JP2014059194A - Scanning probe microscope, and observation method of sample using the same - Google Patents

Scanning probe microscope, and observation method of sample using the same Download PDF

Info

Publication number
JP2014059194A
JP2014059194A JP2012203836A JP2012203836A JP2014059194A JP 2014059194 A JP2014059194 A JP 2014059194A JP 2012203836 A JP2012203836 A JP 2012203836A JP 2012203836 A JP2012203836 A JP 2012203836A JP 2014059194 A JP2014059194 A JP 2014059194A
Authority
JP
Japan
Prior art keywords
sample
measurement probe
inspected
sample holder
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012203836A
Other languages
Japanese (ja)
Other versions
JP2014059194A5 (en
Inventor
Toshihiko Nakada
俊彦 中田
Takehiro Tachizaki
武弘 立▲崎▼
Masahiro Watanabe
正浩 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2012203836A priority Critical patent/JP2014059194A/en
Priority to PCT/JP2013/065316 priority patent/WO2014045646A1/en
Publication of JP2014059194A publication Critical patent/JP2014059194A/en
Publication of JP2014059194A5 publication Critical patent/JP2014059194A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q30/00Auxiliary means serving to assist or improve the scanning probe techniques or apparatus, e.g. display or data processing devices
    • G01Q30/08Means for establishing or regulating a desired environmental condition within a sample chamber
    • G01Q30/12Fluid environment
    • G01Q30/14Liquid environment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/18SNOM [Scanning Near-Field Optical Microscopy] or apparatus therefor, e.g. SNOM probes
    • G01Q60/22Probes, their manufacture, or their related instrumentation, e.g. holders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q70/00General aspects of SPM probes, their manufacture or their related instrumentation, insofar as they are not specially adapted to a single SPM technique covered by group G01Q60/00
    • G01Q70/08Probe characteristics
    • G01Q70/10Shape or taper
    • G01Q70/12Nanotube tips

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase intensity of detection light of near-field light generated between a measurement probe and an inspection object sample by expanding the NA of a detection optical system in a near-field scanning microscope, so as to improve an SN ratio and measurement reproducibility of a near-field optical image.SOLUTION: The present invention provides a scanning probe microscope including: a measurement probe that scans an inspection object sample; a laser irradiation system that irradiates the measurement probe with a laser beam; a sample holder that transmits scattering light of near-field light generated between the measurement probe and the inspection object sample due to the irradiation of the laser beam, and holds the inspection object sample; and a detector that detects the scattering light transmitted through the sample holder.

Description

本発明は、走査プローブ顕微鏡技術および、これを用いた試料観察方法に関する。   The present invention relates to a scanning probe microscope technique and a sample observation method using the same.

微細立体形状の計測技術として走査プローブ顕微鏡(SPM:canning robe icroscope)が知られている。その中でも原子間力顕微鏡(AFM:tomic orce icroscope)は、先端のとがった探針を制御して接触力を非常に小さな値に保ちながら試料表面を走査する観察技術であり、原子オーダの微細立体形状が計測できる技術として、広く用いられている。しかし、この原子間力顕微鏡は試料表面の反射率分布や屈折率分布といった光学的性質を測定することはできない。 一方、32nmノード以降の極微細半導体デバイスでは、高速化のために歪シリコンが適用されているが、微小領域における応力分布の測定が歩留まり管理上不可欠である。また、さらなる微細化のためには、不純物原子の分布状況をナノメートルオーダの分解能できめ細かく管理することが要求されている。応力分布や不純物分布などの物性情報は、原子間力顕微鏡や寸法管理に用いられているCD−SEM(ritical imension canning lectron icroscope:測長SEM)では測定不可能である。ラマン分光計測法等の光学的手法の検討がされているが、通常のラマン分光顕微鏡では空間分解能が不足している。 A scanning probe microscope as a measuring technique of the fine three-dimensional shape (SPM: S canning P robe M icroscope) is known. . Among them atomic force microscope (AFM: A tomic F orce M icroscope) are observed technique to scan the sample surface while keeping a very small value of the contact force by controlling the pointed tip of the tip, atomically It is widely used as a technique that can measure the fine three-dimensional shape. However, this atomic force microscope cannot measure optical properties such as reflectance distribution and refractive index distribution on the sample surface. On the other hand, strained silicon is applied to ultra-fine semiconductor devices of the 32 nm node and beyond for speeding up, but measurement of stress distribution in a minute region is indispensable for yield management. Further, for further miniaturization, it is required to finely manage the distribution of impurity atoms with a resolution of nanometer order. Physical properties information such as stress distribution and impurity distribution, CD-SEM used in the atomic force microscope and dimensional management: a (C ritical D imension S canning E lectron M icroscope measuring SEM) in unmeasurable. Optical techniques such as Raman spectroscopy have been studied, but a normal Raman spectroscopy microscope lacks spatial resolution.

また、異物検査や欠陥検査で検出された数十nmの異物や欠陥の発生要因を特定するため、レビューSEMと呼ばれる電子顕微鏡で異物や欠陥の分類作業が行われているが、形状や凹凸情報のみに頼る手法のため、分類性能に限界がきている。こちらも、光学情報を付加することにより分類性能の向上が期待できるが、やはり通常の光学顕微鏡やレーザ走査顕微鏡では空間分解能が不足している。   In addition, in order to identify the cause of occurrence of foreign matter and defects of several tens of nanometers detected by foreign matter inspection and defect inspection, classification work of foreign matters and defects is performed with an electron microscope called a review SEM. Since the method relies solely on the classification, the classification performance is limited. In this case, improvement of the classification performance can be expected by adding optical information. However, the normal optical microscope and the laser scanning microscope still lack spatial resolution.

これらの課題を解決し、試料表面の光学的性質や物性情報を高分解能で測定する手段として、近接場走査顕微鏡(SNOM:canning ear−field ptical icroscope)が知られる。この顕微鏡は、非特許文献1に開示されているように、数十nmの微小開口から漏れる近接場光を、開口と試料との間隙を同じく数十nmに保ったままで走査することにより(開口プローブ)、光の回折限界を超えて開口と同じ大きさの数十nmの分解能で、試料表面の反射率分布や屈折率分布といった光学的性質を測定するものである。同様の手法として、非特許文献2には、金属探針に外部から光を照射して、探針の微小先端部で散乱した数十nmの大きさの近接場光を走査する(散乱プローブ)方法も開示されている。 To solve these problems, the optical properties and physical property information of the sample surface as a means of measuring a high resolution, the near-field scanning microscope (SNOM: S canning N ear- field O ptical M icroscope) is known. As disclosed in Non-Patent Document 1, this microscope scans near-field light leaking from a small aperture of several tens of nm while keeping the gap between the aperture and the sample at several tens of nm (opening). Probe), which measures optical properties such as reflectance distribution and refractive index distribution on the sample surface with a resolution of several tens of nanometers, which is the same size as the aperture, exceeding the diffraction limit of light. As a similar technique, Non-Patent Document 2 scans near-field light having a size of several tens of nanometers that is scattered from a minute tip of a probe by irradiating a metal probe with light from the outside (scattering probe). A method is also disclosed.

また、特許文献1には、散乱プローブの別形態として、ファイバ先端に微小な球形レンズを形成して微小スポット光を形成する方法が開示されている。   Patent Document 1 discloses a method of forming a minute spot light by forming a minute spherical lens at the tip of a fiber as another form of the scattering probe.

また、特許文献2には、同様に散乱プローブの別形態として、カーボンナノチューブ内部にフォトルミネセンス、エレクトロルミネセンスを発現するV、Y、Ta、Sb等の金属カーバイトや、ZnS蛍光体、CaS蛍光体を充填し、微小スポット光を得る方法が開示されている。   Similarly, in Patent Document 2, as another form of the scattering probe, metal carbides such as V, Y, Ta, and Sb that express photoluminescence and electroluminescence inside the carbon nanotube, ZnS phosphor, and CaS are disclosed. A method of filling a phosphor and obtaining a minute spot light is disclosed.

特表2006−515682号公報JP-T-2006-515682 特開2002−267590号公報JP 2002-267590 A

Japanese Journal of Applied Physics,Vol.31,pp.L1302−L1304(1992)Japan Journal of Applied Physics, Vol. 31, pp. L1302-L1304 (1992) Optics Letters,Vol.19,pp.159−161(1994)Optics Letters, Vol. 19, pp. 159-161 (1994)

上記した近接場走査顕微鏡では、測定探針と検査対象試料との間に発生した近接場光が測定探針と相互作用して散乱光(伝搬光)が生じ、この散乱光を検出することで、実効的に近接場光画像を得ていた。しかし、上記した近接場走査顕微鏡では、この散乱光を検出するための検出レンズを試料に近づけられず、検出NA(umerical perture: 開口数)を大きくすることが困難であった。このため、近接場イメージング及び分光イメージングにおいて検出光量が低下し、近接場光画像のSN比及び測定再現性が低下していた。 In the near-field scanning microscope described above, the near-field light generated between the measurement probe and the sample to be inspected interacts with the measurement probe to generate scattered light (propagation light), and this scattered light is detected. The near-field light image was obtained effectively. However, in the near-field scanning microscope as described above, the detection lens for detecting the scattered light not be brought close to the sample, the detection NA: it is difficult to (N umerical A perture numerical aperture) larger. For this reason, in the near-field imaging and the spectroscopic imaging, the detected light amount is reduced, and the SN ratio and measurement reproducibility of the near-field light image are reduced.

