JP2014057919A - Waste water treatment apparatus, column, and waste water treatment method - Google Patents

Waste water treatment apparatus, column, and waste water treatment method Download PDF

Info

Publication number
JP2014057919A
JP2014057919A JP2012204244A JP2012204244A JP2014057919A JP 2014057919 A JP2014057919 A JP 2014057919A JP 2012204244 A JP2012204244 A JP 2012204244A JP 2012204244 A JP2012204244 A JP 2012204244A JP 2014057919 A JP2014057919 A JP 2014057919A
Authority
JP
Japan
Prior art keywords
water
wastewater treatment
treatment apparatus
treated
denitrification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012204244A
Other languages
Japanese (ja)
Inventor
Ju-Hyun Kim
主鉉 金
Hitoshi Uematsu
仁 上松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of National Colleges of Technologies Japan
Original Assignee
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of National Colleges of Technologies Japan filed Critical Institute of National Colleges of Technologies Japan
Priority to JP2012204244A priority Critical patent/JP2014057919A/en
Publication of JP2014057919A publication Critical patent/JP2014057919A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Treatment Of Biological Wastes In General (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a waste water treatment apparatus which allows for efficient biological ammoniacal nitrogen removal.SOLUTION: A column 20 is filled with a filler 200 i.e. a herbaceous biomass delignification treated with alkali. A denitrification reaction tank 100 internally includes a plurality of columns 20 vertically disposed on a partition 110. The denitrification reaction tank 100 is provided with a valve 160 for injecting water to be treated at a lower part, and a valve 180 for acquiring treated water at an upper part, so that the water to be treated is supplied in upward direction.

Description

本発明は、廃水処理装置、カラム、及び廃水処理方法に係り、特に生物学的脱窒を行うための廃水処理装置、カラム、及び廃水処理方法に関する。   The present invention relates to a wastewater treatment apparatus, a column, and a wastewater treatment method, and more particularly to a wastewater treatment apparatus, a column, and a wastewater treatment method for performing biological denitrification.

従来から廃水処理施設では、主に微生物を利用して廃水(被処理水)中の亜硝酸性窒素、硝酸性窒素を易分解性有機物の共存下において還元し、ガス態として除去する(以下、「脱窒」という。)、生物学的脱窒方法が用いられている。   Conventionally, wastewater treatment facilities mainly use microorganisms to reduce nitrite nitrogen and nitrate nitrogen in wastewater (treated water) in the presence of readily decomposable organic substances, and remove them in the gaseous state (hereinafter referred to as “ "Denitrification"), a biological denitrification method is used.

従来の微生物を利用した脱窒方法として、特許文献1を参照すると、排水中のアンモニア性窒素を好気性独立栄養細菌である硝化菌で硝化処理する硝化塔と、硝酸性窒素、亜硝酸性窒素を嫌気性細菌である脱窒菌で脱窒処理する脱窒塔とを有する生物学的硝化脱窒装置を用いた窒素含有排水の処理方法であって、硝化脱窒処理に伴い生成する二酸化炭素が溶解した硝化脱窒処理後の処理水を前記硝化塔に供給し、前記処理水に溶解する二酸化炭素を前記硝化菌の増殖に必要な無機炭素源とすることを特徴とする窒素含有排水の処理方法が記載されている(以下、従来技術1とする。)。
従来技術1によれば、特別な装置を使用することなく硝化菌の増殖に必要な無機炭素を供給可能で、処理コストの安い窒素含有排水の処理方法を提供する。
As a conventional denitrification method using microorganisms, referring to Patent Document 1, a nitrification tower that nitrifies ammoniacal nitrogen in wastewater with nitrifying bacteria that are aerobic autotrophic bacteria, nitrate nitrogen, and nitrite nitrogen Is a treatment method of nitrogen-containing wastewater using a biological nitrification denitrification apparatus having a denitrification tower for denitrification treatment with a denitrifying bacterium that is an anaerobic bacterium. Treatment of nitrogen-containing wastewater characterized by supplying treated water after nitrification denitrification treatment to the nitrification tower and using carbon dioxide dissolved in the treatment water as an inorganic carbon source necessary for the growth of the nitrifying bacteria A method is described (hereinafter referred to as Prior Art 1).
According to the prior art 1, there is provided a method for treating nitrogen-containing wastewater that can supply inorganic carbon necessary for the growth of nitrifying bacteria without using a special device and is inexpensive.

特開2011−62653号公報JP 2011-62653 A

ここで、従来技術1のように生物学的アンモニア性窒素除去方法を、廃棄物埋立地浸出水のように微生物のエネルギー源となる易分解性有機物やリン酸態リンが少ない廃水に用いる場合には、水素供与体としてメタノール、リン源としてリン酸を追加して使用する必要があった。
しかしながら、メタノールやリン酸等の薬剤を添加する場合、廃水処理のコストがかかるという問題があった。
また、廃水の処理に際して、小さい設置面積で被処理水を処理することができ、薬注タンクや薬注ポンプを必要としない廃水処理装置が求められていた。
Here, when the biological ammonia nitrogen removal method as in the prior art 1 is used for waste water containing less easily decomposable organic matter and phosphoric phosphorus, which are microbial energy sources, such as waste landfill leachate. Requires the addition of methanol as the hydrogen donor and phosphoric acid as the phosphorus source.
However, when chemicals such as methanol and phosphoric acid are added, there is a problem that the cost of wastewater treatment is high.
In addition, when treating wastewater, there has been a demand for a wastewater treatment apparatus that can treat the water to be treated with a small installation area and does not require a chemical injection tank or chemical injection pump.

本発明は、このような状況に鑑みてなされたものであり、上述の課題を解消することを課題とする。   This invention is made | formed in view of such a condition, and makes it a subject to eliminate the above-mentioned subject.

本発明の廃水処理装置は、アルカリで脱リグニン処理された草本系バイオマスが充填され通水性を有するカラムが内部に、鉛直方向に配置され、下部から上向流式に被処理水が供給される脱窒反応槽を備えることを特徴とする。
本発明の廃水処理装置は、前記草本系バイオマスは、水温・水質の変動に対し適正な充填率に圧縮、加圧成形されることを特徴とする。
本発明の廃水処理装置は、前記草本系バイオマスが葦属(Phragmites)であることを特徴とする。
本発明の廃水処理装置は、前記葦属の前記カラムへの充填率は25%〜65%であることを特徴とする。
本発明の廃水処理装置は、前記草本系バイオマスがもみ殻であることを特徴とする。
本発明の廃水処理装置は、前記もみ殻の前記カラムへの充填率は15%〜45%であることを特徴とする。
本発明の廃水処理装置は、前記カラムは、脱窒に伴う酸化還元電位が所定電圧以上で推移する場合に交換されることを特徴とする。
本発明の廃水処理装置は、前記酸化還元電位により、前記被処理水の適正な接触滞留時間を調整することを特徴とする。
本発明のカラムは、アルカリで脱リグニン処理された草本系バイオマスが充填され、前記草本系バイオマスが水温・水質の変動に対し適正な充填率に圧縮、加圧成形されることを特徴とする。
本発明の廃水処理方法は、アルカリで脱リグニン処理をした草本系バイオマスを微生物の担体として被処理水と接触させて脱窒することを特徴とする。
本発明の廃水処理方法は、前記草本系バイオマスが葦属(Phragmites)であることを特徴とする。
本発明の廃水処理方法は、前記被処理水が廃棄物埋立地浸出水であることを特徴とする。
In the wastewater treatment apparatus of the present invention, a water-permeable column filled with herbaceous biomass that has been delignified with alkali is disposed in the vertical direction, and the water to be treated is supplied upward from the bottom. A denitrification reaction tank is provided.
The wastewater treatment apparatus of the present invention is characterized in that the herbaceous biomass is compressed and pressure-molded to an appropriate filling rate against fluctuations in water temperature and water quality.
The wastewater treatment apparatus of the present invention is characterized in that the herbaceous biomass is Phragmites.
The wastewater treatment apparatus according to the present invention is characterized in that a packing rate of the metal in the column is 25% to 65%.
In the wastewater treatment apparatus of the present invention, the herbaceous biomass is rice husk.
The wastewater treatment apparatus of the present invention is characterized in that the filling rate of the rice husks into the column is 15% to 45%.
The wastewater treatment apparatus of the present invention is characterized in that the column is replaced when the oxidation-reduction potential accompanying denitrification changes at a predetermined voltage or higher.
The wastewater treatment apparatus of the present invention is characterized in that an appropriate contact residence time of the treated water is adjusted by the oxidation-reduction potential.
The column of the present invention is filled with herbaceous biomass that has been delignified with an alkali, and the herbaceous biomass is compressed and pressure-molded to an appropriate filling rate against changes in water temperature and water quality.
The wastewater treatment method of the present invention is characterized in that herbaceous biomass subjected to delignification treatment with alkali is contacted with water to be treated as a microorganism carrier for denitrification.
The wastewater treatment method of the present invention is characterized in that the herbaceous biomass is Phragmites.
The wastewater treatment method of the present invention is characterized in that the treated water is waste landfill leachate.

本発明によれば、アルカリで脱リグニン処理をした草本系バイオマスを用いることで、メタノールやリン酸などの薬剤を添加する必要がなく廃水処理の費用を下げられ、薬注タンクや薬注ポンプを必要としない廃水処理方法を提供することができる。   According to the present invention, by using herbaceous biomass that has been delignified with alkali, it is not necessary to add chemicals such as methanol and phosphoric acid, and the cost of wastewater treatment can be reduced. A wastewater treatment method that is not required can be provided.

