metal oxide generally used as a catalyst carrier, for example, alumina (Al 2 O 3 ), ceria (CeO 2 ), zirconia (ZrO 2 ), silica (SiO 2 ), etc. Titania (TiO 2 ), Lantana (La 2 O 3 ), or a combination thereof and the like can be used. As the supporting method, a general supporting method such as an impregnation supporting method, an adsorption supporting method and a water absorption supporting method can be used.

排ガス浄化用触媒は、使用量に対して得られる酸素吸放出速度向上効果や排ガス浄化能のバランスの観点から、パイロクロアCZを基材容量に対して5〜100g/Lの量で触媒コート層中に含む。 The exhaust gas purification catalyst contains pyrochlore CZ in the catalyst coat layer in an amount of 5 to 100 g / L with respect to the substrate capacity from the viewpoint of the effect of improving the oxygen absorption / release rate obtained with respect to the amount used and the balance of the exhaust gas purification ability. Included in.

排ガス浄化用触媒は、少なくとも1層の触媒コート層を有するが、好ましくは、上層及び下層の2層の触媒コート層を有する。好ましい実施形態において、排ガス浄化用触媒は、基材と、該基材上に形成された下層触媒コート層と、該下層触媒コート層上に形成され、パイロクロアCZを含む上層触媒コート層とを有する。 The exhaust gas purification catalyst has at least one catalyst coat layer, but preferably has two catalyst coat layers, an upper layer and a lower layer. In a preferred embodiment, the exhaust gas purification catalyst has a base material, a lower layer catalyst coat layer formed on the base material, and an upper layer catalyst coat layer formed on the lower layer catalyst coat layer and containing pyrochlore CZ. ..

排ガス浄化用触媒が2層の触媒コート層を有する実施形態において、好ましくは、下層触媒コート層は、触媒金属としてパラジウム(Pd)を、担体として、例えば、アルミナ(Al)と、アルミナ(Al)、セリア(CeO)、ジルコニア(ZrO)及びランタナ(La)の複合酸化物との組み合わせを含み、上層触媒コート層は、触媒金属としてロジウム(Rh)を、担体として、例えば、パイロクロアCZと、アルミナ(Al)と、アルミナ(Al)、セリア(CeO)、ジルコニア(ZrO)及びランタナ(La)の複合酸化物との組み合わせを含む。この場合、触媒金属は、アルミナ(Al)、セリア(CeO)、ジルコニア(ZrO)及びランタナ(La)の複合酸化物に担持させることが好ましい。 In the embodiment in which the exhaust gas purification catalyst has two catalyst coat layers, preferably, the lower catalyst coat layer uses palladium (Pd) as a catalyst metal and, for example, alumina (Al 2 O 3 ) and alumina as a carrier. It contains a combination of (Al 2 O 3 ), ceria (CeO 2 ), zirconia (ZrO 2 ) and lanthana (La 2 O 3 ) composite oxides, and the upper catalyst coat layer contains rhodium (Rh) as a catalyst metal. As a carrier, for example, a composite oxide of pyrochloro CZ, alumina (Al 2 O 3 ), alumina (Al 2 O 3 ), ceria (CeO 2 ), zirconia (ZrO 2 ) and lanthana (La 2 O 3). Including combinations with. In this case, the catalyst metal is preferably supported on a composite oxide of alumina (Al 2 O 3 ), ceria (CeO 2 ), zirconia (ZrO 2 ) and lanthanum (La 2 O 3).

排ガス浄化用触媒に用いる基材は、特に限定されず、一般的に用いられている多数のセルを有するハニカム形状の材料を使用することができ、その材質としては、コージェライト(2MgO・2Al・5SiO)、アルミナ、ジルコニア、炭化ケイ素等の耐熱性を有するセラミックス材料や、ステンレス鋼等の金属箔からなるメタル材料が挙げられる。基材への触媒コート層のコーティングは、公知の手法により、例えば、各材料を蒸留水及びバインダーに懸濁して調製したスラリーを基材に流し込み、ブロアーで不要分を吹き払う等して行うことができる。 The base material used for the exhaust gas purification catalyst is not particularly limited, and a commonly used honeycomb-shaped material having a large number of cells can be used, and the material thereof is cordierite (2MgO ・ 2Al 2). O 3 · 5SiO 2), alumina, zirconia, and ceramic material having heat resistance such as silicon carbide, metal materials and the like made of metal foil such as stainless steel. The coating of the catalyst coating layer on the base material is carried out by a known method, for example, by pouring a slurry prepared by suspending each material in distilled water and a binder into the base material and blowing off unnecessary parts with a blower. Can be done.

本発明の排ガス浄化用触媒は、2つ以上の触媒を含む排ガス浄化用触媒システムに用いることができる。好ましくは、本発明の排ガス浄化用触媒は、内燃機関の直下に取り付けられたスタートアップ触媒(S/C、スタートアップコンバータ等とも称される)と、排ガスの流れ方向に対して前記S/Cよりも後方に設置されたアンダーフロア触媒(UF/C、アンダーフロアコンバータ、床下触媒等とも称される)の2つの触媒を含む排ガス浄化用触媒システムに用いられる。すなわち、本発明の排ガス浄化用触媒は、S/CとUF/Cを含む排ガス浄化用触媒システムのS/C及び/又はUF/Cとして用いることができる。 The exhaust gas purification catalyst of the present invention can be used in an exhaust gas purification catalyst system including two or more catalysts. Preferably, the exhaust gas purification catalyst of the present invention is more than the start-up catalyst (also referred to as S / C, start-up converter, etc.) mounted directly under the internal combustion engine and the S / C in the flow direction of the exhaust gas. It is used in an exhaust gas purification catalyst system including two catalysts of an underfloor catalyst (also referred to as a UF / C, an underfloor converter, an underfloor catalyst, etc.) installed at the rear. That is, the exhaust gas purification catalyst of the present invention can be used as S / C and / or UF / C of an exhaust gas purification catalyst system including S / C and UF / C.

スタートアップ触媒(S/C)
本発明の排ガス浄化用触媒をS/Cとして用いる場合、S/Cは、好ましくは、少なくとも2層の触媒コート層(すなわち、多層触媒コート)を有し、触媒コート層の少なくとも1層に前記パイロクロアCZを含む。S/Cは、好ましくは、上層及び下層の2層の触媒コート層を有する。S/Cの触媒コート層に用いられる触媒金属としては、排ガス浄化用触媒について前記のものが好ましく、S/Cの触媒コート層の最上層が触媒金属としてRh及びPdを含み、最上層以外の少なくとも1層が触媒金属としてPdを含むことがより好ましい。
Startup catalyst (S / C)
When the exhaust gas purification catalyst of the present invention is used as the S / C, the S / C preferably has at least two catalyst coat layers (that is, a multilayer catalyst coat), and the S / C has the above-mentioned at least one layer of the catalyst coat layer. Includes pyrochlore CZ. The S / C preferably has two catalyst coat layers, an upper layer and a lower layer. As the catalyst metal used for the catalyst coat layer of S / C, the above-mentioned catalyst for purifying exhaust gas is preferable, and the uppermost layer of the catalyst coat layer of S / C contains Rh and Pd as catalyst metals, and other than the uppermost layer. It is more preferable that at least one layer contains Pd as a catalyst metal.

パイロクロアCZを多層触媒コートの最上層に含むS/C
一実施形態において、S/Cは、パイロクロアCZを触媒コート層の最上層に含み、好ましい実施態様において、上層及び下層の2層の触媒コート層の上層にパイロクロアCZを含む。この場合、S/Cの最上層以外の触媒コート層はパイロクロアCZを含んでいてもよいし、含んでいなくてもよい。この実施形態では、S/Cが、パイロクロアCZを、排ガスと接触しやすい最上層に含むことで、排ガスの細かな雰囲気変動に対して素早くOSCを発現させて、触媒を長時間ストイキに保つことができる。さらに、パイロクロアCZが少量で十分なOSC能を発揮するため、触媒の圧力損失を増加させずに触媒の低体格化が可能になる。
S / C containing pyrochlore CZ in the top layer of the multilayer catalyst coat
In one embodiment, the S / C comprises pyrochlore CZ in the uppermost layer of the catalyst coat layer, and in a preferred embodiment, the pyrochlore CZ is contained in the upper layer of the two catalyst coat layers, the upper layer and the lower layer. In this case, the catalyst coat layer other than the uppermost layer of S / C may or may not contain pyrochlore CZ. In this embodiment, the S / C contains pyrochlore CZ in the uppermost layer, which easily comes into contact with the exhaust gas, so that the OSC is quickly expressed in response to the small atmospheric fluctuations of the exhaust gas, and the catalyst is kept stoichiometric for a long time. Can be done. Further, since the pyrochlore CZ exerts a sufficient OSC ability even in a small amount, it is possible to reduce the body size of the catalyst without increasing the pressure loss of the catalyst.

この実施形態において、S/Cは、パイロクロアCZを触媒コート層の最上層に基材容量に対して5〜50g/L含むことが好ましい。S/Cが、パイロクロアCZを触媒コート層の最上層に基材容量に対して5g/L以上含むと、十分なOSC能及び高いNOx浄化能(触媒活性)を有し、また、50g/L以下含むと、高いOSC能と十分なNOx浄化能を有する。 In this embodiment, the S / C preferably contains pyrochlore CZ in the uppermost layer of the catalyst coat layer at 5 to 50 g / L with respect to the substrate volume. When the S / C contains 5 g / L or more of pyrochlore CZ in the uppermost layer of the catalyst coat layer with respect to the substrate capacity, it has sufficient OSC ability and high NOx purification ability (catalytic activity), and also has 50 g / L. Including the following, it has high OSC ability and sufficient NOx purification ability.

この実施形態のS/Cは、例えば、A/Fをストイキ近傍で制御する内燃機関で、400℃以上の条件下で用いることが好ましい。 The S / C of this embodiment is, for example, an internal combustion engine that controls the A / F in the vicinity of the stoichiometric engine, and is preferably used under the condition of 400 ° C. or higher.

好ましい実施形態において、S/Cは、少なくとも2層の触媒コート層を有し、触媒コート層の最上層は、Rh及びPdである触媒金属と、基材容量に対して5〜50g/LのパイロクロアCZと、他の担体材料を含み、最上層以外の少なくとも1層は、Pdである触媒金属と、パイロクロアCZ以外の担体材料を含む。 In a preferred embodiment, the S / C has at least two catalyst coated layers, the top layer of which is a catalyst metal which is Rh and Pd, and 5 to 50 g / L relative to the substrate volume. Pyrochloro CZ and other carrier materials are included, and at least one layer other than the uppermost layer contains a catalyst metal which is Pd and a carrier material other than pyrochloro CZ.

より好ましい実施形態において、S/Cは、上層及び下層の2層の触媒コート層を有し、触媒コート層の上層は、Rh及びPdである触媒金属と、基材容量に対して5〜50g/LのパイロクロアCZと、他の担体材料を含み、触媒コート層の下層は、Pdである触媒金属と、パイロクロアCZ以外の担体材料を含む。 In a more preferred embodiment, the S / C has two catalyst coat layers, an upper layer and a lower layer, and the upper layer of the catalyst coat layer is a catalyst metal which is Rh and Pd, and 5 to 50 g with respect to the substrate capacity. It contains / L pyrochloro CZ and other carrier materials, and the lower layer of the catalyst coat layer contains a catalyst metal which is Pd and a carrier material other than pyrochloro CZ.

