WO2016067398A1 - Scanning probe microscope and sample observation method using same - Google Patents

Scanning probe microscope and sample observation method using same Download PDF

Info

Publication number
WO2016067398A1
WO2016067398A1 PCT/JP2014/078804 JP2014078804W WO2016067398A1 WO 2016067398 A1 WO2016067398 A1 WO 2016067398A1 JP 2014078804 W JP2014078804 W JP 2014078804W WO 2016067398 A1 WO2016067398 A1 WO 2016067398A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
excitation
scanning probe
probe microscope
field light
Prior art date
Application number
PCT/JP2014/078804
Other languages
French (fr)
Japanese (ja)
Inventor
中田 俊彦
修一 馬場
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2014/078804 priority Critical patent/WO2016067398A1/en
Publication of WO2016067398A1 publication Critical patent/WO2016067398A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/18SNOM [Scanning Near-Field Optical Microscopy] or apparatus therefor, e.g. SNOM probes
    • G01Q60/22Probes, their manufacture, or their related instrumentation, e.g. holders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q70/00General aspects of SPM probes, their manufacture or their related instrumentation, insofar as they are not specially adapted to a single SPM technique covered by group G01Q60/00
    • G01Q70/08Probe characteristics
    • G01Q70/10Shape or taper
    • G01Q70/12Nanotube tips