本発明の実施の形態に係る廃水処理装置1の外観の写真である。It is a photograph of the appearance of waste water treatment equipment 1 concerning an embodiment of the invention. 本発明の実施の形態に係る廃水処理装置1の平面図及び側面図である。It is the top view and side view of the wastewater treatment apparatus 1 which concern on embodiment of this invention. 本発明の実施の形態に係るカラム20への植物体の充填を示す斜視図である。It is a perspective view which shows filling of the plant body to the column 20 which concerns on embodiment of this invention. 本発明の実施の形態に係るカラム20への植物体の充填の工程を示す概念図である。It is a conceptual diagram which shows the process of the filling of the plant body to the column 20 which concerns on embodiment of this invention. 本発明の実施の形態に係る実施例1の可溶化率を示すグラフである。It is a graph which shows the solubilization rate of Example 1 which concerns on embodiment of this invention. 本発明の実施の形態に係る実施例2の廃水処理装置1、2、3、4の構成の概要を示す概念図である。It is a conceptual diagram which shows the outline | summary of a structure of the waste water treatment apparatus 1, 2, 3, 4 of Example 2 which concerns on embodiment of this invention. 本発明の実施の形態に係る実施例2の上向流式反応槽および横流式反応槽の比較結果を示す図である。It is a figure which shows the comparison result of the upflow type reaction tank of Example 2 which concerns on embodiment of this invention, and a crossflow type reaction tank. 本発明の実施の形態に係る実施例3の脱窒に及ぼす充填率の影響を示す図である。It is a figure which shows the influence of the filling rate which acts on denitrification of Example 3 which concerns on embodiment of this invention. 本発明の実施の形態に係る実施例4の従来のメタノール脱窒法との脱窒結果の比較を示すグラフである。It is a graph which shows the comparison of the denitrification result with the conventional methanol denitrification method of Example 4 which concerns on embodiment of this invention. 本発明の実施の形態に係る実施例4の亜硝酸・硝酸性窒素濃度と酸化還元電位との関係を示すグラフである。It is a graph which shows the relationship between the nitrous acid and nitrate nitrogen concentration of Example 4 which concerns on embodiment of this invention, and oxidation-reduction potential. 本発明の実施の形態に係る実施例5の廃水処理装置5、6、7、8の構成を示す図である。It is a figure which shows the structure of the waste water treatment apparatus 5, 6, 7, 8 of Example 5 which concerns on embodiment of this invention. 本発明の実施の形態に係る実施例5の結果を示す図である。It is a figure which shows the result of Example 5 which concerns on embodiment of this invention. 本発明の実施の形態に係る実施例5の廃水処理装置5の脱窒結果を示すグラフである。It is a graph which shows the denitrification result of the waste water treatment apparatus 5 of Example 5 which concerns on embodiment of this invention. 本発明の実施の形態に係る実施例5の廃水処理装置7の脱窒結果を示すグラフである。It is a graph which shows the denitrification result of the waste water treatment apparatus of Example 5 which concerns on embodiment of this invention.

<実施の形態>
〔廃水処理装置1の構成〕
図1〜図2を参照して、本発明の実施の形態に係る廃水処理装置1の構成について説明する。図1(a)は廃水処理装置1の側面の写真、図1(b)は廃水処理装置1の平面の写真である。また、図2(a)は廃水処理装置1の平面図、図2(b)は廃水処理装置1の側面図である。
廃水処理装置1は、本発明の実施の形態に係る生物学的アンモニア性窒素除去方法を実現するための装置の一例である。廃水処理装置1は、脱窒反応槽100に、被処理水投入バルブ160、処理水取得バルブ180、及び汚泥引き抜きバルブ190が備えられている。また、脱窒反応槽100内部には、カラム20が複数配置され、このカラム20を支持する仕切り110が備えられている。
<Embodiment>
[Configuration of waste water treatment apparatus 1]
With reference to FIGS. 1-2, the structure of the waste water treatment apparatus 1 which concerns on embodiment of this invention is demonstrated. FIG. 1A is a photograph of a side surface of the wastewater treatment apparatus 1, and FIG. 1B is a photograph of a plane of the wastewater treatment apparatus 1. 2A is a plan view of the wastewater treatment apparatus 1, and FIG. 2B is a side view of the wastewater treatment apparatus 1.
The wastewater treatment apparatus 1 is an example of an apparatus for realizing the biological ammonia nitrogen removal method according to the embodiment of the present invention. In the wastewater treatment apparatus 1, a denitrification reaction tank 100 is provided with a treated water input valve 160, a treated water acquisition valve 180, and a sludge extraction valve 190. Further, a plurality of columns 20 are arranged inside the denitrification reaction tank 100, and a partition 110 that supports the column 20 is provided.

カラム20は、内部に植物体等の充填材200を充填し、被処理水(廃水)から植種された/又は植種液中の脱窒菌又はセルロース分解菌を付着させ、脱窒を行わせる、例えば円筒状のカラムである。この脱窒菌又はセルロース分解菌の植種液としては、下水処理場の初沈汚泥殿、活性汚泥、嫌気性消化汚泥、河川底質、土壌抽出液を直接又は希釈して用いることができる。
カラム20の側面は、充填材200が流出しない程度のメッシュの網目や孔が複数開けられており、被処理水を内部に滲入させることができる。
充填材200は、後述するように植物体がプレスされて充填されるため、自重と圧密により下部ほど空隙が減少し、脱窒に有効な嫌気的環境が自然に形成される。このカラム20への充填材200の充填の詳細については後述する。
The column 20 is filled with a filler 200 such as a plant body, and is denitrified by attaching denitrifying bacteria or cellulose-decomposing bacteria in the seeding liquid planted from the treated water (waste water). For example, a cylindrical column. As a seeding solution for this denitrifying bacterium or cellulose-degrading bacterium, primary sedimentation sludge, activated sludge, anaerobic digestion sludge, river sediment, and soil extract from a sewage treatment plant can be used directly or diluted.
The side surface of the column 20 is provided with a plurality of mesh nets and holes to the extent that the filler 200 does not flow out, so that the water to be treated can be infiltrated into the inside.
Since the filling material 200 is filled with the plant body pressed as described later, voids decrease toward the lower part due to its own weight and compaction, and an anaerobic environment effective for denitrification is naturally formed. The details of filling the column 20 with the filler 200 will be described later.

脱窒反応槽100は、例えば、ステンレスやチタン等の耐腐食性の素材で作成された円筒状の反応槽である。脱窒反応槽100は、例えば、長手方向が重力方向と同じ垂直方向になるよう配置され、内部に垂直にカラム20を複数載置する。この上で、脱窒反応槽100は、例えば、下面が封止されて被処理水を保持し、上面が解放されて大気に接するように構成される。
脱窒反応槽100は、仕切り110が配置され、この上に充填材が充填されたカラム20が複数配置される。この際、仕切り110が複数配置されて、カラム20が複数段に配置されてもよい。図2は、仕切り110を2つ用いて、カラム20を2段に配置した例である。
また、脱窒反応槽100は、下部に被処理水投入バルブ160及び汚泥引き抜きバルブ190が備えられ、上部に処理水取得バルブ180が備えられている。これにより、脱窒反応槽100は、上向流式反応槽を構成する。
The denitrification reaction tank 100 is a cylindrical reaction tank made of a corrosion-resistant material such as stainless steel or titanium. For example, the denitrification reaction tank 100 is arranged such that the longitudinal direction is the same vertical direction as the gravity direction, and a plurality of columns 20 are placed vertically inside. On this, the denitrification reaction tank 100 is configured such that, for example, the lower surface is sealed to hold the water to be treated, and the upper surface is released to be in contact with the atmosphere.
In the denitrification reaction tank 100, a partition 110 is disposed, and a plurality of columns 20 filled with a filler are disposed thereon. At this time, a plurality of partitions 110 may be arranged, and the columns 20 may be arranged in a plurality of stages. FIG. 2 shows an example in which two columns 110 are used and the column 20 is arranged in two stages.
Further, the denitrification reaction tank 100 is provided with a treated water input valve 160 and a sludge extraction valve 190 in the lower part, and a treated water acquisition valve 180 in the upper part. Thereby, the denitrification reaction tank 100 comprises an upward flow type reaction tank.

仕切り110は、カラム20を支持するための、メッシュや孔の空いた耐腐食性の素材の板等である。仕切り110は、脱窒反応槽100の底面から所定距離だけ上方に固定される。また、仕切り110を複数配置する場合には、カラム20の高さに合わせて固定してもよい。
この仕切り110の下部に沈殿汚泥が貯留され、上部に載置されたカラム20内で脱窒反応を進行させる。なお、仕切り110を用いない構成や、カラム20を上部から吊すような構成も可能である。
The partition 110 is a plate made of a corrosion-resistant material having a mesh or a hole for supporting the column 20. The partition 110 is fixed upward from the bottom surface of the denitrification reaction tank 100 by a predetermined distance. When a plurality of partitions 110 are arranged, they may be fixed according to the height of the column 20.
Precipitation sludge is stored in the lower part of this partition 110, and denitrification reaction is advanced in the column 20 mounted in the upper part. In addition, the structure which does not use the partition 110, or the structure which suspends the column 20 from upper part is also possible.

被処理水投入バルブ160は、脱窒を行うための廃水(原水)等の被処理水を、脱窒反応槽100内に投入又は停止するためのバルブである。加えて、被処理水投入バルブ160により、開閉量を変更して被処理水の投入量を調整してもよい。   The treated water charging valve 160 is a valve for charging or stopping treated water such as waste water (raw water) for performing denitrification into the denitrification reaction tank 100. In addition, the amount of water to be treated may be adjusted by changing the amount of opening and closing by the water to be treated inlet valve 160.

処理水取得バルブ180は、脱窒を終えた処理水を採取するためのバルブである。この処理水は、別途、別の廃水処理装置に投入されてもよい。   The treated water acquisition valve 180 is a valve for collecting treated water that has been denitrified. This treated water may be separately supplied to another wastewater treatment apparatus.

汚泥引き抜きバルブ190は、被処理水中の汚泥や脱窒反応槽から発生して沈殿する汚泥を引き抜くためのバルブである。図2に示したように、被処理水投入バルブ160は、仕切り110の下部に備えられており、被処理水の投入の勢いにより、汚泥引き抜きバルブ190から沈殿した汚泥を効率的に取り出すことが可能となる。   The sludge extraction valve 190 is a valve for extracting sludge in the water to be treated and sludge generated and precipitated from the denitrification reaction tank. As shown in FIG. 2, the treated water input valve 160 is provided in the lower part of the partition 110, and the sludge settled from the sludge extraction valve 190 can be efficiently taken out by the momentum of input of the treated water. It becomes possible.

また、廃水処理装置1は、下記の実施例2に係る図6で示すように、被処理水槽40、ポンプ50、被処理水ライン60等を接続することができる。さらに、後述するように、植物体等の充填材を脱窒反応槽100、101等に直接充填することもできる。   Moreover, as shown in FIG. 6 which concerns on the following Example 2, the waste water treatment apparatus 1 can connect the to-be-treated water tank 40, the pump 50, the to-be-treated water line 60, etc. Furthermore, as will be described later, a filler such as a plant can be directly filled into the denitrification reaction tanks 100, 101, and the like.