そこで、本発明の目的は、近接場走査顕微鏡において、検出光学系のNAを拡大することにより、測定探針と検査対象試料との間に発生した近接場光の検出光量を増加させ、近接場光画像のSN比及び測定再現性を向上させることにある。   Therefore, an object of the present invention is to increase the detected light amount of the near-field light generated between the measurement probe and the sample to be inspected by enlarging the NA of the detection optical system in the near-field scanning microscope. It is to improve the SN ratio and measurement reproducibility of an optical image.

上記目的を達成するために、本発明は、検査対象試料を走査する測定探針と、前記測定探針にレーザー光を照射するレーザ照射系と、レーザ光の照射により前記測定探針と前記検査対象試料との間で発生した近接場光の散乱光を透過し、前記検査対象試料を保持する試料ホルダと、前記試料ホルダを透過した散乱光を検出する検出器とを備えた走査プローブ顕微鏡を提供する。   In order to achieve the above object, the present invention provides a measurement probe for scanning a sample to be inspected, a laser irradiation system for irradiating the measurement probe with laser light, the measurement probe and the inspection by irradiating laser light. A scanning probe microscope including a sample holder that transmits scattered light of near-field light generated between the target sample and holds the sample to be inspected, and a detector that detects scattered light transmitted through the sample holder. provide.

また、他の観点における本発明は、測定探針を検査対象試料に対して相対的に走査し、レーザ光を前記測定探針に照射し、記測定探針と前記検査対象試料との間で近接場光を発生させ、前記検査対象試料を保持する試料ホルダを透過した前記近接場光の散乱光を検出することを特徴とする走査プローブ顕微鏡を用いた試料の観察方法を提供する。   According to another aspect of the present invention, the measurement probe is scanned relative to the sample to be inspected, the laser probe is irradiated with the laser beam, and the measurement probe and the sample to be inspected are irradiated. Provided is a sample observation method using a scanning probe microscope, characterized by generating near-field light and detecting scattered light of the near-field light transmitted through a sample holder holding the sample to be inspected.

本発明によれば、近接場走査顕微鏡において、検出光学系のNAを拡大することにより、測定探針と検査対象試料との間に発生した近接場光の検出光量を増加させ、近接場光画像のSN比及び測定再現性を向上させることができる。   According to the present invention, in the near-field scanning microscope, by increasing the NA of the detection optical system, the amount of detected near-field light generated between the measurement probe and the sample to be inspected is increased, and the near-field light image The S / N ratio and the measurement reproducibility can be improved.

実施例1における試料ホルダの正面の断面図である。2 is a front sectional view of a sample holder in Example 1. FIG. 実施例2における試料ホルダの正面の断面図である。6 is a front sectional view of a sample holder in Embodiment 2. FIG. 実施例3における試料ホルダの正面の断面図である。6 is a front sectional view of a sample holder in Example 3. FIG. 実施例4における試料ホルダの正面の断面図である。6 is a front sectional view of a sample holder in Example 4. FIG. 実施例5における試料ホルダの正面の断面図である。10 is a front sectional view of a sample holder in Example 5. FIG. 実施例6における試料ホルダの正面の断面図である。10 is a front sectional view of a sample holder in Example 6. FIG. 実施例7における試料ホルダの正面の断面図である。10 is a front sectional view of a sample holder in Example 7. FIG. 実施例8における試料ホルダの正面の断面図である。10 is a front sectional view of a sample holder in Example 8. FIG. 実施例9における試料ホルダの正面の断面図である。10 is a front sectional view of a sample holder in Example 9. FIG. 実施例10における試料ホルダの正面の断面図である。FIG. 10 is a front sectional view of a sample holder in Example 10. 実施例1、2、3における走査プローブ顕微鏡の概略の構成を示すブロック図である。1 is a block diagram illustrating a schematic configuration of a scanning probe microscope in Examples 1, 2, and 3. FIG. 実施例4、5、6、7、8における走査プローブ顕微鏡の概略の構成を示すブロック図である。It is a block diagram which shows the schematic structure of the scanning probe microscope in Example 4, 5, 6, 7, 8. 実施例9における走査プローブ顕微鏡の概略の構成を示すブロック図である。10 is a block diagram showing a schematic configuration of a scanning probe microscope in Example 9. FIG. 実施例10における走査プローブ顕微鏡の概略の構成を示すブロック図である。FIG. 10 is a block diagram showing a schematic configuration of a scanning probe microscope in Example 10.

以下、実施例を図面を用いて説明する。尚、以下で説明する実施例では、いずれの検査対象試料も液中に存在する形態となっているが、本発明はこれに限定されるものではなく、大気中に存在する検査対象試料にも適用されるものである。   Hereinafter, examples will be described with reference to the drawings. In the examples described below, any sample to be inspected is present in the liquid. However, the present invention is not limited to this, and the sample to be inspected present in the atmosphere is also included. Applicable.

本発明の第1の実施例を、図1及び図11に基づいて説明する。図1は第1の実施例における検査対象試料を搭載する試料ホルダを示す断面図である。本実施例では、図1に示すように、検査対象試料2はアルコールや水等の溶液3の中に存在する。検査対象試料2は溶液3ごと試料ホルダ1に保持され、試料ホルダ1はさらに圧電素子等のアクチュエータで駆動されるXYステージ4上に載置される。金や銀等の金属から成る先端が先鋭化された測定探針21を先端を測定試料2に向けて測定試料2上に接近させ、測定探針21と試料2表面との間隙を測定探針21の先端径とほぼ同程度以下に保ち、もしくは微小な接触力で接触させ、斜め上方から単一波長のレーザ光7を集光レンズ6で集光して測定探針21の先端に照射すると、測定探針21と試料2表面との間に微小な近接場光8が発生し、さらにこの近接場光8と測定探針21との相互作用により散乱光(伝搬光)9が発生する。   A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a cross-sectional view showing a sample holder for mounting a sample to be inspected in the first embodiment. In this embodiment, as shown in FIG. 1, the sample 2 to be inspected is present in a solution 3 such as alcohol or water. The sample 2 to be inspected is held in the sample holder 1 together with the solution 3, and the sample holder 1 is further placed on an XY stage 4 driven by an actuator such as a piezoelectric element. A measurement probe 21 having a sharp tip made of metal such as gold or silver is brought close to the measurement sample 2 with the tip directed toward the measurement sample 2, and the gap between the measurement probe 21 and the surface of the sample 2 is measured. When the laser light 7 having a single wavelength is condensed from the oblique upper side by the condenser lens 6 and is irradiated to the tip of the measurement probe 21 when the tip is kept to be approximately equal to or less than the tip diameter of 21 or contacted with a minute contact force. A minute near-field light 8 is generated between the measurement probe 21 and the surface of the sample 2, and scattered light (propagation light) 9 is generated by the interaction between the near-field light 8 and the measurement probe 21.

ここで、試料ホルダ1は、散乱光9が透過する材料で構成されると共に、その側面はある曲率をもった曲面1aから成り、検出レンズとして機能する。その結果、散乱光9は試料ホルダ1を透過して曲面1aのレンズ効果(1点から出た光を所定の角度で屈折させ、平行光にしたり、集光したり、発散させたり、あるいはその逆を行うことができる)により平行光となった後、結像レンズ10により集光され、光電子増倍管やホトダイオード等の検出器11で受光される。尚、試料ホルダ1の内壁と溶液3の界面での反射を抑えるため、試料ホルダ1の屈折率は、溶液の屈折率に近いことが望ましい。この試料ホルダ1によれば、実効的に試料2のごく近傍数mmの範囲に検出レンズを配置すると等価となるため、大きなNA(umerical perture: 開口数; ある1点から出た光を取り込める最大角度に対応したレンズの評価指数であり、NAが大きいほどより多くの光を取り込める)で検出光を捉えることができ、検出光量が格段に増加し、近接場光画像のSN比及び測定再現性が向上する。 Here, the sample holder 1 is made of a material that allows the scattered light 9 to pass through, and its side surface is formed of a curved surface 1a having a certain curvature, and functions as a detection lens. As a result, the scattered light 9 is transmitted through the sample holder 1 and the lens effect of the curved surface 1a (refracted light from one point is refracted at a predetermined angle to become parallel light, condensed, diverged, or After being converted into parallel light, it is condensed by the imaging lens 10 and received by a detector 11 such as a photomultiplier tube or a photodiode. In order to suppress reflection at the interface between the inner wall of the sample holder 1 and the solution 3, it is desirable that the refractive index of the sample holder 1 is close to the refractive index of the solution. According to the sample holder 1, since an equivalent when effectively place the detecting lens to a range of close proximity to several mm of the sample 2, a large NA (N umerical A perture: aperture; light emitted from a certain point It is a lens evaluation index corresponding to the maximum angle that can be captured, and the larger the NA, the more light can be captured), so that the detected light can be captured, the detected light quantity increases dramatically, the SN ratio and measurement of the near-field light image Reproducibility is improved.