Definitions

  • the present invention relates to a scanning probe microscope technique and a sample observation method using the same.
  • a near-field scanning microscope (SNOM: Scanning Near-field Optical Microscope) is known as a means for measuring optical properties and physical property information of a sample surface with high resolution.
  • this microscope irradiates a metal probe with a laser beam from the outside, and is scattered by a small tip (several tens of nm) of the probe.
  • the resolution of the tens of nanometers is as large as the tip of the probe beyond the diffraction limit of light.
  • optical properties such as reflectance distribution and refractive index distribution on the sample surface are measured.
  • Patent Document 1 discloses that a plasmon enhanced near-field probe having a nanometer-order optical resolution is formed by combining nanotubes and metal nanoparticles as a measurement probe with a metal structure embedded therein. Mounted in a high-efficiency plasmon excitation unit and repeatedly approaching and retracting with low contact force at each measurement point on the sample, with a resolution on the order of nanometers without damaging both the probe and the sample The optical information and unevenness information on the sample surface are measured with high reproducibility and high S / N ratio "(summary).
  • Non-Patent Document 1 In the near-field scanning microscope disclosed in Non-Patent Document 1, not only the scattered light generated by the interaction between the near-field light excited by the laser beam and the sample but also the laser beam is irradiated to the metal probe. Most of the laser light is scattered at the base of the metal probe, the cantilever holding the metal probe, or the sample surface, and very strong scattered light is generated. As a result, these scattered lights are superimposed on the near-field light image as background noise, which is a factor that degrades the SN ratio, contrast, and measurement reproducibility of the near-field light image.
  • Patent Document 1 laser light is converted into surface plasmon, and this surface plasmon is propagated to the tip of a carbon nanotube (CNT: Carbon Nanotube) enclosing a metal nanostructure to generate near-field light at the tip of the CNT.
  • CNT Carbon Nanotube
  • a method is disclosed. However, in this method, the conversion efficiency of laser light into surface plasmons and the generation efficiency of near-field light are not practically sufficient, and as a result, the SN ratio, contrast, and measurement reproducibility of the near-field light image are reduced. ing.
  • an object of the present invention is to provide a scanning probe microscope capable of solving the above-described problems, greatly reducing background noise, and improving near-field light generation efficiency, and a sample observation method using the same. There is.
  • one of the typical scanning probe microscopes of the present invention includes a measurement probe that relatively scans a sample to be examined, an excitation light irradiation system, and an excitation light irradiation system.
  • An excitation near-field light generating system that generates excitation near-field light in a region including the measurement probe by irradiation of excitation light, and the excitation near-field light is generated between the measurement probe and the sample.
  • a scattered light detection system for detecting the scattered light of the near-field light for measurement.
  • one of the sample observation methods using the scanning probe microscope of the present invention typically includes scanning the measurement probe relative to the sample to be inspected and including the measurement probe by irradiation with excitation light. Generate near-field light for excitation in a region, generate near-field light for measurement between the measurement probe and the sample by the near-field light for excitation, and detect scattered light of the near-field light for measurement Is.
  • the present invention it is possible to greatly reduce background noise, improve the generation efficiency of near-field light, and improve the SN ratio, contrast, and measurement reproducibility. Can be obtained.
  • FIG. 5 is a perspective view of a Si cantilever-mounted gold-coated Si chip and a probe fixed to the tip of the chip in Examples 1 to 4. It is a side view which shows the optical path in the chip
  • 6 is a graph showing the relationship (plasmon resonance curve) between the angle of incidence of excitation laser light on the gold / Si interface and the surface reflectance with the gold film thickness in Examples 1 to 3 as a parameter.
  • FIG. 6 is a front view showing a structure of a CNT probe filled with gold nanoparticles in Examples 1 to 4.
  • FIG. 5 is a perspective view of a Si cantilever-mounted gold-coated Si chip and a probe fixed to the tip of the chip in Examples 1 to 4. It is a side view which shows the optical path in the chip
  • FIG. 6 is a front view showing the structure of a CNT probe in which gold nanoparticles are filled at the tip in Examples 1 to 4.
  • FIG. 6 is a front view showing the structure of a CNT probe without a filler and having a tip closed with carbon in Examples 1 to 4.
  • FIG. 6 is a front view showing a structure of a CNT probe in which a gold thin film is coated on a surface or a part including a tip portion of CNT in Examples 1 to 4.
  • FIG. 6 is a front view showing the structure of a metal tip such as a Si probe, an HDC (High Density Carbon) probe, or a gold, silver, or aluminum with a sharpened tip in Examples 1 to 4.
  • FIG. 5 is a block diagram illustrating a schematic configuration of a scanning probe microscope in Example 1 and Example 3.
  • FIG. 6 is a block diagram showing a schematic configuration of a scanning probe microscope in Example 2 and Example 3. It is a side view which shows the optical path in the chip
  • FIG. 10 is a block diagram showing a schematic configuration of a scanning probe microscope in Example 4.
  • FIG. 10 is a block diagram showing a schematic configuration of a scanning probe microscope in Example 4.
  • FIG. 1 is a perspective view of a Si cantilever-mounted gold-coated Si chip and a probe fixed to the tip of the first embodiment.
  • a triangular pyramid-shaped Si chip 2 coated with a gold thin film 3 is fixed to the tip of the Si cantilever 4, and a carbon nanotube (CNT: Carbon Nanotube) probe 1 is fixed to the tip of the chip.
  • CNT Carbon Nanotube
  • the material of the chip 2 is not limited to Si, and may be SiO 2 , Si 3 N 4 or the like as long as it is a material that transmits laser light having a specific wavelength.
  • the gold thin film 3 may be a film made of another material as long as it is a metal material that shields laser light depending on the film thickness, and may be, for example, an aluminum or silver film.
  • excitation laser light 5 having a wavelength of 850 nm as excitation light is irradiated onto the plane of the rear gold thin film 3 b of the triangular pyramidal gold-coated Si chip 2.
  • surface plasmons (collective vibrations of gold free electrons) 9 are excited on the ridge line of the gold thin film 3a as shown in FIG.
  • FIG. 3 shows a plot of the relationship between the incident angle ⁇ 7 of the excitation laser beam 5 with respect to the ridgeline of the gold thin film 3a and the reflected light intensity from the incident point, that is, the reflectance at the gold / Si interface.
  • d is the film thickness 8 of the gold thin film 3a.
  • the wavelength is 850 nm
  • strong plasmon resonance occurs at the gold / Si interface near an incident angle of 16.12 °
  • the reflectance is minimum when the film thickness d of the gold thin film 3a is 46.5 nm, that is, plasmon resonance. It turns out that becomes the maximum. That is, in FIG.
  • the intensity of the surface plasmon 9 is maximized by setting the incident angle ⁇ 7 to 16.12 ° with respect to the excitation laser beam 5 and setting the film thickness d8 of the gold thin film 3a to 46.5 nm. .
  • the surface plasmon 9 propagates toward the tip of the gold-coated Si chip 2, and the excitation near-field light (first near-field light) localized at the tip 2 of the tip of the chip 2 within a range of several hundreds of nanometers that is almost the same size as the tip of the chip. ) 10 is generated.
  • the tip of the CNT probe 1 is present in the electric field of the excitation near-field light 10.
  • FIG. 4 shows an example of the structure of the CNT probe 1.
  • the CNT probe 1 has a length of 2 to 3 m, an outer diameter of ⁇ 20 nm, an inner diameter of ⁇ 4 nm, and a multi-layer CNT sharpened to a tip of about ⁇ 4 nm as a base, and has an inner diameter of ⁇ 4 nm along the axial direction of the measurement probe.
  • Gold nanoparticles 11 are filled.
  • the filler is not limited to gold nanoparticles.
  • gold nanoparticles can be used for near-infrared light
  • alumina nanoparticles or silver nanoparticles can be used for visible light
  • alumina nanoparticles can be used for ultraviolet light.
  • nanorods may be used instead of nanoparticles.
  • FIG. 5 when the structure in which the CNT tips are filled with gold nanoparticles 11a or the generation efficiency of near-field light is low, there is no problem, as shown in FIG. A closed structure may be used.
  • FIG. 7 a structure in which a metal thin film 14 such as gold, silver, or aluminum is coated on the surface or a part including the tip of the CNT may be used.
  • the probe material is not limited to CNT.
  • a metal probe 15 such as can also be used.
  • these probes 1 and 15 are fused and fixed on the ridge line of the gold-coated Si chip 2 using three gold dots 16 formed by electron beam selective CVD (Chemical Vapor Deposition) as a binder.
  • the dots 16 are not limited to gold, and may be carbon or tungsten.
  • the protruding length of the probes 1 and 15 from the tip of the gold-coated Si chip 2 is adjusted to, for example, 50 to 200 nm so that the tip of the probe exists in the electric field of the excitation near-field light 10.
  • near-field light for measurement (second near-field light) 6 having a diameter of about 4 nm (spot size) that is the same as the tip diameter is generated at the tip of the probe.
  • spot size spot size
  • the electric field concentrates at the tip of the CNT probe 1, and the very strong near-field light 6 is excited together with the electric field concentration of the excitation near-field light 10.
  • the near-field light 6 interacts with the surface of the sample 20 and the probes 1 and 15 themselves, and scattered light (propagating light) 13 is generated.
  • the intensity of the scattered light varies depending on the magnitude relationship between the refractive index n 0 of the region 21 constituting the sample 20 and the refractive index n 1 of the region 22, and this is the proximity obtained by scanning the probes 1 and 15. It becomes the contrast of the field light image.
  • the resolution of the near-field light image is 4 nm which is substantially the same as the spot size of the measurement near-field light (second near-field light) 6.
  • the excitation laser beam 5 is incident on the ridge line of the gold-coated Si chip 2 at a plasmon resonance angle of 16.12 °. Since the existing near-intensity light (first near-field light) 10 having the maximum intensity is generated, the near-field light for measurement (second near-field light) 6 having the maximum intensity at the tips of the probes 1 and 15 is generated. Can be generated. Furthermore, the configuration is such that the measurement near-field light (second near-field light) 6 is generated by the excitation near-field light (first near-field light) 10 that is localized in the range of several hundreds of nanometers. Scattered light is drastically reduced and background noise is greatly reduced.
  • FIG. 9 shows the configuration of a scanning probe microscope based on the principle described above.
  • the scanning probe microscope includes a sample holder 25 on which the sample 20 is mounted, an XY piezoelectric element stage 30 on which the sample holder 25 is mounted and which scans the sample 20 in the X and Y directions relative to the measurement probe, and the sample 20 on the tip.
  • the Si cantilever 4 mounted with the gold-coated Si chip 2 on which the probes 1 and 15 are fixed, the piezoelectric cantilever 4 for slightly vibrating the Si cantilever 4 in the Z direction, and the Si cantilever 4 relative to the sample 20.
  • a Z piezoelectric element stage 33 that scans in the Z direction, an optical lever detection system 100 that detects the contact force between the CNT probe and the sample by detecting the deflection of the cantilever 4, and a wavelength of 850 nm using a near infrared semiconductor laser as a light source.
  • the excitation laser beam irradiation system 50 for irradiating the gold-coated Si chip 2 with the excitation laser beam 5 through the back surface of the Si cantilever 4 and the scattered light 13 are collected.
  • the XY piezoelectric element stage 30 and the Z piezoelectric element stage 33 constitute a drive unit that scans the probes 1 and 15 relative to the sample 20.
  • the back surface of the cantilever 4 is irradiated with the laser light 36 from the semiconductor laser 35, the reflected light is received by the quadrant sensor 37, and the deflection amount of the cantilever 4 is detected from the change in position of the reflected light. Further, the Z piezoelectric element stage is detected by the control unit 80 of the signal processing / control system 120 so that the contact force between the probes 1 and 15 and the sample 20 is detected from the deflection amount, and the contact force always becomes a preset value. 33 is feedback controlled.
  • the probes 1 and 15 are vibrated minutely in the Z direction at the resonance frequency of the cantilever 4 by the piezoelectric element actuator 34 based on the signal from the oscillator 60, so that the generated near-field light 6 and scattered light 13 are also intensities at the same frequency. Modulated.
  • the scattered light 13 is condensed by a condensing lens 41 at one point on the light receiving surface 43 of a detector 42 such as a photomultiplier tube or a photodiode and is photoelectrically converted.
  • the intensity-modulated scattered light signal output from the detector 42 is synchronously detected by the lock-in amplifier 70 of the signal processing / control system 120, and only this frequency component is output.
  • the background scattered light slightly directly scattered on the sample surface by the excitation laser beam 5 does not react to the minute vibration of the cantilever 4 and is a direct current component, and thus is not included in the output signal of the lock-in amplifier 70.
  • the signal SN ratio can be further improved by detecting harmonic components such as the second harmonic and the third harmonic of the resonance frequency.
  • the scattered light signal from the lock-in amplifier 70 is sent to the control unit 80 of the signal processing / control system 120, combined with the XY signal from the XY piezoelectric element stage 30 to generate a near-field light image, and output to the display 90.
  • the Z signal from the Z piezoelectric element stage 33 is also combined with the XY signal by the control unit 80 to generate an uneven image on the sample surface and output to the display 90.
  • the excitation laser beam 5 is incident on the ridge line of the gold-coated Si chip 2 at a plasmon resonance angle of 16.12 °, whereby the surface plasmon 9 having the maximum intensity can be excited.
  • the excitation near-field light (first near-field light) 10 having the maximum intensity localized at the tip portion is generated
  • the measurement near-field light (second proximity light) having the maximum intensity is generated at the tips of the probes 1 and 15.
  • (Field light) 6 can be generated.
  • the configuration is such that the measurement near-field light (second near-field light) 6 is generated by the excitation near-field light (first near-field light) 10 that is localized in the range of several hundreds of nanometers. Scattered light is drastically reduced and background noise is greatly reduced. As a result, it is possible to obtain a near-field light image having a resolution of nanometer order (a size similar to the probe tip diameter) with improved SN ratio, contrast, and measurement reproducibility.
  • the scattered light 13 on the surface layer of the sample 20 of the measurement near-field light 6 at the tips of the probes 1 and 15 is detected.
  • the measurement of the tips of the probes 1 and 15 is measured.
  • the scattered light 13 transmitted through the sample 20 is detected. That is, the scattered light 13 is condensed by the condensing lens 41 at one point on the light receiving surface 43 of the detector 42 such as a photomultiplier tube or a photodiode and is photoelectrically converted.
  • the XY piezoelectric element stage 31 that places the sample holder 26 and scans the sample 20 in the XY direction has a structure in which a hole is opened in the center in order to transmit the transmitted scattered light.
  • the configurations and functions of the other excitation laser beam irradiation system 50, optical lever detection system 100, and signal processing / control system 120 are the same as those in the first embodiment, and thus description thereof is omitted.
  • the excitation laser beam 5 is incident on the ridge line of the gold-coated Si chip 2 at a plasmon resonance angle of 16.12 °, whereby the surface plasmon 9 having the maximum intensity can be excited, and the tip of the chip 2 Since the excitation near-field light (first near-field light) 10 having the maximum intensity localized in the portion is generated, the measurement near-field light (second near-field light) having the maximum intensity is generated at the tips of the probes 1 and 15. Light) 6 can be generated. Furthermore, the configuration is such that the measurement near-field light (second near-field light) 6 is generated by the excitation near-field light (first near-field light) 10 that is localized in the range of several hundreds of nanometers. Scattered light is drastically reduced and background noise is greatly reduced. As a result, it is possible to obtain a near-field light image having a resolution of nanometer order with improved SN ratio, contrast, and measurement reproducibility.
  • the detection solid angle can be increased and imaging can be performed with higher contrast than in the first embodiment.
  • the SN ratio and measurement reproducibility of the field light image can be further improved.
  • the excitation laser beam 5 is incident on the ridge line of the gold-coated Si chip 2 at a plasmon resonance angle of 16.12 °.
  • the excitation laser beam 5 having a wavelength of 850 nm is incident on the plane of the rear gold thin film 3b of the triangular pyramidal gold-coated Si chip 2, and the incident angle ⁇ 7 is as shown in FIG.
  • the angle is set to 16.12 °
  • the film thickness d8 of the gold thin film 3b is set to 46.5 nm.
  • the excitation laser beam 5 is incident on the back surface of the Si cantilever 4 at a very shallow angle, and the configuration of the excitation laser beam irradiation system 50 becomes extremely difficult. Therefore, in this embodiment, as shown in FIG. 11, the upper end portion of the triangular pyramidal gold-coated Si chip 2 is processed to a desired angle by FIB (Focused Ion Beam), and the excitation laser beam 5 is refracted on the processed surface. By doing so, the light is incident on the plane of the rear gold thin film 3b at a plasmon resonance angle of 16.12 °. As a result, the intensity of the surface plasmon 9 is maximized.
  • FIB Flucused Ion Beam
  • the surface plasmon 9 propagates toward the tip of the gold-coated Si chip 2, and the excitation near-field light (first near-field light) localized at the tip 2 of the tip of the chip 2 within a range of several hundreds of nanometers that is almost the same size as the tip of the chip. ) 10 is generated.
  • the tips of the probes 1 and 15 are present.
  • the incident angle of the excitation laser beam 5 with respect to the ridgeline of the gold-coated Si chip 2 is a plasmon resonance angle of 16.12 °, but the gold / Si interface on the side wall portion sandwiching the ridgeline Is deviated from the plasmon resonance angle.
  • the excitation laser beam 5 is incident on the rear gold thin film 3b plane of the Si chip 2, so that almost all of the excitation laser beam 5 is incident at a plasmon resonance angle of 16.12 °.
  • almost all of the excitation laser beam 5 can be converted into the surface plasmon 9.
  • the intensity of the excitation near-field light (first near-field light) 10 generated at the tip of the chip 2 is significantly higher than in the first and second embodiments.
  • the near-field light for measurement (second proximity) is much larger at the tips of the probes 1 and 15 existing in the electric field of the excitation near-field light 10 than in the first and second embodiments.
  • Field light) 6 is generated.
  • the configuration and function of the probes 1 and 15 are the same as those shown in FIGS. 4 to 8, and the configuration and function of the scanning probe microscope equipped with the Si cantilever 4 based on the above principle is shown in FIG. 9 or FIG. Since it is the same as that, a description thereof will be omitted.
  • the excitation laser beam 5 is incident on the rear gold thin film 3b plane of the gold-coated Si chip 2 at a plasmon resonance angle of 16.12 °, whereby the first and second The surface plasmon 9 that is much larger than the embodiment can be excited.
  • the excitation near-field light (first near-field light) 10 that is much larger than the first and second embodiments is generated at the tip end of the tip 2. It is possible to generate a measurement near-field light (second near-field light) 6 that is significantly larger at the tip than in the first and second embodiments.
  • the configuration is such that the measurement near-field light (second near-field light) 6 is generated by the excitation near-field light (first near-field light) 10 that is localized in the range of several hundreds of nanometers. Scattered light is drastically reduced and background noise is greatly reduced. As a result, it is possible to obtain a near-field light image having a resolution of nanometer order with improved SN ratio, contrast, and measurement reproducibility.
  • a fourth embodiment of the present invention will be described with reference to FIGS.
  • monochromatic light having a wavelength of 850 nm is used as the excitation laser beam 5, but in this embodiment, a plurality of wavelengths of R (Red), G (Green), and B (Blue) are used.
  • color imaging is realized.
  • excitation laser light 5a having a wavelength of 488 nm, excitation laser light 5b having a wavelength of 532 nm, and excitation laser light 5c having a wavelength of 660 nm are used as a plurality of wavelengths.
  • excitation laser light 5a having a wavelength of 488 nm excitation laser light 5b having a wavelength of 532 nm
  • excitation laser light 5c having a wavelength of 660 nm are used as a plurality of wavelengths.
  • the excitation efficiency of the surface plasmon is greatly attenuated due to absorption by Si. Therefore, as shown in FIG. 12, the upper end portion of the Si chip 2 is subjected to FIB processing, and the Si layer on the rear plane portion is thinned. For example, as shown in FIG. 13, when the thickness d s 18 of the Si layer is 250 nm, a sufficient transmittance of about 60% at a wavelength of 488 nm, 77% at 532 nm, and 93% at 660 nm can be obtained.
  • an aluminum thin film 47 is coated on the surface of the triangular pyramidal Si chip 2 instead of the gold thin film.
  • the plasmon resonance angle of each wavelength at the aluminum / Si interface is 13.49 ° at a wavelength of 488 nm, 14.18 ° at 532 nm, and 15.30 ° at 660 nm.
  • the aluminum film thickness d8 at which the reflectance is minimized almost evenly at three wavelengths, that is, where strong plasmon resonance occurs, is 15 nm.
  • the surface plasmons 9a, 9b, 9c corresponding to the respective wavelengths propagate toward the tip of the aluminum-coated Si chip 2, and are localized at the tip of the chip 2 within a range of several hundreds of nanometers, which is approximately the same size as the tip of the chip.
  • the existing excitation near-field light (first near-field light) 10a, 10b, 10c is generated.
  • the tips of the probes 1 and 15 exist in the electric field of the excitation near-field light 10a, 10b, and 10c.
  • three-wavelength measurement near-field light (second near-field light) 6a and 6b are formed at the tips of the probes 1 and 15 existing in the electric fields of the excitation near-field lights 10a, 10b, and 10c.
  • 6c are generated.
  • the material of the chip Si is mainly used because it is easy to manufacture by anisotropic etching, but it is also possible to use a material transparent to visible light such as Si 3 N 4 . In that case, a chip having a structure as shown in FIG.
  • the plane of the rear aluminum thin film 47b is adjusted.
  • three-wavelength excitation laser beams 5a, 5b, and 5c are made incident at different plasmon resonance angles ⁇ 7a, 7b, and 7c.
  • the configuration and function of the probes 1 and 15 are the same as those shown in FIGS. 15 and 16 show the configuration of a scanning probe microscope equipped with the Si cantilever 4 based on the above principle.
  • the function and configuration of the scanning probe microscope shown in FIGS. 15 and 16 are basically the same as those shown in FIGS. 9 and 10, but the configuration of the excitation laser light irradiation system 50 and the scattered light 13 are condensed.
  • the configuration of the scattered light detection system 110 that performs photoelectric conversion is different. That is, as shown in FIGS. 15 and 16, the excitation laser beam irradiation system 51 is equipped with a three-wavelength solid-state laser, and the laser beam of each wavelength is applied to the processed surface of the aluminum-coated Si chip as shown in FIG.
  • the intensity-modulated scattered lights 13a, 13b, and 13c corresponding to the three wavelengths are collected at a single point 44 by a condenser lens 41, and then a wavelength of 488 nm by a wavelength separation optical system 45 including a dichroic mirror and an interference filter.
  • the wavelength components are separated into three wavelength components of 532 nm and 660 nm, and each wavelength component is photoelectrically converted by a detector 46 including three photomultiplier tubes and photodiodes.
  • the intensity-modulated three-wavelength scattered light signals output from the detector 46 are synchronously detected by the three lock-in amplifiers 70 of the signal processing / control system 120, and only this frequency component is output.
  • the scattered light signals from the three lock-in amplifiers 70 are sent to the control unit 80 of the signal processing / control system 120 and combined with the XY signals from the XY piezoelectric element stage 30 to generate a three-wavelength near-field light image. Is output to the display 90.
  • the Z signal from the Z piezoelectric element stage 33 is also combined with the XY signal by the control unit 80 to generate an uneven image on the sample surface and output to the display 90. It is also possible to synthesize a near-field light image of three wavelengths RGB to generate a near-field color image and output it to the display 90.
  • the excitation laser beams 5a, 5b, and 5c are incident on the rear aluminum thin film 47b plane of the aluminum-coated Si chip 2 at the plasmon resonance angle for each of the three wavelengths.
  • surface plasmons 9a, 9b, and 9c that are much larger than those of the second embodiment can be excited.
  • the excitation near-field light (first near-field light) 10a, 10b, and 10c which is much larger than the first and second embodiments, is generated at the tip portion of the chip 2. It is possible to generate measurement near-field light (second near-field light) 6a, 6b, and 6c at the tips of 1 and 15 that are much larger than those of the first and second embodiments.
  • the near-field light for measurement (second near-field light) 6a, 6b, and 6c is generated by the near-field light for excitation (first near-field light) 10 localized in the range of several hundred nm. Therefore, unnecessary scattered light is drastically reduced and background noise is greatly reduced. As a result, it is possible to obtain a near-field light image having a resolution of nanometer order with improved SN ratio, contrast, and measurement reproducibility. Furthermore, in the present embodiment, a near-field image with a resolution of nanometer order can be obtained at three RGB wavelengths, so that there is an advantage that the material can be easily identified.
  • the wavelength can be increased from 3 wavelengths to 4 wavelengths, or near-field spectroscopic measurement can be performed using white laser light and a spectroscope.
  • near-field Raman spectroscopic measurement that detects, for example, a Raman-shifted wavelength instead of the same wavelength as that of the excitation laser beam is also possible.