(上向流式反応槽の構成)
上述したように、脱窒反応槽100は、カラム20又は植物体等の充填材が、長手方向が重力に対する垂直方向に配置される、上向流式に構成することが好適である。これは、上向流式の方が被処理水の大気との接触面積が小さくなり、結果として嫌気的環境が維持されやすくなるためである。
実際に、後述する実施例2に示すように、水平に廃水を流す横流式である廃水処理装置3及び廃水処理装置4(図6)と、上向流式の廃水処理装置1及び廃水処理装置2の脱窒効果を比較した結果、上向流式が高い脱窒能を示した。
(Configuration of upward flow reactor)
As described above, the denitrification reaction tank 100 is preferably configured in an upward flow type in which the packing material such as the column 20 or the plant body is arranged in a direction perpendicular to gravity. This is because the upward flow type has a smaller contact area with the atmosphere of the water to be treated, and as a result, an anaerobic environment is easily maintained.
Actually, as shown in Example 2 described later, a wastewater treatment device 3 and a wastewater treatment device 4 (FIG. 6) that are a horizontal flow type in which wastewater flows horizontally, an upward flow type wastewater treatment device 1 and a wastewater treatment device. As a result of comparing the denitrification effect of No. 2, the upward flow type showed high denitrification ability.

また、上述したように、脱窒反応槽100は、被処理水投入バルブ160が脱窒反応槽100の下部に備えられ、処理水取得バルブ180が脱窒反応槽100の上部に備えられている。これは、上述したように、カラム20の下部には、脱窒に有効な嫌気的環境が自然に形成されているため、酸素を含む埋立地浸出水の硝化処理水を被処理水として下部から流入させることが好適なためである。さらに、上向流式に構成すると、液面上昇効果により充填材を含む浮遊物質の沈降速度が減少して目詰まりがおこりにくく、下部の汚泥引き抜きバルブ190により、沈殿汚泥を除去しやすくなる。
このため、脱窒反応槽100は、被処理水を下から上へ流す上向流式反応槽として構成することが脱窒に効果的となる。
Further, as described above, the denitrification reaction tank 100 has the treated water input valve 160 provided at the lower part of the denitrification reaction tank 100 and the treated water acquisition valve 180 provided at the upper part of the denitrification reaction tank 100. . As described above, since an anaerobic environment effective for denitrification is naturally formed in the lower part of the column 20, the nitrification water of the landfill leachate containing oxygen is used as the treated water from the lower part. This is because it is preferable to flow in. Further, when the upward flow type is configured, the sedimentation rate of the suspended matter including the filler is reduced due to the liquid level rising effect, and clogging is less likely to occur, and the sludge withdrawing valve 190 at the lower portion makes it easier to remove the precipitated sludge.
For this reason, it becomes effective for denitrification to comprise the denitrification reaction tank 100 as an upward flow type reaction tank which flows a to-be-processed water from the bottom to the top.

なお、カラム20及び脱窒反応槽100の形状等は、円筒形に限らず、楕円筒、方柱、多角形柱等の各種形状を用いることができる。
また、脱窒反応槽100を円盤上に配置し、回転させて遠心力を重力の代わりにかけるような構成も可能である。これにより、汚泥を遠心力で除去しやすくなるという効果も得られる。
The shapes of the column 20 and the denitrification reaction tank 100 are not limited to the cylindrical shape, and various shapes such as an elliptic cylinder, a rectangular column, and a polygonal column can be used.
Moreover, the structure which arrange | positions the denitrification reaction tank 100 on a disk, rotates, and applies a centrifugal force instead of gravity is also possible. Thereby, the effect that it becomes easy to remove sludge with a centrifugal force is also acquired.

〔カラム20の製造方法〕
次に、図3と図4とを参照して、本発明の実施の形態に係るアンモニア性窒素除去方法に用いるカラム20の製造方法について説明する。
図3に示すように、カラム20には、バイオマス担体である植物体を充填材200として充填する。
この際、カラム20に用いる充填材200は、脱窒に必要な炭素源・燐源や細菌の付着担体となるセルロースを含む各種の植物体を用いることが可能である。
特に、この植物体として、後述するように、アルカリ処理された葦を用いることが好適である。
[Method for producing column 20]
Next, with reference to FIG. 3 and FIG. 4, the manufacturing method of the column 20 used for the ammonia nitrogen removal method which concerns on embodiment of this invention is demonstrated.
As shown in FIG. 3, the column 20 is packed with a plant body that is a biomass carrier as a filler 200.
At this time, the packing material 200 used for the column 20 can be a variety of plant bodies including a carbon source / phosphorus source necessary for denitrification and cellulose serving as a bacterial adhesion carrier.
In particular, it is preferable to use an alkali-treated cocoon as the plant body as described later.

(充填材200の構成)
より具体的に説明すると、充填材200に用いる植物体としては、草本系のバイオマスである雑草、稲藁、もみ殻、葦等を用いることが可能である。また、植物体として、木質系のバイオマスである間伐材、剪定材、樹皮、木片、廃材、木チップ、オガクズ、鉋屑、割り箸、古畳、古紙、廃パルプを固定したもの等を用いることもできる。
このうち、本実施形態に係る充填材200としては、特に草本系のバイオマスとして、アルカリ処理された葦属(Phragmites)の茎等を用いることが好適である。葦は、硬さ、表面積の大きさ等が、脱窒の充填材として好適である。特に、葦は窒素・燐を大量に吸収して生長するため、収穫による再利用は環境浄化に繋がる。また、葦は、価格や入手の容易さ等においても優れている。
以下では、本実施形態の廃水処理装置1においては、アルカリ処理された葦の茎を充填材200に使用する例について説明する。
アルカリ処理をした草本系のバイオマス担体である充填材200を、カラム20に充填することで、脱窒菌、セルロース分解菌などが表面に付着し、これら有用微生物の働きにより易分解性有機物、リン酸態リン等が溶出することで廃水中の硝酸・亜硝酸態窒素の還元除去が可能となる。
(Configuration of filler 200)
More specifically, as the plant used for the filler 200, weeds, rice straw, rice husks, straw, etc., which are herbaceous biomass, can be used. In addition, thinned wood, pruned wood, bark, wood fragments, waste wood, wood chips, sawdust, sawdust, disposable chopsticks, old tatami mats, waste paper, waste pulp, etc., which are woody biomass, can also be used as plants. .
Among these, as the filler 200 according to the present embodiment, it is preferable to use alkali-treated stems of Phragmites, etc., particularly as herbaceous biomass. The soot is suitable as a filler for denitrification because of its hardness and surface area. In particular, persimmons grow by absorbing large amounts of nitrogen and phosphorus, so reuse by harvesting leads to environmental purification. In addition, cocoons are excellent in price and availability.
Below, in the wastewater treatment apparatus 1 of this embodiment, the example which uses the stalk of the cocoon which was alkali-treated for the filler 200 is demonstrated.
By filling the column 20 with a packing material 200 that is a herbaceous biomass carrier that has been subjected to alkali treatment, denitrifying bacteria, cellulose-degrading bacteria, and the like adhere to the surface. Elution of phosphorous and the like makes it possible to reduce and remove nitric acid and nitrite nitrogen in wastewater.

(充填材200のアルカリ処理)
本発明者らが、鋭意研究を行ったところ、アルカリ処理により脱リグニン化した充填材200の充填されたカラム20を用いることで、従来より脱窒性能を飛躍的に高めることに成功し、本発明を完成させた。
充填材200のアルカリ処理は、例えば、アルカリ溶液に植物体を浸して攪拌した後、pHを中性に近づけるように洗浄することで脱リグニン化する。このように、アルカリ処理による脱リグニン化を行うことで、充填材200の可溶化を促進させ、反応槽での溶存有機物の濃度を高め、より高い脱窒性能を確保することができる。また、リグニンは微生物が分解し難いので、これを減少させることで、充填材200が微生物の栄養源となりやすくなる。また、攪拌により、微生物が付着する表面積が増えて、担体としての機能を向上させることができる。
具体的なアルカリ処理としては、充填材200に葦を使う場合は、以下のような処理を行うことができる。たとえば、水槽に5〜10cmにカットした乾燥葦の茎を、0.5M水酸化ナトリウム水溶液に10%(w/v)となるよう投入する。その後、水酸化ナトリウム水溶液の温度を40℃程度に保ちながら、投入した葦を2時間程度撹拌する。次に、アルカリ処理を行った葦を水酸化ナトリウム水溶液と同量の中性の水に浸し、1時間程度撹拌した後、脱水して洗浄する。この操作を脱水液のpHが8.0以下になるまで5〜6回繰り返し行うことで、水酸化ナトリウムの微生物への影響をなくすことができる。
このアルカリ処理の具体的な効果については、後述する実施例1で説明する。
(Alkali treatment of filler 200)
As a result of extensive research, the present inventors have succeeded in dramatically improving the denitrification performance by using the column 20 packed with the filler 200 delignified by alkali treatment. Completed the invention.
In the alkali treatment of the filler 200, for example, the plant body is immersed in an alkaline solution and stirred, and then washed so that the pH is close to neutrality, thereby delignifying. Thus, by performing delignification by alkali treatment, solubilization of the filler 200 can be promoted, the concentration of dissolved organic matter in the reaction tank can be increased, and higher denitrification performance can be ensured. Also, since lignin is difficult for microorganisms to decompose, by reducing this, the filler 200 is likely to become a nutrient source for microorganisms. Moreover, the surface area to which microorganisms adhere increases by stirring, and the function as a carrier can be improved.
As a specific alkali treatment, when using soot for the filler 200, the following treatment can be performed. For example, a dried potato stalk cut to 5 to 10 cm is poured into a 0.5M sodium hydroxide aqueous solution in a water tank so as to be 10% (w / v). Then, the added soot is stirred for about 2 hours while keeping the temperature of the aqueous sodium hydroxide solution at about 40 ° C. Next, the alkali-treated soot is immersed in the same amount of neutral water as the sodium hydroxide aqueous solution, stirred for about 1 hour, dehydrated and washed. By repeating this operation 5 to 6 times until the pH of the dehydrating liquid becomes 8.0 or less, the influence of sodium hydroxide on microorganisms can be eliminated.
The specific effect of this alkali treatment will be described in Example 1 described later.