図11に、この試料ホルダを組み込んだ走査プローブ顕微鏡の構成を示す。走査プローブ顕微鏡は、試料2を搭載し散乱光を検出する試料ホルダ1と、それを載置して試料2をXY方向に走査するXY圧電素子ステージ4と、先端に試料2を走査する測定探針21を固定した支持部としてのカンチレバー25とカンチレバー25をZ方向に微小振動させる圧電素子アクチュエータ26とカンチレバー15をZ方向に走査するZ圧電素子ステージ27と、カンチレバーのたわみを検知することで、測定探針と試料との接触力を検知する光てこ検出系95と、レーザ光7を測定探針21先端に照射する励起レーザ照射系70と、散乱光を集光し光電変換する散乱光検出系200と、得られた散乱光信号とXYZ変位信号から近接場光画像と凹凸画像を生成し出力する信号処理・制御系300とを備えて構成される。XY圧電素子ステージ4とZ圧電素子ステージ27によって測定探針21を試料2に対して相対的に走査する駆動部が構成される。   FIG. 11 shows the configuration of a scanning probe microscope incorporating this sample holder. The scanning probe microscope includes a sample holder 1 that mounts a sample 2 and detects scattered light, an XY piezoelectric element stage 4 that mounts the sample holder 1 and scans the sample 2 in the XY directions, and a measurement probe that scans the sample 2 at the tip. By detecting the deflection of the cantilever 25 as a support portion to which the needle 21 is fixed, the piezoelectric element actuator 26 for minutely vibrating the cantilever 25 in the Z direction, the Z piezoelectric element stage 27 for scanning the cantilever 15 in the Z direction, An optical lever detection system 95 that detects the contact force between the measurement probe and the sample, an excitation laser irradiation system 70 that irradiates the tip of the measurement probe 21 with the laser beam 7, and a scattered light detection that condenses the scattered light and photoelectrically converts it. The system 200 includes a signal processing / control system 300 that generates and outputs a near-field light image and a concavo-convex image from the obtained scattered light signal and XYZ displacement signal. The XY piezoelectric element stage 4 and the Z piezoelectric element stage 27 constitute a drive unit that scans the measurement probe 21 relative to the sample 2.

光てこ検出系95では、半導体レーザ71からのレーザ光72をカンチレバー25の背面に照射し、その反射光を4分割センサ73で受光し、反射光の位置変化からカンチレバー25のたわみ量を検出し、さらにたわみ量から測定探針21と試料2との接触力を検知して、常に接触力が予め設定した値となるように、信号処理・制御系300の制御部100でZ圧電素子ステージ27をフィードバック制御する。   In the optical lever detection system 95, the back surface of the cantilever 25 is irradiated with the laser light 72 from the semiconductor laser 71, the reflected light is received by the quadrant sensor 73, and the deflection amount of the cantilever 25 is detected from the change in the position of the reflected light. Further, the Z piezoelectric element stage 27 is detected by the control unit 100 of the signal processing / control system 300 so that the contact force between the measurement probe 21 and the sample 2 is detected from the deflection amount and the contact force always becomes a preset value. Feedback control.

測定探針21は、発振器80によりカンチレバー25の共振周波数でZ方向に微小振動されるので、発生する近接場光8及び散乱光9も同じ周波数で強度変調される。検出器11から出力される強度変調された光信号はロックインアンプ90で同期検波され、この周波数成分のみが出力される。励起用レーザ光7によって、測定探針の根元や試料表面で直接散乱した背景散乱光は、カンチレバー25の微小振動には反応せず直流成分であるので、ロックインアンプ90の出力信号には含まれない。これにより、背景雑音を抑圧して近接場光成分のみを選択的に検出することができる。共振周波数の2倍波、3倍波といった高調波成分を検出することで、さらに信号SN比を向上させることができる。   Since the measurement probe 21 is minutely vibrated in the Z direction at the resonance frequency of the cantilever 25 by the oscillator 80, the generated near-field light 8 and scattered light 9 are intensity-modulated at the same frequency. The intensity-modulated optical signal output from the detector 11 is synchronously detected by the lock-in amplifier 90, and only this frequency component is output. The background scattered light directly scattered at the root of the measurement probe and the sample surface by the excitation laser beam 7 does not react to the minute vibration of the cantilever 25 and is a direct current component, and therefore is included in the output signal of the lock-in amplifier 90. I can't. Thereby, it is possible to selectively detect only the near-field light component while suppressing the background noise. The signal SN ratio can be further improved by detecting harmonic components such as the second harmonic and the third harmonic of the resonance frequency.

ロックインアンプ90からの光信号は信号処理・制御系300の制御部100に送られ、XY圧電素子ステージ4からのXY信号と組み合わせられて近接場光画像が生成され、ディスプレイ110に出力される。同時に、Z圧電素子ステージ27からのZ信号も制御部100でXY信号と組み合わせられて試料表面の凹凸画像が生成され、ディスプレイ110に出力される。   The optical signal from the lock-in amplifier 90 is sent to the control unit 100 of the signal processing / control system 300, combined with the XY signal from the XY piezoelectric element stage 4 to generate a near-field light image and output to the display 110. . At the same time, the Z signal from the Z piezoelectric element stage 27 is also combined with the XY signal by the control unit 100 to generate a concavo-convex image of the sample surface and output to the display 110.

本実施例によれば、前述の通り、実効的に試料2のごく近傍数mmの範囲に検出レンズを配置すると等価となるため、大きなNAで検出光を捉えることができ、検出光量が格段に増加し、近接場光画像のSN比及び測定再現性が向上する。   According to the present embodiment, as described above, it is equivalent to effectively disposing the detection lens in the range of several millimeters in the vicinity of the sample 2, so that the detection light can be captured with a large NA, and the detection light quantity is remarkably increased. This increases the S / N ratio and measurement reproducibility of the near-field light image.

この結果、ナノメートルオーダの分解能でかつ高いSN比と高い測定再現性で、試料表面の光学情報、分光情報、凹凸情報の測定が可能になる。その結果、半導体試料の応力分布や不純物分布などの物性情報や分光情報、表面凹凸情報の測定が可能になる。また、異物や欠陥の分類に寄与する光学情報や凹凸情報を測定できるので異物・欠陥分類性能が向上する。また、これらの測定結果を半導体製造プロセス条件にフィードバックすることで、信頼性の高い半導体デバイスの高歩留まり生産が可能になる。   As a result, it is possible to measure optical information, spectral information, and unevenness information on the sample surface with a resolution of nanometer order, a high S / N ratio, and a high measurement reproducibility. As a result, physical property information such as stress distribution and impurity distribution of semiconductor samples, spectral information, and surface unevenness information can be measured. In addition, since optical information and unevenness information that contribute to the classification of foreign matter and defects can be measured, the foreign matter / defect classification performance is improved. Further, by feeding back these measurement results to the semiconductor manufacturing process conditions, it becomes possible to produce a highly reliable semiconductor device with a high yield.

本発明の第2の実施例を、図2及び図11に基づいて説明する。図2は第2の実施例における検査対象試料を搭載する試料ホルダを示す断面図である。試料ホルダ1の形態とその機能は第1の実施例と同じであるので、説明を省略する。本実施例では、測定探針の形態が異なる。測定探針22は、試料2に向ける先端が先鋭化された石英ファイバ22aの周囲を金や銀等の金属膜22bでコーティングし、試料2に向ける先端のみ金属膜を除去して微小開口を形成したものである。石英ファイバ22aの上方(測定探針22に対して試料2がある側とは反対側)からレーザ光7を集光レンズ6で集光して照射すると、測定探針22先端の開口部から近接場光8が発生し、さらにこの近接場光8と測定探針22との相互作用により散乱光(伝搬光)9が発生する。   A second embodiment of the present invention will be described with reference to FIGS. FIG. 2 is a cross-sectional view showing a sample holder for mounting a sample to be inspected in the second embodiment. Since the form and function of the sample holder 1 are the same as those of the first embodiment, description thereof is omitted. In this embodiment, the form of the measurement probe is different. The measurement probe 22 is coated with a metal film 22b made of gold, silver, or the like around the quartz fiber 22a with a sharpened tip directed toward the sample 2, and a minute opening is formed by removing the metal film only at the tip directed toward the sample 2. It is a thing. When the laser light 7 is condensed by the condenser lens 6 and irradiated from above the quartz fiber 22a (the side opposite to the side where the sample 2 is present with respect to the measurement probe 22), it approaches from the opening at the tip of the measurement probe 22. A field light 8 is generated, and a scattered light (propagating light) 9 is generated by the interaction between the near-field light 8 and the measurement probe 22.

図11に、この試料ホルダを組み込んだ走査プローブ顕微鏡の構成を示す。この走査プローブ顕微鏡の構成とその機能は第1の実施例と同じであるので、説明を省略する。   FIG. 11 shows the configuration of a scanning probe microscope incorporating this sample holder. Since the configuration and function of this scanning probe microscope are the same as those of the first embodiment, description thereof is omitted.

本実施例によれば、前述の通り、実効的に試料2のごく近傍数mmの範囲に検出レンズを配置すると等価となるため、大きなNAで検出光を捉えることができ、検出光量が格段に増加し、近接場光画像のSN比及び測定再現性が向上する。また、本実施例では、石英ファイバ22aを通してレーザ光7を照射し近接場光8を生成するので、測定探針先端にレーザ光7を照射する第1の実施例に比べ、背景雑音の影響が小さいという利点がある。   According to the present embodiment, as described above, it is equivalent to effectively disposing the detection lens in the range of several millimeters in the vicinity of the sample 2, so that the detection light can be captured with a large NA, and the detection light quantity is remarkably increased. This increases the S / N ratio and measurement reproducibility of the near-field light image. In this embodiment, since the near-field light 8 is generated by irradiating the laser beam 7 through the quartz fiber 22a, the influence of the background noise is larger than that in the first embodiment in which the laser beam 7 is irradiated on the tip of the measurement probe. There is an advantage of being small.