Abstract

The purpose of the present invention is to greatly reduce background noises and improve the efficiency of the generation of near-field light in a scanning probe microscope. A scanning probe microscope is equipped with: a measurement probe for scanning over and in relation to a sample to be inspected; an exciting light irradiation system; a (near-field light for excitation)-generating system for irradiating an area including the measurement probe with exciting light from the exciting light irradiation system to generate near-field light for excitation in the area; and a scattered light detection system for detecting scattered light of near-field light for measurement which is generated between the measurement probe and the sample by the action of the near-field light for excitation.

Description

走査プローブ顕微鏡およびこれを用いた試料の観察方法Scanning probe microscope and sample observation method using the same
 本発明は、走査プローブ顕微鏡技術および、これを用いた試料観察方法に関する。 The present invention relates to a scanning probe microscope technique and a sample observation method using the same.
 試料表面の光学的性質や物性情報を高分解能で測定する手段として、近接場走査顕微鏡(SNOM:Scanning Near-field Optical Microscope)が知られている。この顕微鏡は、非特許文献1に開示されているように、金属探針に外部からレーザ光を照射して、探針の微小先端部(大きさ数十nm)で散乱した数十nmの大きさの近接場光を、試料との間隙を同じく数十nmに保ったままで走査することにより(散乱プローブ)、光の回折限界を超えて探針先端部と同じ大きさの数十nmの分解能で、試料表面の反射率分布や屈折率分布といった光学的性質を測定するものである。 A near-field scanning microscope (SNOM: Scanning Near-field Optical Microscope) is known as a means for measuring optical properties and physical property information of a sample surface with high resolution. As disclosed in Non-Patent Document 1, this microscope irradiates a metal probe with a laser beam from the outside, and is scattered by a small tip (several tens of nm) of the probe. By scanning the near-field light with a gap of tens of nanometers in the same manner (scattering probe), the resolution of the tens of nanometers is as large as the tip of the probe beyond the diffraction limit of light. Thus, optical properties such as reflectance distribution and refractive index distribution on the sample surface are measured.
 同様な技術として、特許文献1には、「内部に金属構造物が埋め込まれた測定探針として、ナノチューブと金属ナノ粒子を組み合わせてナノメートルオーダの光学分解能を有するプラズモン増強近接場プローブを構成し、高効率なプラズモン励起部に搭載して試料上の各測定点で低接触力での接近・退避を繰り返すことにより、プローブと試料の双方にダメージを与えることなく、ナノメートルオーダの分解能でかつ高い再現性と高いSN比で、試料表面の光学情報及び凹凸情報を測定する。」(要約)と記載されている。 As a similar technique, Patent Document 1 discloses that a plasmon enhanced near-field probe having a nanometer-order optical resolution is formed by combining nanotubes and metal nanoparticles as a measurement probe with a metal structure embedded therein. Mounted in a high-efficiency plasmon excitation unit and repeatedly approaching and retracting with low contact force at each measurement point on the sample, with a resolution on the order of nanometers without damaging both the probe and the sample The optical information and unevenness information on the sample surface are measured with high reproducibility and high S / N ratio "(summary).
特開2010-197208号公報JP 2010-197208 A
 非特許文献1に開示されている近接場走査顕微鏡では、レーザ光で励起された近接場光と試料との相互作用により発生した散乱光だけでなく、レーザ光を金属探針に照射した際にレーザ光の大半が金属探針の根元や金属探針を保持するカンチレバーあるいは試料表面で散乱し、非常に強い散乱光が生じる。その結果、これらの散乱光は背景雑音として近接場光画像に重畳し、近接場光画像のSN比、コントラスト、測定再現性を劣化させる要因となっている。 In the near-field scanning microscope disclosed in Non-Patent Document 1, not only the scattered light generated by the interaction between the near-field light excited by the laser beam and the sample but also the laser beam is irradiated to the metal probe. Most of the laser light is scattered at the base of the metal probe, the cantilever holding the metal probe, or the sample surface, and very strong scattered light is generated. As a result, these scattered lights are superimposed on the near-field light image as background noise, which is a factor that degrades the SN ratio, contrast, and measurement reproducibility of the near-field light image.
 そこで、特許文献1では、レーザ光を表面プラズモンに変換し、この表面プラズモンを金属ナノ構造物を内包したカーボンナノチューブ(CNT:Carbon Nanotube)の先端まで伝搬させ、CNT先端に近接場光を生成する方法が開示されている。しかし、この方法ではレーザ光の表面プラズモンへの変換効率さらには近接場光の生成効率が実用上十分ではなく、結果として近接場光画像のSN比、コントラスト、測定再現性を低下させる要因となっている。 Therefore, in Patent Document 1, laser light is converted into surface plasmon, and this surface plasmon is propagated to the tip of a carbon nanotube (CNT: Carbon Nanotube) enclosing a metal nanostructure to generate near-field light at the tip of the CNT. A method is disclosed. However, in this method, the conversion efficiency of laser light into surface plasmons and the generation efficiency of near-field light are not practically sufficient, and as a result, the SN ratio, contrast, and measurement reproducibility of the near-field light image are reduced. ing.
 そこで、本発明の目的は、上記課題を解決し、背景雑音を大幅に低減し、かつ近接場光の生成効率を向上させることができる走査プローブ顕微鏡及びこれを用いた試料の観察方法を提供することにある。 Accordingly, an object of the present invention is to provide a scanning probe microscope capable of solving the above-described problems, greatly reducing background noise, and improving near-field light generation efficiency, and a sample observation method using the same. There is.
 上記目的を達成するために、代表的な本発明の走査プローブ顕微鏡の一つは、検査対象試料上を相対的に走査する測定探針と、励起光照射系と、前記励起光照射系からの励起光の照射により前記測定探針を含む領域に励起用近接場光を生成する励起用近接場光生成系と、前記励起用近接場光により前記測定探針と前記試料との間に発生した測定用近接場光の散乱光を検出する散乱光検出系とを備えたものである。 In order to achieve the above object, one of the typical scanning probe microscopes of the present invention includes a measurement probe that relatively scans a sample to be examined, an excitation light irradiation system, and an excitation light irradiation system. An excitation near-field light generating system that generates excitation near-field light in a region including the measurement probe by irradiation of excitation light, and the excitation near-field light is generated between the measurement probe and the sample. And a scattered light detection system for detecting the scattered light of the near-field light for measurement.
 また、代表的な本発明の走査プローブ顕微鏡を用いた試料の観察方法の一つは、測定探針を検査対象試料に対して相対的に走査し、励起光の照射により前記測定探針を含む領域に励起用近接場光を生成し、前記励起用近接場光により前記測定探針と前記試料との間で測定用近接場光を発生させ、前記測定用近接場光の散乱光を検出するものである。 In addition, one of the sample observation methods using the scanning probe microscope of the present invention typically includes scanning the measurement probe relative to the sample to be inspected and including the measurement probe by irradiation with excitation light. Generate near-field light for excitation in a region, generate near-field light for measurement between the measurement probe and the sample by the near-field light for excitation, and detect scattered light of the near-field light for measurement Is.
 本発明によれば、背景雑音を大幅に低減し、かつ近接場光の生成効率を向上させることが可能となり、SN比、コントラスト、測定再現性が向上したナノメートルオーダの分解能の近接場光画像を得ることが可能となる。 According to the present invention, it is possible to greatly reduce background noise, improve the generation efficiency of near-field light, and improve the SN ratio, contrast, and measurement reproducibility. Can be obtained.
実施例1~実施例4におけるSiカンチレバー搭載金コートSiチップと、チップ先端に固定した探針の斜視図である。FIG. 5 is a perspective view of a Si cantilever-mounted gold-coated Si chip and a probe fixed to the tip of the chip in Examples 1 to 4. 実施例1における金コートSiチップと、チップ先端に固定した探針、及び励起用レーザ光のチップ内での光路を示す側面図である。It is a side view which shows the optical path in the chip | tip of the gold coat Si chip | tip in Example 1, the probe fixed to the chip | tip tip, and the laser beam for excitation. 実施例1~実施例3における金膜厚をパラメータとして励起レーザ光の金/Si界面への入射角と表面反射率との関係(プラズモン共鳴曲線)を示すグラフである。6 is a graph showing the relationship (plasmon resonance curve) between the angle of incidence of excitation laser light on the gold / Si interface and the surface reflectance with the gold film thickness in Examples 1 to 3 as a parameter. 実施例1~実施例4における金ナノ粒子が充填されたCNT探針の構造を示す正面図である。FIG. 6 is a front view showing a structure of a CNT probe filled with gold nanoparticles in Examples 1 to 4. 実施例1~実施例4における金ナノ粒子が先端に充填されたCNT探針の構造を示す正面図である。FIG. 6 is a front view showing the structure of a CNT probe in which gold nanoparticles are filled at the tip in Examples 1 to 4. 実施例1~実施例4における充填材無しで先端がカーボンで閉じたCNT探針の構造を示す正面図である。FIG. 6 is a front view showing the structure of a CNT probe without a filler and having a tip closed with carbon in Examples 1 to 4. 実施例1~実施例4におけるCNTの先端部を含む表面あるいは一部に金薄膜をコーティングしたCNT探針の構造を示す正面図である。FIG. 6 is a front view showing a structure of a CNT probe in which a gold thin film is coated on a surface or a part including a tip portion of CNT in Examples 1 to 4. 実施例1~実施例4における先端が先鋭化されたSi探針やHDC(High Density Carbon)探針、金、銀、アルミ等の金属探針の構造を示す正面図である。FIG. 6 is a front view showing the structure of a metal tip such as a Si probe, an HDC (High Density Carbon) probe, or a gold, silver, or aluminum with a sharpened tip in Examples 1 to 4. 実施例1及び実施例3における走査プローブ顕微鏡の概略の構成を示すブロック図である。FIG. 5 is a block diagram illustrating a schematic configuration of a scanning probe microscope in Example 1 and Example 3. 実施例2及び実施例3における走査プローブ顕微鏡の概略の構成を示すブロック図である。FIG. 6 is a block diagram showing a schematic configuration of a scanning probe microscope in Example 2 and Example 3. 実施例3における金コートSiチップと、チップ先端に固定した探針、及び励起用レーザ光のチップ内での光路を示す側面図である。It is a side view which shows the optical path in the chip | tip of the gold coat Si chip | tip in Example 3, the probe fixed to the chip | tip tip, and the laser beam for excitation. 実施例4における金コートSiチップと、チップ先端に固定した探針、及び励起用レーザ光のチップ内での光路を示す側面図である。It is a side view which shows the optical path in the chip | tip of the gold coat Si chip | tip in Example 4, the probe fixed to the chip | tip tip, and the laser beam for excitation. 実施例4におけるSi層の厚さと各波長の透過率との関係を示すグラフである。It is a graph which shows the relationship between the thickness of Si layer in Example 4, and the transmittance | permeability of each wavelength. 実施例4におけるアルミ膜厚をパラメータとして各波長の励起レーザ光のアルミ/Si界面への入射角と表面反射率との関係(プラズモン共鳴曲線)を示すグラフである。It is a graph which shows the relationship (plasmon resonance curve) with the incident angle to the aluminum / Si interface of the excitation laser beam of each wavelength, and a surface reflectance by using the aluminum film thickness in Example 4. 実施例4における走査プローブ顕微鏡の概略の構成を示すブロック図である。FIG. 10 is a block diagram showing a schematic configuration of a scanning probe microscope in Example 4. 実施例4における走査プローブ顕微鏡の概略の構成を示すブロック図である。FIG. 10 is a block diagram showing a schematic configuration of a scanning probe microscope in Example 4.
 以下、本発明の実施例を図面を用いて説明する。なお、実施例を説明するための各図において、同一の機能を有する要素には同一の名称、符号を付して、その繰り返しの説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In each drawing for explaining the embodiment, elements having the same function are given the same name and reference numeral, and repeated explanation thereof is omitted.
 本発明の第1の実施例を、図1~図9に基づいて説明する。図1は第1の実施例におけるSiカンチレバー搭載金コートSiチップと、チップ先端に固定した探針の斜視図である。Siカンチレバー4の先端には金薄膜3がコーティングされた三角錐状のSiチップ2が固定され、さらにチップ先端にはカーボンナノチューブ(CNT:Carbon Nanotube)探針1が固定されている。 A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a perspective view of a Si cantilever-mounted gold-coated Si chip and a probe fixed to the tip of the first embodiment. A triangular pyramid-shaped Si chip 2 coated with a gold thin film 3 is fixed to the tip of the Si cantilever 4, and a carbon nanotube (CNT: Carbon Nanotube) probe 1 is fixed to the tip of the chip.
 ここで、チップ2の材料はSiに限らず、特定の波長のレーザ光を透過する材料であれば、SiO、Siなどであってもよい。また、金薄膜3は膜厚に応じてレーザ光を遮光する金属材料であれば他の材料の膜であってもよく、例えば、アルミ、銀の膜であってもよい。 Here, the material of the chip 2 is not limited to Si, and may be SiO 2 , Si 3 N 4 or the like as long as it is a material that transmits laser light having a specific wavelength. The gold thin film 3 may be a film made of another material as long as it is a metal material that shields laser light depending on the film thickness, and may be, for example, an aluminum or silver film.