(本発明の実施の形態に係る充填材のカラム20への充填工程)
次に、図4により、本発明の実施の形態に係る充填材のカラム20への充填工程について説明する。
まず、図4(a)のように、乾燥された葦を5〜10cmにカットした後、後述するアルカリ処理により葦に含まれるリグニンを可溶化して除去する。これにより、セルロースやヘミセルロース分解菌又は脱窒菌等の有用微生物が、葦のセルロース等の有機物を資化しやすくすることができる。
次に、図4(b)に示すように、脱リグニン処理をした葦を充填材としてカラム20に入れ、プレス機等で圧縮、加圧成形されて充填される。後述するように、充填材の圧縮率を変化させることで、脱窒性能を変化させられる。この際、水温・水質の変動に対し安定した脱窒能が得られる適正な充填率を選択可能である。また、圧縮、加圧成形されて充填されることにより、カラム20を備えた廃水処理装置1を小型化することができる。さらに、充填材200は、圧密により下部ほど空隙が減少して脱窒に好適な嫌気性環境を実現しやすくなる。充填材200を充填した後、カラム20の上下は、蓋等で封止することが好適である。
図4(c)に、この圧縮された充填材200が充填されたカラム20の外観を示す。
図4(d)に、脱窒反応槽100に配置、装填されたカラム20の平面の写真を示す。円筒状のカラム20を用いることで、適度な隙間をもってカラム20を複数、脱窒反応槽100に装填することができる。これにより、脱窒の反応性や効率を高めることが可能となる。また、カラム20の交換もしやすくなるという効果が得られる。
(Packing step of column 20 with packing material according to the embodiment of the present invention)
Next, referring to FIG. 4, the packing process of the packing material 20 according to the embodiment of the present invention will be described.
First, as shown in FIG. 4A, after the dried soot is cut into 5 to 10 cm, lignin contained in the soot is solubilized and removed by an alkali treatment described later. Thereby, useful microorganisms, such as a cellulose, a hemicellulose decomposing bacterium, or a denitrifying bacterium, can make it easy to assimilate organic substances, such as a cocoon cellulose.
Next, as shown in FIG. 4B, the delignified soot is placed in the column 20 as a filler, and is compressed and pressure-molded by a press machine or the like and filled. As will be described later, the denitrification performance can be changed by changing the compression rate of the filler. At this time, it is possible to select an appropriate filling rate that provides stable denitrification ability against fluctuations in water temperature and water quality. Moreover, the wastewater treatment apparatus 1 provided with the column 20 can be reduced in size by being compressed and pressure-molded and filled. In addition, the filler 200 is reduced in the lower portion due to compaction, and an anaerobic environment suitable for denitrification is easily realized. After the filling material 200 is filled, the upper and lower sides of the column 20 are preferably sealed with a lid or the like.
FIG. 4C shows the appearance of the column 20 filled with the compressed filler 200.
FIG. 4D shows a photograph of the plane of the column 20 placed and loaded in the denitrification reaction tank 100. By using the cylindrical column 20, a plurality of columns 20 can be loaded into the denitrification reaction tank 100 with an appropriate gap. Thereby, it becomes possible to improve the reactivity and efficiency of denitrification. Moreover, the effect that it becomes easy to exchange the column 20 is acquired.

充填材200にアルカリ処理された葦を用いる場合、後述する実施例1で示すように、乾重ベース半減期は約180日となる。よって、被処理水の水質に応じて年数回の充填材200の交換により安定した脱窒能が維持できる。
この交換のタイミングは、酸化還元電位(Oxidation−Reduction Potential、ORP)の変化を測定することで間接的に知ることができる。
後述する実施例4で示すように、ORPが所定電圧以下の場合には、脱窒の進行が十分であることが分かる。
逆に、ORPが所定電圧以上では、脱窒が進行していないことが分かる。このように、ORPが所定電圧以上となる場合、易分解性有機物の溶出やリンの溶出が脱窒の制限因子となっていることが考えられる。よって、ORPが所定電圧以上の状態で、所定時間、推移する場合には、カラム20又は充填材を交換するように構成すると好適である。
また、ORPが所定電圧以上で所定時間、推移している場合には、被処理水の脱窒反応層100内での被処理水の滞留時間を長くするよう調整することも可能である。つまり、亜硝酸・硝酸性窒素の還元に伴う所定の酸化還元電位を目安にし、被処理水が適正な接触滞留時間になるよう調整できる。この際に、滞留時間を長くしてもORPが低下しない場合は、カラム20又は充填材を交換することが好適である。
これらのORPの所定電圧としては、後述の実施例4で示すように、アルカリ処理葦を充填材に用いた場合、例えば、−100mV程度を用いることが好適である。
When alkali-treated soot is used for the filler 200, the dry weight base half-life is about 180 days, as shown in Example 1 described later. Therefore, stable denitrification ability can be maintained by replacing the filler 200 several times a year according to the quality of the water to be treated.
The timing of this exchange can be indirectly known by measuring a change in oxidation-reduction potential (ORP).
As shown in Example 4 to be described later, it can be understood that the denitrification proceeds sufficiently when the ORP is equal to or lower than the predetermined voltage.
Conversely, it can be seen that denitrification does not proceed when the ORP is equal to or higher than the predetermined voltage. Thus, when ORP becomes more than a predetermined voltage, it is considered that elution of easily decomposable organic substances and phosphorus elution are limiting factors for denitrification. Therefore, when the ORP changes for a predetermined time in a state where the ORP is equal to or higher than the predetermined voltage, it is preferable to replace the column 20 or the packing material.
In addition, when the ORP changes for a predetermined time at a predetermined voltage or higher, it is possible to adjust the residence time of the water to be treated in the denitrification reaction layer 100 of the water to be treated. That is, it is possible to adjust the water to be treated to have an appropriate contact residence time by using a predetermined oxidation-reduction potential accompanying reduction of nitrous acid / nitric nitrogen as a guide. At this time, if the ORP does not decrease even if the residence time is increased, it is preferable to replace the column 20 or the packing material.
As predetermined voltages of these ORPs, as shown in Example 4 to be described later, when an alkali-treated soot is used as a filler, for example, about −100 mV is preferably used.

また、充填材200にアルカリ処理された葦を用いる場合、廃棄物埋立地浸出水等の微生物のエネルギー源となる易分解性有機物やリン酸態リンが少ない廃水を効率的に脱窒する場合は、カラム20への充填率は、充填率25%〜65%(v/v)程度、特に40〜50%(v/v)程度が好適である。25%未満の場合は、硝化菌又は脱窒菌等の微生物の生育密度を十分に保つことができず、十分な脱窒能力が得られない。また、65%よりも多い充填率にすると、空隙を十分保つことができず被処理水がカラム20内部に浸透しないため、十分な脱窒能力が得られない。また、易分解性有機物やリン酸態リンが十分な環境では、圧縮率を30%〜40%(v/v)程度に下げても、十分な脱窒能力が得られる。
また、充填材200として、アルカリ処理されたもみ殻を廃棄物埋立地浸出水等に用いる場合には、充填率15%〜45%(v/v)程度が好適である。
In addition, when using alkali-treated soot for the filler 200, when efficiently denitrifying waste water containing less easily decomposable organic matter and phosphoric phosphorus, which are energy sources of microorganisms such as waste landfill leachate The packing rate into the column 20 is preferably about 25% to 65% (v / v), particularly about 40 to 50% (v / v). If it is less than 25%, the growth density of microorganisms such as nitrifying bacteria or denitrifying bacteria cannot be kept sufficiently, and sufficient denitrifying ability cannot be obtained. On the other hand, if the filling rate is higher than 65%, the voids cannot be kept sufficiently, and the water to be treated does not permeate into the column 20, so that sufficient denitrification ability cannot be obtained. Moreover, in an environment where easily decomposable organic substances and phosphorous phosphorus are sufficient, even if the compression rate is lowered to about 30% to 40% (v / v), sufficient denitrification ability can be obtained.
In addition, when an alkali-treated rice husk is used for the waste landfill leachate as the filler 200, a filling rate of about 15% to 45% (v / v) is preferable.

〔本発明の実施の形態に係る生物学的アンモニア性窒素除去方法〕
上述したように、廃棄物埋立地浸出水には易分解性有機物およびリン酸態リンが少ないため、従来から、埋立地浸出水の生物学的アンモニア性窒素除去工程では、脱窒工程において水素供与体としてメタノールおよびリン源としてリン酸を使用する。このため処理コストがかかっていた。
本発明の発明者は、上述の課題を解決するために鋭意研究を行った結果、
(1)アルカリで脱リグニン処理をした草本系のバイオマス担体である充填材200をカラム20に充填し、
(2)上向流式反応槽となる脱窒反応槽100に載置し、
(2)充填材200を微生物の担体として被処理水と接触させ、被処理水に易分解性有機物やリン酸態リンを供給させる
ことにより、カーボンニュートラルでコスト性とCO2排出軽減に優れた生物学的アンモニア性窒素除去方法を完成させた。
[Biological ammoniacal nitrogen removal method according to embodiments of the present invention]
As mentioned above, waste landfill leachate contains less readily decomposable organic matter and phosphorous phosphorus, so traditionally, in the biological ammonia nitrogen removal process of landfill leachate, hydrogen is donated in the denitrification process. Use methanol as the body and phosphoric acid as the phosphorus source. This incurs processing costs.
The inventor of the present invention has conducted extensive research to solve the above-described problems,
(1) The column 20 is packed with a filler 200 that is a herbaceous biomass carrier that has been delignified with an alkali,
(2) It is placed in a denitrification reaction tank 100 which is an upward flow reaction tank,
(2) By bringing the filler 200 into contact with the water to be treated as a microorganism carrier and supplying the water to be treated with easily decomposable organic substances and phosphorous phosphorus, the carbon neutral is excellent in cost and CO 2 emission reduction. A biological ammonia nitrogen removal method was completed.

本発明の実施の形態に係るアンモニア性窒素除去方法の被処理水(処理対象水)としては、含窒素無機系産業廃水、産業廃棄物埋立地浸出水、消化脱離液、若しくは低炭素/窒素比(C/N比)の有機性廃水、又はこれらの硝化処理水等を用いることができる。これらの被処理水からアンモニア性窒素を硝化、脱窒し、被処理水の全窒素濃度を著しく低減させることができる。
たとえば、本実施形態の生物学的アンモニア性窒素除去方法は、産業廃棄物の最終処分場から浸出する窒素を多く含む廃水を生物学的に処理して窒素を除去することが可能である。
具体的には、後述する実施例3で示すように、廃水処理装置1に、硝化処理が必要な埋立地浸出水を被処理水として、上向流式の廃水処理装置1で60日間流したところ、平均脱窒率98%の処理性能が得られた。
The treated water (treated water) of the ammonia nitrogen removing method according to the embodiment of the present invention includes nitrogen-containing inorganic industrial waste water, industrial waste landfill leachate, digestion desorption liquid, or low carbon / nitrogen. Organic wastewater with a ratio (C / N ratio) or nitrification water of these can be used. Ammonia nitrogen can be nitrified and denitrified from the water to be treated, and the total nitrogen concentration of the water to be treated can be significantly reduced.
For example, the biological ammonia nitrogen removal method of the present embodiment can biologically treat waste water containing a large amount of nitrogen leached from the final disposal site for industrial waste to remove nitrogen.
Specifically, as shown in Example 3 to be described later, the wastewater treatment apparatus 1 was flown for 60 days in the up-flow type wastewater treatment apparatus 1 with the leachate leachate requiring nitrification treatment as the treated water. However, a treatment performance with an average denitrification rate of 98% was obtained.

以上のように、本発明の実施の形態に係るアンモニア性窒素除去方法では、従来技術1のようにメタノールやリン酸等の薬剤を添加する必要がなく、廃水処理の費用を下げることが可能となる。
また、本発明の実施の形態に係る廃水処理装置1は、被処理水の処理に際して、メタノールやリン酸等を使用しないため、薬注タンクおよび液送ポンプを必要としない。このため、小さい設置面積で被処理水を処理することができ、廃水処理の費用を低減できる。また、分解に伴う酸化還元電位の変化を測定することで、脱窒の進行状況が把握でき維持管理が容易となる。
また、本発明の実施の形態に係る廃水処理装置1は、カーボンニュートラルである草本系等のバイオマス担体を充填材200として用いるため、水素供与体としてメタノールを使用する場合に比べてCO2排出を削減できる。
なお、本発明の実施の形態に係る廃水処理装置及び廃水処理方法は、硝酸性窒素及び亜硝酸性窒素に限らず、他の生物学的窒素を含む各種化合物であるアンモニア性窒素を広く脱窒して除去することが可能である。
As described above, in the ammoniacal nitrogen removal method according to the embodiment of the present invention, it is not necessary to add chemicals such as methanol and phosphoric acid as in the prior art 1, and it is possible to reduce the cost of wastewater treatment. Become.
Moreover, since the wastewater treatment apparatus 1 which concerns on embodiment of this invention does not use methanol, phosphoric acid, etc. in the case of processing of to-be-processed water, a chemical injection tank and a liquid feed pump are not required. For this reason, to-be-processed water can be processed with a small installation area, and the cost of wastewater treatment can be reduced. In addition, by measuring the change in oxidation-reduction potential accompanying decomposition, the progress of denitrification can be grasped, and maintenance management becomes easy.
In addition, since the wastewater treatment apparatus 1 according to the embodiment of the present invention uses a biomass carrier such as a herbaceous system that is carbon neutral as the filler 200, CO 2 emissions are reduced as compared with the case where methanol is used as the hydrogen donor. Can be reduced.
The wastewater treatment apparatus and the wastewater treatment method according to the embodiment of the present invention are not limited to nitrate nitrogen and nitrite nitrogen, but widely denitrify ammonia nitrogen, which is various compounds including other biological nitrogen. And can be removed.

以下において、本発明の実施の形態に係る廃水処理装置1等を用いた生物学的アンモニア性窒素除去方法を具体的に実施例として説明する。しかしながら、本発明は以下の実施例に限定されるものではない。   Hereinafter, a biological ammonia nitrogen removing method using the wastewater treatment apparatus 1 according to the embodiment of the present invention will be specifically described as an example. However, the present invention is not limited to the following examples.

(アルカリ処理、物理的処理、及び無処理の比較)
まず、図5を参照し、実施例1として、アルカリ処理による脱リグニン化の有効性を確認した実験の結果について説明する。
具体的には、本発明の実施の形態に係るバイオマス担体の有機物の可溶化を促進するための前処理の効果について測定した。このため、乾燥葦(栃木県渡良瀬地区産)を、それぞれ、アルカリ処理(充填材200)、未処理(充填材210)、加圧熱水処理(充填材220)、超音波処理(充填材230)した際の有機物の可溶化率を測定した。
充填材200は、アルカリ処理の具体的な手順としては、未処理と同様の長さにカットした乾燥葦の茎を0.5M水酸化ナトリウム水溶液に10%(w/v)となるよう投入した。水酸化ナトリウム水溶液の温度を40℃で保ちながら、投入した葦を50rpmで2時間撹拌する。次に、水酸化ナトリウムの微生物への影響をなくすためにアルカリ処理を行った葦の洗浄を行った。上記のアルカリ処理を行った葦を水酸化ナトリウム水溶液と同量の水道水に浸し50rpmで1時間撹拌した後、脱水した。この操作を脱水液のpHが8.0以下になるまで5〜6回繰り返し行った。
充填材210は、充填材200と同じ乾燥葦の茎を5〜10cmにカットして、未処理のまま、130gをそのまま用いた。
充填材220は、加圧熱水処理の手順として、充填材210と同じ未処理の葦200gと水3Lとを圧力容器に入れ、125℃、60分間オートクレーブにて蒸気加圧したものを用いた。充填材220の充填量は、充填材210と同じ130gとした。
充填材230は、超音波処理の手順として、充填材210と同じ未処理の葦200gと水3Lとを、東京硝子器械株式会社製の超音波洗浄器(Fine FU−13H)に投入し、180分、超音波処理して用いた。充填材230の充填量は、充填材210と同じ130gとした。
(Comparison of alkali treatment, physical treatment, and no treatment)
First, referring to FIG. 5, the results of an experiment confirming the effectiveness of delignification by alkali treatment will be described as Example 1.
Specifically, the effect of pretreatment for promoting solubilization of organic matter of the biomass carrier according to the embodiment of the present invention was measured. For this reason, dried rice cake (produced in Watarase area, Tochigi Prefecture) is treated with alkali (filler 200), untreated (filler 210), pressurized hot water treatment (filler 220), and ultrasonic treatment (filler), respectively. 230) The solubilization rate of the organic matter was measured.
As a specific procedure for the alkali treatment, the filler 200 was charged with 10% (w / v) of dried cocoon stems cut to the same length as that of the untreated, in a 0.5M aqueous sodium hydroxide solution. . While keeping the temperature of the sodium hydroxide aqueous solution at 40 ° C., the added soot is stirred at 50 rpm for 2 hours. Next, in order to eliminate the influence of sodium hydroxide on microorganisms, the soot that had been subjected to alkali treatment was washed. The alkali-treated soot was dipped in the same amount of tap water as the sodium hydroxide aqueous solution and stirred at 50 rpm for 1 hour, and then dehydrated. This operation was repeated 5 to 6 times until the pH of the dehydrated liquid became 8.0 or less.
As the filler 210, 130 g was used as it was without being treated by cutting the same dry straw stem as the filler 200 into 5 to 10 cm.
The filler 220 used was a pressurized hot water treatment procedure in which 200 g of untreated soot and 3 L of water same as the filler 210 were placed in a pressure vessel and steam-pressed in an autoclave at 125 ° C. for 60 minutes. . The filling amount of the filler 220 was 130 g which is the same as that of the filler 210.
As a procedure of ultrasonic treatment, the filler 230 is charged with 200 g of untreated soot and 3 L of water, which are the same as those of the filler 210, in an ultrasonic cleaner (Fine FU-13H) manufactured by Tokyo Glass Instrument Co., Ltd. Minutes were used after sonication. The filling amount of the filler 230 was 130 g which is the same as that of the filler 210.

これらの処理を行った葦をバイオマス担体として充填し、上述の実施の形態の工程の廃水処理装置1の(図2)と同様の上向流式で、実験用に小型化した内径8cm、高さ23.5cmのアクリル製の小型脱窒反応槽(有効容積は1.18L)にそれぞれ充填した。この際の充填率は17%とした。
これらの小型脱窒反応槽について、同一の下水汚泥により全窒素40mg/Lとした人工廃水を被処理水として、滞留時間を8時間に調整し、3ヶ月間、稼働させた。
その後、投入充填材の乾重量から3ヶ月後の充填材の乾重量の差分を求めた。
The soot that has undergone these treatments is filled as a biomass carrier, and is an upward flow type similar to that of the wastewater treatment apparatus 1 in the process of the above-described embodiment (FIG. 2). A small denitrification reaction tank made of acrylic having a thickness of 23.5 cm (effective volume is 1.18 L) was filled. The filling rate at this time was 17%.
About these small denitrification reaction tanks, the artificial waste water which made the total nitrogen 40 mg / L with the same sewage sludge was made into a to-be-processed water, the residence time was adjusted to 8 hours, and it was operated for 3 months.
Thereafter, the difference in the dry weight of the filler after 3 months was determined from the dry weight of the charged filler.

図5は、各処理を行った充填材の、処理実験系の3ヶ月間の可溶化率を示すグラフである。可溶化率(%)は、下記の式(1)にて算出した:

可溶化率(%)=[(投入充填材の乾重量−3ヶ月後の充填材の乾重量)×100]/投入充填材の乾重量 …… 式(1)

図5によると、アルカリ処理を行うことで、充填材200の分解が促進されて可溶化率が上昇し、微生物の栄養源となる易分解性有機物やリン酸態リンを効果的に供給することが可能になることが分かる。
FIG. 5 is a graph showing the solubilization rate of the filler subjected to each treatment for 3 months in the treatment experiment system. The solubilization rate (%) was calculated by the following formula (1):

Solubilization rate (%) = [(Dry weight of input filler-Dry weight of filler after three months) × 100] / Dry weight of input filler ...... Equation (1)

According to FIG. 5, by performing alkali treatment, decomposition of the filler 200 is promoted, solubilization rate is increased, and an easily decomposable organic substance or phosphate phosphorus that is a nutrient source of microorganisms is effectively supplied. It can be seen that