本発明の第3の実施例を、図3及び図11に基づいて説明する。図3は第3の実施例における検査対象試料を搭載する試料ホルダを示す断面図である。試料ホルダの形態とその機能は第1の実施例と同じであるので、説明を省略する。本実施例では、測定探針の形態が異なる。測定探針23は、試料2に向ける先端の径が数nmに先鋭化されたカーボンナノチューブ(arbon anoube: CNT)から成る。CNTには、内部に金ナノ構造や銀ナノ構造を充填してもよい。この測定探針は、図11に示すように、カンチレバー25の先端に固定され、斜め上方(測定探針22に対して試料2がある側とは反対側)から励起用レーザ光7が照射される。このレーザ光7はCNTの自由電子の集団振動であるプラズモンに変換され、図3の破線で示すように、表面プラズモン15としてCNT上端(測定探針22に対して試料2がある側とは反対側)から下端(試料2がある側)に伝搬し、先端部で電界集中して、近接場光8aが生じる。さらに、この近接場光8aと測定探針23との相互作用により散乱光(伝搬光)9が発生する。 A third embodiment of the present invention will be described with reference to FIGS. FIG. 3 is a cross-sectional view showing a sample holder for mounting a sample to be inspected in the third embodiment. Since the form and function of the sample holder are the same as those in the first embodiment, description thereof is omitted. In this embodiment, the form of the measurement probe is different. Measurement probe 23, carbon diameter of the tip for directing the sample 2 is sharpened to several nm nanotubes (C arbon N ano t ube: CNT) consists. The CNTs may be filled with gold nanostructures or silver nanostructures. As shown in FIG. 11, this measurement probe is fixed to the tip of the cantilever 25, and the excitation laser beam 7 is irradiated obliquely from above (the side opposite to the side where the sample 2 is present with respect to the measurement probe 22). The This laser beam 7 is converted into plasmons which are collective vibrations of free electrons of CNTs, and as shown by the broken lines in FIG. From the side) to the lower end (the side where the sample 2 is present), and the electric field is concentrated at the tip portion to generate near-field light 8a. Further, scattered light (propagation light) 9 is generated by the interaction between the near-field light 8 a and the measurement probe 23.

図11に、この試料ホルダを組み込んだ走査プローブ顕微鏡の構成を示す。この走査プローブ顕微鏡の構成とその機能は第1の実施例と同じであるので、説明を省略する。   FIG. 11 shows the configuration of a scanning probe microscope incorporating this sample holder. Since the configuration and function of this scanning probe microscope are the same as those of the first embodiment, description thereof is omitted.

本実施例によれば、前述の通り、実効的に試料2のごく近傍数mmの範囲に検出レンズを配置すると等価となるため、大きなNAで検出光を捉えることができ、検出光量が格段に増加し、近接場光画像のSN比及び測定再現性が向上する。また、本実施例では測定探針23に先端径が数nmのCNTを用いているので、空間分解能が数nmとなり、第1及び第2の実施例に比べ、空間分解能が約10倍に向上する。   According to the present embodiment, as described above, it is equivalent to effectively disposing the detection lens in the range of several millimeters in the vicinity of the sample 2, so that the detection light can be captured with a large NA, and the detection light quantity is remarkably increased. This increases the S / N ratio and measurement reproducibility of the near-field light image. In the present embodiment, since the CNT having a tip diameter of several nanometers is used for the measurement probe 23, the spatial resolution is several nanometers, and the spatial resolution is improved by about 10 times compared to the first and second embodiments. To do.

本発明の第4の実施例を、図4及び図12に基づいて説明する。図4は第4の実施例における検査対象試料を搭載する試料ホルダを示す断面図である。本実施例では、図4に示すように、検査対象試料2はアルコールや水等の溶液3の中に存在する。検査対象試料2は溶液3ごと試料ホルダ31に保持され、試料ホルダ31はさらに圧電素子等のアクチュエータで駆動される中央に開口部を設けたXYステージ40上に載置される。金や銀等の金属から成る先端が先鋭化された測定探針21を測定試料2上に接近させ、測定探針21と試料2表面との間隙を測定探針21の先端径とほぼ同程度以下に保ち、もしくは微小な接触力で接触させ、斜め上方からレーザ光7を集光レンズ6で集光して測定探針21の先端に照射すると、測定探針21と試料2表面との間に微小な近接場光8が発生し、さらにこの近接場光8と測定探針21との相互作用により散乱光(伝搬光)17が発生する。   A fourth embodiment of the present invention will be described with reference to FIGS. FIG. 4 is a cross-sectional view showing a sample holder for mounting a sample to be inspected in the fourth embodiment. In this embodiment, as shown in FIG. 4, the sample 2 to be inspected exists in a solution 3 such as alcohol or water. The sample 2 to be inspected is held in the sample holder 31 together with the solution 3, and the sample holder 31 is further placed on an XY stage 40 having an opening in the center driven by an actuator such as a piezoelectric element. A measurement probe 21 having a sharp tip made of a metal such as gold or silver is brought close to the measurement sample 2, and the gap between the measurement probe 21 and the surface of the sample 2 is approximately the same as the tip diameter of the measurement probe 21. If the laser light 7 is condensed by the condensing lens 6 and irradiated to the tip of the measurement probe 21 from the oblique upper side, the distance between the measurement probe 21 and the surface of the sample 2 is maintained. A very small near-field light 8 is generated, and scattered light (propagating light) 17 is generated by the interaction between the near-field light 8 and the measurement probe 21.

ここで、試料ホルダ31は、散乱光17が透過する材料で構成されると共に、その底面はある曲率をもった曲面31aから成り、検出レンズとして機能する。その結果、散乱光17は試料ホルダ31を透過して曲面31aのレンズ効果により平行光となり、XYステージ40の開口部を通過した後、結像レンズ18により集光され、光電子増倍管やホトダイオード等の検出器19で受光される。尚、試料ホルダ31の内壁と溶液3の界面での反射を抑えるため、試料ホルダ31の屈折率は、溶液の屈折率に近いことが望ましい。この試料ホルダ31によれば、実効的に試料2のごく近傍数mmの範囲に検出レンズを配置すると等価となるため、大きなNAで検出光を捉えることができ、検出光量が格段に増加し、近接場光画像のSN比及び測定再現性が向上する。   Here, the sample holder 31 is made of a material that allows the scattered light 17 to pass therethrough, and its bottom surface is made of a curved surface 31a having a certain curvature, and functions as a detection lens. As a result, the scattered light 17 passes through the sample holder 31 and becomes parallel light due to the lens effect of the curved surface 31a. After passing through the opening of the XY stage 40, the scattered light 17 is collected by the imaging lens 18 and is collected by a photomultiplier tube or photodiode. Is received by a detector 19. In order to suppress reflection at the interface between the inner wall of the sample holder 31 and the solution 3, the refractive index of the sample holder 31 is preferably close to the refractive index of the solution. According to this sample holder 31, since it is equivalent to effectively disposing the detection lens in the range of several millimeters in the vicinity of the sample 2, the detection light can be captured with a large NA, and the detection light quantity is greatly increased. The SN ratio and measurement reproducibility of the near-field light image are improved.

図12に、この試料ホルダを組み込んだ走査プローブ顕微鏡の構成を示す。この走査プローブ顕微鏡において、試料ホルダ31以外の構成とその機能は第1の実施例と同じであるので、説明を省略する。   FIG. 12 shows the configuration of a scanning probe microscope incorporating this sample holder. In this scanning probe microscope, the configuration other than the sample holder 31 and the function thereof are the same as those in the first embodiment, and thus description thereof is omitted.

本実施例によれば、前述の通り、実効的に試料2のごく近傍数mmの範囲に検出レンズを配置すると等価となるため、大きなNAで検出光を捉えることができ、検出光量が格段に増加し、近接場光画像のSN比及び測定再現性が向上する。さらに、本実施例では、第1〜第3の実施例のように側方散乱光を検出する構成ではなく、試料ホルダ31の底面から、すなわち前方散乱光を検出する構成であるため、図4に示すように、検出のNAをさらに大きくすることができ、散乱光の検出光量を格段に増加させることができ、近接場光画像のSN比及び測定再現性を向上させることができる。   According to the present embodiment, as described above, it is equivalent to effectively disposing the detection lens in the range of several millimeters in the vicinity of the sample 2, so that the detection light can be captured with a large NA, and the detection light quantity is remarkably increased. This increases the S / N ratio and measurement reproducibility of the near-field light image. Furthermore, in the present embodiment, the configuration is such that the side scattered light is not detected as in the first to third embodiments, but the forward scattered light is detected from the bottom surface of the sample holder 31. As shown in FIG. 5, the NA of detection can be further increased, the amount of detected scattered light can be significantly increased, and the SN ratio and measurement reproducibility of the near-field light image can be improved.

本発明の第5の実施例を、図5及び図12に基づいて説明する。図5は第5の実施例における検査対象試料を搭載する試料ホルダを示す断面図である。試料ホルダ31の形態とその機能は第4の実施例と同じであるので、説明を省略する。本実施例では、測定探針の形態が異なる。測定探針22は、先端が先鋭化された石英ファイバ22aの周囲を金や銀等の金属膜22bでコーティングし、先端のみ金属膜を除去して微小開口を形成したものである。石英ファイバ22aの上方からレーザ光7を集光レンズ6で集光して照射すると、測定探針22先端の開口部から近接場光8が発生し、さらにこの近接場光8と測定探針22との相互作用により散乱光(伝搬光)17が発生する。   A fifth embodiment of the present invention will be described with reference to FIGS. FIG. 5 is a cross-sectional view showing a sample holder for mounting a sample to be inspected in the fifth embodiment. Since the form and function of the sample holder 31 are the same as those of the fourth embodiment, description thereof is omitted. In this embodiment, the form of the measurement probe is different. The measurement probe 22 is formed by coating the periphery of a quartz fiber 22a with a sharpened tip with a metal film 22b such as gold or silver, and removing the metal film only at the tip to form a minute opening. When the laser beam 7 is condensed by the condenser lens 6 and irradiated from above the quartz fiber 22a, near-field light 8 is generated from the opening at the tip of the measurement probe 22, and the near-field light 8 and the measurement probe 22 are further generated. Scattered light (propagating light) 17 is generated by the interaction with the.