 図1及び図2に示すように、Siカンチレバー4の背面から、例えば励起光として波長850nmの励起用レーザ光5を、三角錐状金コートSiチップ2の後側金薄膜3b平面上に照射し、後側平面で反射させて、前側稜線上に集光すると、図2に示すように、金薄膜3aの稜線上に表面プラズモン(金の自由電子の集団的振動)9が励起される。ここで、金薄膜3aの稜線に対する励起用レーザ光5の入射角θ7と入射点からの反射光強度、すなわち金/Si界面における反射率との関係をプロットしたものを図3に示す。尚、図3において、dは金薄膜3aの膜厚8である。図3より、波長850nmの場合、金/Si界面において、入射角16.12°付近で強いプラズモン共鳴が生じ、また金薄膜3aの膜厚d=46.5nmで反射率が最小、すなわちプラズモン共鳴が最大となることが判る。すなわち、図2において、励起用レーザ光5に対し入射角θ7を16.12°に設定し、金薄膜3aの膜厚d8を46.5nmとすることにより、表面プラズモン9の強度は最大となる。表面プラズモン9は金コートSiチップ2の先端に向かって伝搬し、チップ2先端部にチップ先端とほぼ同じ大きさの数100nmの範囲に局在した励起用近接場光(第1の近接場光)10が生成される。この励起用近接場光10の電界の中にはCNT探針1の先端部が存在している。 As shown in FIGS. 1 and 2, from the back surface of the Si cantilever 4, for example, excitation laser light 5 having a wavelength of 850 nm as excitation light is irradiated onto the plane of the rear gold thin film 3 b of the triangular pyramidal gold-coated Si chip 2. When reflected on the rear plane and condensed on the front ridge line, surface plasmons (collective vibrations of gold free electrons) 9 are excited on the ridge line of the gold thin film 3a as shown in FIG. Here, FIG. 3 shows a plot of the relationship between the incident angle θ7 of the excitation laser beam 5 with respect to the ridgeline of the gold thin film 3a and the reflected light intensity from the incident point, that is, the reflectance at the gold / Si interface. In FIG. 3, d is the film thickness 8 of the gold thin film 3a. As shown in FIG. 3, when the wavelength is 850 nm, strong plasmon resonance occurs at the gold / Si interface near an incident angle of 16.12 °, and the reflectance is minimum when the film thickness d of the gold thin film 3a is 46.5 nm, that is, plasmon resonance. It turns out that becomes the maximum. That is, in FIG. 2, the intensity of the surface plasmon 9 is maximized by setting the incident angle θ7 to 16.12 ° with respect to the excitation laser beam 5 and setting the film thickness d8 of the gold thin film 3a to 46.5 nm. . The surface plasmon 9 propagates toward the tip of the gold-coated Si chip 2, and the excitation near-field light (first near-field light) localized at the tip 2 of the tip of the chip 2 within a range of several hundreds of nanometers that is almost the same size as the tip of the chip. ) 10 is generated. The tip of the CNT probe 1 is present in the electric field of the excitation near-field light 10.
 図4にCNT探針1の構造の一例を示す。CNT探針1は、長さ2~3m、外径がφ20nm、内径φ4nmで、先端がφ4nm程度に先鋭化された多層CNTを母体とし、内部に測定探針の軸方向に沿って、φ4nmの金ナノ粒子11が充填されている。充填材は金ナノ粒子に限定されることは無い。用いるレーザ光の波長に応じて、例えば近赤外光に対しては金ナノ粒子、可視光に対してはアルミナノ粒子や銀ナノ粒子、紫外光に対してはアルミナノ粒子を用いることができる。また、ナノ粒子ではなく、ナノロッドでも構わない。また、図5に示すようにCNT先端に金ナノ粒子11aを充填した構造、あるいは近接場光の発生効率が低くても問題ない場合は、図6に示すように充填材無しで先端がカーボンで閉じた構造でも構わない。また、図7に示すように、CNTの先端部を含む表面あるいは一部に金、あるいは銀、アルミなどの金属薄膜14をコーティングした構造でも構わない。さらに、探針材料としてはCNTに限定されるものではなく、例えば、図8に示すように先端が先鋭化されたSi探針15やHDC(High Density Carbon)探針15、金、銀、アルミ等の金属探針15も使用可能である。 FIG. 4 shows an example of the structure of the CNT probe 1. The CNT probe 1 has a length of 2 to 3 m, an outer diameter of φ20 nm, an inner diameter of φ4 nm, and a multi-layer CNT sharpened to a tip of about φ4 nm as a base, and has an inner diameter of φ4 nm along the axial direction of the measurement probe. Gold nanoparticles 11 are filled. The filler is not limited to gold nanoparticles. Depending on the wavelength of the laser light used, for example, gold nanoparticles can be used for near-infrared light, alumina nanoparticles or silver nanoparticles can be used for visible light, and alumina nanoparticles can be used for ultraviolet light. Further, instead of nanoparticles, nanorods may be used. In addition, as shown in FIG. 5, when the structure in which the CNT tips are filled with gold nanoparticles 11a or the generation efficiency of near-field light is low, there is no problem, as shown in FIG. A closed structure may be used. Further, as shown in FIG. 7, a structure in which a metal thin film 14 such as gold, silver, or aluminum is coated on the surface or a part including the tip of the CNT may be used. Furthermore, the probe material is not limited to CNT. For example, as shown in FIG. 8, a Si probe 15 having a sharp tip, a HDC (High Density Carbon) probe 15, gold, silver, aluminum, for example. A metal probe 15 such as can also be used.
 図2に示すように、これらの探針1、15は金コートSiチップ2の稜線上に、電子ビーム選択CVD(Chemical Vapor Deposition)により形成された3個の金ドット16をバインダとして溶融固着される。ドット16は金に限定されず、カーボン、タングステンでも構わない。探針1、15の金コートSiチップ2の先端からの突出長さは、探針先端が励起用近接場光10の電界の中に存在するように、例えば50~200nmに調整されている。この先端部に電界が集中することで、探針先端に先端直径と同程度のφ4nm(スポットサイズ)の測定用近接場光(第2の近接場光)6が生じる。特に、図4に示すように、CNT内部に金ナノ粒子11が充填されている構造や、図7に示すように、CNT表面に金薄膜14をコーティングした構造の場合は、表面プラズモン9が金ナノ粒子11や金薄膜14に沿って伝搬してCNT探針1の先端に電界集中し、励起用近接場光10の電界集中と合わせて、非常に強い近接場光6が励起される。 As shown in FIG. 2, these probes 1 and 15 are fused and fixed on the ridge line of the gold-coated Si chip 2 using three gold dots 16 formed by electron beam selective CVD (Chemical Vapor Deposition) as a binder. The The dots 16 are not limited to gold, and may be carbon or tungsten. The protruding length of the probes 1 and 15 from the tip of the gold-coated Si chip 2 is adjusted to, for example, 50 to 200 nm so that the tip of the probe exists in the electric field of the excitation near-field light 10. By concentrating the electric field at the tip, near-field light for measurement (second near-field light) 6 having a diameter of about 4 nm (spot size) that is the same as the tip diameter is generated at the tip of the probe. In particular, as shown in FIG. 4, in the case of a structure in which gold nanoparticles 11 are filled in the CNT, or in a structure in which a gold thin film 14 is coated on the CNT surface as shown in FIG. Propagating along the nanoparticles 11 and the gold thin film 14, the electric field concentrates at the tip of the CNT probe 1, and the very strong near-field light 6 is excited together with the electric field concentration of the excitation near-field light 10.
 図4~図8に示すように、近接場光6は試料20の表面及び探針1、15自身と相互作用し、散乱光(伝搬光)13が生じる。この散乱光の強度は、試料20を構成する領域21の屈折率nと領域22の屈折率nの大小関係に応じて変化し、これが探針1、15を走査することで得られる近接場光画像のコントラストとなる。近接場光画像の分解能は、測定用近接場光(第2の近接場光)6のスポットサイズとほぼ同じ4nmである。 As shown in FIGS. 4 to 8, the near-field light 6 interacts with the surface of the sample 20 and the probes 1 and 15 themselves, and scattered light (propagating light) 13 is generated. The intensity of the scattered light varies depending on the magnitude relationship between the refractive index n 0 of the region 21 constituting the sample 20 and the refractive index n 1 of the region 22, and this is the proximity obtained by scanning the probes 1 and 15. It becomes the contrast of the field light image. The resolution of the near-field light image is 4 nm which is substantially the same as the spot size of the measurement near-field light (second near-field light) 6.
 図2に示すように、プラズモン共鳴角16.12°で励起用レーザ光5を金コートSiチップ2の稜線に入射することで、最大強度の表面プラズモン9を励起でき、チップ2先端部に局在した最大強度の励起用近接場光(第1の近接場光)10が生成されるので、探針1、15の先端に最大強度の測定用近接場光(第2の近接場光)6を生成することが可能となる。さらに、数100nmの範囲に局在した励起用近接場光(第1の近接場光)10で測定用近接場光(第2の近接場光)6を生成する構成となっているので、不要な散乱光が激減し、背景雑音が大幅に低下する。 As shown in FIG. 2, the excitation laser beam 5 is incident on the ridge line of the gold-coated Si chip 2 at a plasmon resonance angle of 16.12 °. Since the existing near-intensity light (first near-field light) 10 having the maximum intensity is generated, the near-field light for measurement (second near-field light) 6 having the maximum intensity at the tips of the probes 1 and 15 is generated. Can be generated. Furthermore, the configuration is such that the measurement near-field light (second near-field light) 6 is generated by the excitation near-field light (first near-field light) 10 that is localized in the range of several hundreds of nanometers. Scattered light is drastically reduced and background noise is greatly reduced.
 図9に、以上述べた原理に基づく走査プローブ顕微鏡の構成を示す。走査プローブ顕微鏡は、試料20を搭載する試料ホルダ25と、それを載置して試料20を測定探針に対して相対的にXY方向に走査するXY圧電素子ステージ30と、先端に試料20上を走査する探針1、15を固定した金コートSiチップ2を搭載したSiカンチレバー4とSiカンチレバー4をZ方向に微小振動させる圧電素子アクチュエータ34とSiカンチレバー4を試料20に対して相対的にZ方向に走査するZ圧電素子ステージ33と、カンチレバー4のたわみを検知することでCNT探針と試料との接触力を検知する光てこ検出系100と、近赤外半導体レーザを光源とし波長850nmの励起用レーザ光5をSiカンチレバー4背面を介して金コートSiチップ2に照射する励起用レーザ光照射系50と、散乱光13を集光し光電変換する散乱光検出系110と、得られた散乱光信号とXYZ変位信号から近接場光画像と表面凹凸画像を生成し出力する信号処理・制御系120とを備えて構成される。XY圧電素子ステージ30とZ圧電素子ステージ33によって探針1、15を試料20に対して相対的に走査する駆動部が構成される。 FIG. 9 shows the configuration of a scanning probe microscope based on the principle described above. The scanning probe microscope includes a sample holder 25 on which the sample 20 is mounted, an XY piezoelectric element stage 30 on which the sample holder 25 is mounted and which scans the sample 20 in the X and Y directions relative to the measurement probe, and the sample 20 on the tip. The Si cantilever 4 mounted with the gold-coated Si chip 2 on which the probes 1 and 15 are fixed, the piezoelectric cantilever 4 for slightly vibrating the Si cantilever 4 in the Z direction, and the Si cantilever 4 relative to the sample 20. A Z piezoelectric element stage 33 that scans in the Z direction, an optical lever detection system 100 that detects the contact force between the CNT probe and the sample by detecting the deflection of the cantilever 4, and a wavelength of 850 nm using a near infrared semiconductor laser as a light source. The excitation laser beam irradiation system 50 for irradiating the gold-coated Si chip 2 with the excitation laser beam 5 through the back surface of the Si cantilever 4 and the scattered light 13 are collected. Configured as a scattered light detecting system 110 for photoelectrically converting, and a signal processing and control system 120 for generating and outputting a near-field optical image and the surface unevenness image from the obtained scattered light signals and the XYZ displacement signal. The XY piezoelectric element stage 30 and the Z piezoelectric element stage 33 constitute a drive unit that scans the probes 1 and 15 relative to the sample 20.
 光てこ検出系100では、半導体レーザ35からのレーザ光36をカンチレバー4の背面に照射し、その反射光を4分割センサ37で受光し、反射光の位置変化からカンチレバー4のたわみ量を検出し、さらにたわみ量から探針1、15と試料20との接触力を検知して、常に接触力が予め設定した値となるように、信号処理・制御系120の制御部80でZ圧電素子ステージ33をフィードバック制御する。 In the optical lever detection system 100, the back surface of the cantilever 4 is irradiated with the laser light 36 from the semiconductor laser 35, the reflected light is received by the quadrant sensor 37, and the deflection amount of the cantilever 4 is detected from the change in position of the reflected light. Further, the Z piezoelectric element stage is detected by the control unit 80 of the signal processing / control system 120 so that the contact force between the probes 1 and 15 and the sample 20 is detected from the deflection amount, and the contact force always becomes a preset value. 33 is feedback controlled.
 探針1、15は、発振器60からの信号に基づいて圧電素子アクチュエータ34によりカンチレバー4の共振周波数でZ方向に微小振動されるので、発生する近接場光6、散乱光13も同じ周波数で強度変調される。散乱光13は集光レンズ41により光電子増倍管やホトダイオード等の検出器42の受光面43上の1点に集光し、光電変換される。 The probes 1 and 15 are vibrated minutely in the Z direction at the resonance frequency of the cantilever 4 by the piezoelectric element actuator 34 based on the signal from the oscillator 60, so that the generated near-field light 6 and scattered light 13 are also intensities at the same frequency. Modulated. The scattered light 13 is condensed by a condensing lens 41 at one point on the light receiving surface 43 of a detector 42 such as a photomultiplier tube or a photodiode and is photoelectrically converted.
 検出器42から出力される強度変調された散乱光信号は信号処理・制御系120のロックインアンプ70で同期検波され、この周波数成分のみが出力される。励起用レーザ光5によって、試料表面でわずかに直接散乱した背景散乱光は、カンチレバー4の微小振動には反応せず直流成分であるので、ロックインアンプ70の出力信号には含まれない。これにより、残存する背景雑音を抑圧して近接場光成分のみを選択的に検出することができる。また、共振周波数の2倍波、3倍波といった高調波成分を検出することで、さらに信号SN比を向上させることができる。ロックインアンプ70からの散乱光信号は信号処理・制御系120の制御部80に送られ、XY圧電素子ステージ30からのXY信号と組み合わせられて近接場光画像が生成され、ディスプレイ90に出力される。同時に、Z圧電素子ステージ33からのZ信号も制御部80でXY信号と組み合わせられて試料表面の凹凸画像が生成され、ディスプレイ90に出力される。 The intensity-modulated scattered light signal output from the detector 42 is synchronously detected by the lock-in amplifier 70 of the signal processing / control system 120, and only this frequency component is output. The background scattered light slightly directly scattered on the sample surface by the excitation laser beam 5 does not react to the minute vibration of the cantilever 4 and is a direct current component, and thus is not included in the output signal of the lock-in amplifier 70. Thus, it is possible to selectively detect only the near-field light component while suppressing the remaining background noise. Further, the signal SN ratio can be further improved by detecting harmonic components such as the second harmonic and the third harmonic of the resonance frequency. The scattered light signal from the lock-in amplifier 70 is sent to the control unit 80 of the signal processing / control system 120, combined with the XY signal from the XY piezoelectric element stage 30 to generate a near-field light image, and output to the display 90. The At the same time, the Z signal from the Z piezoelectric element stage 33 is also combined with the XY signal by the control unit 80 to generate an uneven image on the sample surface and output to the display 90.