(上向流式反応槽および横流式反応槽の比較)
次に、図6及び図7を参照し、実施例2として、上向流式反応槽および横流式反応槽を用いて、脱窒効果を比較した実験の結果について説明する。
図6は、実施例2の装置の構成を説明した略平面の構成図である。
廃水処理装置1及び廃水処理装置2は、上述の実施の形態に係る廃水処理装置1と同様に、脱窒反応槽100が重力に対して上向きに配置され上向流式の構成を示している。実施例2においては、廃水処理装置1には、カラム20を用いずにアルカリ処理された充填材200を直接充填した。また、廃水処理装置2は、廃水処理装置1と同様の構成の上向流式の構成で、未処理の充填材210を直接充填した。
廃水処理装置3及び廃水処理装置4は、水平方向に配置される横流式の廃水処理装置の構成である。廃水処理装置3及び廃水処理装置4の脱窒反応槽101は、廃水処理装置1の長手方向の両方の端面を封止して、上流側の端面に被処理水投入バルブ160を備え、下流側の端面に処理水取得バルブ180及び汚泥引き抜きバルブ190を備えている。廃水処理装置3及び廃水処理装置4の脱窒反応槽101には、図示しない空気孔が開けられている。それ以外は、廃水処理装置1及び廃水処理装置2とまったく同様であり、廃水処理装置3には充填材200を直接充填し、廃水処理装置4には充填材210を直接充填した。
各廃水処理装置1〜廃水処理装置4の充填材200又は充填材210の充填率は、20%とした。
(Comparison between upflow and crossflow reactors)
Next, referring to FIG. 6 and FIG. 7, the results of experiments comparing denitrification effects will be described as Example 2 using an upflow type reaction tank and a cross flow type reaction tank.
FIG. 6 is a schematic plan view illustrating the configuration of the apparatus according to the second embodiment.
The wastewater treatment apparatus 1 and the wastewater treatment apparatus 2 have an upward flow configuration in which the denitrification reaction tank 100 is disposed upward with respect to gravity, similarly to the wastewater treatment apparatus 1 according to the above-described embodiment. . In Example 2, the wastewater treatment apparatus 1 was directly filled with the filler 200 that had been subjected to alkali treatment without using the column 20. In addition, the wastewater treatment apparatus 2 has an upflow configuration similar to that of the wastewater treatment apparatus 1 and is directly filled with the untreated filler 210.
The waste water treatment device 3 and the waste water treatment device 4 have a configuration of a cross-flow type waste water treatment device arranged in a horizontal direction. The denitrification reaction tank 101 of the wastewater treatment device 3 and the wastewater treatment device 4 is configured to seal both end surfaces in the longitudinal direction of the wastewater treatment device 1, and to include a treated water input valve 160 on the upstream end surface. A treated water acquisition valve 180 and a sludge extraction valve 190 are provided on the end face of the nozzle. The denitrification reaction tank 101 of the wastewater treatment device 3 and the wastewater treatment device 4 has air holes (not shown). Other than that, it is exactly the same as the wastewater treatment apparatus 1 and the wastewater treatment apparatus 2, the wastewater treatment apparatus 3 is directly filled with the filler 200, and the wastewater treatment apparatus 4 is directly filled with the filler 210.
The filling rate of the filler 200 or the filler 210 of each waste water treatment apparatus 1 to waste water treatment apparatus 4 was 20%.

実施例2においては、上述の実施例1と同じ被処理水を被処理水槽40に備え、一般的なポンプ50により、被処理水ライン60を、各廃水処理装置1〜廃水処理装置4に接続して処理を行い、被処理水及び処理水の平均全窒素、亜硝酸イオン、硝酸イオン、アンモニウムイオン等を島津製作所製の紫外可視分光光度計(UV−2450)又は島津製作所製のイオンクロマトグラフ(Prominence HIC−SP)で測定した。
実験は、滞留時間を24時間に調整し、3ヶ月間行い、各廃水処理装置1及び廃水処理装置2での各無機態窒素の濃度等を測定した。
In Example 2, the water to be treated is provided in the water tank 40 to be treated as in Example 1 described above, and the water line 60 to be treated is connected to each of the waste water treatment apparatuses 1 to 4 by a general pump 50. The average total nitrogen, nitrite ion, nitrate ion, ammonium ion, etc. of the water to be treated and the treated water are treated with an ultraviolet-visible spectrophotometer (UV-2450) manufactured by Shimadzu or an ion chromatograph manufactured by Shimadzu. (Prominence HIC-SP).
The experiment was carried out for 3 months with the residence time adjusted to 24 hours, and the concentration of each inorganic nitrogen in each wastewater treatment device 1 and wastewater treatment device 2 was measured.

図7に、実施例2の実験結果を示す。図7は、検体数n=21に対して、埋立地浸出水の硝化液(秋田県環境保全センター・水処理施設、大仙市)を被処理水とした廃水の原水を被処理水とした、廃水処理装置1〜廃水処理装置4での脱窒の測定結果を、それぞれ示す。各項目のうち、TNは、平均全窒素(Total Nitrogen)の平均と、最小値(min)及び最大値(max)を示す。除去率(%)は、平均全窒素の除去率を示す。また、硝化された硝酸性窒素NO3−N、亜硝酸性窒素NO2−N、アンモニウム性窒素であるNH4−Nについて、それぞれの測定結果を示す。
結果として、アルカリ処理を行った充填材200を用いた廃水処理装置1が最も高い全窒素の除去能力、すなわち最も高い生物学的脱窒能を示した。また、横流式の廃水処理装置3及び廃水処理装置4に対して、上向流式の廃水処理装置1及び廃水処理装置2の方が高い脱窒能力を示し、亜硝酸性・硝酸性窒素の除去に効率的であった。
このように、アルカリ処理を行った充填材200を用いて、被処理水を下から上へ流す上向流式の反応槽を用いることで、効果的に脱窒できる。
In FIG. 7, the experimental result of Example 2 is shown. FIG. 7 shows that the raw water of wastewater treated with nitrification solution (Akita Prefectural Environmental Conservation Center / Water Treatment Facility, Daisen City) for landfill leachate was treated water for the number of specimens n = 21. The measurement results of denitrification in the wastewater treatment apparatus 1 to the wastewater treatment apparatus 4 are shown respectively. Among each item, TN shows the average of the total average nitrogen (Total Nitrogen), the minimum value (min), and the maximum value (max). The removal rate (%) indicates the removal rate of average total nitrogen. Further, nitrification been nitrate nitrogen NO 3 -N, nitrite nitrogen NO 2 -N, for NH 4 -N ammonium nitrogen, show the respective measurement results.
As a result, the wastewater treatment apparatus 1 using the filler 200 subjected to the alkali treatment showed the highest total nitrogen removal ability, that is, the highest biological denitrification ability. Further, the upflow-type wastewater treatment device 1 and the wastewater treatment device 2 show higher denitrification capability than the crossflow-type wastewater treatment device 3 and the wastewater treatment device 4, and the nitrite / nitrate nitrogen It was efficient for removal.
As described above, the denitrification can be effectively performed by using the upward flow type reaction tank in which the water to be treated is flowed from the bottom to the top using the filler 200 subjected to the alkali treatment.

(脱窒に及ぼす充填率の影響)
次に、図8を参照し、実施例3として、脱窒に及ぼす充填率の影響について実験した結果について説明する。
上述の実施例2と同様に、アルカリ処理された葦を充填材200とし、充填率がそれぞれ20%、25%、40%となるよう廃水処理装置1に直接充填して上向流式で被処理水を流して、脱窒に及ぼす充填率の影響を調べた。
実験は、実際の埋立地浸出水の酸化処理水である硝化液(秋田県環境保全センター・水処理施設、大仙市)を被処理水として用いて、設置後3日経過して安定させた後、滞留時間を24時間に調整して、処理前と処理後の平均全窒素の濃度を測定した。
図8に示したように、充填率が高いほど全窒素の除去率は高くなり、脱窒効率に影響を与えることがわかる。このため、水温・水質の変動に対し安定した脱窒能力が得られる適正な充填率を確保するためには、充填材のアルカリ処理に加え、充填率を上げるための加圧成形が有効である。
(Effect of filling rate on denitrification)
Next, referring to FIG. 8, the results of experiments on the influence of the filling rate on denitrification will be described as Example 3.
In the same manner as in Example 2 described above, the alkali-treated soot is used as the filler 200, and the wastewater treatment apparatus 1 is directly filled so that the filling rate becomes 20%, 25%, and 40%, respectively. The effect of filling rate on denitrification was examined by flowing treated water.
The experiment was conducted after using the nitrification solution (Akita Prefectural Environmental Conservation Center / Water Treatment Facility, Daisen City), which is the oxidation treatment water of actual landfill leachate, to stabilize after 3 days from installation. The residence time was adjusted to 24 hours, and the average total nitrogen concentration before and after the treatment was measured.
As shown in FIG. 8, it can be seen that the higher the filling rate, the higher the removal rate of total nitrogen, which affects the denitrification efficiency. For this reason, in order to ensure an appropriate filling rate that can provide a stable denitrification ability against fluctuations in water temperature and water quality, in addition to the alkali treatment of the filler, pressure molding for increasing the filling rate is effective. .