図12に、この試料ホルダを組み込んだ走査プローブ顕微鏡の構成を示す。この走査プローブ顕微鏡の構成とその機能は第1の実施例と同じであるので、説明を省略する。   FIG. 12 shows the configuration of a scanning probe microscope incorporating this sample holder. Since the configuration and function of this scanning probe microscope are the same as those of the first embodiment, description thereof is omitted.

本実施例によれば、前述の通り、実効的に試料2のごく近傍数mmの範囲に検出レンズを配置すると等価となるため、大きなNAで検出光を捉えることができ、検出光量が格段に増加し、近接場光画像のSN比及び測定再現性が向上する。さらに、本実施例では、第1〜第3の実施例のように側方散乱光を検出する構成ではなく、試料ホルダ31の底面から、すなわち前方散乱光を検出する構成であるため、図5に示すように、検出のNAをさらに大きくすることができ、散乱光の検出光量を格段に増加させることができ、近接場光画像のSN比及び測定再現性を向上させることができる。   According to the present embodiment, as described above, it is equivalent to effectively disposing the detection lens in the range of several millimeters in the vicinity of the sample 2, so that the detection light can be captured with a large NA, and the detection light quantity is remarkably increased. This increases the S / N ratio and measurement reproducibility of the near-field light image. Furthermore, in the present embodiment, the configuration is such that the side scattered light is not detected as in the first to third embodiments, but the front scattered light is detected from the bottom surface of the sample holder 31, and therefore FIG. As shown in FIG. 5, the NA of detection can be further increased, the amount of detected scattered light can be significantly increased, and the SN ratio and measurement reproducibility of the near-field light image can be improved.

本発明の第6の実施例を、図6及び図12に基づいて説明する。図6は第6の実施例における検査対象試料を搭載する試料ホルダを示す断面図である。試料ホルダ31の形態とその機能は第4の実施例と同じであるので、説明を省略する。本実施例では、測定探針の形態が異なる。測定探針23は、先端径が数nmに先鋭化されたカーボンナノチューブ(arbon anoube: CNT)、もしくは内部に金ナノ構造や銀ナノ構造を充填したCNTから成る。この測定探針は、図12に示すように、カンチレバー25の先端に固定され、斜め上方から励起用レーザ光7が照射される。このレーザ光7は自由電子の集団振動であるプラズモンに変換され、図3の破線で示すように、表面プラズモン15としてCNT上端から下端に伝搬し、先端部で電界集中して、近接場光8aが生じる。さらに、この近接場光8aと測定探針23との相互作用により散乱光(伝搬光)17が発生する。 A sixth embodiment of the present invention will be described with reference to FIGS. FIG. 6 is a cross-sectional view showing a sample holder on which a sample to be inspected is mounted in the sixth embodiment. Since the form and function of the sample holder 31 are the same as those of the fourth embodiment, description thereof is omitted. In this embodiment, the form of the measurement probe is different. Measurement probe 23, carbon nanotube tip diameter is sharpened to several nm (C arbon N ano t ube : CNT), or consists of CNT filled with gold nanoparticles and silver nanostructures therein. As shown in FIG. 12, this measurement probe is fixed to the tip of the cantilever 25, and the excitation laser beam 7 is irradiated obliquely from above. This laser light 7 is converted into plasmons which are collective vibrations of free electrons, and propagates from the upper end to the lower end of the CNT as surface plasmons 15 as shown by the broken lines in FIG. Occurs. Further, scattered light (propagating light) 17 is generated by the interaction between the near-field light 8 a and the measurement probe 23.

図12に、この試料ホルダを組み込んだ走査プローブ顕微鏡の構成を示す。この走査プローブ顕微鏡の構成とその機能は第1の実施例と同じであるので、説明を省略する。   FIG. 12 shows the configuration of a scanning probe microscope incorporating this sample holder. Since the configuration and function of this scanning probe microscope are the same as those of the first embodiment, description thereof is omitted.

本実施例によれば、前述の通り、実効的に試料2のごく近傍数mmの範囲に検出レンズを配置すると等価となるため、大きなNAで検出光を捉えることができ、検出光量が格段に増加し、近接場光画像のSN比及び測定再現性が向上する。さらに、本実施例では、第1〜第3の実施例のように側方散乱光を検出する構成ではなく、試料ホルダ31の底面から、すなわち前方散乱光を検出する構成であるため、図6に示すように、検出のNAをさらに大きくすることができ、散乱光の検出光量を格段に増加させることができ、近接場光画像のSN比及び測定再現性を向上させることができる。また、本実施例では測定探針23に先端径が数nmのCNTを用いているので、空間分解能が数nmとなり、第1及び第2の実施例に比べ、空間分解能が約10倍に向上する。   According to the present embodiment, as described above, it is equivalent to effectively disposing the detection lens in the range of several millimeters in the vicinity of the sample 2, so that the detection light can be captured with a large NA, and the detection light quantity is remarkably increased. This increases the S / N ratio and measurement reproducibility of the near-field light image. Furthermore, in the present embodiment, it is not a configuration for detecting side scattered light as in the first to third embodiments, but a configuration for detecting forward scattered light from the bottom surface of the sample holder 31, that is, FIG. As shown in FIG. 5, the NA of detection can be further increased, the amount of detected scattered light can be significantly increased, and the SN ratio and measurement reproducibility of the near-field light image can be improved. In the present embodiment, since the CNT having a tip diameter of several nanometers is used for the measurement probe 23, the spatial resolution is several nanometers, and the spatial resolution is improved by about 10 times compared to the first and second embodiments. To do.

本発明の第7の実施例を、図7及び図12に基づいて説明する。図7は第7の実施例における検査対象試料を搭載する試料ホルダを示す断面図である。本実施例では、図7に示すように、検査対象試料2はアルコールや水等の溶液3の中に存在する。検査対象試料2は溶液3ごと試料ホルダ41に保持され、試料ホルダ41はさらに圧電素子等のアクチュエータで駆動される中央に開口部を設けたXYステージ40上に載置される。金や銀等の金属から成る先端が先鋭化された測定探針21を測定試料2上に接近させ、測定探針21と試料2表面との間隙を測定探針21の先端径とほぼ同程度以下に保ち、もしくは微小な接触力で接触させ、斜め上方からレーザ光7を集光レンズ6で集光して測定探針21の先端に照射すると、測定探針21と試料2表面との間に微小な近接場光8が発生し、さらにこの近接場光8と測定探針21との相互作用により散乱光(伝搬光)17が発生する。   A seventh embodiment of the present invention will be described with reference to FIGS. FIG. 7 is a cross-sectional view showing a sample holder for mounting a sample to be inspected in the seventh embodiment. In this embodiment, as shown in FIG. 7, the sample 2 to be inspected exists in a solution 3 such as alcohol or water. The sample 2 to be inspected is held together with the solution 3 in a sample holder 41, and the sample holder 41 is further placed on an XY stage 40 having an opening in the center driven by an actuator such as a piezoelectric element. A measurement probe 21 having a sharp tip made of a metal such as gold or silver is brought close to the measurement sample 2, and the gap between the measurement probe 21 and the surface of the sample 2 is approximately the same as the tip diameter of the measurement probe 21. If the laser light 7 is condensed by the condensing lens 6 and irradiated to the tip of the measurement probe 21 from the oblique upper side, the distance between the measurement probe 21 and the surface of the sample 2 is maintained. A very small near-field light 8 is generated, and scattered light (propagating light) 17 is generated by the interaction between the near-field light 8 and the measurement probe 21.

ここで、試料ホルダ41は、散乱光17が透過する材料で構成されると共に、その底面にはフレネルレンズ41a(底面の表面に不等間隔の回折格子を形成することにより、1点から出た光を所定の角度で回折させ、平行光にしたり、集光したり、発散させたり、あるいはその逆を行うことができる)が形成され、検出レンズとして機能する。その結果、散乱光17は試料ホルダ41を透過してフレネルレンズ41aにより平行光となり、XYステージ40の開口部を通過した後、結像レンズ18により集光され、光電子増倍管やホトダイオード等の検出器19で受光される。尚、試料ホルダ41の内壁と溶液3の界面での反射を抑えるため、試料ホルダ41の屈折率は、溶液の屈折率に近いことが望ましい。この試料ホルダ41によれば、実効的に試料2のごく近傍数mmの範囲に検出レンズを配置すると等価となるため、大きなNAで検出光を捉えることができ、検出光量が格段に増加し、近接場光画像のSN比及び測定再現性が向上する。   Here, the sample holder 41 is made of a material that allows the scattered light 17 to pass through, and the Fresnel lens 41a is formed on the bottom surface of the sample holder 41 by forming a diffraction grating with unequal intervals on the bottom surface. The light is diffracted at a predetermined angle to be collimated, condensed, diverged, or vice versa, and functions as a detection lens. As a result, the scattered light 17 passes through the sample holder 41 to become parallel light by the Fresnel lens 41a, passes through the opening of the XY stage 40, and is then collected by the imaging lens 18, and is used as a photomultiplier tube or a photodiode. The light is received by the detector 19. In order to suppress reflection at the interface between the inner wall of the sample holder 41 and the solution 3, it is desirable that the refractive index of the sample holder 41 is close to the refractive index of the solution. According to the sample holder 41, since it is equivalent to disposing the detection lens in a range of several millimeters in the vicinity of the sample 2 effectively, the detection light can be captured with a large NA, and the detection light amount is remarkably increased. The SN ratio and measurement reproducibility of the near-field light image are improved.

図12に、この試料ホルダを組み込んだ走査プローブ顕微鏡の構成を示す。この走査プローブ顕微鏡において、試料ホルダ41以外の構成とその機能は第1の実施例と同じであるので、説明を省略する。   FIG. 12 shows the configuration of a scanning probe microscope incorporating this sample holder. In this scanning probe microscope, the configuration other than the sample holder 41 and the function thereof are the same as those in the first embodiment, and thus description thereof is omitted.

本実施例によれば、前述の通り、実効的に試料2のごく近傍数mmの範囲に検出レンズを配置すると等価となるため、大きなNAで検出光を捉えることができ、検出光量が格段に増加し、近接場光画像のSN比及び測定再現性が向上する。さらに本実施例では、試料ホルダ41の底面を曲率をもったレンズではなくフレネルレンズで構成しているので、底面の肉厚を薄くすることができ、試料ホルダ41のコスト低減につながるという効果を有する。   According to the present embodiment, as described above, it is equivalent to effectively disposing the detection lens in the range of several millimeters in the vicinity of the sample 2, so that the detection light can be captured with a large NA, and the detection light quantity is remarkably increased. This increases the S / N ratio and measurement reproducibility of the near-field light image. Furthermore, in the present embodiment, the bottom surface of the sample holder 41 is configured by a Fresnel lens instead of a lens having a curvature, so that the thickness of the bottom surface can be reduced and the cost of the sample holder 41 can be reduced. Have.

本発明の第8の実施例を、図8及び図12に基づいて説明する。図8は第8の実施例における検査対象試料を搭載する試料ホルダを示す断面図である。本実施例では、図8に示すように、検査対象試料2はアルコールや水等の溶液3の中に存在する。検査対象試料2は溶液3ごと試料ホルダ51に保持され、試料ホルダ51はさらに圧電素子等のアクチュエータで駆動される中央に開口部を設けたXYステージ40上に載置される。金や銀等の金属から成る先端が先鋭化された測定探針21を測定試料2上に接近させ、測定探針21と試料2表面との間隙を測定探針21の先端径とほぼ同程度以下に保ち、もしくは微小な接触力で接触させ、斜め上方からレーザ光7を集光レンズ6で集光して測定探針21の先端に照射すると、測定探針21と試料2表面との間に微小な近接場光8が発生し、さらにこの近接場光8と測定探針21との相互作用により散乱光(伝搬光)17が発生する。   An eighth embodiment of the present invention will be described with reference to FIGS. FIG. 8 is a cross-sectional view showing a sample holder for mounting a sample to be inspected in the eighth embodiment. In the present embodiment, as shown in FIG. 8, the sample 2 to be inspected exists in a solution 3 such as alcohol or water. The sample 2 to be inspected is held in the sample holder 51 together with the solution 3, and the sample holder 51 is further placed on an XY stage 40 having an opening at the center driven by an actuator such as a piezoelectric element. A measurement probe 21 having a sharp tip made of a metal such as gold or silver is brought close to the measurement sample 2, and the gap between the measurement probe 21 and the surface of the sample 2 is approximately the same as the tip diameter of the measurement probe 21. If the laser light 7 is condensed by the condensing lens 6 and irradiated to the tip of the measurement probe 21 from the oblique upper side, the distance between the measurement probe 21 and the surface of the sample 2 is maintained. A very small near-field light 8 is generated, and scattered light (propagating light) 17 is generated by the interaction between the near-field light 8 and the measurement probe 21.

ここで、試料ホルダ51は、散乱光17が透過する材料で構成されると共に、その底部は中央で屈折率が大きく、周辺に行くに従い屈折率が小さくなる屈折率分布レンズ51aで形成され、検出レンズとして機能する。その結果、散乱光17は試料ホルダ51を透過して屈折率分布レンズ51aにより平行光となり、XYステージ40の開口部を通過した後、結像レンズ18により集光され、光電子増倍管やホトダイオード等の検出器19で受光される。この試料ホルダ51によれば、実効的に試料2のごく近傍数mmの範囲に検出レンズを配置すると等価となるため、大きなNAで検出光を捉えることができ、検出光量が格段に増加し、近接場光画像のSN比及び測定再現性が向上する。   Here, the sample holder 51 is made of a material through which the scattered light 17 is transmitted, and the bottom thereof is formed by a refractive index distribution lens 51a having a large refractive index at the center and a refractive index decreasing toward the periphery. Functions as a lens. As a result, the scattered light 17 is transmitted through the sample holder 51 to become parallel light by the refractive index distribution lens 51a, passes through the opening of the XY stage 40, and is then collected by the imaging lens 18, and is photomultiplier tube or photodiode. Is received by a detector 19. According to this sample holder 51, it is equivalent to effectively arranging the detection lens in a range of several millimeters in the vicinity of the sample 2, so that the detection light can be captured with a large NA, and the detection light quantity is remarkably increased. The SN ratio and measurement reproducibility of the near-field light image are improved.

図12に、この試料ホルダを組み込んだ走査プローブ顕微鏡の構成を示す。この走査プローブ顕微鏡において、試料ホルダ51以外の構成とその機能は第1の実施例と同じであるので、説明を省略する。   FIG. 12 shows the configuration of a scanning probe microscope incorporating this sample holder. In this scanning probe microscope, the configuration other than the sample holder 51 and the function thereof are the same as those in the first embodiment, and thus the description thereof is omitted.

本実施例によれば、前述の通り、実効的に試料2のごく近傍数mmの範囲に検出レンズを配置すると等価となるため、大きなNAで検出光を捉えることができ、検出光量が格段に増加し、近接場光画像のSN比及び測定再現性が向上する。さらに本実施例では、試料ホルダ41の底面を屈折率分布レンズで構成しているので、底面の表面加工が不要となり、試料ホルダ41のコスト低減につながるという効果を有する。   According to the present embodiment, as described above, it is equivalent to effectively disposing the detection lens in the range of several millimeters in the vicinity of the sample 2, so that the detection light can be captured with a large NA, and the detection light quantity is remarkably increased. This increases the S / N ratio and measurement reproducibility of the near-field light image. Further, in this embodiment, since the bottom surface of the sample holder 41 is constituted by a refractive index distribution lens, the surface processing of the bottom surface becomes unnecessary, and the cost of the sample holder 41 is reduced.

本発明の第9の実施例を、図9及び図13に基づいて説明する。図9は第9の実施例における検査対象試料を搭載する試料ホルダを示す断面図である。本実施例では、図9に示すように、検査対象試料2はアルコールや水等の溶液3の中に存在する。検査対象試料2は溶液3ごと試料ホルダ61に保持され、試料ホルダ61はさらに圧電素子等のアクチュエータで駆動される中央に開口部を設けたXYステージ40上に載置される。測定探針23は、先端径が数nmに先鋭化されたカーボンナノチューブ(arbon anoube: CNT)、もしくは内部に金ナノ構造や銀ナノ構造を充填したCNTから成る。この測定探針は、図13に示すように、カンチレバー25の先端に固定され、斜め上方から励起用レーザ光7が照射される。このレーザ光7は自由電子の集団振動であるプラズモンに変換され、図9の破線で示すように、表面プラズモン15としてCNT上端から下端に伝搬し、先端部で電界集中して、近接場光8aが生じる。さらに、この近接場光8aと測定探針23との相互作用により散乱光(伝搬光)17が発生する。 A ninth embodiment of the present invention will be described with reference to FIGS. FIG. 9 is a cross-sectional view showing a sample holder for mounting a sample to be inspected in the ninth embodiment. In the present embodiment, as shown in FIG. 9, the sample 2 to be inspected exists in a solution 3 such as alcohol or water. The sample 2 to be inspected is held together with the solution 3 in a sample holder 61, and the sample holder 61 is further placed on an XY stage 40 having an opening in the center driven by an actuator such as a piezoelectric element. Measurement probe 23, carbon nanotube tip diameter is sharpened to several nm (C arbon N ano t ube : CNT), or consists of CNT filled with gold nanoparticles and silver nanostructures therein. As shown in FIG. 13, this measurement probe is fixed to the tip of the cantilever 25, and the excitation laser beam 7 is irradiated obliquely from above. The laser light 7 is converted into plasmons which are collective vibrations of free electrons, and propagates from the upper end to the lower end of the CNT as surface plasmons 15 as shown by the broken lines in FIG. Occurs. Further, scattered light (propagating light) 17 is generated by the interaction between the near-field light 8 a and the measurement probe 23.

ここで、試料ホルダ61は、散乱光17が透過する材料で構成されると共に、上部に凹形の試料保持部61bを加工した球形のボールレンズ61a(球形の表面で光を屈折させることで、1点から出た光を平行光にしたり、集光したり、発散させたり、あるいはその逆を行うことができる)で形成され、検出レンズとして機能する。その結果、散乱光17は試料ホルダ61を透過してボールレンズ61aにより平行光となり、XYステージ40の開口部を通過した後、結像レンズ18により集光され、光電子増倍管やホトダイオード等の検出器19で受光される。この試料ホルダ61によれば、実効的に試料2のごく近傍数mmの範囲に検出レンズを配置すると等価となるため、大きなNAで検出光を捉えることができ、検出光量が格段に増加し、近接場光画像のSN比及び測定再現性が向上する。   Here, the sample holder 61 is made of a material that allows the scattered light 17 to pass through, and has a spherical ball lens 61a (with a spherical surface that refracts light by processing a concave sample holding portion 61b on the upper side. The light emitted from one point can be converted into parallel light, condensed, diverged, or vice versa, and functions as a detection lens. As a result, the scattered light 17 is transmitted through the sample holder 61 to become parallel light by the ball lens 61a, passes through the opening of the XY stage 40, and is then collected by the imaging lens 18, and a photomultiplier tube, a photodiode, or the like. The light is received by the detector 19. According to the sample holder 61, it is equivalent to effectively arranging the detection lens in a range of several millimeters in the vicinity of the sample 2, so that the detection light can be captured with a large NA, and the detection light quantity is remarkably increased. The SN ratio and measurement reproducibility of the near-field light image are improved.

図13に、この試料ホルダを組み込んだ走査プローブ顕微鏡の構成を示す。この走査プローブ顕微鏡において、試料ホルダ61以外の構成とその機能は第1の実施例と同じであるので、説明を省略する。   FIG. 13 shows the configuration of a scanning probe microscope incorporating this sample holder. In this scanning probe microscope, the configuration other than the sample holder 61 and the function thereof are the same as those in the first embodiment, and thus description thereof is omitted.

本実施例によれば、前述の通り、実効的に試料2のごく近傍数mmの範囲に検出レンズを配置すると等価となるため、大きなNAで検出光を捉えることができ、検出光量が格段に増加し、近接場光画像のSN比及び測定再現性が向上する。また、本実施例では測定探針23に先端径が数nmのCNTを用いているので、空間分解能が数nmとなり、第1及び第2の実施例に比べ、空間分解能が約10倍に向上する。さらに本実施例では、試料ホルダ61を単純な形状のボールレンズで構成しているので、試料ホルダ41の加工コスト低減につながるという効果を有する。   According to the present embodiment, as described above, it is equivalent to effectively disposing the detection lens in the range of several millimeters in the vicinity of the sample 2, so that the detection light can be captured with a large NA, and the detection light quantity is remarkably increased. This increases the S / N ratio and measurement reproducibility of the near-field light image. In the present embodiment, since the CNT having a tip diameter of several nanometers is used for the measurement probe 23, the spatial resolution is several nanometers, and the spatial resolution is improved by about 10 times compared to the first and second embodiments. To do. Furthermore, in the present embodiment, the sample holder 61 is configured by a simple ball lens, which has the effect of reducing the processing cost of the sample holder 41.

本発明の第10の実施例を、図10及び図14に基づいて説明する。図10は第10の実施例における検査対象試料を搭載する試料ホルダを示す断面図である。本実施例では、図10に示すように、検査対象試料2はアルコールや水等の溶液3の中に存在する。検査対象試料2は溶液3ごと試料ホルダ61に保持され、試料ホルダ61はさらに圧電素子等のアクチュエータで駆動される中央に開口部を設けたXYステージ40上に載置される。測定探針23は、先端径が数nmに先鋭化されたカーボンナノチューブ(arbon anoube: CNT)、もしくは内部に金ナノ構造や銀ナノ構造を充填したCNTから成る。この測定探針は、図14に示すように、カンチレバー25の先端に固定され、斜め上方から励起用レーザ光7が照射される。このレーザ光7は自由電子の集団振動であるプラズモンに変換され、図10の破線で示すように、表面プラズモン15としてCNT上端から下端に伝搬し、先端部で電界集中して、近接場光8aが生じる。さらに、この近接場光8aと測定探針23との相互作用により散乱光(伝搬光)9、17が発生する。 A tenth embodiment of the present invention will be described with reference to FIGS. FIG. 10 is a cross-sectional view showing a sample holder for mounting a sample to be inspected in the tenth embodiment. In the present embodiment, as shown in FIG. 10, the inspection target sample 2 is present in a solution 3 such as alcohol or water. The sample 2 to be inspected is held together with the solution 3 in a sample holder 61, and the sample holder 61 is further placed on an XY stage 40 having an opening in the center driven by an actuator such as a piezoelectric element. Measurement probe 23, carbon nanotube tip diameter is sharpened to several nm (C arbon N ano t ube : CNT), or consists of CNT filled with gold nanoparticles and silver nanostructures therein. As shown in FIG. 14, this measurement probe is fixed to the tip of the cantilever 25, and the excitation laser beam 7 is irradiated obliquely from above. This laser light 7 is converted into plasmons which are collective vibrations of free electrons, and propagates from the upper end to the lower end of the CNT as surface plasmons 15 as shown by the broken lines in FIG. Occurs. Further, scattered light (propagating light) 9 and 17 is generated by the interaction between the near-field light 8 a and the measurement probe 23.

ここで、試料ホルダ61は、第9の実施例と同様、散乱光9、17が透過する材料で構成されると共に、上部に凹形の試料保持部61bを加工した球形のボールレンズ61aで形成され、検出レンズとして機能する。その結果、散乱光9、17は試料ホルダ61を透過してボールレンズ61aにより各々平行光となり、結像レンズ10、18により集光され、光電子増倍管やホトダイオード等の検出器11、19で受光される。この試料ホルダ61によれば、実効的に試料2のごく近傍数mmの範囲に検出レンズを配置すると等価となるため、大きなNAで検出光を捉えることができ、検出光量が格段に増加し、近接場光画像のSN比及び測定再現性が向上する。   Here, as in the ninth embodiment, the sample holder 61 is made of a material through which the scattered light 9 and 17 is transmitted, and is formed of a spherical ball lens 61a in which a concave sample holder 61b is processed at the top. And function as a detection lens. As a result, the scattered lights 9 and 17 are transmitted through the sample holder 61 to become parallel lights by the ball lens 61a, and are collected by the imaging lenses 10 and 18, and are detected by the detectors 11 and 19 such as photomultiplier tubes and photodiodes. Received light. According to the sample holder 61, it is equivalent to effectively arranging the detection lens in a range of several millimeters in the vicinity of the sample 2, so that the detection light can be captured with a large NA, and the detection light quantity is remarkably increased. The SN ratio and measurement reproducibility of the near-field light image are improved.

図14に、この試料ホルダを組み込んだ走査プローブ顕微鏡の構成を示す。散乱光検出系200において、検出器11、19からの光信号は加算器85で加算された後、ロックインアンプ90で同期検波される。以降の処理、機能、及び全体構成は第1の実施例と同じであるので、説明を省略する。   FIG. 14 shows the configuration of a scanning probe microscope incorporating this sample holder. In the scattered light detection system 200, the optical signals from the detectors 11 and 19 are added by an adder 85 and then synchronously detected by a lock-in amplifier 90. Since the subsequent processes, functions, and overall configuration are the same as those in the first embodiment, description thereof will be omitted.

本実施例によれば、前述の通り、実効的に試料2のごく近傍数mmの範囲に検出レンズを配置すると等価となるため、大きなNAで検出光を捉えることができ、検出光量が格段に増加し、近接場光画像のSN比及び測定再現性が向上する。また、本実施例では測定探針23に先端径が数nmのCNTを用いているので、空間分解能が数nmとなり、第1及び第2の実施例に比べ、空間分解能が約10倍に向上する。さらに本実施例では、試料ホルダ61を単純な形状のボールレンズで構成しているので、試料ホルダ61の加工コスト低減につながるという効果を有する。また、本実施例では、側方散乱光と前方散乱光の二つの散乱光を検出しているので、第1〜第9の実施例に比べ、さらに検出光量が増加し、近接場光画像のSN比及び測定再現性が向上する。   According to the present embodiment, as described above, it is equivalent to effectively disposing the detection lens in the range of several millimeters in the vicinity of the sample 2, so that the detection light can be captured with a large NA, and the detection light quantity is remarkably increased. This increases the S / N ratio and measurement reproducibility of the near-field light image. In the present embodiment, since the CNT having a tip diameter of several nanometers is used for the measurement probe 23, the spatial resolution is several nanometers, and the spatial resolution is improved by about 10 times compared to the first and second embodiments. To do. Furthermore, in the present embodiment, the sample holder 61 is constituted by a simple ball lens, which has the effect of reducing the processing cost of the sample holder 61. Further, in this embodiment, since the two scattered lights of the side scattered light and the forward scattered light are detected, the detected light amount is further increased compared to the first to ninth embodiments, and the near-field light image is displayed. The SN ratio and measurement reproducibility are improved.

尚、上記の総ての実施例では励起用レーザ光7はいずれも単色光としたが、本発明はこれに限定されるものではなく、赤、緑、青の3波長のレーザ光を用いてカラー近接場イメージングを行うことも可能である。また、白色レーザ光と分光器を用いて近接場分光計測することも可能であるし、励起用レーザ光と同一の波長ではなく、例えばラマンシフトした波長を検出する近接場ラマン分光計測することも可能である。   In all the embodiments described above, the excitation laser beam 7 is monochromatic light. However, the present invention is not limited to this, and laser beams having three wavelengths of red, green, and blue are used. Color near-field imaging can also be performed. It is also possible to perform near-field spectroscopic measurement using a white laser beam and a spectroscope, or to perform near-field Raman spectroscopic measurement that detects, for example, a Raman-shifted wavelength instead of the same wavelength as the excitation laser beam. Is possible.