 本実施例によれば、前述の通り、プラズモン共鳴角16.12°で励起用レーザ光5を金コートSiチップ2の稜線に入射することで、最大強度の表面プラズモン9を励起でき、チップ2先端部に局在した最大強度の励起用近接場光(第1の近接場光)10が生成されるので、探針1、15の先端に最大強度の測定用近接場光(第2の近接場光)6を生成することが可能となる。さらに、数100nmの範囲に局在した励起用近接場光(第1の近接場光)10で測定用近接場光(第2の近接場光)6を生成する構成となっているので、不要な散乱光が激減し、背景雑音が大幅に低下する。その結果、SN比、コントラスト、測定再現性が向上したナノメートルオーダ(探針先端径と同程度の大きさ)の分解能の近接場光画像を得ることが可能となる。 According to the present embodiment, as described above, the excitation laser beam 5 is incident on the ridge line of the gold-coated Si chip 2 at a plasmon resonance angle of 16.12 °, whereby the surface plasmon 9 having the maximum intensity can be excited. Since the excitation near-field light (first near-field light) 10 having the maximum intensity localized at the tip portion is generated, the measurement near-field light (second proximity light) having the maximum intensity is generated at the tips of the probes 1 and 15. (Field light) 6 can be generated. Furthermore, the configuration is such that the measurement near-field light (second near-field light) 6 is generated by the excitation near-field light (first near-field light) 10 that is localized in the range of several hundreds of nanometers. Scattered light is drastically reduced and background noise is greatly reduced. As a result, it is possible to obtain a near-field light image having a resolution of nanometer order (a size similar to the probe tip diameter) with improved SN ratio, contrast, and measurement reproducibility.
 本発明の第2の実施例を、図10に基づいて説明する。
第1の実施例では、探針1、15先端の測定用近接場光6の試料20表面層での散乱光13を検出していたが、本実施例では、探針1、15先端の測定用近接場光6の試料20表面層での散乱光のうち、試料20を透過した散乱光13を検出する。すなわち、散乱光13は集光レンズ41により光電子増倍管やホトダイオード等の検出器42の受光面43上の1点に集光して、光電変換される。試料ホルダ26を載置して試料20をXY方向に走査するXY圧電素子ステージ31は、透過散乱光を通過させるため、中央に穴が開いた構造となっている。その他の励起用レーザ光照射系50、光てこ検出系100、信号処理・制御系120の構成とその機能は第1の実施例と同様であるので、説明を省略する。
A second embodiment of the present invention will be described with reference to FIG.
In the first embodiment, the scattered light 13 on the surface layer of the sample 20 of the measurement near-field light 6 at the tips of the probes 1 and 15 is detected. In this embodiment, the measurement of the tips of the probes 1 and 15 is measured. Of the scattered light on the surface layer of the sample 20 of the near-field light 6 for use, the scattered light 13 transmitted through the sample 20 is detected. That is, the scattered light 13 is condensed by the condensing lens 41 at one point on the light receiving surface 43 of the detector 42 such as a photomultiplier tube or a photodiode and is photoelectrically converted. The XY piezoelectric element stage 31 that places the sample holder 26 and scans the sample 20 in the XY direction has a structure in which a hole is opened in the center in order to transmit the transmitted scattered light. The configurations and functions of the other excitation laser beam irradiation system 50, optical lever detection system 100, and signal processing / control system 120 are the same as those in the first embodiment, and thus description thereof is omitted.
 本実施例によれば、前述の通り、プラズモン共鳴角16.12°で励起レーザ光5を金コートSiチップ2の稜線に入射することで、最大強度の表面プラズモン9を励起でき、チップ2先端部に局在した最大強度の励起用近接場光(第1の近接場光)10が生成されるので、探針1、15の先端に最大強度の測定用近接場光(第2の近接場光)6を生成することが可能となる。さらに、数100nmの範囲に局在した励起用近接場光(第1の近接場光)10で測定用近接場光(第2の近接場光)6を生成する構成となっているので、不要な散乱光が激減し、背景雑音が大幅に低下する。その結果、SN比、コントラスト、測定再現性が向上したナノメートルオーダの分解能の近接場光画像を得ることが可能となる。 According to the present embodiment, as described above, the excitation laser beam 5 is incident on the ridge line of the gold-coated Si chip 2 at a plasmon resonance angle of 16.12 °, whereby the surface plasmon 9 having the maximum intensity can be excited, and the tip of the chip 2 Since the excitation near-field light (first near-field light) 10 having the maximum intensity localized in the portion is generated, the measurement near-field light (second near-field light) having the maximum intensity is generated at the tips of the probes 1 and 15. Light) 6 can be generated. Furthermore, the configuration is such that the measurement near-field light (second near-field light) 6 is generated by the excitation near-field light (first near-field light) 10 that is localized in the range of several hundreds of nanometers. Scattered light is drastically reduced and background noise is greatly reduced. As a result, it is possible to obtain a near-field light image having a resolution of nanometer order with improved SN ratio, contrast, and measurement reproducibility.
 また、本実施例によれば、SiカンチレバーやXY圧電素子ステージ31、Z圧電素子ステージ33によって散乱光がさえぎられないため、検出立体角を大きくとれ、実施例1より高いコントラストでイメージングでき、近接場光画像のSN比及び測定再現性をさらに向上させることができる。 In addition, according to the present embodiment, since the scattered light is not interrupted by the Si cantilever, the XY piezoelectric element stage 31, and the Z piezoelectric element stage 33, the detection solid angle can be increased and imaging can be performed with higher contrast than in the first embodiment. The SN ratio and measurement reproducibility of the field light image can be further improved.
 本発明の第3の実施例を、図11に基づいて説明する。第1及び第2の実施例では、図2に示すように、プラズモン共鳴角16.12°で励起用レーザ光5を金コートSiチップ2の稜線に入射する構成となっていたが、本実施例では、図11に示すように、波長850nmの励起用レーザ光5を、三角錐状金コートSiチップ2の後側金薄膜3b平面上に入射し、その入射角θ7を図3に示すように、16.12°に設定し、さらに金薄膜3bの膜厚d8を46.5nmとする。この際、Siカンチレバー4の背面に対し励起用レーザ光5を非常に浅い角度で入射することになり、励起用レーザ光照射系50の構成が極めて難しくなる。そこで、本実施例では、図11に示すように、三角錐状金コートSiチップ2の上端部をFIB(Focused Ion Beam)で所望の角度に加工し、加工面で励起用レーザ光5を屈折させることにより、後側金薄膜3b平面上に対しプラズモン共鳴角16.12°で入射させる。その結果、表面プラズモン9の強度は最大となる。表面プラズモン9は金コートSiチップ2の先端に向かって伝搬し、チップ2先端部にチップ先端とほぼ同じ大きさの数100nmの範囲に局在した励起用近接場光(第1の近接場光)10が生成される。この励起用近接場光10の電界の中には探針1、15の先端部が存在している。第1及び第2の実施例では、励起用レーザ光5の金コートSiチップ2の稜線に対する入射角がプラズモン共鳴角16.12°となっているが、稜線を挟む側壁部の金/Si界面に対してはプラズモン共鳴角から外れている。このため、入射した励起用レーザ光5の総てが表面プラズモンに変換される訳ではなく、損失が生じる。これに対し、本実施例では、励起用レーザ光5はSiチップ2の後側金薄膜3b平面上に入射するので、励起用レーザ光5のほぼ総てをプラズモン共鳴角16.12°で入射させることが可能となり、励起用レーザ光5のほぼ総てを表面プラズモン9に変換することができる。その結果、チップ2先端部に生成される励起用近接場光(第1の近接場光)10の強度が第1及び第2の実施例に比べ格段に大きくなる。その結果、励起用近接場光10の電界の中に存在する探針1、15の先端部には、第1及び第2の実施例に比べ格段に大きな測定用近接場光(第2の近接場光)6が生成される。 A third embodiment of the present invention will be described with reference to FIG. In the first and second embodiments, as shown in FIG. 2, the excitation laser beam 5 is incident on the ridge line of the gold-coated Si chip 2 at a plasmon resonance angle of 16.12 °. In the example, as shown in FIG. 11, the excitation laser beam 5 having a wavelength of 850 nm is incident on the plane of the rear gold thin film 3b of the triangular pyramidal gold-coated Si chip 2, and the incident angle θ7 is as shown in FIG. In addition, the angle is set to 16.12 °, and the film thickness d8 of the gold thin film 3b is set to 46.5 nm. At this time, the excitation laser beam 5 is incident on the back surface of the Si cantilever 4 at a very shallow angle, and the configuration of the excitation laser beam irradiation system 50 becomes extremely difficult. Therefore, in this embodiment, as shown in FIG. 11, the upper end portion of the triangular pyramidal gold-coated Si chip 2 is processed to a desired angle by FIB (Focused Ion Beam), and the excitation laser beam 5 is refracted on the processed surface. By doing so, the light is incident on the plane of the rear gold thin film 3b at a plasmon resonance angle of 16.12 °. As a result, the intensity of the surface plasmon 9 is maximized. The surface plasmon 9 propagates toward the tip of the gold-coated Si chip 2, and the excitation near-field light (first near-field light) localized at the tip 2 of the tip of the chip 2 within a range of several hundreds of nanometers that is almost the same size as the tip of the chip. ) 10 is generated. In the electric field of the excitation near-field light 10, the tips of the probes 1 and 15 are present. In the first and second embodiments, the incident angle of the excitation laser beam 5 with respect to the ridgeline of the gold-coated Si chip 2 is a plasmon resonance angle of 16.12 °, but the gold / Si interface on the side wall portion sandwiching the ridgeline Is deviated from the plasmon resonance angle. For this reason, not all of the incident excitation laser beam 5 is converted into surface plasmons, and a loss occurs. On the other hand, in the present embodiment, the excitation laser beam 5 is incident on the rear gold thin film 3b plane of the Si chip 2, so that almost all of the excitation laser beam 5 is incident at a plasmon resonance angle of 16.12 °. Thus, almost all of the excitation laser beam 5 can be converted into the surface plasmon 9. As a result, the intensity of the excitation near-field light (first near-field light) 10 generated at the tip of the chip 2 is significantly higher than in the first and second embodiments. As a result, the near-field light for measurement (second proximity) is much larger at the tips of the probes 1 and 15 existing in the electric field of the excitation near-field light 10 than in the first and second embodiments. Field light) 6 is generated.
 探針1、15の構成と機能は図4~図8に示すものと同じであり、また、上記原理に基づくSiカンチレバー4を搭載した走査プローブ顕微鏡の構成と機能は図9あるいは図10に示すものと同じであるので、説明を省略する。 The configuration and function of the probes 1 and 15 are the same as those shown in FIGS. 4 to 8, and the configuration and function of the scanning probe microscope equipped with the Si cantilever 4 based on the above principle is shown in FIG. 9 or FIG. Since it is the same as that, a description thereof will be omitted.
 本実施例によれば、前述の通り、プラズモン共鳴角16.12°で励起用レーザ光5を金コートSiチップ2の後側金薄膜3b平面上に入射することで、第1及び第2の実施例に比べ格段に大きな表面プラズモン9を励起できる。その結果、チップ2先端部に第1及び第2の実施例に比べ格段に大きな局在した励起用近接場光(第1の近接場光)10が生成されるので、探針1、15の先端に第1及び第2の実施例に比べ格段に大きな測定用近接場光(第2の近接場光)6を生成することが可能となる。さらに、数100nmの範囲に局在した励起用近接場光(第1の近接場光)10で測定用近接場光(第2の近接場光)6を生成する構成となっているので、不要な散乱光が激減し、背景雑音が大幅に低下する。その結果、SN比、コントラスト、測定再現性が向上したナノメートルオーダの分解能の近接場光画像を得ることが可能となる。 According to the present embodiment, as described above, the excitation laser beam 5 is incident on the rear gold thin film 3b plane of the gold-coated Si chip 2 at a plasmon resonance angle of 16.12 °, whereby the first and second The surface plasmon 9 that is much larger than the embodiment can be excited. As a result, the excitation near-field light (first near-field light) 10 that is much larger than the first and second embodiments is generated at the tip end of the tip 2. It is possible to generate a measurement near-field light (second near-field light) 6 that is significantly larger at the tip than in the first and second embodiments. Furthermore, the configuration is such that the measurement near-field light (second near-field light) 6 is generated by the excitation near-field light (first near-field light) 10 that is localized in the range of several hundreds of nanometers. Scattered light is drastically reduced and background noise is greatly reduced. As a result, it is possible to obtain a near-field light image having a resolution of nanometer order with improved SN ratio, contrast, and measurement reproducibility.