パイロクロアCZを多層触媒コートの最上層以外の層に含むS/C
別の実施形態において、S/Cは、パイロクロアCZを触媒コート層の最上層以外の少なくとも1層に含み、好ましい実施態様において、パイロクロアCZを上層及び下層の2層の触媒コート層の下層に含む。この場合、S/Cの最上層はパイロクロアCZを含んでいてもよいし、含んでいなくてもよい。この実施形態では、S/CがパイロクロアCZを最上層以外の層に含むことで、定常運転時の高いNOx浄化能及びA/F切り替え時の高いNOx浄化能を両立でき、特に、従来のOSC材では効果が得られにくかった低温においてNOx浄化能が高く、この実施形態はモード走行時のNOxエミッションの低減に有用である。
S / C containing pyrochlore CZ in layers other than the top layer of the multilayer catalyst coat
In another embodiment, the S / C comprises the pyrochlore CZ in at least one layer other than the uppermost layer of the catalyst coat layer, and in a preferred embodiment, the pyrochlore CZ is contained in the lower layer of the two catalyst coat layers, the upper layer and the lower layer. .. In this case, the uppermost layer of S / C may or may not contain pyrochlore CZ. In this embodiment, since the S / C contains the pyrochlor CZ in a layer other than the uppermost layer, it is possible to achieve both high NOx purification ability during steady operation and high NOx purification ability during A / F switching, and in particular, the conventional OSC. The NOx purification ability is high at a low temperature where it is difficult to obtain an effect with the material, and this embodiment is useful for reducing NOx emissions during mode driving.

この実施形態において、S/Cは、パイロクロアCZを触媒コート層の最上層以外の少なくとも1層に基材容量に対して5〜30g/L含むことが好ましい。S/Cが、パイロクロアCZを触媒コート層の最上層以外の少なくとも1層に基材容量に対して5〜30g/L含有すると、定常運転時の高いNOx浄化能及びA/F切り替え時の高いNOx浄化能を両立できる。 In this embodiment, the S / C preferably contains 5 to 30 g / L of pyrochlore CZ in at least one layer other than the uppermost layer of the catalyst coat layer with respect to the substrate volume. When the S / C contains 5 to 30 g / L of pyrochlore CZ in at least one layer other than the uppermost layer of the catalyst coat layer with respect to the substrate capacity, high NOx purification ability during steady operation and high A / F switching are performed. Both NOx purification ability can be achieved.

この実施形態のS/Cは、例えば、A/Fをストイキ近傍で制御する内燃機関で、400℃以上の条件下で用いることが好ましい。 The S / C of this embodiment is, for example, an internal combustion engine that controls the A / F in the vicinity of the stoichiometric engine, and is preferably used under the condition of 400 ° C. or higher.

好ましい実施形態において、S/Cは、少なくとも2層の触媒コート層を有し、触媒コート層の最上層は、Rh及びPdである触媒金属と、パイロクロアCZ以外の担体材料を含み、最上層以外の少なくとも1層は、Pdである触媒金属と、基材容量に対して5〜30g/LのパイロクロアCZと、パイロクロアCZ以外の担体材料を含む。 In a preferred embodiment, the S / C has at least two catalyst coat layers, the top layer of the catalyst coat layer containing catalyst metals such as Rh and Pd, and a carrier material other than pyrochloro CZ, other than the top layer. At least one layer of the above contains a catalyst metal which is Pd, a pyrochloro CZ of 5 to 30 g / L with respect to the substrate capacity, and a carrier material other than the pyrochlor CZ.

より好ましい実施形態において、S/Cは、上層及び下層の2層の触媒コート層を有し、触媒コート層の上層は、Rh及びPdである触媒金属と、パイロクロアCZ以外の担体材料を含み、触媒コート層の下層は、Pdである触媒金属と、基材容量に対して5〜30g/LのパイロクロアCZと、パイロクロアCZ以外の担体材料を含む。 In a more preferred embodiment, the S / C has two catalyst coat layers, an upper layer and a lower layer, and the upper layer of the catalyst coat layer contains catalyst metals such as Rh and Pd and a carrier material other than pyrochloro CZ. The lower layer of the catalyst coat layer contains a catalyst metal which is Pd, a pyrochloro CZ of 5 to 30 g / L with respect to the substrate capacity, and a carrier material other than the pyrochlor CZ.

アンダーフロア触媒(UF/C)
UF/CはS/Cの下流に設けられる。UF/Cには、S/Cでの反応後の排ガスが流入するため、UF/Cは、排ガスの酸素が少ない雰囲気において、S/Cで浄化しきれない排ガス(特に、HC)を浄化する。
Underfloor catalyst (UF / C)
The UF / C is provided downstream of the S / C. Since the exhaust gas after the reaction in the S / C flows into the UF / C, the UF / C purifies the exhaust gas (particularly HC) that cannot be completely purified by the S / C in an atmosphere where the exhaust gas is low in oxygen. ..

本発明の排ガス浄化用触媒をUF/Cとして用いる場合、UF/Cは、少なくとも2層の触媒コート層を有し、好ましくは、パイロクロアCZを触媒コート層の最上層に含む。UF/Cの最上層以外の触媒コート層はパイロクロアCZを含んでいてもよいし、含んでいなくてもよい。UF/Cは、好ましくは、上層及び下層の2層の触媒コート層を有し、パイロクロアCZを上層に含む。この実施形態では、UF/CがパイロクロアCZを、排ガスと接触しやすい最上層に含むことで定常運転時のHC浄化能が高くなる。さらに、パイロクロアCZが少量で十分なHC浄化能を示すため、触媒の圧力損失を増加させずに触媒の低体格化が可能になる。UF/Cの触媒コート層に用いられる触媒金属としては、排ガス浄化用触媒について前記のものが好ましく、UF/Cの触媒コート層の最上層が触媒金属としてRhを含み、最上層以外の少なくとも1層が触媒金属としてPdを含むことがより好ましい。 When the exhaust gas purification catalyst of the present invention is used as the UF / C, the UF / C has at least two catalyst coat layers, and preferably contains pyrochlore CZ in the uppermost layer of the catalyst coat layer. The catalyst coat layer other than the top layer of the UF / C may or may not contain pyrochlore CZ. The UF / C preferably has two catalyst coat layers, an upper layer and a lower layer, and contains pyrochlore CZ in the upper layer. In this embodiment, the UF / C includes the pyrochlore CZ in the uppermost layer, which is likely to come into contact with the exhaust gas, so that the HC purification ability during steady operation is enhanced. Furthermore, since pyrochlore CZ exhibits sufficient HC purification ability even in a small amount, it is possible to reduce the body size of the catalyst without increasing the pressure loss of the catalyst. As the catalyst metal used for the catalyst coat layer of UF / C, the above-mentioned catalyst for exhaust gas purification is preferable, and the uppermost layer of the catalyst coat layer of UF / C contains Rh as a catalyst metal, and at least one other than the uppermost layer. It is more preferable that the layer contains Pd as a catalyst metal.

UF/Cは、パイロクロアCZを触媒コート層の最上層に基材容量に対して5〜20g/L含むことが好ましい。UF/Cが、パイロクロアCZを触媒コート層の最上層に基材容量に対して5〜20g/L含むと、定常運転時の高いHC浄化能及び高いNOx浄化能を両立できる。 The UF / C preferably contains pyrochlore CZ in the uppermost layer of the catalyst coat layer at 5 to 20 g / L with respect to the substrate capacity. When the UF / C contains 5 to 20 g / L of pyrochlore CZ in the uppermost layer of the catalyst coat layer with respect to the substrate capacity, it is possible to achieve both high HC purification ability and high NOx purification ability during steady operation.

この実施形態のUF/Cは、例えば、A/Fをストイキ近傍で制御する内燃機関で、350℃以上の条件下で用いることが好ましい。 The UF / C of this embodiment is, for example, an internal combustion engine that controls the A / F in the vicinity of the stoichiometric engine, and is preferably used under conditions of 350 ° C. or higher.

好ましい実施形態において、UF/Cは、少なくとも2層の触媒コート層を有し、触媒コート層の最上層は、Rhである触媒金属と、基材容量に対して5〜20g/LのパイロクロアCZと、他の担体材料を含み、最上層以外の少なくとも1層は、Pdである触媒金属と、パイロクロアCZ以外の担体材料を含む。 In a preferred embodiment, the UF / C has at least two catalyst coat layers, the top layer of the catalyst coat layer being a catalyst metal of Rh and a pyrochlor CZ of 5 to 20 g / L relative to the substrate volume. And other carrier materials, and at least one layer other than the uppermost layer contains a catalyst metal which is Pd and a carrier material other than pyrochloro CZ.

より好ましい実施形態において、UF/Cは、上層及び下層の2層の触媒コート層を有し、触媒コート層の上層は、Rhである触媒金属と、基材容量に対して5〜20g/LのパイロクロアCZと、他の担体材料を含み、触媒コート層の下層は、Pdである触媒金属と、パイロクロアCZ以外の担体材料を含む。 In a more preferred embodiment, the UF / C has two catalyst coat layers, an upper layer and a lower layer, and the upper layer of the catalyst coat layer is a catalyst metal which is Rh and 5 to 20 g / L with respect to the capacity of the base material. Pyrochlor CZ and other carrier materials are included, and the lower layer of the catalyst coat layer contains a catalyst metal which is Pd and a carrier material other than Pyrochrome CZ.

以下、実施例を用いて本発明をさらに具体的に説明する。但し、本発明の技術的範囲はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples. However, the technical scope of the present invention is not limited to these examples.

<セリア−ジルコニア系複合酸化物の調製>
(1)プラセオジム添加パイロクロア型セリア−ジルコニア系複合酸化物(Pr添加パイロクロアCZ)の合成
硝酸セリウム六水和物129.7g、オキシ硝酸ジルコニウム二水和物99.1g、硝酸プラセオジム六水和物5.4g及び18%過酸化水素水36.8gをイオン交換水500ccに溶解させ、25%アンモニア水340gを用いて逆共沈法により水酸化物沈殿を得た。ろ紙で沈殿を分離し、得られた沈殿を乾燥炉にて150℃で7時間乾燥して水分を除去し、電気炉にて500℃で4時間焼成し、粉砕して、セリア−ジルコニア−プラセオジミア複合酸化物を得た。
<Preparation of ceria-zirconia complex oxide>
(1) Synthesis of praseodymium-added pyrochlore-type ceria-zirconia complex oxide (Pr-added pyrochlore CZ) Serium nitrate hexahydrate 129.7 g, zirconium oxynitrate dihydrate 99.1 g, praseodymium nitrate hexahydrate 5 .4 g and 36.8 g of 18% hydrogen peroxide solution were dissolved in 500 cc of ion-exchanged water, and 340 g of 25% ammonia water was used to obtain a hydroxide precipitate by the reverse co-precipitation method. The precipitate is separated with a filter paper, and the obtained precipitate is dried at 150 ° C. for 7 hours in a drying furnace to remove water, calcined at 500 ° C. for 4 hours in an electric furnace, pulverized, and ceria-zirconia-placeodimia. A composite oxide was obtained.

次に、得られた粉末を、加圧成型機(Wet−CIP)を用いて、2000kgf/cmの圧力を加えて成型してセリア−ジルコニア−プラセオジミア複合酸化物の成型体を得た。 Next, the obtained powder was molded by applying a pressure of 2000 kgf / cm 2 using a pressure molding machine (Wet-CIP) to obtain a molded body of a ceria-zirconia-placeodimia composite oxide.

次に、得られた成型体を、活性炭を入れた黒鉛坩堝内で、Ar雰囲気下で、1700℃で5時間還元し、プラセオジム添加パイロクロア型セリア−ジルコニア系複合酸化物(Pr添加パイロクロアCZ)を調製した。得られたPr添加パイロクロアCZは、その後、電気炉にて500℃で5時間焼成した。 Next, the obtained molded product was reduced in a graphite crucible containing activated carbon at 1700 ° C. for 5 hours in an Ar atmosphere to obtain a praseodymium-added pyrochlore-type ceria-zirconia-based composite oxide (Pr-added pyrochlore CZ). Prepared. The obtained Pr-added pyrochlore CZ was then calcined in an electric furnace at 500 ° C. for 5 hours.