1、31、41、51、61・・・試料ホルダ
2・・・試料
3・・・溶液
4、40・・・XY圧電素子ステージ
8、8a・・・近接場光
9、17・・・散乱光
11、19・・・検出器
21、22、23・・・測定探針
25・・・カンチレバー
26・・・圧電素子アクチュエータ
27・・・Z圧電素子ステージ
70・・・励起レーザ照射系
80・・・発振器
90・・・ロックインアンプ
95・・・光てこ検出系
100・・・制御部
110・・・ディスプレイ
200・・・散乱光検出系
300・・・信号処理・制御系
1, 31, 41, 51, 61 ... Sample holder 2 ... Sample 3 ... Solution 4, 40 ... XY piezoelectric element stage 8, 8a ... Near field light 9, 17 ... Scattering Lights 11, 19 ... Detectors 21, 22, 23 ... Measuring probe 25 ... Cantilever 26 ... Piezoelectric element actuator 27 ... Z piezoelectric element stage 70 ... Excitation laser irradiation system 80 ..Oscillator 90 ... Lock-in amplifier 95 ... Optical lever detection system 100 ... Control unit 110 ... Display 200 ... scattered light detection system 300 ... Signal processing / control system

Claims (16)

検査対象試料を走査する測定探針と、
前記測定探針にレーザー光を照射するレーザ照射系と、
レーザ光の照射により前記測定探針と前記検査対象試料との間で発生した近接場光の散乱光を透過し、前記検査対象試料を保持する試料ホルダと、
前記試料ホルダを透過した散乱光を検出する検出器とを備えた走査プローブ顕微鏡。
A measurement probe that scans the sample to be inspected;
A laser irradiation system for irradiating the measurement probe with laser light; and
A sample holder that transmits the scattered light of the near-field light generated between the measurement probe and the sample to be inspected by laser light irradiation, and holds the sample to be inspected;
A scanning probe microscope comprising: a detector that detects scattered light transmitted through the sample holder.
前記試料ホルダの表面を曲面で構成されることを特徴とする請求項1記載の走査プローブ顕微鏡。   The scanning probe microscope according to claim 1, wherein the surface of the sample holder is formed of a curved surface. 前記試料ホルダ表面にフレネルレンズを形成することを特徴とする請求項1記載の走査プローブ顕微鏡。   The scanning probe microscope according to claim 1, wherein a Fresnel lens is formed on the surface of the sample holder. 前記試料ホルダを屈折率分布レンズで形成することを特徴とする請求項1記載の走査プローブ顕微鏡。   The scanning probe microscope according to claim 1, wherein the sample holder is formed of a gradient index lens. 前記試料ホルダをボールレンズで形成することを特徴とする請求項1記載の走査プローブ顕微鏡。   The scanning probe microscope according to claim 1, wherein the sample holder is formed of a ball lens. 前記測定探針は、前記検査対象試料に向けた先端側が先鋭化されており、
前記レーザ光照射系は前記測定探針の先端にレーザ光を照射することを特徴とする請求項1記載の走査プローブ顕微鏡。
The measurement probe has a sharpened tip side toward the sample to be inspected,
2. The scanning probe microscope according to claim 1, wherein the laser beam irradiation system irradiates a laser beam to a tip of the measurement probe.
前記測定探針は、前記検査対象試料に向けた先端に微小開口が形成されており、
前記レーザ光照射系は、前記測定探針の前記検査対象試料と反対側にレーザ光を照射することで、前記微小開口から前記近接場光を発生させることを特徴とする請求項1記載の走査プローブ顕微鏡。
The measurement probe has a minute opening formed at the tip toward the sample to be inspected,
2. The scanning according to claim 1, wherein the laser beam irradiation system generates the near-field light from the minute aperture by irradiating a laser beam on the opposite side of the measurement probe from the sample to be inspected. Probe microscope.
前記レーザ光照射系は、前記測定探針の前記検査対象試料と反対側にレーザ光を照射することで、前記測定探針に表面プラズモンを発生させ、表面プラズモンを前記検査対象試料に向けた先端側に伝搬させることを特徴とする請求項1記載の走査プローブ顕微鏡。   The laser beam irradiation system generates a surface plasmon on the measurement probe by irradiating a laser beam on the opposite side of the measurement probe with respect to the sample to be inspected, and a tip that faces the surface plasmon toward the sample to be inspected. The scanning probe microscope according to claim 1, wherein the scanning probe microscope is propagated sideways. 測定探針を検査対象試料に対して相対的に走査し、
レーザ光を前記測定探針に照射し、
記測定探針と前記検査対象試料との間で近接場光を発生させ、
前記検査対象試料を保持する試料ホルダを透過した前記近接場光の散乱光を検出することを特徴とする走査プローブ顕微鏡を用いた試料の観察方法。
Scan the measurement probe relative to the sample to be inspected,
Irradiate the measurement probe with laser light,
The near field light is generated between the measurement probe and the sample to be inspected,
A method for observing a sample using a scanning probe microscope, wherein the scattered light of the near-field light transmitted through a sample holder holding the sample to be inspected is detected.
前記試料ホルダ表面は曲面で構成されることを特徴とする請求項9記載の走査プローブ顕微鏡。   The scanning probe microscope according to claim 9, wherein the surface of the sample holder is a curved surface. 前記試料ホルダ表面にフレネルレンズを形成することを特徴とする請求項9記載の走査プローブ顕微鏡。   The scanning probe microscope according to claim 9, wherein a Fresnel lens is formed on the surface of the sample holder. 前記試料ホルダを屈折率分布レンズで形成することを特徴とする請求項9記載の走査プローブ顕微鏡。   The scanning probe microscope according to claim 9, wherein the sample holder is formed of a refractive index distribution lens. 前記試料ホルダをボールレンズで形成することを特徴とする請求項9記載の走査プローブ顕微鏡。   The scanning probe microscope according to claim 9, wherein the sample holder is formed of a ball lens. 前記測定探針の前記検査対象試料に向けた先端側にレーザ光を照射することを特徴とする請求項9記載の走査プローブ顕微鏡。   The scanning probe microscope according to claim 9, wherein a laser beam is irradiated to a tip side of the measurement probe toward the inspection target sample. 前記測定探針の前記検査対象試料と反対側にレーザ光を照射することで、前記測定探針の前記検査対象試料に向けた先端に形成された微小開口から前記近接場光を発生させることを特徴とする請求項9記載の走査プローブ顕微鏡。   By irradiating a laser beam on the opposite side of the measurement probe from the sample to be inspected, the near-field light is generated from a minute opening formed at a tip of the measurement probe toward the sample to be inspected. The scanning probe microscope according to claim 9. 前記測定探針の前記検査対象試料と反対側にレーザ光を照射することで、前記測定探針に表面プラズモンを発生させ、表面プラズモンを前記検査対象試料に向けた先端側に伝搬させることを特徴とする請求項9記載の走査プローブ顕微鏡。   By irradiating the measurement probe with a laser beam on the opposite side of the sample to be inspected, surface plasmon is generated in the measurement probe, and the surface plasmon is propagated to the tip side toward the sample to be inspected. The scanning probe microscope according to claim 9.
JP2012203836A 2012-09-18 2012-09-18 Scanning probe microscope, and observation method of sample using the same Pending JP2014059194A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012203836A JP2014059194A (en) 2012-09-18 2012-09-18 Scanning probe microscope, and observation method of sample using the same
PCT/JP2013/065316 WO2014045646A1 (en) 2012-09-18 2013-06-03 Scanning probe microscope and method for observing sample using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012203836A JP2014059194A (en) 2012-09-18 2012-09-18 Scanning probe microscope, and observation method of sample using the same

Publications (2)

Publication Number Publication Date
JP2014059194A true JP2014059194A (en) 2014-04-03
JP2014059194A5 JP2014059194A5 (en) 2014-12-25

Family

ID=50340978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012203836A Pending JP2014059194A (en) 2012-09-18 2012-09-18 Scanning probe microscope, and observation method of sample using the same

Country Status (2)

Country Link
JP (1) JP2014059194A (en)
WO (1) WO2014045646A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2716849C1 (en) * 2019-07-15 2020-03-17 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный радиотехнический университет имени В.Ф. Уткина" Scanning probe of atomic-force microscope with separable telecontrol nanocomposite emitting element based on upconverting and magnetic nanoparticles of core-shell structure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07174542A (en) * 1993-04-12 1995-07-14 Seiko Instr Inc Scanning-type near-field interatomic force microscope, probe used in the microscope, and manufacture of the probe

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003053699A (en) * 2001-08-10 2003-02-26 Nikon Corp Method of forming pinhole and measuring device
JP3760196B2 (en) * 2002-06-27 2006-03-29 独立行政法人科学技術振興機構 Infrared light collector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07174542A (en) * 1993-04-12 1995-07-14 Seiko Instr Inc Scanning-type near-field interatomic force microscope, probe used in the microscope, and manufacture of the probe

Also Published As

Publication number Publication date
WO2014045646A1 (en) 2014-03-27

Similar Documents

Publication Publication Date Title
JP5292128B2 (en) Scanning probe microscope and sample observation method using the same
JP5216509B2 (en) Scanning probe microscope and sample observation method using the same
JP5033609B2 (en) Scanning probe microscope and sample observation method using the same
JP6039775B2 (en) Plasmon evaluation method, plasmon evaluation apparatus, and optical pickup
Kuschewski et al. Narrow-band near-field nanoscopy in the spectral range from 1.3 to 8.5 THz
US10877065B2 (en) Near field scanning probe microscope, probe for scanning probe microscope, and sample observation method
WO2015033681A1 (en) Scanning probe microscope and sample observation method using same
JP6014502B2 (en) Scanning probe microscope and sample observation method using the same
KR101274030B1 (en) Scanning absorption nanoscopy system with supercontinuum light sources and spectroscoping method thereof
Bek et al. Tip enhanced Raman scattering with adiabatic plasmon focusing tips
US20150177276A1 (en) Scanning Probe Miscroscope
Celebrano et al. Hollow-pyramid based scanning near-field optical microscope coupled to femtosecond pulses: A tool for nonlinear optics at the nanoscale
JP5246667B2 (en) Ultraviolet near-field optical microscopy and tip-enhanced Raman spectroscopy
WO2014045646A1 (en) Scanning probe microscope and method for observing sample using same
WO2015178201A1 (en) Scanning probe microscope and sample observation method using same
WO2016067398A1 (en) Scanning probe microscope and sample observation method using same
Yin et al. Nanospectroscopy Imaging Techniques: Using NSOM and TERS for Semiconductor Materials Imaging
Lewis et al. Near-field Optics: Generality in Super-Resolution Imaging in 3D
Picardi et al. Characterization of Plasmonic Nanomaterial

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141111

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150915

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160405