 本発明の第4の実施例を、図12~図16に基づいて説明する。第1~第3の実施例では励起用レーザ光5に波長850nmの単色光を用いていたが、本実施例では、R(Red)、G(Green)、B(Blue)の複数波長を用い、例えばカラーイメージングを実現する。図12に示すように、複数波長として、例えば波長488nmの励起用レーザ光5a、532nmの励起用レーザ光5b、660nmの励起用レーザ光5cを使用する。この際、図2や図11のように、Siチップ2の内部を可視域の光を伝搬させると、Siによる吸収のため、表面プラズモンの励起効率が大きく減衰する。そこで、図12に示すように、Siチップ2の上端部をFIB加工し、後側平面部のSi層を薄膜化する。例えば、図13に示すように、Si層の厚さd18を250nmとすると、波長488nmで約60%、532nmで77%、660nmで93%と十分な透過率が得られる。さらに、可視域にて表面プラズモンを発現するため、金薄膜に換えてアルミ薄膜47を三角錐状Siチップ2表面にコーティングする。同様に、探針1、15の充填材料や表面のコーティング材料も金からアルミに変更することが望ましい。FIB加工面を所望の角度にし、さらに3波長の励起用レーザ光5a、5b、5cの加工面への入射角を各々調整して、各励起用レーザ光を所望の角度で屈折させることにより、後側アルミ薄膜47b平面上に対し3波長の励起用レーザ光5a、5b、5cを異なるプラズモン共鳴角θ7a、7b、7cで入射させることができる。図14に示すように、アルミ/Si界面における各波長のプラズモン共鳴角は、波長488nmで13.49°、532nmで14.18°、660nmで15.30°である。また、3波長でほぼ均等に反射率が最小になる、すなわち強いプラズモン共鳴が生じるアルミ膜厚d8は15nmである。上記により、各波長に対応した表面プラズモン9a、9b、9cは、各々アルミコートSiチップ2の先端に向かって伝搬し、チップ2先端部にチップ先端とほぼ同じ大きさの数100nmの範囲に局在した励起用近接場光(第1の近接場光)10a、10b、10cが生成される。この励起用近接場光10a、10b、10cの電界の中には探針1、15の先端部が存在している。その結果、励起用近接場光10a、10b、10cの電界の中に存在する探針1、15の先端部には、3波長の測定用近接場光(第2の近接場光)6a、6b、6cが生成される。チップの材料としては、異方性エッチングにより製作し易いこともあり、Siが主流であるが、Siのような可視光に対して透明な材料を使うことも可能である。その場合は、図11のような構造のチップを使用することが可能である。その場合も、3波長の励起用レーザ光5a、5b、5cの加工面への入射角を調整して、各励起用レーザ光を所望の角度で屈折させることにより、後側アルミ薄膜47b平面上に対し3波長の励起用レーザ光5a、5b、5cを異なるプラズモン共鳴角θ7a、7b、7cで入射させる。 A fourth embodiment of the present invention will be described with reference to FIGS. In the first to third embodiments, monochromatic light having a wavelength of 850 nm is used as the excitation laser beam 5, but in this embodiment, a plurality of wavelengths of R (Red), G (Green), and B (Blue) are used. For example, color imaging is realized. As shown in FIG. 12, for example, excitation laser light 5a having a wavelength of 488 nm, excitation laser light 5b having a wavelength of 532 nm, and excitation laser light 5c having a wavelength of 660 nm are used as a plurality of wavelengths. At this time, as shown in FIGS. 2 and 11, when light in the visible region is propagated through the Si chip 2, the excitation efficiency of the surface plasmon is greatly attenuated due to absorption by Si. Therefore, as shown in FIG. 12, the upper end portion of the Si chip 2 is subjected to FIB processing, and the Si layer on the rear plane portion is thinned. For example, as shown in FIG. 13, when the thickness d s 18 of the Si layer is 250 nm, a sufficient transmittance of about 60% at a wavelength of 488 nm, 77% at 532 nm, and 93% at 660 nm can be obtained. Furthermore, in order to express surface plasmon in the visible range, an aluminum thin film 47 is coated on the surface of the triangular pyramidal Si chip 2 instead of the gold thin film. Similarly, it is desirable to change the filling material of the probes 1 and 15 and the coating material on the surface from gold to aluminum. By making the FIB processing surface a desired angle and further adjusting the incident angles of the three wavelength excitation laser beams 5a, 5b, and 5c to the processing surface, and refracting each excitation laser beam at a desired angle, Three-wavelength excitation laser beams 5a, 5b, and 5c can be incident on the plane of the rear aluminum thin film 47b at different plasmon resonance angles θ7a, 7b, and 7c. As shown in FIG. 14, the plasmon resonance angle of each wavelength at the aluminum / Si interface is 13.49 ° at a wavelength of 488 nm, 14.18 ° at 532 nm, and 15.30 ° at 660 nm. Further, the aluminum film thickness d8 at which the reflectance is minimized almost evenly at three wavelengths, that is, where strong plasmon resonance occurs, is 15 nm. As described above, the surface plasmons 9a, 9b, 9c corresponding to the respective wavelengths propagate toward the tip of the aluminum-coated Si chip 2, and are localized at the tip of the chip 2 within a range of several hundreds of nanometers, which is approximately the same size as the tip of the chip. The existing excitation near-field light (first near-field light) 10a, 10b, 10c is generated. The tips of the probes 1 and 15 exist in the electric field of the excitation near- field light 10a, 10b, and 10c. As a result, three-wavelength measurement near-field light (second near-field light) 6a and 6b are formed at the tips of the probes 1 and 15 existing in the electric fields of the excitation near- field lights 10a, 10b, and 10c. , 6c are generated. As the material of the chip, Si is mainly used because it is easy to manufacture by anisotropic etching, but it is also possible to use a material transparent to visible light such as Si 3 N 4 . In that case, a chip having a structure as shown in FIG. 11 can be used. Also in this case, by adjusting the incident angles of the three-wavelength excitation laser beams 5a, 5b, and 5c to the processed surface and refracting each excitation laser beam at a desired angle, the plane of the rear aluminum thin film 47b is adjusted. On the other hand, three-wavelength excitation laser beams 5a, 5b, and 5c are made incident at different plasmon resonance angles θ7a, 7b, and 7c.
 探針1、15の構成と機能は図4~図8に示すものと同じであるので、説明を省略する。図15及び図16に、上記原理に基づくSiカンチレバー4を搭載した走査プローブ顕微鏡の構成を示す。図15及び図16に示す走査プローブ顕微鏡の機能と構成は、図9及び図10に示すものと基本的に同じであるが、励起用レーザ光照射系50の構成と散乱光13を集光し光電変換する散乱光検出系110の構成が異なる。すなわち、図15及び図16に示すように、励起用レーザ光照射系51は3波長の固体レーザを搭載し、図12に示すように各波長のレーザ光がアルミコートSiチップの加工面に対し所望の入射角となるように3つの励起用レーザ光を出射する。3波長に対応した強度変調された散乱光13a、13b、13cは集光レンズ41により1点44に集光した後、ダイクロイックミラー及び干渉フィルタで構成される波長分離光学系45により、波長488nm、532nm、660nmの3波長成分に分離され、各波長成分が3つの光電子増倍管やホトダイオード等からなる検出器46で光電変換される。検出器46から出力される強度変調された3波長の各散乱光信号は信号処理・制御系120の3台のロックインアンプ70で同期検波され、この周波数成分のみが出力される。3台のロックインアンプ70からの散乱光信号は信号処理・制御系120の制御部80に送られ、XY圧電素子ステージ30からのXY信号と組み合わせられて3波長の近接場光画像が生成され、ディスプレイ90に出力される。同時に、Z圧電素子ステージ33からのZ信号も制御部80でXY信号と組み合わせられて試料表面の凹凸画像が生成され、ディスプレイ90に出力される。3波長RGBの近接場光画像を合成して、近接場カラー画像を生成して、ディスプレイ90に出力することも可能である。 Since the configuration and function of the probes 1 and 15 are the same as those shown in FIGS. 15 and 16 show the configuration of a scanning probe microscope equipped with the Si cantilever 4 based on the above principle. The function and configuration of the scanning probe microscope shown in FIGS. 15 and 16 are basically the same as those shown in FIGS. 9 and 10, but the configuration of the excitation laser light irradiation system 50 and the scattered light 13 are condensed. The configuration of the scattered light detection system 110 that performs photoelectric conversion is different. That is, as shown in FIGS. 15 and 16, the excitation laser beam irradiation system 51 is equipped with a three-wavelength solid-state laser, and the laser beam of each wavelength is applied to the processed surface of the aluminum-coated Si chip as shown in FIG. Three excitation laser beams are emitted so as to have a desired incident angle. The intensity-modulated scattered lights 13a, 13b, and 13c corresponding to the three wavelengths are collected at a single point 44 by a condenser lens 41, and then a wavelength of 488 nm by a wavelength separation optical system 45 including a dichroic mirror and an interference filter. The wavelength components are separated into three wavelength components of 532 nm and 660 nm, and each wavelength component is photoelectrically converted by a detector 46 including three photomultiplier tubes and photodiodes. The intensity-modulated three-wavelength scattered light signals output from the detector 46 are synchronously detected by the three lock-in amplifiers 70 of the signal processing / control system 120, and only this frequency component is output. The scattered light signals from the three lock-in amplifiers 70 are sent to the control unit 80 of the signal processing / control system 120 and combined with the XY signals from the XY piezoelectric element stage 30 to generate a three-wavelength near-field light image. Is output to the display 90. At the same time, the Z signal from the Z piezoelectric element stage 33 is also combined with the XY signal by the control unit 80 to generate an uneven image on the sample surface and output to the display 90. It is also possible to synthesize a near-field light image of three wavelengths RGB to generate a near-field color image and output it to the display 90.
 本実施例によれば、前述の通り、3波長各々についてプラズモン共鳴角で励起用レーザ光5a、5b、5cをアルミコートSiチップ2の後側アルミ薄膜47b平面上に入射することで、第1及び第2の実施例に比べ格段に大きな表面プラズモン9a、9b、9cを励起できる。その結果、チップ2先端部に第1及び第2の実施例に比べ格段に大きな局在した励起用近接場光(第1の近接場光)10a、10b、10cが生成されるので、探針1、15の先端に第1及び第2の実施例に比べ格段に大きな測定用近接場光(第2の近接場光)6a、6b、6cを生成することが可能となる。さらに、数100nmの範囲に局在した励起用近接場光(第1の近接場光)10で測定用近接場光(第2の近接場光)6a、6b、6cを生成する構成となっているので、不要な散乱光が激減し、背景雑音が大幅に低下する。その結果、SN比、コントラスト、測定再現性が向上したナノメートルオーダの分解能の近接場光画像を得ることが可能となる。さらに、本実施例では、RGB3波長でナノメートルオーダの分解能の近接場画像が得られるので、材料の同定がし易くなるという利点もある。 According to the present embodiment, as described above, the excitation laser beams 5a, 5b, and 5c are incident on the rear aluminum thin film 47b plane of the aluminum-coated Si chip 2 at the plasmon resonance angle for each of the three wavelengths. In addition, surface plasmons 9a, 9b, and 9c that are much larger than those of the second embodiment can be excited. As a result, the excitation near-field light (first near-field light) 10a, 10b, and 10c, which is much larger than the first and second embodiments, is generated at the tip portion of the chip 2. It is possible to generate measurement near-field light (second near-field light) 6a, 6b, and 6c at the tips of 1 and 15 that are much larger than those of the first and second embodiments. Furthermore, the near-field light for measurement (second near-field light) 6a, 6b, and 6c is generated by the near-field light for excitation (first near-field light) 10 localized in the range of several hundred nm. Therefore, unnecessary scattered light is drastically reduced and background noise is greatly reduced. As a result, it is possible to obtain a near-field light image having a resolution of nanometer order with improved SN ratio, contrast, and measurement reproducibility. Furthermore, in the present embodiment, a near-field image with a resolution of nanometer order can be obtained at three RGB wavelengths, so that there is an advantage that the material can be easily identified.
 尚、本実施例において、波長を3波長から4波長に増やすことも可能であるし、白色レーザ光と分光器を用いて近接場分光計測することも可能である。
また、上記総ての実施例において、励起用レーザ光と同一の波長ではなく、例えばラマンシフトした波長を検出する近接場ラマン分光計測することも可能である。
In this embodiment, the wavelength can be increased from 3 wavelengths to 4 wavelengths, or near-field spectroscopic measurement can be performed using white laser light and a spectroscope.
In all the embodiments described above, near-field Raman spectroscopic measurement that detects, for example, a Raman-shifted wavelength instead of the same wavelength as that of the excitation laser beam is also possible.
1 CNT探針
2 Siチップ
3、3a、3b 金薄膜
4 Siカンチレバー
5、5a、5b、5c 励起用レーザ光
6、6a、6b、6c 測定用近接場光(第2の近接場光)
7、7a、7b、7c プラズモン共鳴角
8 金/アルミ膜厚d
9、9a、9b、9c 表面プラズモン
10、10a、10b、10c 励起用近接場光(第1の近接場光)
11 金ナノ粒子
13、13a、13b、13c 散乱光(伝搬光)
14 金、あるいは銀、アルミなどの金属薄膜
15 Si探針、HDC(High Density Carbon)探針、金、銀、アルミ等の金属探針
18 Si層膜厚ds
20 試料
25、26 試料ホルダ
30、31 XY圧電素子ステージ
33 Z圧電素子ステージ
34 圧電素子アクチュエータ
35 半導体レーザ
36 レーザ光
37 4分割センサ
41 集光レンズ
42、46 検出器
43 受光面
44 1点
45 波長分離光学系
47、47a、47b アルミ薄膜
50、51 励起用レーザ光照射系
60 発振器
70 ロックインアンプ
80 制御部
90 ディスプレイ
100 光てこ検出系
110 散乱光検出系
120 信号処理・制御系
1 CNT probe 2 Si chip 3, 3 a, 3 b Gold thin film 4 Si cantilever 5, 5 a, 5 b, 5 c Excitation laser light 6, 6 a, 6 b, 6 c Measurement near-field light (second near-field light)
7, 7a, 7b, 7c Plasmon resonance angle 8 Gold / aluminum film thickness d
9, 9a, 9b, 9c Surface plasmon 10, 10a, 10b, 10c Excitation near-field light (first near-field light)
11 Gold nanoparticles 13, 13a, 13b, 13c Scattered light (propagating light)
14 Metal thin film such as gold, silver or aluminum 15 Si probe, HDC (High Density Carbon) probe, metal probe such as gold, silver or aluminum 18 Si layer film thickness ds
20 Samples 25 and 26 Sample holders 30 and 31 XY piezoelectric element stage 33 Z piezoelectric element stage 34 Piezoelectric element actuator 35 Semiconductor laser 36 Laser light 37 Quadrant sensor 41 Condensing lenses 42 and 46 Detector 43 Light receiving surface 44 1 point 45 Wavelength Separation optical system 47, 47a, 47b Aluminum thin film 50, 51 Excitation laser light irradiation system 60 Oscillator 70 Lock-in amplifier 80 Control unit 90 Display 100 Optical lever detection system 110 Scattered light detection system 120 Signal processing / control system