(2)プラセオジム添加蛍石型セリア−ジルコニア系複合酸化物(Pr添加蛍石CZ)の合成
硝酸セリウム六水和物129.7g、オキシ硝酸ジルコニウム二水和物99.1g、硝酸プラセオジム六水和物5.4g及び18%過酸化水素水36.8gをイオン交換水500ccに溶解させ、25%アンモニア水340gを用いて逆共沈法により水酸化物沈殿を得た。ろ紙で沈殿を分離し、得られた沈殿を乾燥炉にて150℃で7時間乾燥して水分を除去し、電気炉にて900℃で5時間焼成して、プラセオジム添加蛍石型セリア−ジルコニア系複合酸化物(Pr添加蛍石CZ)を得た。
(2) Synthesis of praseodymium-added fluorite-type ceria-zirconia-based composite oxide (Pr-added fluorite CZ) Serium nitrate hexahydrate 129.7 g, zirconium oxynitrate dihydrate 99.1 g, praseodymium nitrate hexahydrate 5.4 g of the product and 36.8 g of 18% hydrogen peroxide solution were dissolved in 500 cc of ion-exchanged water, and 340 g of 25% ammonia water was used to obtain a hydroxide precipitate by the reverse co-precipitation method. The precipitate was separated with a filter paper, and the obtained precipitate was dried in a drying furnace at 150 ° C. for 7 hours to remove water, and then fired in an electric furnace at 900 ° C. for 5 hours to add praseodymium-added fluorite-type ceria-zirconia. A system composite oxide (Pr-added fluorite CZ) was obtained.

実施例1
振動ミルを用いて、200g/バッチのPr添加パイロクロアCZを、二次粒子径(D50)が3μmになるように粉砕条件を設定して粉砕して、二次粒子径(D50)が3.3μmである実施例1のPr添加パイロクロアCZを調製した。
Example 1
Using a vibration mill, 200 g / batch of Pr-added pyrochlore CZ is pulverized by setting pulverization conditions so that the secondary particle diameter (D50) is 3 μm, and the secondary particle diameter (D50) is 3.3 μm. The Pr-added pyrochlore CZ of Example 1 was prepared.

実施例2
ストリームミルを用いて、200g/バッチのPr添加パイロクロアCZを、二次粒子径(D50)が5μmになるように粉砕条件を設定して粉砕して、二次粒子径(D50)が4.9μmである実施例2のPr添加パイロクロアCZを調製した。
Example 2
Using a stream mill, 200 g / batch of Pr-added pyrochlore CZ was crushed by setting crushing conditions so that the secondary particle size (D50) was 5 μm, and the secondary particle size (D50) was 4.9 μm. The Pr-added pyrochlore CZ of Example 2 was prepared.

比較例1
振動ミルを用いて、200g/バッチのPr添加パイロクロアCZを、二次粒子径(D50)が1μmになるように粉砕条件を設定して粉砕して、二次粒子径(D50)が0.5μmである比較例1のPr添加パイロクロアCZを調製した。
Comparative Example 1
Using a vibration mill, 200 g / batch of Pr-added pyrochlore CZ is pulverized by setting pulverization conditions so that the secondary particle diameter (D50) is 1 μm, and the secondary particle diameter (D50) is 0.5 μm. The Pr-added pyrochlore CZ of Comparative Example 1 was prepared.

比較例2
ストリームミルを用いて、200g/バッチのPr添加パイロクロアCZを、二次粒子径(D50)が11μmになるように粉砕条件を設定して粉砕して、二次粒子径(D50)が11.2μmである比較例2のPr添加パイロクロアCZを調製した。
Comparative Example 2
Using a stream mill, 200 g / batch of Pr-added pyrochlore CZ was pulverized by setting pulverization conditions so that the secondary particle size (D50) was 11 μm, and the secondary particle size (D50) was 11.2 μm. The Pr-added pyrochlore CZ of Comparative Example 2 was prepared.

比較例3
振動ミルを用いて、200g/バッチのPr添加蛍石CZを、二次粒子径(D50)が1μmになるように粉砕条件を設定して粉砕して、二次粒子径(D50)が1.0μmである比較例3のPr添加蛍石CZを調製した。
Comparative Example 3
Using a vibration mill, 200 g / batch of Pr-added fluorite CZ is pulverized by setting pulverization conditions so that the secondary particle size (D50) is 1 μm, and the secondary particle size (D50) is 1. The Pr-added fluorite CZ of Comparative Example 3 having a size of 0 μm was prepared.

比較例4
ストリームミルを用いて、200g/バッチのPr添加蛍石CZを、二次粒子径(D50)が5μmになるように粉砕条件を設定して粉砕して、二次粒子径(D50)が5.1μmである比較例4のPr添加蛍石CZを調製した。
Comparative Example 4
Using a stream mill, 200 g / batch of Pr-added fluorite CZ is pulverized by setting pulverization conditions so that the secondary particle size (D50) is 5 μm, and the secondary particle size (D50) is 5. The Pr-added fluorite CZ of Comparative Example 4 having a size of 1 μm was prepared.

比較例5
ストリームミルを用いて、200g/バッチのPr添加蛍石CZを、二次粒子径(D50)が8μmになるように粉砕条件を設定して粉砕して、二次粒子径(D50)が10.9μmである比較例5のPr添加蛍石CZを調製した。
Comparative Example 5
Using a stream mill, 200 g / batch of Pr-added fluorite CZ was pulverized by setting pulverization conditions so that the secondary particle size (D50) was 8 μm, and the secondary particle size (D50) was 10. A Pr-added fluorite CZ of Comparative Example 5 having a size of 9 μm was prepared.

<セリア−ジルコニア系複合酸化物の評価>
<X線回折(XRD)測定>
実施例1−2及び比較例1−5で得られたセリア−ジルコニア系複合酸化物を大気中1100℃で5時間加熱処理し(高温耐久試験)、処理後のセリア−ジルコニア系複合酸化物の結晶相をX線回折法により測定した。X線回折装置としてTTR−III((株)リガク製)を用いてX線回折パターンを測定し、I(14/29)値及びI(28/29)値を求めた。実施例1−2及び比較例1−2のセリア−ジルコニア系複合酸化物について得られた結果を表1に示す。
<Evaluation of ceria-zirconia composite oxide>
<X-ray diffraction (XRD) measurement>
The ceria-zirconia-based composite oxides obtained in Examples 1-2 and Comparative Examples 1-5 were heat-treated at 1100 ° C. in the air for 5 hours (high temperature durability test), and the treated ceria-zirconia-based composite oxides were subjected to the treatment. The crystal phase was measured by X-ray diffraction. The X-ray diffraction pattern was measured using TTR-III (manufactured by Rigaku Co., Ltd.) as an X-ray diffractometer, and the I (14/29) value and the I (28/29) value were determined. The results obtained for the ceria-zirconia-based composite oxides of Example 1-2 and Comparative Example 1-2 are shown in Table 1.

Figure 0006863799
Figure 0006863799

表1より、実施例1−2及び比較例1−2のセリア−ジルコニア系複合酸化物において、I(14/29)値がほぼ同等であることから、パイロクロアCZの二次粒子径(D50)が耐熱性に与える影響は小さく、実施例1−2のセリア−ジルコニア系複合酸化物は十分な耐熱性を有している。 From Table 1, since the I (14/29) values of the ceria-zirconia-based composite oxides of Example 1-2 and Comparative Example 1-2 were almost the same, the secondary particle size (D50) of pyrochlore CZ was determined. Has a small effect on heat resistance, and the ceria-zirconia-based composite oxide of Example 1-2 has sufficient heat resistance.

<酸素吸放出量の測定試験:OSC評価>
実施例1−2及び比較例1−5で得られたセリア−ジルコニア系複合酸化物の酸素吸放出量(OSC)を以下のようにして測定した。
<Measurement test of oxygen absorption / release amount: OSC evaluation>
The oxygen absorption / release amount (OSC) of the ceria-zirconia-based composite oxide obtained in Example 1-2 and Comparative Example 1-5 was measured as follows.

耐久試験は、1050℃で5時間加熱処理し、耐久試験中のガス組成は、8%−CO+10%−HO⇔20%−O+10%−HOを15分毎に交互に切り替えた。 The durability test was heat-treated at 1050 ° C. for 5 hours, and the gas composition during the durability test was alternately switched between 8% -CO + 10% -H 2 O ⇔ 20% -O 2 + 10% -H 2 O every 15 minutes. It was.

更に耐久試験後の実施例1−2及び比較例1−5のセリア−ジルコニア系複合酸化物と、Pdを担持した(0.25重量%)Pd/Al粉末を重量比1:1で物理混合し、得られた粉末を、加圧成型機(Wet−CIP装置)を用い、1000kgf/cmの圧力を加えて成型し、粉砕及び篩い分けして1mm角のペレットを作製した。 Further ceria Examples 1-2 and Comparative Example 1-5 after the durability test - and zirconia composite oxide, carrying Pd (0.25 wt%) Pd / Al 2 O 3 powder in a weight ratio of 1: 1 The obtained powder was physically mixed in 1 and molded by applying a pressure of 1000 kgf / cm 2 using a pressure molding machine (Wet-CIP device), and pulverized and sieved to prepare 1 mm square pellets.

固定床流通装置に3.0gのペレットを配置し、トータル流量15Lの評価用ガスを用いて試験を実施した。1%−O(Nバランス)処理後2%−CO(Nバランス)流通時の初期(0〜13秒)のCO発生量から、CO+1/2 O→COの反応式に基づき、セリア−ジルコニア系複合酸化物から放出されたO量を算出し、初期の酸素吸放出量(OSC)を求めることで、酸素吸放出速度を評価した。なお、セリウムからの酸素の放出は2CeO→Ce+1/2 Oの反応式で表される。 A 3.0 g pellet was placed in a fixed bed flow device, and a test was carried out using an evaluation gas having a total flow rate of 15 L. From the initial (0 to 13 seconds) CO 2 generation amount during 1% -O 2 (N 2 balance) treatment to 2% -CO (N 2 balance) distribution, the reaction formula of CO + 1/2 O 2 → CO 2 Based on this, the amount of O 2 released from the ceria-zirconia-based composite oxide was calculated, and the initial amount of oxygen absorption / release (OSC) was obtained to evaluate the oxygen absorption / release rate. The release of oxygen from cerium is represented by the reaction formula of 2 CeO 2 → Ce 2 O 3 + 1/2 O 2.

結果を図1に示す。図1は、実施例1−2及び比較例1−5のセリア−ジルコニア系複合酸化物の初期の酸素吸放出量(OSC)(棒グラフ)と、これらの複合酸化物を用いた排ガス浄化用触媒の最大酸素吸蔵量(Cmax)(折れ線グラフ)を示す。図1(棒グラフ)より、蛍石構造を有するセリア−ジルコニア系複合酸化物(比較例3〜5)では、二次粒子径を制御しても初期の酸素吸放出量(OSC)は増加せず、ほぼ一定であるのに対し、パイロクロア構造を有するセリア−ジルコニア系複合酸化物(実施例1、2及び比較例1、2)では、二次粒子径(D50)の範囲を特定の範囲とすることで初期の酸素吸放出量(OSC)が有意に増加し、酸素吸放出速度が有意に向上することが示された。 The results are shown in FIG. FIG. 1 shows the initial oxygen absorption / release amount (OSC) (bar graph) of the ceria-zirconia-based composite oxides of Examples 1-2 and Comparative Example 1-5, and the exhaust gas purification catalyst using these composite oxides. The maximum oxygen storage amount (Cmax) (line graph) of is shown. From FIG. 1 (bar graph), in the ceria-zirconia composite oxide having a fluorite structure (Comparative Examples 3 to 5), the initial oxygen absorption / release amount (OSC) did not increase even if the secondary particle size was controlled. However, in the ceria-zirconia-based composite oxide having a pyrochlore structure (Examples 1 and 2 and Comparative Examples 1 and 2), the range of the secondary particle size (D50) is set as a specific range. It was shown that the initial oxygen absorption / release amount (OSC) was significantly increased and the oxygen absorption / release rate was significantly improved.