(本実施形態の廃水処理装置1とメタノール脱窒法の処理装置との比較)
次に、図9及び図10を参照し、実施例4として、メタノール脱窒法との比較について実験した結果について説明する。
実施例4として、上述の実施例1のアルカリ処理を行った葦と同様に、40kgの乾燥葦の茎を5〜10cmになるよう切断し、40℃の0.5M水酸化ナトリウム水溶液に2〜3時間浸積して脱リグニン処理を行った後、洗浄液がpH8.0以下になるまで水洗浄した。この脱リグニン処理をした葦0.9kgを充填材200として、直径5mmの穴を10mm間隔で開けたカラム(直径77mm、高さ772mm)に入れ、圧縮成型機で250g/cm3までプレス加工してカラム20を作製した。この葦が充填されたカラム20を33本、直径40cm、高さ160cmで円筒状の脱窒反応槽100に、上下2列に配置し、上向流式の廃水処理装置1を構成した。カラム20を33本脱窒反応槽100に配置したことにより、脱窒反応槽100の充填率は40%(v/v)となる。
また、比較用に、従来技術1と同様のメタノールを添加する実埋立地浸出水の水処理施設(秋田県環境保全センター・水処理施設、栗本鐵工所製)を用いて脱窒処理後の処理水を週2回の頻度で採取して水質分析を行った。
比較実験は60日間行い、被処理水及び処理水の平均全窒素(mg/L)を測定した。全窒素の測定は島津製作所製の紫外可視分光光度計(UV−2450)を用いて紫外吸光光度法により行った。
また、島津製作所製のイオンクロマトグラフでNO2−N、NO3−Nを測定し、山形東亜DKK製のORP計で酸化還元電位を測定した。
(Comparison between the wastewater treatment apparatus 1 of this embodiment and the treatment apparatus of the methanol denitrification method)
Next, with reference to FIG. 9 and FIG. 10, the results of experiments on comparison with the methanol denitrification method will be described as Example 4.
As Example 4, as in the case of the cocoon subjected to the alkali treatment in Example 1 described above, 40 kg of dried potato stalks were cut to 5 to 10 cm, and 2 to 40 ° C. 0.5 M sodium hydroxide aqueous solution. After immersing for 3 hours to perform delignification treatment, it was washed with water until the cleaning solution had a pH of 8.0 or less. 0.9 kg of this lignin treated paddle is used as a filler 200, and 5 mm diameter holes are placed in a column (diameter 77 mm, height 772 mm) at intervals of 10 mm and pressed to 250 g / cm 3 with a compression molding machine. Column 20 was prepared. 33 columns 20 filled with the soot were arranged in two columns in the upper and lower rows in a cylindrical denitrification reaction tank 100 having a diameter of 40 cm and a height of 160 cm to constitute an upflow type wastewater treatment apparatus 1. By arranging 33 columns 20 in the denitrification reaction tank 100, the filling rate of the denitrification reaction tank 100 is 40% (v / v).
In addition, for comparison, after denitrification treatment using a landfill leachate water treatment facility (Akita Prefectural Environmental Conservation Center / Water Treatment Facility, manufactured by Kurimoto Steel Works), to which methanol is added, similar to Conventional Technology 1, Treated water was collected twice a week for water quality analysis.
The comparative experiment was conducted for 60 days, and the average total nitrogen (mg / L) of water to be treated and treated water was measured. The total nitrogen was measured by an ultraviolet absorption spectrophotometry using an ultraviolet-visible spectrophotometer (UV-2450) manufactured by Shimadzu Corporation.
Moreover, NO 2 —N and NO 3 —N were measured with an ion chromatograph manufactured by Shimadzu Corporation, and the oxidation-reduction potential was measured with an ORP meter manufactured by Yamagata Toa DKK.

この実施例4の廃水処理装置1と、メタノール脱窒法を行う装置とに、実施例3と同様に、平均全窒素濃度:32.5mg/Lの埋立地浸出水の硝化処理水を被処理水として、接触滞留時間が24時間となるよう連続流入させながら約60日間の実験により処理性能を確認した。
図9にこの実験の結果を示す。廃水処理装置1による処理水の全窒素濃度は平均で2.5mg/L(最小0.4mg/L〜最大6.0mg/L)であり、従来のメタノール脱窒法より低く、平均脱窒率98%の処理性能が得られた。
図10は、実施例4の処理水と実施例2の廃水処理装置1の亜硝酸・硝酸性窒素濃度(NO2+3−N)と酸化還元電位(ORP)との関係を示す。横軸は山形東亜DKK製のORP計により処理水の採水後直ちに測定した酸化還元電位、縦軸は島津製作所製のイオンクロマトグラフで測定された亜硝酸・硝酸性窒素(NO2+3−N)の濃度(mg/L)を示す。
このように、酸化還元電位の変化を測定することで、脱窒の進行状況が把握できる。また、所定の酸化還元電位を目安に接触滞留時間を調整することで、最適な脱窒を行うことができる。
In the wastewater treatment apparatus 1 of Example 4 and the apparatus that performs the methanol denitrification method, as in Example 3, the nitrification water of landfill leachate having an average total nitrogen concentration of 32.5 mg / L is treated water. As a result, the treatment performance was confirmed by an experiment for about 60 days while continuously flowing so that the contact residence time was 24 hours.
FIG. 9 shows the results of this experiment. The total nitrogen concentration of the treated water by the wastewater treatment apparatus 1 is 2.5 mg / L on average (minimum 0.4 mg / L to maximum 6.0 mg / L), which is lower than the conventional methanol denitrification method, and an average denitrification rate of 98 % Processing performance was obtained.
FIG. 10 shows the relationship between the concentration of nitrous acid / nitric nitrogen (NO 2 + 3- N) and the oxidation-reduction potential (ORP) of the treated water of Example 4 and the wastewater treatment apparatus 1 of Example 2. The horizontal axis is the oxidation-reduction potential measured immediately after collecting the treated water with an ORP meter manufactured by Yamagata Toa DKK, and the vertical axis is nitrous acid / nitric nitrogen (NO 2 + 3 −) measured by Shimadzu ion chromatograph. N) concentration (mg / L).
Thus, the progress of denitrification can be grasped by measuring the change in the oxidation-reduction potential. Moreover, optimal denitrification can be performed by adjusting the contact residence time with reference to a predetermined oxidation-reduction potential.

(葦ともみとの比較)
次に、図11〜図14を参照し、実施例5として、バイオマス担体として同じ草本系の葦ともみ殻とを比較実験した結果について説明する。
(Comparison with Tomomi Tomoe)
Next, with reference to FIG. 11 to FIG. 14, as a fifth example, the results of a comparative experiment using the same herbaceous rice husk and rice husk as a biomass carrier will be described.

図11の廃水処理装置5は、内径7.8cm、高さ25cm、有効容積1.2Lのアクリル製の小型脱窒反応槽を3段に配置した脱窒反応槽102に、実施例1、2と同様に、5〜10cmの大きさにカットしアルカリ処理した葦である充填材200を、それぞれの小型脱窒反応槽に、それぞれ200gずつ充填率45%(v/v)になるよう直接充填した。脱窒反応槽102は、通過する被処理水の接触滞留時間(HRT)が、それぞれ4、8、12時間になるよう流量を調整した処理水取得バルブ182、181、180を備え、網等の仕切り111を備えている。その他は実施例1の小型脱窒反応槽と同様である。このようにして、廃水処理装置5を作成した。
廃水処理装置6は、実施例1、2と同様に、未処理の葦である充填材220を、廃水処理装置5と同様に同じ充填率で充填して、脱窒反応槽102に配置した構成である。
廃水処理装置7は、もみ殻を葦と同様にアルカリ処理した充填材240を、それぞれの小型脱窒反応槽に、それぞれ180gずつ充填率33%(v/v)となるよう充填し、脱窒反応槽102に配置した構成である。
廃水処理装置8は、未処理のもみ殻である充填材250を、廃水処理装置7と同様に同じ充填率で充填して、脱窒反応槽102に配置した構成である。
以上4つの廃水処理装置5、6、7、8を作成し、被処理水を下から流入させる上向流式として連続実験を行った。具体的には、実際の埋立地浸出水の硝化・脱窒処理水(秋田県環境保全センター・水処理施設、大仙市)に全窒素濃度が30mg/Lになるように硝酸カリウムを添加した。また、窒素/燐比が0.05となるようリン酸二水素カリウムを添加して被処理水として用い、流量を調整して、室温20℃で80日間連続運転した。
The wastewater treatment apparatus 5 of FIG. 11 is provided in the denitrification reaction tank 102 in which small acrylic denitrification reaction tanks having an inner diameter of 7.8 cm, a height of 25 cm, and an effective volume of 1.2 L are arranged in three stages. In the same manner as above, the filler 200, which is a soot that has been cut into a size of 5 to 10 cm and alkali-treated, is directly filled in each small denitrification reaction tank so that a filling rate of 45% (v / v) is obtained. did. The denitrification reaction tank 102 includes treated water acquisition valves 182, 181 and 180 whose flow rates are adjusted so that the contact residence time (HRT) of the treated water passing therethrough is 4, 8, and 12 hours, respectively. A partition 111 is provided. Others are the same as that of the small denitrification reaction tank of Example 1. In this way, a wastewater treatment apparatus 5 was created.
The waste water treatment apparatus 6 is configured in the same manner as in Examples 1 and 2, in which the untreated soot filler 220 is filled at the same filling rate as in the waste water treatment apparatus 5 and arranged in the denitrification reaction tank 102. It is.
The wastewater treatment apparatus 7 fills each small denitrification reactor with the filler 240 obtained by alkali-treating rice husk in the same manner as the straw so that the filling rate becomes 180%, and the denitrification rate becomes 33% (v / v). The configuration is arranged in the reaction vessel 102.
The wastewater treatment device 8 has a configuration in which a filler 250, which is an untreated rice husk, is filled at the same filling rate as in the wastewater treatment device 7 and disposed in the denitrification reaction tank 102.
The above four wastewater treatment apparatuses 5, 6, 7, and 8 were created, and a continuous experiment was performed as an upward flow type in which water to be treated was introduced from below. Specifically, potassium nitrate was added to nitrification / denitrification treated water (Akita Prefectural Environmental Conservation Center / Water Treatment Facility, Daisen City) in actual landfill leachate so that the total nitrogen concentration was 30 mg / L. Further, potassium dihydrogen phosphate was added so as to have a nitrogen / phosphorus ratio of 0.05 and used as water to be treated. The flow rate was adjusted, and continuous operation was performed at room temperature of 20 ° C. for 80 days.

図12は、この実施例5の結果を示す図である。アルカリ処理を行った葦である充填材200を充填した廃水処理装置5、及びアルカリ処理を行ったもみ殻である充填材240を充填した廃水処理装置7は、高い脱窒効率を示した。
これに対して、未処理の葦である充填材210を充填した廃水処理装置6、及び未処理のもみ殻である充填材250を充填した廃水処理装置8は、脱窒効率がアルカリ処理のものに比べて低かった。
また、接触滞留時間(HRT)12時間では、アルカリ処理もみ殻である充填材240を充填した廃水処理装置7の場合、処理水の平均全窒素濃度は2.2mg/Lで平均除去率は92%であった。
また、アルカリ処理葦である充填材200を充填した廃水処理装置5の場合は、処理水の平均全窒素濃度は1.7mg/L、平均除去率は94%であった。
FIG. 12 is a diagram showing the results of Example 5. The wastewater treatment apparatus 5 filled with the filler 200 that was subjected to alkali treatment and the wastewater treatment apparatus 7 filled with the filler 240 that was subjected to alkali treatment showed high denitrification efficiency.
On the other hand, the wastewater treatment apparatus 6 filled with the filler 210 as untreated soot and the wastewater treatment apparatus 8 filled with the filler 250 as untreated rice husk have denitrification efficiency of alkali treatment. It was low compared to.
In the case of the waste water treatment device 7 filled with the filler 240, which is an alkali-treated rice husk, the average total nitrogen concentration of treated water is 2.2 mg / L and the average removal rate is 92 at a contact residence time (HRT) of 12 hours. %Met.
Further, in the case of the wastewater treatment device 5 filled with the filler 200 which is an alkali treatment soot, the average total nitrogen concentration of the treated water was 1.7 mg / L, and the average removal rate was 94%.