Claims (16)

  1.  検査対象試料上を相対的に走査する測定探針と、
     励起光照射系と、
     前記励起光照射系からの励起光の照射により前記測定探針を含む領域に励起用近接場光を生成する励起用近接場光生成系と、
     前記励起用近接場光により前記測定探針と前記試料との間に発生した測定用近接場光の散乱光を検出する散乱光検出系とを備えた走査プローブ顕微鏡。
    A measurement probe that relatively scans the sample to be inspected;
    An excitation light irradiation system;
    An excitation near-field light generation system that generates excitation near-field light in a region including the measurement probe by irradiation of excitation light from the excitation light irradiation system;
    A scanning probe microscope comprising: a scattered light detection system that detects scattered light of the measurement near-field light generated between the measurement probe and the sample by the excitation near-field light.
  2.  請求項1に記載の走査プローブ顕微鏡において、
     前記励起用近接場光生成系は、前記励起光をプラズモン共鳴角で入射させることを特徴とする走査プローブ顕微鏡。
    The scanning probe microscope according to claim 1,
    The scanning probe microscope characterized in that the excitation near-field light generation system makes the excitation light incident at a plasmon resonance angle.
  3.  請求項1に記載の走査プローブ顕微鏡において、
     前記励起用近接場光生成系は、前記励起光をプラズモン共鳴させることによりプラズモンを発生させ、当該プラズモンにより前記励起用近接場光を生成することを特徴とする走査プローブ顕微鏡。
    The scanning probe microscope according to claim 1,
    The scanning near-field light generation system generates plasmons by causing plasmon resonance of the excitation light, and generates the excitation near-field light by the plasmons.
  4.  請求項1に記載の走査プローブ顕微鏡において、
     前記励起用近接場光生成系は、金属コートしたチップを備え、前記励起光を前記チップ内に入射し、さらに金属・チップ界面に対してプラズモン共鳴角で入射することを特徴とする走査プローブ顕微鏡。
    The scanning probe microscope according to claim 1,
    The near-field light generation system for excitation includes a metal-coated chip, and the excitation light is incident on the chip and further incident on the metal / chip interface at a plasmon resonance angle. .
  5.  請求項4に記載の走査プローブ顕微鏡において、
     前記チップは三角錐状であり、
     前記チップの稜線上に前記測定探針を設け、
     前記チップの後側金属薄膜の平面上に前記励起光を照射して反射させ、前記チップの稜線上に集光して表面プラズモンを励起することを特徴とする走査プローブ顕微鏡。
    The scanning probe microscope according to claim 4,
    The tip has a triangular pyramid shape,
    The measurement probe is provided on the ridge line of the chip,
    A scanning probe microscope characterized by irradiating and reflecting the excitation light on a plane of a rear metal thin film of the chip and condensing it on a ridge line of the chip to excite surface plasmons.
  6.  請求項4に記載の走査プローブ顕微鏡において、
     前記チップは三角錐状であり、
     前記チップの稜線上に前記測定探針を設け、
     前記チップの後側金属薄膜の平面上に前記励起光を照射して、当該平面上に表面プラズモンを励起することを特徴とする走査プローブ顕微鏡。
    The scanning probe microscope according to claim 4,
    The tip has a triangular pyramid shape,
    The measurement probe is provided on the ridge line of the chip,
    A scanning probe microscope characterized by irradiating the excitation light onto a plane of a rear metal thin film of the chip to excite surface plasmons on the plane.
  7.  請求項1に記載の走査プローブ顕微鏡において、
     前記散乱光検出系は、前記測定探針先端の測定用近接場光の試料表面層での散乱光を検出することを特徴とする走査プローブ顕微鏡。
    The scanning probe microscope according to claim 1,
    The scanning probe microscope characterized in that the scattered light detection system detects scattered light on a sample surface layer of measurement near-field light at the tip of the measurement probe.
  8.  請求項1に記載の走査プローブ顕微鏡において、
     前記散乱光検出系は、前記測定探針先端の測定用近接場光の試料表面層での散乱光のうち、試料を透過した散乱光を検出することを特徴とする走査プローブ顕微鏡。
    The scanning probe microscope according to claim 1,
    The scanning light microscope is characterized in that the scattered light detection system detects scattered light transmitted through the sample from scattered light in the sample surface layer of measurement near-field light at the tip of the measurement probe.
  9.  請求項1に記載の走査プローブ顕微鏡において、
     前記励起光照射系は、R,G,Bの複数波長の励起光を照射し、
     前記散乱光検出系は、前記測定探針と前記試料との間に発生した測定用近接場光の散乱光のR,G,B成分を検出することを特徴とする走査プローブ顕微鏡。
    The scanning probe microscope according to claim 1,
    The excitation light irradiation system irradiates excitation light having a plurality of wavelengths of R, G, and B,
    The scanning probe microscope characterized in that the scattered light detection system detects R, G, B components of scattered light of the near-field light for measurement generated between the measurement probe and the sample.
  10.  請求項9に記載の走査プローブ顕微鏡において、
     前記励起用近接場光生成系は、金属コートした三角錐状のチップを備え、前記チップの後側金属薄膜の平面上に前記励起光を照射して、当該平面上で表面プラズモンを励起するものであり、
     前記チップの後側平面部が薄膜化されていることを特徴とする走査プローブ顕微鏡。
    The scanning probe microscope according to claim 9,
    The excitation near-field light generating system includes a metal-coated triangular pyramid-shaped chip, and irradiates the excitation light onto the plane of the rear metal thin film of the chip to excite surface plasmons on the plane. And
    A scanning probe microscope characterized in that a rear flat portion of the chip is thinned.
  11.  請求項1に記載の走査プローブ顕微鏡において、
     前記測定探針は、内部に当該測定探針の軸方向に、金属ナノ粒子或いは金属ナノロッドが充填されていることを特徴とする走査プローブ顕微鏡。
    The scanning probe microscope according to claim 1,
    The scanning probe microscope, wherein the measurement probe is filled with metal nanoparticles or metal nanorods in the axial direction of the measurement probe.
  12.  請求項1に記載の走査プローブ顕微鏡において、
     前記測定探針は、先端に金属ナノ粒子が充填されていることを特徴とする走査プローブ顕微鏡。
    The scanning probe microscope according to claim 1,
    The measurement probe has a tip filled with metal nanoparticles, and is a scanning probe microscope.
  13.  請求項1に記載の走査プローブ顕微鏡において、
     前記測定探針は、先端部を含む表面に金属薄膜をコーティングしたことを特徴とする走査プローブ顕微鏡。
    The scanning probe microscope according to claim 1,
    The scanning probe microscope characterized in that the measurement probe has a metal thin film coated on the surface including the tip.
  14.  測定探針を検査対象試料に対して相対的に走査し、
     励起光の照射により前記測定探針を含む領域に励起用近接場光を生成し、
     前記励起用近接場光により前記測定探針と前記試料との間で測定用近接場光を発生させ、
     前記測定用近接場光の散乱光を検出することを特徴とする走査プローブ顕微鏡を用いた試料の観察方法。
    Scan the measurement probe relative to the sample to be inspected,
    Generate excitation near-field light in an area including the measurement probe by irradiation of excitation light,
    Generate near-field light for measurement between the measurement probe and the sample by the near-field light for excitation,
    A sample observation method using a scanning probe microscope, characterized by detecting scattered light of the measurement near-field light.
  15.  請求項14に記載の走査プローブ顕微鏡を用いた試料の観察方法において、
     前記励起光をプラズモン共鳴角で入射させることを特徴とする走査プローブ顕微鏡を用いた試料の観察方法。
    In the observation method of the sample using the scanning probe microscope according to claim 14,
    A sample observation method using a scanning probe microscope, wherein the excitation light is incident at a plasmon resonance angle.
  16.  請求項14に記載の走査プローブ顕微鏡を用いた試料の観察方法において、
     前記励起用近接場光の生成は、前記励起光をプラズモン共鳴させることによりプラズモンを発生させ、当該プラズモンにより前記励起用近接場光を生成することを特徴とする試料の観察方法。
    In the observation method of the sample using the scanning probe microscope according to claim 14,
    The excitation near-field light is generated by generating plasmons by causing plasmon resonance of the excitation light, and generating the excitation near-field light by the plasmons.
PCT/JP2014/078804 2014-10-29 2014-10-29 Scanning probe microscope and sample observation method using same WO2016067398A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/078804 WO2016067398A1 (en) 2014-10-29 2014-10-29 Scanning probe microscope and sample observation method using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/078804 WO2016067398A1 (en) 2014-10-29 2014-10-29 Scanning probe microscope and sample observation method using same