<エンジンベンチ評価>
実施例1−2及び比較例1−5のセリア−ジルコニア系複合酸化物を用いて排ガス浄化用触媒を調製し、評価した。
<Engine bench evaluation>
Exhaust gas purification catalysts were prepared and evaluated using the ceria-zirconia-based composite oxides of Examples 1-2 and Comparative Examples 1-5.

(1)触媒の調製
触媒の材料として以下の材料を用いた:
実施例1−2及び比較例1−5のセリア−ジルコニア系複合酸化物
Al:La(1重量%)複合化Al
ACZL:Al(30重量%)、CeO(20重量%)、ZrO(45重量%)及びLa(5重量%)の複合酸化物
Rh:貴金属含有量2.75重量%の硝酸ロジウム(Rh)水溶液((株)キャタラー製)
Pd:貴金属含有量8.8重量%の硝酸パラジウム(Pd)水溶液((株)キャタラー製)
ハニカム基材:875cc(600H/3−9R−08)のコージェライトハニカム基材((株)デンソー製)。
(1) Preparation of catalyst The following materials were used as catalyst materials:
Ceria-zirconia-based composite oxide of Examples 1-2 and Comparative Example 1-5 Al 2 O 3 : La 2 O 3 (1% by weight) composite Al 2 O 3
ACZL: Composite oxide of Al 2 O 3 (30% by weight), CeO 2 (20% by weight), ZrO 2 (45% by weight) and La 2 O 3 (5% by weight) Rh: Precious metal content 2.75% by weight % Rhodium Nitrate (Rh) Aqueous Solution (manufactured by Cataler Co., Ltd.)
Pd: Palladium nitrate (Pd) aqueous solution with a precious metal content of 8.8% by weight (manufactured by Cataler Corporation)
Honeycomb base material: 875 cc (600H / 3-9R-08) cordierite honeycomb base material (manufactured by Denso Corporation).

触媒は以下のようにして調製した:
(a)下層:Pd(0.69)/ACZL(45)+Al(40)(括弧内の数値は、基材容量に対するコート量(g/L)を示す)
ACZLと硝酸パラジウムとを用い、含浸法により、PdがACZLに担持されたPd/ACZLを調製し、これを蒸留水に懸濁させ、Al及びAl系バインダーを添加してスラリーを調製した。調製したスラリーを基材へ流し込み、ブロアーで不要分を吹き払い、基材壁面をコーティングした。コーティングには、基材容量に対して、Pdが0.69g/L、Alが40g/L、ACZLが45g/L含まれるようにした。コーティング後、120℃に保持した乾燥機で2時間乾燥した後、500℃の電気炉で2時間焼成して、下層コートを作製した。
The catalyst was prepared as follows:
(A) Lower layer: Pd (0.69) / ACZL (45) + Al 2 O 3 (40) (The numerical values in parentheses indicate the coating amount (g / L) with respect to the base material capacity).
Using ACZL and palladium nitrate, Pd / ACZL in which Pd was supported on ACZL was prepared by an impregnation method, suspended in distilled water, and Al 2 O 3 and Al 2 O 3 binders were added. A slurry was prepared. The prepared slurry was poured into a base material, unnecessary parts were blown off with a blower, and the wall surface of the base material was coated. The coating, with respect to the substrate capacity, Pd is 0.69g / L, Al 2 O 3 is to 40g / L, ACZL is contained 45 g / L. After coating, it was dried in a dryer kept at 120 ° C. for 2 hours and then fired in an electric furnace at 500 ° C. for 2 hours to prepare a lower coat.

(b)上層:Rh(0.10)/ACZL(110)+Al(28)+実施例1−2及び比較例1−5のセリア−ジルコニア系複合酸化物(20)
ACZLと硝酸ロジウムとを用い、含浸法により、RhがACZLに担時されたRh/ACZLを調製し、これを蒸留水に懸濁させ、Al及びAl系バインダーを撹拌しながら添加し、最後に、実施例1−2及び比較例1−5の各セリア−ジルコニア系複合酸化物を添加して、対応する各スラリーを調製した。得られた各スラリーを、前記(a)によりコーティングを施した基材へ流し込み、ブロアーで不要分を吹き払い、基材壁面の下層コートをコーティングした。コーティングには、基材容量に対して、Rhが0.10g/L、Alが28g/L、ACZLが110g/L、実施例1−2及び比較例1−5の各セリア−ジルコニア系複合酸化物が20g/L含まれるようにした。コーティング後、120℃に保持した乾燥機で2時間乾燥した後、500℃の電気炉で2時間焼成して、実施例1−2及び比較例1−5の各セリア−ジルコニア系複合酸化物を用いた、対応する実施例1−2及び比較例1−5の各触媒を得た。
(B) Upper layer: Rh (0.10) / ACZL (110) + Al 2 O 3 (28) + Ceria-zirconia-based composite oxide (20) of Examples 1-2 and Comparative Example 1-5.
Using ACZL and rhodium nitrate, Rh / ACZL in which Rh was carried by ACZL was prepared by an impregnation method, suspended in distilled water, and Al 2 O 3 and Al 2 O 3 based binders were stirred. Finally, each ceria-zirconia-based composite oxide of Example 1-2 and Comparative Example 1-5 was added to prepare each corresponding slurry. Each of the obtained slurries was poured into the base material coated according to (a) above, unnecessary parts were blown off with a blower, and the undercoat of the base material wall surface was coated. For coating, Rh was 0.10 g / L, Al 2 O 3 was 28 g / L, ACZL was 110 g / L, and each ceria-zirconia of Example 1-2 and Comparative Example 1-5 was applied with respect to the substrate volume. 20 g / L of the system composite oxide was contained. After coating, it was dried in a dryer maintained at 120 ° C. for 2 hours, and then calcined in an electric furnace at 500 ° C. for 2 hours to obtain the ceria-zirconia composite oxides of Examples 1-2 and Comparative Example 1-5. The corresponding catalysts of Example 1-2 and Comparative Example 1-5 used were obtained.

(2)耐久試験
1UR−FEエンジン(トヨタ自動車(株)製)を用いて、触媒床温1000℃で25時間の劣化促進試験を実施した。排ガス組成は、スロットル開度とエンジン負荷を調整し、リッチ〜ストイキ〜リーンを一定サイクルで繰り返して劣化を促進させた。
(2) Durability test Using a 1UR-FE engine (manufactured by Toyota Motor Corporation), a deterioration acceleration test was conducted for 25 hours at a catalyst floor temperature of 1000 ° C. As for the exhaust gas composition, the throttle opening and the engine load were adjusted, and rich-stoiki-lean was repeated in a fixed cycle to promote deterioration.

(3)OSC試験
前記(2)の耐久試験後の触媒を2AZ−FEエンジン(トヨタ自動車(株)製)に装着し、入りガス温度を600℃に設定し、入りガス雰囲気のA/Fを14.1と15.1を目標にフィードバック制御して周期的に振幅させ、ストイキ点とA/Fセンサー出力の差分より、酸素の過不足を式:OSC(g)=0.23×ΔA/F×噴射燃料量により算出し、最大酸素吸蔵量(Cmax)を求めた。ここで、触媒の初期(0〜13秒)の酸素吸放出量(OSC)と、最大酸素吸蔵量(Cmax)との間には相関関係があり、初期(0〜13秒)の酸素吸放出量(OSC)が大きい場合、最大酸素吸蔵量(Cmax)は大きくなることがわかっている(図2参照)。よって、触媒の最大酸素吸蔵量(Cmax)を求めることで、酸素吸放出速度を評価することができる。結果を図1に示す。図1は、実施例1−2及び比較例1−5のセリア−ジルコニア系複合酸化物の初期の酸素吸放出量(OSC)(棒グラフ)と、これらの複合酸化物を用いた排ガス浄化用触媒の最大酸素吸蔵量(Cmax)(折れ線グラフ)を示す。
(3) OSC test The catalyst after the durability test of (2) above is mounted on a 2AZ-FE engine (manufactured by Toyota Motor Corporation), the entering gas temperature is set to 600 ° C., and the A / F of the entering gas atmosphere is adjusted. Feedback control is performed with 14.1 and 15.1 as targets to periodically oscillate, and the excess or deficiency of oxygen is calculated from the difference between the stoichiometric point and the A / F sensor output. The maximum oxygen storage amount (Cmax) was calculated by calculating from F × the amount of injected fuel. Here, there is a correlation between the initial oxygen uptake and release amount (OSC) of the catalyst and the maximum oxygen uptake (Cmax), and the initial (0 to 13 seconds) oxygen uptake and release. It has been found that when the amount (OSC) is large, the maximum oxygen uptake (Cmax) is large (see FIG. 2). Therefore, the oxygen absorption / release rate can be evaluated by determining the maximum oxygen uptake (Cmax) of the catalyst. The results are shown in FIG. FIG. 1 shows the initial oxygen absorption / release amount (OSC) (bar graph) of the ceria-zirconia-based composite oxides of Examples 1-2 and Comparative Example 1-5, and the exhaust gas purification catalyst using these composite oxides. The maximum oxygen storage amount (Cmax) (line graph) of is shown.

図1より、実施例1−2及び比較例1、2、4のセリア−ジルコニア系複合酸化物を用いた触媒のエンジンベンチ評価においても、実施例1−2及び比較例1−5のセリア−ジルコニア系複合酸化物と同様の結果が確認された。具体的には、図1(折れ線グラフ)より、本発明では、パイロクロア構造を有するセリア−ジルコニア系複合酸化物の二次粒子径(D50)を特定の範囲(3〜7μm)とすることで、二次粒子径がこの範囲にないパイロクロアCZ及び蛍石構造を有するセリア−ジルコニア系複合酸化物に対して最大酸素吸蔵量(Cmax)が有意に増加し、よって、酸素吸放出速度が有意に向上したことが示された。パイロクロアCZでは、パイロクロア構造特有の酸素内部拡散が速い特性により二次粒子径の影響が非常に大きく、一方、トレードオフの関係にある耐熱性は、二次粒子径に対して酸素吸放出速度とは異なる感度を示し、十分に高い耐熱性が維持されるため、結果として、パイロクロアCZにおいて二次粒子径(D50)を特定の範囲とすることで、高い耐熱性を有しつつ、高い酸素貯蔵容量を維持したまま、酸素吸放出速度を有意に向上させることができたと推測される。 From FIG. 1, also in the engine bench evaluation of the catalyst using the ceria-zirconia-based composite oxide of Examples 1-2 and Comparative Examples 1, 2 and 4, the ceria of Examples 1-2 and Comparative Example 1-5 was also evaluated. Results similar to those of zirconia-based composite oxides were confirmed. Specifically, from FIG. 1 (folded line graph), in the present invention, the secondary particle size (D50) of the ceria-zirconia-based composite oxide having a pyrochlore structure is set to a specific range (3 to 7 μm). The maximum oxygen occlusion (Cmax) is significantly increased for pyrochlore CZ whose secondary particle size is not in this range and the ceria-zirconia-based composite oxide having a fluorite structure, and thus the oxygen absorption / release rate is significantly improved. It was shown that it was done. In pyrochlore CZ, the influence of the secondary particle size is very large due to the characteristic of rapid oxygen internal diffusion peculiar to the pyrochlore structure, while the heat resistance, which is in a trade-off relationship, is the oxygen absorption / release rate with respect to the secondary particle size. Show different sensitivities and maintain sufficiently high heat resistance. As a result, by setting the secondary particle size (D50) in a specific range in pyrochlore CZ, high oxygen storage while having high heat resistance is achieved. It is presumed that the oxygen absorption / release rate could be significantly improved while maintaining the capacity.

パイロクロア構造を有するセリア−ジルコニア系複合酸化物において、二次粒子径(D50)を3〜7μmとすることで、十分な耐熱性を有しつつ、酸素貯蔵容量及び酸素吸放出速度を両立することができ、かかるセリア−ジルコニア系複合酸化物を用いた排ガス浄化用触媒もこのような効果を有する。 In a ceria-zirconia-based composite oxide having a pyrochlore structure, by setting the secondary particle size (D50) to 3 to 7 μm, it is possible to achieve both oxygen storage capacity and oxygen absorption / release rate while having sufficient heat resistance. A catalyst for purifying exhaust gas using such a ceria-zirconia-based composite oxide also has such an effect.

<スタートアップ触媒(S/C)>
触媒の材料として以下の材料を用いた:
Al:La(4重量%)複合化Al(Sasol社製)
ACZ−1:Al(30重量%)、CeO(27重量%)、ZrO(35重量%)、La(4重量%)及びY(4重量%)の複合酸化物(Solvay社製)
ACZ−2:Al(30重量%)、CeO(20重量%)、ZrO(44重量%)、Nd(2重量%)、La(2重量%)及びY(2重量%)の複合酸化物(第一稀元素化学工業社製)
OSC材:
・実施例2及び比較例1−2のセリア−ジルコニア系複合酸化物(Pr添加パイロクロアCZ)
・前記ACZ−2
・CZ:CeO(30重量%)、ZrO(60重量%)、La(5重量%)及びY(5重量%)の複合酸化物(Solvay社製)
・蛍石型CZ:比較例4と同様にして調製した二次粒子径(D50)6.1μmのPr添加蛍石CZ
ハニカム基材:875cc(600セル六角 壁厚2mil)のコージェライトハニカム基材
<Startup catalyst (S / C)>
The following materials were used as catalyst materials:
Al 2 O 3 : La 2 O 3 (4% by weight) Composite Al 2 O 3 (manufactured by Sasol)
ACZ-1: Of Al 2 O 3 (30% by weight), CeO 2 (27% by weight), ZrO 2 (35% by weight), La 2 O 3 (4% by weight) and Y 2 O 3 (4% by weight) Composite oxide (manufactured by Solvay)
ACZ-2: Al 2 O 3 (30% by weight), CeO 2 (20% by weight), ZrO 2 (44% by weight), Nd 2 O 3 (2% by weight), La 2 O 3 (2% by weight) and Y 2 O 3 (2% by weight) composite oxide (manufactured by Daiichi Rare Element Chemical Industry Co., Ltd.)
OSC material:
-Ceria-zirconia-based composite oxide of Example 2 and Comparative Example 1-2 (Pr-added pyrochlore CZ)
-The ACZ-2
CZ: Composite oxide of CeO 2 (30% by weight), ZrO 2 (60% by weight), La 2 O 3 (5% by weight) and Y 2 O 3 (5% by weight) (manufactured by Solvay)
-Fluorite type CZ: Pr-added fluorite CZ having a secondary particle size (D50) of 6.1 μm prepared in the same manner as in Comparative Example 4.
Honeycomb base material: 875 cc (600 cell hexagon wall thickness 2 mil) cordierite honeycomb base material

本発明のセリア−ジルコニア系複合酸化物をOSC材として最上層に添加したS/Cの性能評価をするため、実施例3−7及び比較例6−11のS/Cを以下のようにして調製した。 In order to evaluate the performance of the S / C in which the ceria-zirconia-based composite oxide of the present invention is added to the uppermost layer as the OSC material, the S / Cs of Examples 3-7 and Comparative Examples 6-11 are set as follows. Prepared.

比較例6
(a)下層コートの調製
ACZ−1と硝酸パラジウムとを用い、含浸法により、PdがACZ−1に担持されたPd/ACZ−1を調製し、所定量のPd/ACZ−1、Al、硫酸バリウム及びAl系バインダーを撹拌しながら蒸留水に添加し、懸濁させてスラリー1を調製した。調製したスラリー1を基材へ流し込み、ブロアーで不要分を吹き払い、基材壁面をコーティングした。コーティングには、基材容量に対して、Pdが0.38g/L、Alが40g/L、ACZ−1が45g/L、硫酸バリウムが5g/L含まれるようにした。コーティング後、120℃に保持した乾燥機で2時間乾燥した後、500℃の電気炉で2時間焼成して、下層コートを作製した。
Comparative Example 6
(A) Preparation of lower layer coat Pd / ACZ-1 in which Pd is supported on ACZ-1 is prepared by an impregnation method using ACZ-1 and palladium nitrate, and a predetermined amount of Pd / ACZ-1, Al 2 is prepared. O 3 , barium sulfate and Al 2 O 3 based binder were added to distilled water with stirring and suspended to prepare slurry 1. The prepared slurry 1 was poured into a base material, unnecessary parts were blown off with a blower, and the wall surface of the base material was coated. The coating, with respect to the substrate capacity, Pd is 0.38g / L, Al 2 O 3 is 40g / L, ACZ-1 was to 45 g / L, barium sulfate contained 5 g / L. After coating, it was dried in a dryer kept at 120 ° C. for 2 hours and then fired in an electric furnace at 500 ° C. for 2 hours to prepare a lower coat.

(b)上層コートの調製
ACZ−2と硝酸ロジウムとを用い、含浸法により、RhがACZ−2に担持されたRh/ACZ−2を調製し、所定量の硝酸パラジウム、Rh/ACZ−2、Al及びAl系バインダーを蒸留水に撹拌しながら添加し、懸濁させてスラリー2を調製した。得られたスラリー2を、前記(a)によりコーティングを施した基材へ流し込み、ブロアーで不要分を吹き払い、基材壁面の下層コートをコーティングした。コーティングには、基材容量に対して、Rhが0.3g/L、Pdが0.2g/L、ACZ−2が72g/L、Alが63g/L含まれるようにした。コーティング後、120℃に保持した乾燥機で2時間乾燥した後、500℃の電気炉で2時間焼成して、上層コートが下層コート上に形成したS/Cを得た。
(B) Preparation of upper layer coat Using ACZ-2 and rhodium nitrate, Rh / ACZ-2 in which Rh was supported on ACZ-2 was prepared by an impregnation method, and a predetermined amount of palladium nitrate and Rh / ACZ-2 were prepared. , Al 2 O 3 and Al 2 O 3 based binders were added to distilled water with stirring and suspended to prepare slurry 2. The obtained slurry 2 was poured into the base material coated according to (a) above, unnecessary parts were blown off with a blower, and the undercoat of the base material wall surface was coated. The coating contained 0.3 g / L of Rh, 0.2 g / L of Pd, 72 g / L of ACZ-2, and 63 g / L of Al 2 O 3 with respect to the substrate volume. After coating, the mixture was dried in a dryer maintained at 120 ° C. for 2 hours and then fired in an electric furnace at 500 ° C. for 2 hours to obtain an S / C in which the upper coat was formed on the lower coat.

実施例3−6
実施例3、4、5及び6は、上層コートを形成するためのスラリー2に、OSC材として実施例2のセリア−ジルコニア系複合酸化物(Pr添加パイロクロアCZ)を基材容量に対して、それぞれ16g/L、24g/L、48g/L及び55g/Lのコート量となるように添加した以外は比較例6と同様にして各S/Cを得た。
Example 3-6
In Examples 3, 4, 5 and 6, the ceria-zirconia-based composite oxide (Pr-added pyrochlore CZ) of Example 2 was added as an OSC material to the slurry 2 for forming the upper layer coat with respect to the substrate capacity. Each S / C was obtained in the same manner as in Comparative Example 6 except that the coating amounts were 16 g / L, 24 g / L, 48 g / L and 55 g / L, respectively.

実施例7
下層コートを形成するためのスラリー1に、OSC材として実施例2のセリア−ジルコニア系複合酸化物を基材容量に対して24g/Lのコート量となるように添加した以外は比較例6と同様にしてS/Cを得た。
Example 7
Compared to Comparative Example 6 except that the ceria-zirconia-based composite oxide of Example 2 was added as an OSC material to the slurry 1 for forming the lower layer coat so as to have a coating amount of 24 g / L with respect to the substrate capacity. S / C was obtained in the same manner.

比較例7
上層コートを形成するためのスラリー2に、OSC材として比較例2のセリア−ジルコニア系複合酸化物(Pr添加パイロクロアCZ)を基材容量に対して24g/Lのコート量となるように添加した以外は比較例6と同様にしてS/Cを得た。
Comparative Example 7
To the slurry 2 for forming the upper layer coat, the ceria-zirconia-based composite oxide (Pr-added pyrochlore CZ) of Comparative Example 2 was added as an OSC material so as to have a coating amount of 24 g / L with respect to the substrate volume. An S / C was obtained in the same manner as in Comparative Example 6 except for the above.

比較例8
上層コートを形成するためのスラリー2に、OSC材として比較例1のセリア−ジルコニア系複合酸化物(Pr添加パイロクロアCZ)を基材容量に対して24g/Lのコート量となるように添加した以外は比較例6と同様にしてS/Cを得た。
Comparative Example 8
To the slurry 2 for forming the upper layer coat, the ceria-zirconia-based composite oxide (Pr-added pyrochlore CZ) of Comparative Example 1 was added as an OSC material so as to have a coating amount of 24 g / L with respect to the substrate volume. An S / C was obtained in the same manner as in Comparative Example 6 except for the above.

比較例9
上層コートを形成するためのスラリー2に、OSC材としてCZを基材容量に対して25g/Lのコート量となるように添加した以外は比較例6と同様にしてS/Cを得た。
Comparative Example 9
S / C was obtained in the same manner as in Comparative Example 6 except that CZ as an OSC material was added to the slurry 2 for forming the upper layer coat so as to have a coating amount of 25 g / L with respect to the substrate volume.

比較例10
上層コートを形成するためのスラリー2に、OSC材としてACZ−2を基材容量に対して24g/Lのコート量となるように添加した以外は比較例6と同様にしてS/Cを得た。
Comparative Example 10
S / C was obtained in the same manner as in Comparative Example 6 except that ACZ-2 as an OSC material was added to the slurry 2 for forming the upper layer coat so as to have a coating amount of 24 g / L with respect to the substrate volume. It was.

比較例11
上層を形成するためのスラリー2に、OSC材として蛍石型CZを基材容量に対して24g/Lのコート量となるように添加した以外は比較例6と同様にしてS/Cを得た。
Comparative Example 11
S / C was obtained in the same manner as in Comparative Example 6 except that fluorite-type CZ as an OSC material was added to the slurry 2 for forming the upper layer so as to have a coating amount of 24 g / L with respect to the substrate volume. It was.

実施例3−7及び比較例6−11のS/Cについて、OSC材の添加位置及び添加量(コート量)、並びにOSC材の特性を表2に示す。

Figure 0006863799
Table 2 shows the addition position and amount (coating amount) of the OSC material and the characteristics of the OSC material for the S / C of Examples 3-7 and Comparative Example 6-11.
Figure 0006863799

実施例3−7及び比較例6−11のS/Cについて耐久試験を実施し、性能評価を行った。 The durability test was carried out on the S / C of Example 3-7 and Comparative Example 6-11, and the performance was evaluated.

<耐久試験>
実施例3−7及び比較例6−11の各S/CをV型8気筒エンジンの排気系に装着し、触媒床温950℃で50時間にわたり、ストイキ及びリーンの各雰囲気の排ガスを一定時間(3:1の比率)ずつ繰り返して流すことにより耐久試験を実施した。
<Durability test>
Each S / C of Example 3-7 and Comparative Example 6-11 was attached to the exhaust system of a V8 engine, and the exhaust gas of each atmosphere of stoichiometric and lean was exhausted for a certain period of time at a catalyst floor temperature of 950 ° C. for 50 hours. The durability test was carried out by repeatedly flowing (3: 1 ratio) at a time.

<性能評価>
耐久試験後の各S/CをL4エンジンに装着して以下の性能を評価した。
OSC:
耐久試験後の各S/CをL4エンジンに装着し、入りガス温度を500℃に設定し、空燃比(A/F)を14.4と15.1を目標にフィードバック制御し、前記排ガス浄化用触媒のOSC試験と同様にして最大酸素吸蔵量(Cmax)を求め、これをOSCとして評価した。
T50−NOx:
耐久試験後の各S/Cに、A/F=14.4の排ガスを供給し、高Ga条件(Ga=35g/s)において500℃まで昇温させた際に、NOx浄化率が50%となる温度(T50−NOx)を計測し、触媒活性を評価した。
<Performance evaluation>
Each S / C after the durability test was mounted on the L4 engine and the following performance was evaluated.
OSC:
Each S / C after the durability test is mounted on the L4 engine, the entering gas temperature is set to 500 ° C., and the air-fuel ratio (A / F) is feedback-controlled with the target of 14.4 and 15.1 to purify the exhaust gas. The maximum oxygen occlusion (Cmax) was determined in the same manner as in the OSC test of the catalyst for use, and this was evaluated as OSC.
T50-NOx:
When exhaust gas of A / F = 14.4 is supplied to each S / C after the durability test and the temperature is raised to 500 ° C. under high Ga conditions (Ga = 35 g / s), the NOx purification rate is 50%. The temperature (T50-NOx) was measured to evaluate the catalytic activity.

結果を図3〜図5に示す。図3は、実施例4及び7、並びに比較例6−10のS/Cの最大酸素吸蔵量(Cmax)を示す。図4は、上層コート中のOSC材(実施例2のセリア−ジルコニア系複合酸化物)の添加量と、最大酸素吸蔵量(Cmax)との関係を示す。図5は、上層コート中のOSC材(実施例2のセリア−ジルコニア系複合酸化物)の添加量と、T50−NOxとの関係を示す。 The results are shown in FIGS. 3 to 5. FIG. 3 shows the maximum oxygen uptake (Cmax) of S / C of Examples 4 and 7 and Comparative Example 6-10. FIG. 4 shows the relationship between the amount of the OSC material (ceria-zirconia-based composite oxide of Example 2) added in the upper coat and the maximum oxygen uptake (Cmax). FIG. 5 shows the relationship between the amount of the OSC material (ceria-zirconia-based composite oxide of Example 2) added in the upper coat and T50-NOx.

図3より、本発明のセリア−ジルコニア系複合酸化物を用いたS/Cは、他のOSC材を用いたものに対してOSCが有意に増加したことが示された(実施例4及び比較例7−10)。本発明のセリア−ジルコニア系複合酸化物は高いOSC能を有するため、圧力損失を増加させることなく触媒の低体格化が可能であることが示唆される。また、S/CのOSC能については、本発明のセリア−ジルコニア系複合酸化物を、排ガスと接触しやすい触媒コート層の最上層に含むと、下層に含む場合よりも高くなることが示されている(実施例4及び7)。 From FIG. 3, it was shown that the S / C using the ceria-zirconia-based composite oxide of the present invention had a significantly increased OSC as compared with the one using other OSC materials (Example 4 and comparison). Example 7-10). Since the ceria-zirconia-based composite oxide of the present invention has a high OSC ability, it is suggested that the catalyst can be reduced in size without increasing the pressure loss. Further, it was shown that the OSC ability of S / C is higher when the ceria-zirconia-based composite oxide of the present invention is contained in the uppermost layer of the catalyst coat layer which easily comes into contact with exhaust gas than when it is contained in the lower layer. (Examples 4 and 7).

また、図4より、S/CのOSC能は、上層コート中の本発明のセリア−ジルコニア系複合酸化物の添加量に応じて増加するが、一方で、図5より、低温におけるNOx浄化能は、上層コート中の本発明のセリア−ジルコニア系複合酸化物の添加量が増加すると低下する。図4及び図5より、本発明のセリア−ジルコニア系複合酸化物を触媒コート層の最上層に含むS/Cにおいて、その添加量は、良好なOSC能及びNOx浄化能を両立できるという点で5〜50g/Lの範囲が好ましい。 Further, from FIG. 4, the OSC ability of S / C increases according to the amount of the ceria-zirconia-based composite oxide of the present invention added in the upper coat, but on the other hand, from FIG. 5, the NOx purification ability at low temperature is shown. Decreases as the amount of the ceria-zirconia-based composite oxide of the present invention added in the upper coat increases. From FIGS. 4 and 5, in the S / C containing the ceria-zirconia-based composite oxide of the present invention in the uppermost layer of the catalyst coat layer, the addition amount thereof can achieve both good OSC ability and NOx purification ability. The range of 5 to 50 g / L is preferable.

次に、本発明のセリア−ジルコニア系複合酸化物をOSC材として最上層以外の層に添加したS/Cの性能評価をするため、実施例8−12及び比較例12−15のS/Cを以下のようにして調製した。 Next, in order to evaluate the performance of the S / C in which the ceria-zirconia-based composite oxide of the present invention was added as an OSC material to layers other than the uppermost layer, the S / Cs of Examples 8-12 and Comparative Examples 12-15 were evaluated. Was prepared as follows.

実施例8−11
実施例8、9、10及び11は、下層コートを形成するためのスラリー1に、実施例2のセリア−ジルコニア系複合酸化物(Pr添加パイロクロアCZ)を基材容量に対して、それぞれ6g/L、12g/L、24g/L及び35g/Lのコート量となるように添加した以外は比較例6と同様にして各S/Cを得た。
Example 8-11
In Examples 8, 9, 10 and 11, 6 g / g of the ceria-zirconia-based composite oxide (Pr-added pyrochlore CZ) of Example 2 was added to the slurry 1 for forming the lower coat with respect to the substrate volume, respectively. Each S / C was obtained in the same manner as in Comparative Example 6 except that the coating amounts were L, 12 g / L, 24 g / L and 35 g / L.

実施例12
実施例12は、実施例3と同様にして調製した。
Example 12
Example 12 was prepared in the same manner as in Example 3.

比較例12
比較例12は、比較例6と同様にして調製した。
Comparative Example 12
Comparative Example 12 was prepared in the same manner as in Comparative Example 6.

比較例13及び14
比較例13及び14は、下層コートを形成するためのスラリー1に、比較例2のセリア−ジルコニア系複合酸化物(Pr添加パイロクロアCZ)を基材容量に対して、それぞれ9g/L及び20g/Lのコート量となるように添加した以外は比較例6と同様にして各S/Cを得た。
Comparative Examples 13 and 14
In Comparative Examples 13 and 14, 9 g / L and 20 g / L of the ceria-zirconia-based composite oxide (Pr-added pyrochlore CZ) of Comparative Example 2 were added to the slurry 1 for forming the lower coat with respect to the substrate volume, respectively. Each S / C was obtained in the same manner as in Comparative Example 6 except that the coating amount was L.

比較例15
下層コートを形成するためのスラリー1に、蛍石型CZを基材容量に対して6g/Lのコート量となるように添加した以外は比較例6と同様にしてS/Cを得た。
Comparative Example 15
S / C was obtained in the same manner as in Comparative Example 6 except that fluorite-type CZ was added to the slurry 1 for forming the lower layer coat so as to have a coating amount of 6 g / L with respect to the base material volume.

実施例8−12及び比較例12−15のS/Cについて、OSC材の添加位置及び添加量(コート量)、並びにOSC材の特性を表3に示す。

Figure 0006863799
Table 3 shows the addition position and amount (coating amount) of the OSC material and the characteristics of the OSC material for the S / C of Examples 8-12 and Comparative Example 12-15.
Figure 0006863799

実施例8−12及び比較例12−15のS/Cについて耐久試験を実施し、性能評価を行った。 Durability tests were carried out on the S / Cs of Examples 8-12 and Comparative Examples 12-15, and the performance was evaluated.

<耐久試験>
実施例8−12及び比較例12−15の各S/CをV型8気筒エンジンの排気系に装着し、触媒床温950℃で50時間にわたり、ストイキ及びリーンの各雰囲気の排ガスを一定時間(3:1の比率)ずつ繰り返して流すことにより耐久試験を実施した。
<Durability test>
Each S / C of Example 8-12 and Comparative Example 12-15 was attached to the exhaust system of a V8 engine, and the exhaust gas of each atmosphere of stoichiometric and lean was exhausted for a certain period of time at a catalyst floor temperature of 950 ° C. for 50 hours. The durability test was carried out by repeatedly flowing (3: 1 ratio) at a time.

<性能評価>
耐久試験後の各S/CをL4エンジンに装着して以下の性能を評価した。
定常NOx浄化率:A/F=14.1及び500℃における定常運転時のNOx浄化率を算出した。
A/F切り替え時のNOx浄化能:A/Fを14.1と15.1を目標にフィードバック制御した際に排出されるNOx量を測定した。入りガス温度は500℃に設定した。
<Performance evaluation>
Each S / C after the durability test was mounted on the L4 engine and the following performance was evaluated.
Steady NOx purification rate: The NOx purification rate during steady operation at A / F = 14.1 and 500 ° C. was calculated.
NOx purification ability at the time of A / F switching: The amount of NOx discharged when the A / F was feedback-controlled with the target of 14.1 and 15.1 was measured. The entering gas temperature was set to 500 ° C.

結果を表3、図6及び図7に示す。図6は、下層コート中のOSC材(実施例2のセリア−ジルコニア系複合酸化物)の添加量と、A/F切り替え時のNOx排出量との関係を示す。図7は、下層コート中のOSC材(実施例2のセリア−ジルコニア系複合酸化物)の添加量と、定常NOx浄化率との関係を示す。 The results are shown in Table 3, FIG. 6 and FIG. FIG. 6 shows the relationship between the addition amount of the OSC material (ceria-zirconia-based composite oxide of Example 2) in the lower coat and the NOx emission amount at the time of A / F switching. FIG. 7 shows the relationship between the amount of the OSC material (ceria-zirconia-based composite oxide of Example 2) added in the lower coat and the steady-state NOx purification rate.

表3及び図6より、本発明のセリア−ジルコニア系複合酸化物を用いたS/Cは、他のOSC材を用いたものに対してA/F切り替え時のNOx排出量が有意に少なくなることが示された。また、定常NOx浄化能及びA/F切り替え時のNOx浄化能について、本発明のセリア−ジルコニア系複合酸化物を下層コートに含むと、上層コートに含む場合よりもこれらの性能が優れ、モード走行時のNOxエミッションの低減に有利であることが示されている。また、表3、図6及び図7より、本発明のセリア−ジルコニア系複合酸化物の下層コートへの添加量が5〜30g/Lであると、A/F切り替え時の低いNOx排出量及び高い定常NOx浄化能を両立できることが示された。 From Table 3 and FIG. 6, the S / C using the ceria-zirconia-based composite oxide of the present invention significantly reduces the NOx emission amount at the time of A / F switching as compared with the one using other OSC materials. Was shown. Further, regarding the steady NOx purification ability and the NOx purification ability at the time of A / F switching, when the ceria-zirconia-based composite oxide of the present invention is contained in the lower layer coat, these performances are superior to those in the case where the upper layer coat is contained, and the mode running It has been shown to be beneficial in reducing NOx emissions at times. Further, from Tables 3, 6 and 7, when the amount of the ceria-zirconia composite oxide added to the lower coat of the present invention is 5 to 30 g / L, the low NOx emission amount at the time of A / F switching and the low NOx emission amount It was shown that both high steady NOx purification ability can be achieved.

<アンダーフロア触媒(UF/C)>
触媒の材料として以下の材料を用いた:
Al:La(4重量%)複合化Al(Sasol社製)
ACZ−2:Al(30重量%)、CeO(20重量%)、ZrO(44重量%)、Nd(2重量%)、La(2重量%)及びY(2重量%)の複合酸化物(第一稀元素化学工業社製)
AZ:Al(30重量%)、ZrO(60重量%)、Nd(2重量%)、La(4重量%)及びY(4重量%)の複合酸化物(第一稀元素化学工業社製)
OSC材:
・実施例2のセリア−ジルコニア系複合酸化物(Pr添加パイロクロアCZ)
・前記ACZ−2
・蛍石型ZC:CeO(21重量%)、ZrO(72重量%)、Nd(5.3重量%)及びLa(1.7重量%)の蛍石型ZC複合酸化物(第一稀元素化学工業社製)
ハニカム基材:875cc(400セル四角 壁厚4mil)のコージェライトハニカム基材
<Underfloor catalyst (UF / C)>
The following materials were used as catalyst materials:
Al 2 O 3 : La 2 O 3 (4% by weight) Composite Al 2 O 3 (manufactured by Sasol)
ACZ-2: Al 2 O 3 (30% by weight), CeO 2 (20% by weight), ZrO 2 (44% by weight), Nd 2 O 3 (2% by weight), La 2 O 3 (2% by weight) and Y 2 O 3 (2% by weight) composite oxide (manufactured by Daiichi Rare Element Chemical Industry Co., Ltd.)
AZ: Al 2 O 3 (30% by weight), ZrO 2 (60% by weight), Nd 2 O 3 (2% by weight), La 2 O 3 (4% by weight) and Y 2 O 3 (4% by weight) Composite oxide (manufactured by Daiichi Rare Element Chemical Industry Co., Ltd.)
OSC material:
-Ceria-zirconia-based composite oxide of Example 2 (Pr-added pyrochlore CZ)
-The ACZ-2
-Fluorite type ZC: CeO 2 (21% by weight), ZrO 2 (72% by weight), Nd 2 O 3 (5.3% by weight) and La 2 O 3 (1.7% by weight) fluorite type ZC Composite oxide (manufactured by Daiichi Rare Element Chemical Industry Co., Ltd.)
Honeycomb base material: 875 cc (400 cell square wall thickness 4 mil) cordierite honeycomb base material

UF/Cは以下のようにして調製した。 The UF / C was prepared as follows.

比較例16
(a)下層コートの調製
ACZ−2と硝酸パラジウムとを用い、含浸法により、PdがACZ−2に担持されたPd/ACZ−2を調製し、所定量のPd/ACZ−2、Al及びAl系バインダーを撹拌しながら蒸留水に添加し、懸濁させてスラリー1を調製した。調製したスラリー1を基材へ流し込み、ブロアーで不要分を吹き払い、基材壁面をコーティングした。コーティングには、基材容量に対して、Pdが0.53g/L、Alが40g/L、ACZ−2が93g/L含まれるようにした。コーティング後、120℃に保持した乾燥機で2時間乾燥した後、500℃の電気炉で2時間焼成して、下層コートを作製した。
Comparative Example 16
(A) Preparation of lower layer coat Pd / ACZ-2 in which Pd is supported on ACZ-2 is prepared by an impregnation method using ACZ-2 and palladium nitrate, and a predetermined amount of Pd / ACZ-2, Al 2 is prepared. O 3 and Al 2 O 3 based binders were added to distilled water with stirring and suspended to prepare slurry 1. The prepared slurry 1 was poured into a base material, unnecessary parts were blown off with a blower, and the wall surface of the base material was coated. The coating, with respect to the substrate capacity, Pd is 0.53g / L, Al 2 O 3 is to 40g / L, ACZ-2 is contained 93 g / L. After coating, it was dried in a dryer kept at 120 ° C. for 2 hours and then fired in an electric furnace at 500 ° C. for 2 hours to prepare a lower coat.

(b)上層コートの調製
AZと硝酸ロジウムとを用い、含浸法により、RhがAZに担持されたRh/AZを調製し、所定量のRh/AZ、Al及びAl系バインダーを蒸留水に撹拌しながら添加し、懸濁させてスラリー2を調製した。得られたスラリー2を、前記(a)によりコーティングを施した基材へ流し込み、ブロアーで不要分を吹き払い、基材壁面の下層コートをコーティングした。コーティングには、基材容量に対して、Rhが0.4g/L、Alが35g/L、AZが33g/L含まれるようにした。コーティング後、120℃に保持した乾燥機で2時間乾燥した後、500℃の電気炉で2時間焼成して、上層コートが下層コート上に形成したUF/Cを得た。
(B) Preparation of upper layer coat Using AZ and rhodium nitrate, Rh / AZ in which Rh is supported on AZ is prepared by an impregnation method, and a predetermined amount of Rh / AZ, Al 2 O 3 and Al 2 O 3 system. The binder was added to distilled water with stirring and suspended to prepare slurry 2. The obtained slurry 2 was poured into the base material coated according to (a) above, unnecessary parts were blown off with a blower, and the undercoat of the base material wall surface was coated. The coating, with respect to the substrate capacitance, Rh is 0.4g / L, Al 2 O 3 is to 35 g / L, AZ is included 33 g / L. After coating, it was dried in a dryer maintained at 120 ° C. for 2 hours and then fired in an electric furnace at 500 ° C. for 2 hours to obtain a UF / C in which the upper coat was formed on the lower coat.

実施例13−16
実施例13、14、15及び16は、上層コートを形成するためのスラリー2に、実施例2のセリア−ジルコニア系複合酸化物(Pr添加パイロクロアCZ)を基材容量に対してそれぞれ11g/L、20g/L、31g/L及び40g/Lのコート量となるように添加した以外は比較例16と同様にして各UF/Cを得た。
Examples 13-16
In Examples 13, 14, 15 and 16, the ceria-zirconia-based composite oxide (Pr-added pyrochlore CZ) of Example 2 was added to the slurry 2 for forming the upper layer coat at 11 g / L, respectively, with respect to the substrate volume. , 20 g / L, 31 g / L, and 40 g / L were added so as to have a coating amount, and each UF / C was obtained in the same manner as in Comparative Example 16.

実施例17
下層コートを形成するためのスラリー1に、実施例2のセリア−ジルコニア系複合酸化物を基材容量に対して11g/Lのコート量となるように添加した以外は比較例16と同様にしてUF/Cを得た。
Example 17
The same as in Comparative Example 16 except that the ceria-zirconia-based composite oxide of Example 2 was added to the slurry 1 for forming the lower layer coat so as to have a coating amount of 11 g / L with respect to the substrate capacity. UF / C was obtained.

比較例17
上層コートを形成するためのスラリー2に、ACZ−2を基材容量に対して11g/Lのコート量となるように添加した以外は比較例16と同様にしてUF/Cを得た。
Comparative Example 17
UF / C was obtained in the same manner as in Comparative Example 16 except that ACZ-2 was added to the slurry 2 for forming the upper layer coat so as to have a coating amount of 11 g / L with respect to the substrate volume.

比較例18
上層コートを形成するためのスラリー2に、蛍石型ZCを基材容量に対して11g/Lのコート量となるように添加した以外は比較例16と同様にしてUF/Cを得た。
Comparative Example 18
UF / C was obtained in the same manner as in Comparative Example 16 except that fluorite-type ZC was added to the slurry 2 for forming the upper layer coat so as to have a coating amount of 11 g / L with respect to the base material volume.

実施例13−17及び比較例16−18のUF/Cについて、OSC材の添加位置及び添加量(コート量)、並びにOSC材の特性を表4に示す。

Figure 0006863799
Table 4 shows the addition position and amount (coating amount) of the OSC material and the characteristics of the OSC material for the UF / C of Examples 13-17 and Comparative Example 16-18.
Figure 0006863799

実施例13−17及び比較例16−18のUF/Cについて耐久試験を実施し、性能評価を行った。 Durability tests were performed on the UF / Cs of Examples 13-17 and Comparative Examples 16-18 to evaluate their performance.

<耐久試験>
実施例13−17及び比較例16−18の各UF/CをV型8気筒エンジンの排気系に装着し、触媒床温950℃で50時間にわたり、ストイキ及びリーンの各雰囲気の排ガスを一定時間(3:1の比率)ずつ繰り返して流すことにより耐久試験を実施した。
<Durability test>
Each UF / C of Example 13-17 and Comparative Example 16-18 was attached to the exhaust system of a V8 engine, and the exhaust gas of each atmosphere of stoichiometric and lean was exhausted for a certain period of time at a catalyst floor temperature of 950 ° C. for 50 hours. The durability test was carried out by repeatedly flowing (3: 1 ratio).

<性能評価>
耐久試験後の各UF/CをL4エンジンに装着して以下の性能を評価した。
定常HC浄化率:
A/F=14.4及び550℃における定常運転時のHC浄化率を算出した。
T50−NOx:
耐久試験後の各UF/Cに、A/F=14.4の排ガスを供給し、高Ga条件(Ga=35g/s)において、250℃まで降温させた際に、NOx浄化率が50%となる温度(T50−NOx)を計測し、触媒活性を評価した。
<Performance evaluation>
Each UF / C after the endurance test was mounted on the L4 engine and the following performance was evaluated.
Steady HC purification rate:
The HC purification rate during steady operation at A / F = 14.4 and 550 ° C. was calculated.
T50-NOx:
When the exhaust gas of A / F = 14.4 is supplied to each UF / C after the durability test and the temperature is lowered to 250 ° C. under high Ga conditions (Ga = 35 g / s), the NOx purification rate is 50%. The temperature (T50-NOx) was measured to evaluate the catalytic activity.

結果を図8〜10に示す。図8は、実施例13及び17、並びに比較例16−18のUF/Cの定常HC浄化率を示す。図9は、上層コート中のOSC材(実施例2のセリア−ジルコニア系複合酸化物)の添加量と、定常HC浄化率との関係を示す。図10は、上層コート中のOSC材(実施例2のセリア−ジルコニア系複合酸化物)の添加量と、T50−NOxとの関係を示す。 The results are shown in FIGS. 8-10. FIG. 8 shows the steady HC purification rates of UF / C in Examples 13 and 17 and Comparative Examples 16-18. FIG. 9 shows the relationship between the amount of the OSC material (ceria-zirconia-based composite oxide of Example 2) added in the upper coat and the steady-state HC purification rate. FIG. 10 shows the relationship between the amount of the OSC material (ceria-zirconia-based composite oxide of Example 2) added in the upper coat and T50-NOx.

図8より、本発明のセリア−ジルコニア系複合酸化物を用いたUF/Cは、他のOSC材を用いたものに対して有意に高い定常HC浄化率を有することが示された(実施例13、17及び比較例17−18)。本発明のセリア−ジルコニア系複合酸化物は高い定常HC浄化能を有するため、圧力損失を増加させることなく触媒の低体格化が可能となることが示唆される。また、UF/Cにおいて、本発明のセリア−ジルコニア系複合酸化物を、排ガスと接触しやすい触媒コート層の最上層に含むと、下層に含む場合よりも定常HC浄化率が高くなることが示された(実施例13及び17)。 From FIG. 8, it was shown that the UF / C using the ceria-zirconia-based composite oxide of the present invention has a significantly higher steady-state HC purification rate than that using other OSC materials (Example). 13, 17 and Comparative Examples 17-18). Since the ceria-zirconia-based composite oxide of the present invention has a high steady-state HC purification ability, it is suggested that the catalyst can be reduced in size without increasing the pressure loss. Further, in UF / C, it was shown that when the ceria-zirconia-based composite oxide of the present invention is contained in the uppermost layer of the catalyst coat layer which easily comes into contact with exhaust gas, the steady HC purification rate is higher than when it is contained in the lower layer. (Examples 13 and 17).

また、図9より、定常HC浄化率は、上層コート中の本発明のセリア−ジルコニア系複合酸化物の添加量に応じて高くなるが、一方で、図10より、低温におけるNOx浄化能は、添加量20g/Lから30g/Lの間で低下する。よって、本発明のセリア−ジルコニア系複合酸化物を触媒コート層の最上層に含むUF/Cにおいて、その添加量は、良好な定常HC浄化能及びNOx浄化能を両立できるという点で5〜20g/Lの範囲が好ましい。 Further, from FIG. 9, the steady HC purification rate increases according to the amount of the ceria-zirconia-based composite oxide of the present invention added in the upper coat, while the NOx purification ability at low temperature increases from FIG. The amount added decreases between 20 g / L and 30 g / L. Therefore, in the UF / C containing the ceria-zirconia-based composite oxide of the present invention in the uppermost layer of the catalyst coat layer, the addition amount thereof is 5 to 20 g in that both good steady HC purification ability and NOx purification ability can be achieved at the same time. The range of / L is preferable.

Claims (3)

基材と、該基材上に形成された触媒コート層を有する排ガス浄化用触媒であって、
パイロクロア構造を有するセリア−ジルコニア系複合酸化物を基材容量に対して5〜100g/Lの量で触媒コート層中に含み、
セリア−ジルコニア系複合酸化物の二次粒子径(D50)が3〜7μmであり、
セリア−ジルコニア系複合酸化物がプラセオジムを含み、
排ガス浄化用触媒が、スタートアップ触媒(S/C)と、排ガスの流れ方向に対して前記S/Cよりも後方に設置されたアンダーフロア触媒(UF/C)を含む排ガス浄化用触媒システムのS/Cであり、該S/Cが、少なくとも2層の触媒コート層を有し、前記セリア−ジルコニア系複合酸化物を基材容量に対して5〜50g/Lの量で触媒コート層の最上層に含む、前記排ガス浄化用触媒。
An exhaust gas purification catalyst having a base material and a catalyst coat layer formed on the base material.
A ceria-zirconia-based composite oxide having a pyrochlore structure was contained in the catalyst coat layer in an amount of 5 to 100 g / L with respect to the substrate volume.
The secondary particle size (D50) of the ceria-zirconia composite oxide is 3 to 7 μm.
Ceria-zirconia complex oxide contains praseodymium
The exhaust gas purification catalyst is the S of the exhaust gas purification catalyst system including the start-up catalyst (S / C) and the underfloor catalyst (UF / C) installed behind the S / C with respect to the flow direction of the exhaust gas. / C, the S / C has at least two catalyst coat layers, and the ceria-zirconia-based composite oxide is added to the maximum amount of the catalyst coat layer in an amount of 5 to 50 g / L with respect to the substrate capacity. comprising an upper layer, the exhaust gas purifying catalyst.
基材と、該基材上に形成された触媒コート層を有する排ガス浄化用触媒であって、
パイロクロア構造を有するセリア−ジルコニア系複合酸化物を基材容量に対して5〜100g/Lの量で触媒コート層中に含み、
セリア−ジルコニア系複合酸化物の二次粒子径(D50)が3〜7μmであり、
セリア−ジルコニア系複合酸化物がプラセオジムを含み、
排ガス浄化用触媒が、スタートアップ触媒(S/C)と、排ガスの流れ方向に対して前記S/Cよりも後方に設置されたアンダーフロア触媒(UF/C)を含む排ガス浄化用触媒システムのS/Cであり、該S/Cが、少なくとも2層の触媒コート層を有し、前記セリア−ジルコニア系複合酸化物を基材容量に対して5〜30g/Lの量で触媒コート層の最上層以外の少なくとも1層に含む、前記排ガス浄化用触媒。
An exhaust gas purification catalyst having a base material and a catalyst coat layer formed on the base material.
A ceria-zirconia-based composite oxide having a pyrochlore structure was contained in the catalyst coat layer in an amount of 5 to 100 g / L with respect to the substrate volume.
The secondary particle size (D50) of the ceria-zirconia composite oxide is 3 to 7 μm.
Ceria-zirconia complex oxide contains praseodymium
The exhaust gas purification catalyst is the S of the exhaust gas purification catalyst system including the start-up catalyst (S / C) and the underfloor catalyst (UF / C) installed behind the S / C with respect to the flow direction of the exhaust gas. / C, the S / C has at least two catalyst coat layers, and the ceria-zirconia-based composite oxide is added to the maximum amount of the catalyst coat layer in an amount of 5 to 30 g / L with respect to the substrate capacity. comprising at least one layer other than the top layer, the exhaust gas purifying catalyst.
基材と、該基材上に形成された触媒コート層を有する排ガス浄化用触媒であって、
パイロクロア構造を有するセリア−ジルコニア系複合酸化物を基材容量に対して5〜100g/Lの量で触媒コート層中に含み、
セリア−ジルコニア系複合酸化物の二次粒子径(D50)が3〜7μmであり、
セリア−ジルコニア系複合酸化物がプラセオジムを含み、
排ガス浄化用触媒が、スタートアップ触媒(S/C)と、排ガスの流れ方向に対して前記S/Cよりも後方に設置されたアンダーフロア触媒(UF/C)を含む排ガス浄化用触媒システムのUF/Cであり、該UF/Cが、少なくとも2層の触媒コート層を有し、前記セリア−ジルコニア系複合酸化物を基材容量に対して5〜20g/Lの量で触媒コート層の最上層に含む、前記排ガス浄化用触媒。
An exhaust gas purification catalyst having a base material and a catalyst coat layer formed on the base material.
A ceria-zirconia-based composite oxide having a pyrochlore structure was contained in the catalyst coat layer in an amount of 5 to 100 g / L with respect to the substrate volume.
The secondary particle size (D50) of the ceria-zirconia composite oxide is 3 to 7 μm.
Ceria-zirconia complex oxide contains praseodymium
The exhaust gas purification catalyst is a UF of an exhaust gas purification catalyst system including a start-up catalyst (S / C) and an underfloor catalyst (UF / C) installed behind the S / C with respect to the flow direction of the exhaust gas. / C, the UF / C has at least two catalyst coat layers, and the ceria-zirconia-based composite oxide is added to the maximum amount of the catalyst coat layer in an amount of 5 to 20 g / L with respect to the substrate volume. comprising an upper layer, the exhaust gas purifying catalyst.
JP2017072467A 2016-09-05 2017-03-31 Exhaust gas purification catalyst Active JP6863799B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/663,952 US10058846B2 (en) 2016-09-05 2017-07-31 Catalyst for purifying exhaust gas
EP17184910.2A EP3290112B1 (en) 2016-09-05 2017-08-04 Catalyst for purifying exhaust gas
CN201710786111.3A CN107790119B (en) 2016-09-05 2017-09-04 Catalyst for exhaust gas purification

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016172744 2016-09-05
JP2016172744 2016-09-05

Publications (2)

Publication Number Publication Date
JP2018038999A JP2018038999A (en) 2018-03-15
JP6863799B2 true JP6863799B2 (en) 2021-04-21

Family

ID=61624655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017072467A Active JP6863799B2 (en) 2016-09-05 2017-03-31 Exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JP6863799B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023165563A (en) 2022-05-06 2023-11-16 トヨタ自動車株式会社 Oxygen absorbing/releasing material and method for producing the same
JP2024000368A (en) 2022-06-20 2024-01-05 トヨタ自動車株式会社 Exhaust gas purification catalyst

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102131582B (en) * 2008-12-03 2013-11-13 第一稀元素化学工业株式会社 Exhaust gas purifying catalyst, exhaust gas purifying apparatus using same, and exhaust gas purifying method
JP5565569B2 (en) * 2009-04-07 2014-08-06 株式会社豊田中央研究所 Exhaust gas purification catalyst
JP5240275B2 (en) * 2010-10-22 2013-07-17 トヨタ自動車株式会社 Exhaust gas purification catalyst
JP5580722B2 (en) * 2010-11-26 2014-08-27 トヨタ自動車株式会社 Exhaust gas purification catalyst and process for producing the same
JP5502971B1 (en) * 2012-11-16 2014-05-28 三井金属鉱業株式会社 Exhaust gas catalyst carrier and exhaust gas purification catalyst
JP5883425B2 (en) * 2013-10-04 2016-03-15 株式会社豊田中央研究所 Ceria-zirconia composite oxide, production method thereof, and exhaust gas purification catalyst using the ceria-zirconia composite oxide
JP2015182932A (en) * 2014-03-25 2015-10-22 第一稀元素化学工業株式会社 Cerium-zirconium type complex oxide and production method thereof
JP6133835B2 (en) * 2014-12-12 2017-05-24 トヨタ自動車株式会社 Exhaust gas purification catalyst

Also Published As

Publication number Publication date
JP2018038999A (en) 2018-03-15

Similar Documents

Publication Publication Date Title
JP6133836B2 (en) Exhaust gas purification catalyst
JP6133835B2 (en) Exhaust gas purification catalyst
CN107790119B (en) Catalyst for exhaust gas purification
JP6034356B2 (en) Exhaust gas purification catalyst
JP5910833B2 (en) Exhaust gas purification catalyst
JP6907890B2 (en) Exhaust gas purification catalyst
EP2921226B1 (en) Catalyst carrier for exhaust gas and exhaust gas-cleaning catalyst
JP2014522725A (en) Palladium solid solution catalyst and production method
US11559788B2 (en) Oxygen storage and release material, catalyst, exhaust gas purification system, and exhaust gas treatment method
JP6676394B2 (en) Core-shell carrier and method for producing the same, catalyst for purifying exhaust gas using the core-shell carrier, method for producing the same, and method for purifying exhaust gas using the catalyst for purifying exhaust gas
JP6256769B2 (en) Exhaust gas purification catalyst
JP5754691B2 (en) Exhaust gas purification three-way catalyst
JP6863799B2 (en) Exhaust gas purification catalyst
JP2011136257A (en) Catalyst carrier for purifying exhaust gas and catalyst for purifying exhaust gas using the catalyst carrier
JP6305921B2 (en) Exhaust gas purification catalyst composition and exhaust gas purification catalyst
US9908106B2 (en) Carrier for exhaust gas purification catalyst and exhaust gas purification catalyst
WO2023047185A1 (en) Exhaust gas purification catalyst, and exhaust gas purification catalyst device for vehicles
JP2024000368A (en) Exhaust gas purification catalyst
JPH11138001A (en) Catalyst for exhaust gas purification
CN111315476A (en) Nitrogen oxide storage material and exhaust gas purification catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210401

R151 Written notification of patent or utility model registration

Ref document number: 6863799

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250