図13は、アルカリ処理葦充填した廃水処理装置5における被処理水(原水)と処理水中の亜硝酸・硝酸性窒素濃度を示すグラフである。横軸は経過日数を示し、縦軸はNO2+3−N(mg/L)を示す。点線は環境基準を示す。
図14は、アルカリ処理を行ったもみ殻を充填した廃水処理装置7における被処理水(原水)と、処理水中の亜硝酸・硝酸性窒素濃度の経日変化を示すグラフである。横軸は経過日数を示し、縦軸はNO2+3−N(mg/L)を示す。点線は環境基準を示す。
このように、アルカリ処理を行った葦又はもみ殻を充填した廃水処理装置5、7では、適正な接触滞留時間において、いずれも80日間、亜硝酸・硝酸性窒素濃度を環境基準以下まで除去でき、かつ安定した脱窒能力が示された。
FIG. 13 is a graph showing the concentration of nitrous acid and nitrate nitrogen in the water to be treated (raw water) and the treated water in the wastewater treatment apparatus 5 filled with the alkali treated soot. The horizontal axis indicates the number of days elapsed, and the vertical axis indicates NO2 + 3- N (mg / L). Dotted lines indicate environmental standards.
FIG. 14 is a graph showing changes over time in the water to be treated (raw water) and the concentration of nitrous acid / nitric nitrogen in the treated water in the wastewater treatment apparatus 7 filled with the rice husk subjected to the alkali treatment. The horizontal axis indicates the number of days elapsed, and the vertical axis indicates NO2 + 3- N (mg / L). Dotted lines indicate environmental standards.
As described above, the wastewater treatment apparatuses 5 and 7 filled with the soot or rice husk subjected to the alkali treatment can remove the nitrous acid / nitric nitrogen concentration to below the environmental standard for 80 days in the proper contact residence time. In addition, stable denitrification ability was shown.

なお、上記実施の形態の構成及び動作は例であって、本発明の趣旨を逸脱しない範囲で適宜変更して実行することができることは言うまでもない。   Note that the configuration and operation of the above-described embodiment are examples, and it is needless to say that the configuration and operation can be appropriately changed and executed without departing from the gist of the present invention.

本発明は、草本系バイオマスを用いて安価で効果的に亜硝酸・硝酸性窒素を除去する廃水処理装置及び廃水処理方法を提供できるため、産業上利用可能である。   INDUSTRIAL APPLICATION Since this invention can provide the wastewater treatment apparatus and wastewater treatment method which remove nitrous acid and nitrate nitrogen efficiently using herbaceous biomass cheaply, it is industrially applicable.

1、2、3、4、5、6、7、8 廃水処理装置
20 カラム
40 被処理水槽
50 ポンプ
60 被処理水ライン
100、101、102 脱窒反応槽
110、111 仕切り
160 被処理水投入バルブ
180、181、182 処理水取得バルブ
190 汚泥引き抜きバルブ
200、210、220、230、240、250 充填材
1, 2, 3, 4, 5, 6, 7, 8 Waste water treatment apparatus 20 Column 40 Water to be treated tank 50 Pump 60 Water to be treated 100, 101, 102 Denitrification reaction tank 110, 111 Partition 160 Water to be treated input valve 180, 181, 182 Treated water acquisition valve 190 Sludge extraction valve 200, 210, 220, 230, 240, 250 Filler

Claims (12)

アルカリで脱リグニン処理された草本系バイオマスが充填され通水性を有するカラムが内部に、鉛直方向に配置され、下部から上向流式に被処理水が供給される脱窒反応槽を備える
ことを特徴とする廃水処理装置。
A column having a water permeability and filled with herbaceous biomass that has been delignified with alkali is arranged in the vertical direction, and is equipped with a denitrification reaction tank in which water to be treated is supplied upward from the bottom. A featured wastewater treatment system.
前記草本系バイオマスは、
水温・水質の変動に対し適正な充填率に圧縮、加圧成形される
ことを特徴とする請求項1に記載の廃水処理装置。
The herbaceous biomass is
The wastewater treatment apparatus according to claim 1, wherein the wastewater treatment apparatus is compressed and pressure-molded to an appropriate filling rate with respect to fluctuations in water temperature and water quality.
前記草本系バイオマスが葦属(Phragmites)である
ことを特徴とする請求項1又は2に記載の廃水処理装置。
The wastewater treatment apparatus according to claim 1 or 2, wherein the herbaceous biomass is Phragmites.
前記葦属の前記カラムへの充填率は25%〜65%である
ことを特徴とする請求項3に記載の廃水処理装置。
The waste water treatment apparatus according to claim 3, wherein a packing rate of the metal in the column is 25% to 65%.
前記草本系バイオマスがもみ殻である
ことを特徴とする請求項1又は2に記載の廃水処理装置。
The wastewater treatment apparatus according to claim 1 or 2, wherein the herbaceous biomass is rice husk.
前記もみ殻の前記カラムへの充填率は15%〜45%である
ことを特徴とする請求項5に記載の廃水処理装置。
The waste water treatment apparatus according to claim 5, wherein a packing rate of the rice husk into the column is 15% to 45%.
前記カラムは、脱窒に伴う酸化還元電位が所定電圧以上で推移する場合に交換される
ことを特徴とする請求項1乃至6のいずれか1項に記載の廃水処理装置。
The wastewater treatment apparatus according to any one of claims 1 to 6, wherein the column is replaced when an oxidation-reduction potential accompanying denitrification changes at a predetermined voltage or higher.
前記酸化還元電位により、前記被処理水の適正な接触滞留時間を調整する
ことを特徴とする請求項7に記載の廃水処理装置。
The waste water treatment apparatus according to claim 7, wherein an appropriate contact residence time of the treated water is adjusted by the oxidation-reduction potential.
アルカリで脱リグニン処理された草本系バイオマスが充填され、
前記草本系バイオマスが水温・水質の変動に対し適正な充填率に圧縮、加圧成形される
ことを特徴とする廃水処理装置用のカラム。
Packed with herbaceous biomass delignified with alkali,
A column for a wastewater treatment apparatus, wherein the herbaceous biomass is compressed and pressure-molded to an appropriate filling rate against fluctuations in water temperature and water quality.
アルカリで脱リグニン処理をした草本系バイオマスを微生物の担体として被処理水と接触させて脱窒する
ことを特徴とする廃水処理方法。
A wastewater treatment method comprising: denitrifying a herbaceous biomass that has been delignified with an alkali by bringing it into contact with water to be treated as a microorganism carrier.
前記草本系バイオマスが葦属(Phragmites)である
ことを特徴とする請求項9に記載の廃水処理方法。
The wastewater treatment method according to claim 9, wherein the herbaceous biomass is Phragmites.
前記被処理水が廃棄物埋立地浸出水である
ことを特徴とする請求項10に記載の廃水処理方法。
The wastewater treatment method according to claim 10, wherein the water to be treated is waste landfill leachate.
JP2012204244A 2012-09-18 2012-09-18 Waste water treatment apparatus, column, and waste water treatment method Pending JP2014057919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012204244A JP2014057919A (en) 2012-09-18 2012-09-18 Waste water treatment apparatus, column, and waste water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012204244A JP2014057919A (en) 2012-09-18 2012-09-18 Waste water treatment apparatus, column, and waste water treatment method

Publications (1)

Publication Number Publication Date
JP2014057919A true JP2014057919A (en) 2014-04-03

Family

ID=50614909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012204244A Pending JP2014057919A (en) 2012-09-18 2012-09-18 Waste water treatment apparatus, column, and waste water treatment method

Country Status (1)

Country Link
JP (1) JP2014057919A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104016425A (en) * 2014-05-07 2014-09-03 王磊 Cleaning agent of circulating water for washing recycled plastics
WO2023115235A1 (en) * 2021-12-24 2023-06-29 Universidad Católica Del Norte Method and system for purifying sanitary landfill leachate and recovering water from same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104016425A (en) * 2014-05-07 2014-09-03 王磊 Cleaning agent of circulating water for washing recycled plastics
WO2023115235A1 (en) * 2021-12-24 2023-06-29 Universidad Católica Del Norte Method and system for purifying sanitary landfill leachate and recovering water from same

Similar Documents

Publication Publication Date Title
Ayyasamy et al. Nitrate removal from synthetic medium and groundwater with aquatic macrophytes
KR0175229B1 (en) Apparatus and method for waste water treatment using granular sludge
Rossmann et al. Effect of influent aeration on removal of organic matter from coffee processing wastewater in constructed wetlands
Jamshidi et al. Wastewater treatment using integrated anaerobic baffled reactor and Bio-rack wetland planted with Phragmites sp. and Typha sp.
KR101303525B1 (en) A livestock wastewater treatment system using constructed wetlands
Boonsong et al. Domestic wastewater treatment using vetiver grass cultivated with floating platform technique
EP2093196B1 (en) Method for controlling a waste water treatment system using a multiple step constructed wetland
Thut Utilization of artificial marshes for treatment of pulp mill effluents
CN101767902B (en) Method for treating rural wastewater
JP6621342B2 (en) Method for producing biological activated carbon to which nitrifying bacteria are attached and advanced water purification method
CN105384302A (en) Aquaculture wastewater processing system and method thereof
CN105174622A (en) System and method suitable for treating high concentration organic wastewater
KR101297821B1 (en) A system and the method for culturing micro algae using anaerobic digester
KR102171918B1 (en) Recycling and water quality purification treatment system of livestock manure
CN106467352A (en) A kind of for the foul smell resource reutilization of sludge organism drying technique with the method for deodorization
CN112390467B (en) Cultivation wastewater purification treatment system and technology
Wijerathna et al. Imperative assessment on the current status of rubber wastewater treatment: Research development and future perspectives
JP2014057919A (en) Waste water treatment apparatus, column, and waste water treatment method
CN108423922A (en) A kind of resource recovery device for source-separated urine
CN2825629Y (en) Bio-wall sewage treatment device
CN104291444A (en) System and method for treatment of contact hydrolysis-algae micro-aeration composite wastewater
CN209797687U (en) Ecological purification unit of milk cow plant liquid dung
De Feo et al. Treatment of high strength wastewater with vertical flow constructed wetland filters
CN207537305U (en) Livestock breeding wastewater total system
Trivedy Low cost and energy saving technologies for water and wastewater treatment