Publications (1)

Publication Number Publication Date
WO2016067398A1 true WO2016067398A1 (en) 2016-05-06

Family

ID=55856784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078804 WO2016067398A1 (en) 2014-10-29 2014-10-29 Scanning probe microscope and sample observation method using same

Country Status (1)

Country Link
WO (1) WO2016067398A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019007756A (en) * 2017-06-21 2019-01-17 株式会社日立製作所 Scanning near-field optical microscope, probe for scanning probe microscope, and sample observation method
US11733264B2 (en) 2019-07-31 2023-08-22 Hitachi High-Tech Corporation Cantilever, scanning probe microscope, and measurement method using scanning probe microscope

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010197208A (en) * 2009-02-25 2010-09-09 Hitachi Ltd Scanning probe microscope and sample observation method using same
JP2010266452A (en) * 2010-06-28 2010-11-25 Olympus Corp Scanning optical near-field microscope
JP2010286419A (en) * 2009-06-15 2010-12-24 Hitachi High-Technologies Corp Microcontact type prober
WO2014006999A1 (en) * 2012-07-04 2014-01-09 株式会社日立製作所 Scanning probe microscope

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010197208A (en) * 2009-02-25 2010-09-09 Hitachi Ltd Scanning probe microscope and sample observation method using same
JP2010286419A (en) * 2009-06-15 2010-12-24 Hitachi High-Technologies Corp Microcontact type prober
JP2010266452A (en) * 2010-06-28 2010-11-25 Olympus Corp Scanning optical near-field microscope
WO2014006999A1 (en) * 2012-07-04 2014-01-09 株式会社日立製作所 Scanning probe microscope

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TOSHIHIKO NAKATA ET AL.: "Single-Nanometer Spatial Resolution by Plasmon-Excitation CNT Optical Probe", 74TH JSAP AUTUMN MEETING KOEN YOKOSHU, 2013, pages 18a - C14-10 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019007756A (en) * 2017-06-21 2019-01-17 株式会社日立製作所 Scanning near-field optical microscope, probe for scanning probe microscope, and sample observation method
US11733264B2 (en) 2019-07-31 2023-08-22 Hitachi High-Tech Corporation Cantilever, scanning probe microscope, and measurement method using scanning probe microscope

Similar Documents

Publication Publication Date Title
JP5292128B2 (en) Scanning probe microscope and sample observation method using the same
US8181268B2 (en) Scanning probe microscope and method of observing sample using the same
Stadler et al. Developments in and practical guidelines for tip-enhanced Raman spectroscopy
JP5667968B2 (en) Scanning probe microscope and sample observation method using the same
JP6039775B2 (en) Plasmon evaluation method, plasmon evaluation apparatus, and optical pickup
WO2015033681A1 (en) Scanning probe microscope and sample observation method using same
US10877065B2 (en) Near field scanning probe microscope, probe for scanning probe microscope, and sample observation method
JP6014502B2 (en) Scanning probe microscope and sample observation method using the same
WO2015178201A1 (en) Scanning probe microscope and sample observation method using same
WO2016067398A1 (en) Scanning probe microscope and sample observation method using same
Celebrano et al. Hollow-pyramid based scanning near-field optical microscope coupled to femtosecond pulses: A tool for nonlinear optics at the nanoscale
JP5246667B2 (en) Ultraviolet near-field optical microscopy and tip-enhanced Raman spectroscopy
TWI758794B (en) Cantilever and Scanning Probe Microscopes
WO2014045646A1 (en) Scanning probe microscope and method for observing sample using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14905088

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14905088

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP