JP2014055694A - Steam supply system - Google Patents

Steam supply system Download PDF

Info

Publication number
JP2014055694A
JP2014055694A JP2012199942A JP2012199942A JP2014055694A JP 2014055694 A JP2014055694 A JP 2014055694A JP 2012199942 A JP2012199942 A JP 2012199942A JP 2012199942 A JP2012199942 A JP 2012199942A JP 2014055694 A JP2014055694 A JP 2014055694A
Authority
JP
Japan
Prior art keywords
steam
superheater
boiler
supply system
dryness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012199942A
Other languages
Japanese (ja)
Other versions
JP5936966B2 (en
Inventor
Toshiharu Sato
利春 佐藤
Satoshi Nagayama
聡 永山
Tetsuo Kawamura
哲男 河村
享昇 ▲高▼橋
Ryosuke Takahashi
Kyosuke Okubo
恭輔 大久保
Satoru Oshita
悟 大下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Tokyo Gas Co Ltd
Original Assignee
Miura Co Ltd
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd, Tokyo Gas Co Ltd filed Critical Miura Co Ltd
Priority to JP2012199942A priority Critical patent/JP5936966B2/en
Publication of JP2014055694A publication Critical patent/JP2014055694A/en
Application granted granted Critical
Publication of JP5936966B2 publication Critical patent/JP5936966B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a steam supply system capable of reducing heat loss.SOLUTION: A steam supply system 1 comprises: a steam generating device 2 which generates steam; a steam supply passage 3 which sends the steam generated by the steam generating device 2 to steam utilization equipment 50; a steam superheater 4 which is installed on the steam supply passage 3 and superheats the steam generated by the steam generating device 2; and a control device 5 which controls the steam superheater 4. The control device 5 controls the steam superheater 4 on the basis of a parameter with respect to a dryness fraction of the steam generated by the steam generating device 2 so that the steam superheated by the steam superheater 4 has a predetermined degree of superheat. Thus, the steam supply system 1 can stabilize the degree of superheat of the steam in accordance with the dryness fraction thereof and thereby restraining generation of drain. Therefore, the steam supply system 1 can reduce heat loss associated with a portion of the steam to be emitted when discharging the drain.

Description

本発明は、蒸気供給システムに関する。   The present invention relates to a steam supply system.

従来の蒸気供給システムとして、例えば、特許文献1には、過熱器と、蒸気輸送管と、圧力検出手段及び温度検出手段と、コントローラとを具備する蒸気輸送管のドレン発生防止装置が記載されている。過熱器は、ボイラで発生させた蒸気を過熱する。蒸気輸送管は、過熱器で過熱された蒸気を蒸気使用装置に供給する。圧力検出手段及び温度検出手段は、蒸気輸送管の蒸気使用装置直前に設けられる。コントローラは、圧力検出手段及び温度検出手段からの検出信号を入力し過熱器を制御する制御信号を発する。そして、この蒸気輸送管のドレン発生防止装置は、例えば、蒸気輸送管を流れる過熱蒸気の蒸気使用装置直前の圧力及び温度を検出し、飽和温度よりも若干高い温度を維持するように過熱器を制御する。   As a conventional steam supply system, for example, Patent Document 1 describes a steam transport pipe drain generation prevention device including a superheater, a steam transport pipe, a pressure detection means and a temperature detection means, and a controller. Yes. The superheater superheats the steam generated in the boiler. The steam transport pipe supplies the steam superheated by the superheater to the steam using device. The pressure detecting means and the temperature detecting means are provided immediately before the steam using device of the steam transport pipe. The controller inputs detection signals from the pressure detection means and the temperature detection means and issues a control signal for controlling the superheater. And this drain generation prevention device of the steam transport pipe detects, for example, the pressure and temperature immediately before the steam using device of the superheated steam flowing through the steam transport pipe, and sets the superheater so as to maintain a temperature slightly higher than the saturation temperature. Control.

特開平09−137911号公報JP 09-137911 A

ところで、上述の特許文献1に記載の蒸気輸送管のドレン発生防止装置は、上記構成により、蒸気輸送管でのドレンの発生を抑制しているが、例えば、蒸気の乾き度の変化などに対して過熱度の制御の応答遅れなどによる熱損失や過過熱などの影響が出るなど改善の余地がある。   By the way, although the drain generation prevention device of the steam transport pipe described in Patent Document 1 described above suppresses the generation of drain in the steam transport pipe by the above configuration, for example, for the change in the dryness of steam, etc. Therefore, there is room for improvement, such as the effect of heat loss and overheating due to the response delay of superheat control.

本発明は、上記の事情に鑑みてなされたものであって、熱損失を低減することができる蒸気供給システムを提供することを目的とする。   This invention is made | formed in view of said situation, Comprising: It aims at providing the steam supply system which can reduce a heat loss.

上記目的を達成するために、本発明に係る蒸気供給システムは、蒸気を発生させる蒸気発生装置と、前記蒸気発生装置によって発生させた蒸気を蒸気使用機器まで送気する蒸気供給経路と、前記蒸気供給経路上に設けられ、前記蒸気発生装置によって発生させた蒸気を過熱する蒸気過熱装置と、前記蒸気過熱装置を制御する制御装置とを備え、前記制御装置は、前記蒸気発生装置によって発生させた蒸気の乾き度に関するパラメータに基づいて、前記蒸気過熱装置を制御し、前記蒸気過熱装置で過熱される蒸気の過熱度を所定の過熱度に制御することを特徴とする。   In order to achieve the above object, a steam supply system according to the present invention includes a steam generator that generates steam, a steam supply path that supplies the steam generated by the steam generator to a steam-using device, and the steam A steam superheater that is provided on a supply path and superheats the steam generated by the steam generator; and a control device that controls the steam superheater, wherein the controller is generated by the steam generator. The steam superheater is controlled based on a parameter related to the degree of dryness of the steam, and the superheat degree of the steam superheated by the steam superheater is controlled to a predetermined superheat degree.

また、上記蒸気供給システムでは、前記蒸気発生装置は、燃料を燃焼させた際の燃焼熱によって蒸気を発生させるものであり、前記蒸気発生装置によって発生させた蒸気の乾き度に関するパラメータは、前記蒸気発生装置での前記燃料の燃焼量、及び、前記蒸気発生装置内の圧力を含むものとすることができる。   Further, in the steam supply system, the steam generator generates steam by combustion heat when the fuel is combusted, and the parameter relating to the dryness of the steam generated by the steam generator is the steam The amount of combustion of the fuel in the generator and the pressure in the steam generator may be included.

また、上記蒸気供給システムでは、前記蒸気発生装置は、電気ヒータを熱源として蒸気を発生させるものであり、前記蒸気発生装置によって発生させた蒸気の乾き度に関するパラメータは、前記蒸気発生装置での前記電気ヒータの出力、及び、前記蒸気発生装置内の圧力を含むものとすることができる。   Further, in the steam supply system, the steam generator generates steam using an electric heater as a heat source, and the parameter relating to the dryness of the steam generated by the steam generator is the parameter in the steam generator. The output of an electric heater and the pressure in the said steam generator can be included.

また、上記蒸気供給システムでは、前記蒸気発生装置は、内部の水の濃縮度を検出する検出器を有し、前記蒸気発生装置によって発生させた蒸気の乾き度に関するパラメータは、前記検出器によって検出される前記蒸気発生装置の内部の水の濃縮度を含むものとすることができる。   In the steam supply system, the steam generator has a detector that detects the concentration of water in the interior, and parameters related to the dryness of the steam generated by the steam generator are detected by the detector. It is possible to include the concentration of water inside the steam generator.

また、上記蒸気供給システムでは、前記蒸気発生装置は、運転時間を計測する計測器を有し、前記蒸気発生装置によって発生させた蒸気の乾き度に関するパラメータは、前記計測器によって計測される前記蒸気発生装置の運転時間を含むものとすることができる。   Further, in the steam supply system, the steam generator has a measuring instrument that measures an operation time, and a parameter relating to the dryness of the steam generated by the steam generator is the steam measured by the instrument. It may include the operating time of the generator.

本発明に係る蒸気供給システムは、制御装置が蒸気発生装置によって発生させた蒸気の乾き度に関するパラメータに基づいて、蒸気過熱装置を制御し、蒸気過熱装置で過熱される蒸気の過熱度を所定の過熱度に制御することで、蒸気の乾き度に応じて蒸気の過熱度を安定化することができるので、ドレンの発生を抑制することができ、ドレン排出の際の一部蒸気の排出に伴う熱損失を低減することができる。   The steam supply system according to the present invention controls the steam superheater based on a parameter related to the dryness of steam generated by the steam generator by the control device, and sets the superheat degree of the steam superheated by the steam superheater to a predetermined value. By controlling the superheat degree, it is possible to stabilize the superheat degree of the steam according to the dryness of the steam, so it is possible to suppress the generation of drain and to accompany the discharge of some steam at the time of drain discharge Heat loss can be reduced.

実施形態1に係る蒸気供給システムの概略構成を示す図である。1 is a diagram illustrating a schematic configuration of a steam supply system according to Embodiment 1. FIG. 実施形態2に係る蒸気供給システムの概略構成を示す図である。It is a figure which shows schematic structure of the steam supply system which concerns on Embodiment 2. FIG.

以下に、本発明に係る実施形態を図面に基づいて詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が置換可能かつ容易なもの、或いは実質的に同一のものが含まれる。   Embodiments according to the present invention will be described below in detail with reference to the drawings. In addition, this invention is not limited by this embodiment. In addition, constituent elements in the following embodiments include those that can be easily replaced by those skilled in the art or those that are substantially the same.

[実施形態1]
図1は、実施形態1に係る蒸気供給システムの概略構成を示す図である。
[Embodiment 1]
FIG. 1 is a diagram illustrating a schematic configuration of a steam supply system according to the first embodiment.

図1に示す本実施形態の蒸気供給システム1は、加熱源や動力源として蒸気を使用して作動する種々の蒸気使用機器(負荷機器)50に、蒸気を供給するシステムである。本実施形態の蒸気供給システム1は、蒸気発生装置としてのボイラ2と、蒸気供給経路3と、蒸気過熱装置としての過熱器4と、制御装置5とを備える。   A steam supply system 1 according to this embodiment shown in FIG. 1 is a system that supplies steam to various steam-using devices (load devices) 50 that operate using steam as a heating source or a power source. The steam supply system 1 of the present embodiment includes a boiler 2 as a steam generator, a steam supply path 3, a superheater 4 as a steam superheater, and a control device 5.

ボイラ2は、蒸気を発生させるものである。ボイラ2は、種々の熱源方式によって飽和蒸気St1を発生させる。飽和蒸気St1は、わずかに液体の水を含む蒸気から100%乾き蒸気の範囲の蒸気である。   The boiler 2 generates steam. The boiler 2 generates saturated steam St1 by various heat source methods. The saturated steam St1 is a steam in a range of steam containing slightly liquid water to 100% dry steam.

ボイラ2は、燃焼式のボイラ、電気式のボイラ等、種々の形式のものを用いることができる。図1は、一例として燃焼式のボイラ2を図示している。ボイラ2は、燃焼式の場合、燃焼装置が設けられ、当該燃焼装置で燃料を燃焼させた際の燃焼熱によって缶体21内の缶水を加熱、蒸発させ飽和蒸気St1を発生させるものである。燃焼式の場合、ボイラ2の燃焼装置は、燃料供給経路22から燃料弁23等を介して燃料が供給され、空気供給経路24から燃焼用の空気が供給される。この場合、燃料としては、例えば、都市ガス、プロパンガス、バイオガス等の気体燃料、重油、灯油等の液体燃料等が用いられる。ボイラ2は、燃焼式の場合、例えば、貫流ボイラ、炉筒煙管ボイラ、水管ボイラ等の種々の形式のものを用いることができる。ボイラ2は、電気式の場合、缶体21内に電気ヒータが挿入され、当該電気ヒータを熱源として缶体21内の缶水を直接加熱し蒸発させ飽和蒸気St1を発生させる。電気式の場合、ボイラ2は、上記の燃料供給経路22、燃料弁23、空気供給経路24を備えない構成となる。ボイラ2は、後述する缶内圧力センサ9と、検出器としての濃縮度センサ10と、これらセンサ等の検出値に基づいてボイラ2の運転を制御するボイラ制御装置25とを有する。   As the boiler 2, various types such as a combustion boiler and an electric boiler can be used. FIG. 1 illustrates a combustion boiler 2 as an example. In the case of the combustion type, the boiler 2 is provided with a combustion device, which heats and evaporates can water in the can body 21 by combustion heat when fuel is combusted in the combustion device to generate saturated steam St1. . In the case of the combustion type, the combustion apparatus of the boiler 2 is supplied with fuel from the fuel supply path 22 via the fuel valve 23 and the like, and is supplied with combustion air from the air supply path 24. In this case, as the fuel, for example, gas fuel such as city gas, propane gas and biogas, liquid fuel such as heavy oil and kerosene are used. In the case of a combustion type, the boiler 2 can use various types, such as a once-through boiler, a furnace flue tube boiler, a water tube boiler, and the like. When the boiler 2 is an electric type, an electric heater is inserted into the can body 21, and the can water in the can body 21 is directly heated and evaporated by using the electric heater as a heat source to generate saturated steam St1. In the case of an electric type, the boiler 2 is configured not to include the fuel supply path 22, the fuel valve 23, and the air supply path 24 described above. The boiler 2 includes a can pressure sensor 9 described later, a concentration sensor 10 as a detector, and a boiler control device 25 that controls the operation of the boiler 2 based on detection values of these sensors and the like.

蒸気供給経路3は、ボイラ2によって発生させた蒸気を蒸気使用機器50まで送気するための蒸気供給ラインである。蒸気供給経路3は、配管、流量調整弁、逆止弁、分岐部位等を含んで構成される。本実施形態の蒸気供給経路3は、少なくとも飽和蒸気配管31と過熱蒸気配管32とを含んで構成される。   The steam supply path 3 is a steam supply line for sending the steam generated by the boiler 2 to the steam using device 50. The steam supply path 3 includes a pipe, a flow rate adjustment valve, a check valve, a branch portion, and the like. The steam supply path 3 of the present embodiment includes at least a saturated steam pipe 31 and a superheated steam pipe 32.

飽和蒸気配管31は、ボイラ2の蒸気流出口と後述の過熱器4の蒸気流入口とを接続する。飽和蒸気配管31は、蒸気が内部を流通可能であり、ボイラ2で発生させた飽和蒸気St1を過熱器4に送気する。過熱蒸気配管32は、過熱器4の蒸気流出口と蒸気使用機器50の蒸気流入口とを接続する。過熱蒸気配管32は、蒸気が内部を流通可能であり、後述のように過熱器4で過熱した過熱蒸気St2を蒸気使用機器50に送気する。なお、飽和蒸気配管31、過熱蒸気配管32は、共に複数の配管、流量調整弁、逆止弁、分岐部位等を組み合わせることによって構成されてもよい。   The saturated steam pipe 31 connects a steam outlet of the boiler 2 and a steam inlet of a superheater 4 described later. The saturated steam pipe 31 allows the steam to flow inside, and feeds the saturated steam St <b> 1 generated by the boiler 2 to the superheater 4. The superheated steam pipe 32 connects the steam outlet of the superheater 4 and the steam inlet of the steam using device 50. The superheated steam pipe 32 allows the steam to flow inside, and sends the superheated steam St2 heated by the superheater 4 to the steam using device 50 as described later. Note that both the saturated steam pipe 31 and the superheated steam pipe 32 may be configured by combining a plurality of pipes, a flow rate adjusting valve, a check valve, a branch portion, and the like.

過熱器4は、蒸気供給経路3上に設けられ、ボイラ2によって発生させた蒸気を過熱するいわゆるスーパーヒータである。過熱器4は、上述したように飽和蒸気配管31と過熱蒸気配管32との間に設けられ、蒸気流入口に飽和蒸気配管31が接続され、蒸気流出口に過熱蒸気配管32が接続される。過熱器4は、ボイラ2から飽和蒸気配管31を介して送気された飽和蒸気St1を種々の熱源方式によって過熱し、同等の圧力の飽和蒸気St1の温度より高い温度の過熱蒸気St2を発生させる。過熱蒸気St2は、一定圧力飽和温度で蒸発した飽和蒸気St1を定圧のままさらに高温度に過熱した無色透明のHOガスである。 The superheater 4 is a so-called super heater that is provided on the steam supply path 3 and superheats the steam generated by the boiler 2. As described above, the superheater 4 is provided between the saturated steam pipe 31 and the superheated steam pipe 32, the saturated steam pipe 31 is connected to the steam inlet, and the superheated steam pipe 32 is connected to the steam outlet. The superheater 4 superheats the saturated steam St1 sent from the boiler 2 through the saturated steam pipe 31 by various heat source methods, and generates superheated steam St2 having a temperature higher than the temperature of the saturated steam St1 having the same pressure. . The superheated steam St2 is a colorless and transparent H 2 O gas obtained by heating the saturated steam St1 evaporated at a constant pressure saturation temperature to a higher temperature while maintaining a constant pressure.

過熱器4は、電気式の過熱器、熱交換器式の過熱器等、種々の形式のものを用いることができる。過熱器4は、電気式の場合、過熱器内部に設けられた電気ヒータを熱源として、飽和蒸気St1を過熱し過熱蒸気St2を発生させる。過熱器4は、熱交換器式の場合、過熱器内部に供給される熱交換媒体を熱源として、当該熱交換媒体と飽和蒸気St1とを熱交換させることで飽和蒸気St1を過熱し過熱蒸気St2を発生させる。この場合、熱交換媒体としては、例えば、熱媒ボイラからの高温の熱媒油、ボイラ2から排出される燃焼排ガス、他のボイラから供給される高圧蒸気などが用いられる。なお、過熱器4は、この他、減圧式の過熱器等を用いることもできる。   As the superheater 4, various types such as an electric superheater and a heat exchanger superheater can be used. In the case of an electric type, the superheater 4 uses the electric heater provided inside the superheater as a heat source to superheat the saturated steam St1 and generate superheated steam St2. In the case of a heat exchanger type, the superheater 4 uses the heat exchange medium supplied inside the superheater as a heat source, and heat-exchanges the heat exchange medium and the saturated steam St1, thereby superheating the saturated steam St1 and superheated steam St2. Is generated. In this case, as the heat exchange medium, for example, high-temperature heat medium oil from the heat medium boiler, combustion exhaust gas discharged from the boiler 2, high-pressure steam supplied from another boiler, or the like is used. In addition, the superheater 4 can also use a depressurizing superheater or the like.

過熱器4は、制御装置5に電気的に接続されており、この制御装置5によって加熱出力が制御される。過熱器4における加熱出力は、当該過熱器4内を通過する飽和蒸気St1に付与する熱量(加熱量)に相当する。ここで、過熱器4における加熱出力は、電気式の場合には、過熱器4内の電気ヒータへの電圧(あるいは通電量)を調節することで増減することができる。また、過熱器4における加熱出力は、熱交換器式の場合には、過熱器4内に供給される熱交換媒体の供給量(流量)や温度を調節することで増減することができる。過熱器4は、加熱出力が大きくなるほど、飽和蒸気St1に付与する熱量が多くなり、発生させた過熱蒸気St2の過熱度が高くなる。一方、過熱器4は、加熱出力が小さくなるほど、飽和蒸気St1に付与する熱量が少なくなり、発生させた過熱蒸気St2の過熱度が低くなる。   The superheater 4 is electrically connected to the control device 5, and the heating output is controlled by the control device 5. The heating output in the superheater 4 corresponds to the amount of heat (heating amount) given to the saturated steam St1 passing through the superheater 4. Here, in the case of an electric type, the heating output in the superheater 4 can be increased or decreased by adjusting the voltage (or energization amount) to the electric heater in the superheater 4. Further, in the case of a heat exchanger type, the heating output in the superheater 4 can be increased or decreased by adjusting the supply amount (flow rate) or temperature of the heat exchange medium supplied into the superheater 4. The superheater 4 increases the amount of heat applied to the saturated steam St1 as the heating output increases, and the degree of superheat of the generated superheated steam St2 increases. On the other hand, as the heating output of the superheater 4 decreases, the amount of heat applied to the saturated steam St1 decreases, and the degree of superheat of the generated superheated steam St2 decreases.

ここで、過熱蒸気St2の過熱度とは、飽和蒸気St1に対する過熱蒸気St2の過熱の度合を表す指標である。過熱蒸気St2の過熱度は、例えば、下記の数式(1)で表すように、過熱蒸気St2の温度(過熱蒸気温度)と飽和蒸気St1の温度(飽和蒸気温度)との差分を用いることができる。

過熱度(Deg)=過熱蒸気温度(℃)−飽和蒸気温度(℃) ・・・ (1)
Here, the superheat degree of the superheated steam St2 is an index that represents the degree of superheat of the superheated steam St2 with respect to the saturated steam St1. As the degree of superheat of the superheated steam St2, for example, the difference between the temperature of the superheated steam St2 (superheated steam temperature) and the temperature of the saturated steam St1 (saturated steam temperature) can be used as represented by the following formula (1). .

Superheat degree (Deg) = superheated steam temperature (° C.) − Saturated steam temperature (° C.) (1)

制御装置5は、過熱器4を含む蒸気供給システム1の各部を制御するものである。制御装置5は、CPU、ROM、RAM及びインターフェースを含むマイクロコンピュータを主体とする電子回路を含んで構成される。   The control device 5 controls each part of the steam supply system 1 including the superheater 4. The control device 5 includes an electronic circuit mainly composed of a microcomputer including a CPU, a ROM, a RAM, and an interface.

制御装置5は、例えば、圧力センサ6、外気温度センサ7、過熱蒸気温度センサ8等の蒸気供給システム1の各所に取り付けられた種々のセンサが電気的に接続され、検出結果に対応した電気信号が入力される。また、制御装置5は、ボイラ2の各部を制御するボイラ制御装置25と電気的に接続され、制御装置5とボイラ制御装置25との間で各種電気信号を授受することができる。ボイラ制御装置25は、例えば、缶内圧力センサ9、濃縮度センサ10等の種々のセンサが電気的に接続され、検出結果に対応した電気信号が入力される。缶内圧力センサ9は、ボイラ2の缶体21内の圧力を検出するものである。濃縮度センサ10は、ボイラ2の缶体21内の缶水の濃縮度を検出するものである。濃縮度センサ10は、例えば、缶水の電気伝導度(1/缶水の電気抵抗)[mS/m(ミリジーメンス毎メートル)]を検出する。ボイラ2の缶水は、濃縮度が高くなるほどイオン分が多くなり電気を通し易くなるため、電気伝導度が大きくなる。濃縮度センサ10は、この原理を利用してボイラ2の缶水の濃縮度を検出する。ボイラ制御装置25は、ボイラ2の運転時間を計測するタイマ(計測器)の機能を有するものである。ボイラ制御装置25は、上記センサ等の検出値に基づいてボイラ2の運転を制御し、例えば、缶体21内の圧力に基づくボイラ2の運転の起動、停止、燃焼の切換え、各種異常値の判定、給水、ブローなど運転に必要な操作を自動で行わせる。なお、制御装置5は、缶内圧力センサ9、濃縮度センサ10とは別の圧力センサ、濃縮度センサを備え、缶体21の圧力、ボイラ2の缶水の濃縮度を独立して得られるようにしておき、ボイラ2の運転時間、燃焼装置等の切り替え信号とともに、缶体21内の圧力、ボイラ2の缶水の濃縮度に基づいて、過熱度を制御する構成であってもよい。   In the control device 5, for example, various sensors attached to various parts of the steam supply system 1 such as the pressure sensor 6, the outside air temperature sensor 7, and the superheated steam temperature sensor 8 are electrically connected, and an electrical signal corresponding to the detection result. Is entered. The control device 5 is electrically connected to a boiler control device 25 that controls each part of the boiler 2, and can exchange various electric signals between the control device 5 and the boiler control device 25. In the boiler control device 25, for example, various sensors such as the in-can pressure sensor 9 and the concentration sensor 10 are electrically connected, and an electric signal corresponding to the detection result is input. The in-can pressure sensor 9 detects the pressure in the can body 21 of the boiler 2. The concentration sensor 10 detects the concentration of the can water in the can 21 of the boiler 2. The concentration sensor 10 detects, for example, electrical conductivity of can water (1 / electric resistance of can water) [mS / m (milli Siemens per meter)]. The boiler water in the boiler 2 has a higher ion conductivity because it has a higher ion content and more easily conducts electricity. The concentration sensor 10 detects the concentration of the boiler water of the boiler 2 using this principle. The boiler control device 25 has a function of a timer (measuring instrument) that measures the operation time of the boiler 2. The boiler control device 25 controls the operation of the boiler 2 based on the detection value of the sensor or the like. For example, the operation of the boiler 2 based on the pressure in the can 21 is started, stopped, switched between combustion, and various abnormal values. Operations necessary for operation such as judgment, water supply, and blow are automatically performed. The control device 5 includes a pressure sensor and a concentration sensor different from the in-can pressure sensor 9 and the concentration sensor 10, and can independently obtain the pressure of the can body 21 and the concentration of the can water of the boiler 2. In this way, the superheat degree may be controlled based on the operation time of the boiler 2, the switching signal of the combustion device, and the like, the pressure in the can 21, and the concentration of the boiler water in the boiler 2.

制御装置5は、各種センサから入力された各種入力信号や各種マップに基づいて、記憶部に格納されている制御プログラムを実行することにより、過熱器4を含む蒸気供給システム1の各部に制御信号を出力しこれらを制御する。制御装置5は、過熱器4を制御し当該過熱器4における加熱出力を調節することで、過熱器4で過熱される過熱蒸気St2の過熱度を調節することができる。制御装置5は、過熱器4が電気式である場合には、過熱器4内の電気ヒータへの電圧(インプット)を制御することで、過熱器4における加熱出力を調節し、過熱蒸気St2の過熱度を所定の過熱度としての目標過熱度に調節することができる。また、制御装置5は、過熱器4が熱交換器式である場合には、過熱器4内に供給される熱交換媒体の供給量や温度(インプット)を制御することで、過熱器4における加熱出力を調節し、過熱蒸気St2の過熱度を目標過熱度に調節することができる。このとき、制御装置5は、例えば、圧力センサ6が検出した送気圧力から求められる飽和蒸気温度と、過熱蒸気温度センサ8が検出した過熱蒸気温度とに基づいて、上記の数式(1)を用いて、過熱器4で過熱された過熱蒸気St2の実際の過熱度を算出することができる。これにより、制御装置5は、過熱器4で過熱した過熱蒸気St2の過熱度が目標過熱度に調節されているか否かを判定することができる。   The control device 5 executes control programs stored in the storage unit on the basis of various input signals and various maps input from various sensors, thereby providing control signals to the respective parts of the steam supply system 1 including the superheater 4. To control these. The control device 5 can adjust the superheat degree of the superheated steam St2 superheated by the superheater 4 by controlling the superheater 4 and adjusting the heating output in the superheater 4. When the superheater 4 is an electric type, the control device 5 controls the voltage (input) to the electric heater in the superheater 4 to adjust the heating output in the superheater 4, and the superheated steam St 2. The superheat degree can be adjusted to a target superheat degree as a predetermined superheat degree. Moreover, when the superheater 4 is a heat exchanger type, the control device 5 controls the supply amount and temperature (input) of the heat exchange medium supplied into the superheater 4, thereby By adjusting the heating output, the superheat degree of the superheated steam St2 can be adjusted to the target superheat degree. At this time, for example, the control device 5 calculates the above formula (1) based on the saturated steam temperature obtained from the air supply pressure detected by the pressure sensor 6 and the superheated steam temperature detected by the superheated steam temperature sensor 8. It is possible to calculate the actual degree of superheat of the superheated steam St2 superheated by the superheater 4. Thereby, the control apparatus 5 can determine whether the superheat degree of the superheated steam St2 overheated with the superheater 4 is adjusted to the target superheat degree.

ここで、目標過熱度とは、過熱器4で過熱された過熱蒸気St2の目標とする過熱度である。典型的には、この目標過熱度は、蒸気供給経路3で蒸気を蒸気使用機器50まで送気した際に、当該蒸気が蒸気使用機器50に至る前にドレンが発生しない過熱度である。この制御装置5は、機能概念的に過熱度設定部11が設けられており、この過熱度設定部11が目標過熱度を設定する。   Here, the target superheat degree is a target superheat degree of the superheated steam St2 heated by the superheater 4. Typically, this target superheat degree is a superheat degree at which no drain is generated before the steam reaches the steam using device 50 when the steam is supplied to the steam using device 50 in the steam supply path 3. The control device 5 is provided with a superheat degree setting unit 11 in terms of functional concept, and the superheat degree setting unit 11 sets a target superheat degree.

過熱度設定部11は、蒸気使用機器50で許容される所望の過熱度、蒸気供給経路3の放熱量等に基づいて目標過熱度を設定する。ここで、蒸気使用機器50で許容される所望の過熱度の蒸気とは、蒸気使用機器50に蒸気が届いたときにほぼ飽和状態である蒸気、あるいは、蒸気使用機器50に影響を与えない程度の過熱度となっている微過熱蒸気等を含む概念である。蒸気供給経路3の放熱量は、蒸気が蒸気供給経路3を通って蒸気使用機器50に供給されるまでに放熱される熱量に相当する。この蒸気供給経路3の放熱量は、係員、オペレータ、作業者などによって予め現場で調査、計測された放熱量を固定値として用いてもよいし、過熱度設定部11によって適宜算出してもよい。過熱度設定部11は、例えば、蒸気供給経路3の状況に関する情報、周囲の環境を表す指標、蒸気供給経路3内の送気圧力を表す指標等に応じて蒸気供給経路3の放熱量を算出することができる。上記蒸気供給経路3の状況に関する情報は、例えば、蒸気供給経路3の全長、敷設位置、フランジ形状等の配管構成、配管熱伝導率、断熱材の性能、分岐管の数、各種弁の数、分岐管に接続された他の機器の作動状態、各種弁の作動状態等に関する情報等である。上記周囲の環境を表す指標は、例えば、外気温度センサ7によって検出される蒸気供給経路3の周囲の気温の他、湿度、季節、時間帯等である。上記蒸気供給経路3内の送気圧力を表す指標は、例えば、圧力センサ6によって検出される飽和蒸気配管31内の送気圧力等である。   The superheat degree setting unit 11 sets a target superheat degree based on a desired superheat degree allowed by the steam using device 50, a heat radiation amount of the steam supply path 3, and the like. Here, the steam having a desired superheat degree allowed by the steam using device 50 is a steam that is almost saturated when the steam reaches the steam using device 50 or a degree that does not affect the steam using device 50. This is a concept including slightly superheated steam having a superheat degree of. The amount of heat released from the steam supply path 3 corresponds to the amount of heat released before the steam is supplied to the steam using device 50 through the steam supply path 3. The heat release amount of the steam supply path 3 may be a heat release amount that has been investigated and measured in advance by a staff member, an operator, an operator, or the like as a fixed value, or may be appropriately calculated by the superheat degree setting unit 11. . The superheat degree setting unit 11 calculates the heat release amount of the steam supply path 3 according to, for example, information on the status of the steam supply path 3, an index representing the surrounding environment, an index representing the air supply pressure in the steam supply path 3, and the like. can do. Information on the status of the steam supply path 3 includes, for example, the overall length of the steam supply path 3, the laying position, the piping configuration such as the flange shape, the pipe thermal conductivity, the performance of the heat insulating material, the number of branch pipes, the number of various valves, Information on the operating state of other devices connected to the branch pipe, the operating state of various valves, and the like. The index representing the surrounding environment includes, for example, humidity, season, time zone, and the like in addition to the temperature around the steam supply path 3 detected by the outside air temperature sensor 7. The index representing the air supply pressure in the steam supply path 3 is, for example, the air supply pressure in the saturated steam pipe 31 detected by the pressure sensor 6.

そして、過熱度設定部11は、現時点での蒸気供給経路3の放熱量、ボイラ2から供給される蒸気の乾き度、蒸気使用機器50で許容される過熱度等に基づいて、過熱器4で過熱される過熱蒸気St2の目標過熱度を設定する。すなわち、過熱度設定部11は、蒸気供給経路3を介して蒸気を蒸気使用機器50まで送気した際に、現時点での蒸気供給経路3の放熱量で放熱しても、蒸気が蒸気使用機器50に至る前にドレンが発生せず、許容される過熱度で蒸気使用機器50に供給されるように、目標過熱度を設定する。さらに言えば、過熱度設定部11は、過熱器4で過熱される過熱蒸気St2の過熱分の熱量が、上記で算出した蒸気供給経路3の放熱量と同等、もしくは、当該算出した蒸気供給経路3の放熱量より所定量高い熱量となるように目標過熱度を設定する。ここで、上記所定量は、例えば、蒸気使用機器50に影響を与えない程度の微過熱蒸気に応じた熱量である。   And the superheat degree setting part 11 is the superheater 4 based on the heat dissipation of the steam supply path 3 at the present time, the dryness of the steam supplied from the boiler 2, the superheat degree permitted by the steam using device 50, etc. The target superheat degree of the superheated steam St2 to be superheated is set. That is, when the superheat degree setting unit 11 sends the steam to the steam using device 50 through the steam supply path 3, even if the heat is dissipated by the current heat dissipation amount of the steam supply path 3, the steam is still in the steam using device. The target superheat degree is set so that drain does not occur before reaching 50 and is supplied to the steam-using device 50 at an allowable superheat degree. Further, the superheat degree setting unit 11 has the amount of heat of the superheated steam St2 superheated by the superheater 4 equal to the heat dissipation amount of the steam supply path 3 calculated above or the calculated steam supply path. The target superheat degree is set so that the heat quantity is a predetermined amount higher than the heat radiation quantity of 3. Here, the predetermined amount is, for example, the amount of heat corresponding to the slightly superheated steam that does not affect the steam using device 50.

そして、制御装置5は、上記のように設定された目標過熱度に基づいて、過熱器4を制御し、過熱蒸気St2の過熱度を調節する。ここでは、制御装置5は、圧力センサ6が検出した送気圧力から求められる飽和蒸気温度と、過熱蒸気温度センサ8が検出した過熱蒸気温度とに応じて現時点での実際の過熱度を算出する。そして、制御装置5は、算出した現時点での実際の過熱度が、上記目標過熱度となるように過熱器4を制御する。この場合、制御装置5は、過熱器4を制御し当該過熱器4における加熱出力を調節することで、過熱器4で過熱される過熱蒸気St2の過熱度を目標過熱度に調節する。   And the control apparatus 5 controls the superheater 4 based on the target superheat degree set as mentioned above, and adjusts the superheat degree of the superheated steam St2. Here, the control device 5 calculates the actual superheat degree at the present time according to the saturated steam temperature obtained from the air supply pressure detected by the pressure sensor 6 and the superheated steam temperature detected by the superheated steam temperature sensor 8. . And the control apparatus 5 controls the superheater 4 so that the calculated actual superheat degree at the present time may become said target superheat degree. In this case, the control device 5 controls the superheater 4 and adjusts the heating output in the superheater 4 to adjust the superheat degree of the superheated steam St2 superheated by the superheater 4 to the target superheat degree.

この結果、制御装置5は、過熱器4で過熱される蒸気の過熱分の熱量を、当該算出した蒸気供給経路3の放熱量と同等、もしくは、当該算出した蒸気供給経路3の放熱量より所定量高い熱量に制御することができる。言い換えれば、制御装置5は、ボイラ2によって発生させた飽和蒸気St1が、過熱分の熱量として蒸気供給経路3の放熱量と同等、もしくは、わずかに高い熱量を持つ過熱蒸気St2となるように過熱器4を制御することができる。この結果、蒸気供給システム1は、過熱器4で過熱される蒸気の過熱度を蒸気使用機器50までドレンが発生しない過熱度として送気することができる。   As a result, the control device 5 makes the amount of heat of the superheated steam superheated by the superheater 4 equal to the calculated heat dissipation amount of the steam supply path 3 or from the calculated heat dissipation amount of the steam supply path 3. The amount of heat can be controlled to be high. In other words, the control device 5 superheats so that the saturated steam St1 generated by the boiler 2 becomes superheated steam St2 having a heat quantity equivalent to or slightly higher than the heat radiation amount of the steam supply path 3 as the heat quantity of the superheat. The device 4 can be controlled. As a result, the steam supply system 1 can send the superheat degree of the steam superheated by the superheater 4 to the steam using device 50 as the superheat degree at which no drain is generated.

上記のように構成される蒸気供給システム1は、ボイラ2で発生させた飽和蒸気St1が蒸気供給経路3の飽和蒸気配管31を介して過熱器4に送気される。蒸気供給システム1は、過熱器4が送気された飽和蒸気St1を過熱し過熱蒸気St2を発生させる。そして、蒸気供給システム1は、過熱器4で発生させた過熱蒸気St2が蒸気供給経路3の過熱蒸気配管32を介して蒸気使用機器50に送気される。   In the steam supply system 1 configured as described above, the saturated steam St1 generated by the boiler 2 is supplied to the superheater 4 via the saturated steam pipe 31 of the steam supply path 3. The steam supply system 1 superheats the saturated steam St1 sent by the superheater 4 to generate superheated steam St2. In the steam supply system 1, the superheated steam St <b> 2 generated by the superheater 4 is sent to the steam using device 50 through the superheated steam pipe 32 of the steam supply path 3.

このとき、制御装置5は、過熱器4を制御し過熱器4における加熱出力を調節することで、過熱器4で過熱される過熱蒸気St2の過熱度を、蒸気供給経路3の放熱量、蒸気の乾き度、許容される過熱度等に応じた目標過熱度に調節する。これにより、蒸気供給システム1は、蒸気供給経路3で放熱することを見込んで蒸気を過熱し、蒸気使用機器50に至る前にドレンが発生しないように蒸気使用機器50に供給することができる。つまり、蒸気供給システム1は、ボイラ2で発生させた蒸気を蒸気使用機器50まで送気した際に蒸気供給経路3で放熱しても、当該放熱を過熱蒸気St2が有する熱(顕熱)によって補完することができる。したがって、蒸気供給システム1は、蒸気使用機器50に当該蒸気使用機器50で許容される所望の過熱度の蒸気を供給することができると共に、蒸気供給経路3で蒸気使用機器50に至る前に蒸気の一部が凝縮することを抑制することができ、ドレンが発生することを抑制することができる。   At this time, the control device 5 controls the superheater 4 and adjusts the heating output in the superheater 4, thereby determining the degree of superheat of the superheated steam St <b> 2 overheated by the superheater 4, the amount of heat released from the steam supply path 3, steam The target superheat degree is adjusted according to the dryness of the water and the allowable superheat degree. Thereby, the steam supply system 1 can supply heat to the steam using device 50 so that the steam is superheated in anticipation of heat dissipation in the steam supply path 3 and no drain is generated before reaching the steam using device 50. That is, even if the steam supply system 1 dissipates heat in the steam supply path 3 when the steam generated in the boiler 2 is supplied to the steam using device 50, the heat dissipation is generated by the heat (sensible heat) of the superheated steam St2. Can be complemented. Therefore, the steam supply system 1 can supply the steam using device 50 with steam having a desired superheat degree permitted by the steam using device 50 and before reaching the steam using device 50 in the steam supply path 3. It is possible to suppress a part of the water from being condensed, and it is possible to suppress the generation of drain.

なお、この蒸気供給システム1は、蒸気使用機器50で蒸気が利用されると、当該蒸気の一部が凝縮してドレンが発生する。蒸気使用機器50で凝縮されたドレンは、スチームトラップ51等で分離されて回収される。そして、回収されたドレンは、ボイラ2の缶水として再びボイラ2の缶体21内に給水される。   In the steam supply system 1, when steam is used in the steam using device 50, a part of the steam is condensed and drainage is generated. The drain condensed by the steam using device 50 is separated and collected by the steam trap 51 or the like. Then, the collected drain is supplied again into the boiler body 21 of the boiler 2 as the boiler water of the boiler 2.

ところで、この蒸気供給システム1は、ボイラ2の運転状態等に応じてボイラ2で発生させる飽和蒸気St1の乾き度が変化するおそれがある。そして、蒸気供給システム1は、過熱器4に流入する飽和蒸気St1の乾き度が変化することで、この過熱器4で過熱された過熱蒸気St2の過熱度が安定しないおそれがある。これにより、蒸気供給システム1は、過熱器4で過熱される過熱蒸気St2の過熱度を精度よく調節できずに、結果的に、蒸気供給経路3で蒸気使用機器50に至る前に蒸気の一部が凝縮しドレンが発生するおそれがある。この場合、蒸気使用機器50へのドレンの流入による影響をなくすために、蒸気供給システム1は、例えば、発生したドレンを蒸気供給経路3の外部に排出する必要が生じる。このとき、蒸気供給システム1は、例えば、スチームトラップ等からドレンを排出する際、当該ドレンだけでなく蒸気も一部排出させてしまうおそれがあり、これにより、熱の損失が生じるおそれがある。   By the way, this steam supply system 1 has a possibility that the dryness of saturated steam St1 generated with the boiler 2 may change according to the operation state of the boiler 2, etc. In the steam supply system 1, the degree of dryness of the saturated steam St <b> 1 flowing into the superheater 4 may change, so that the superheated degree of the superheated steam St <b> 2 heated by the superheater 4 may not be stable. As a result, the steam supply system 1 cannot accurately adjust the degree of superheat of the superheated steam St2 heated by the superheater 4, and as a result, before the steam supply device 3 reaches the steam using device 50, the steam supply system 1 Condensation may occur and drainage may occur. In this case, in order to eliminate the influence of the inflow of drain into the steam-using device 50, the steam supply system 1 needs to discharge the generated drain to the outside of the steam supply path 3, for example. At this time, for example, when the steam supply system 1 discharges drain from a steam trap or the like, not only the drain but also a part of the steam may be discharged, which may cause heat loss.

そこで、本実施形態の蒸気供給システム1は、上記のようにボイラ2によって発生させた蒸気の乾き度に応じて過熱器4を制御することで、この過熱器4で常時、安定した過熱度の過熱蒸気St2を発生させ、ドレンの発生を抑制しドレン排出の際の一部蒸気の排出に伴う熱損失の低減を図っている。   Therefore, the steam supply system 1 of the present embodiment controls the superheater 4 according to the dryness of the steam generated by the boiler 2 as described above, so that the superheater 4 always has a stable superheat degree. Superheated steam St2 is generated to suppress the generation of drain and to reduce heat loss due to partial steam discharge during drain discharge.

具体的には、制御装置5は、ボイラ2によって発生させた蒸気の乾き度に関するパラメータに基づいて、過熱器4を制御し、過熱器4で過熱される過熱蒸気St2の過熱度を、上記目標過熱度に制御する。   Specifically, the control device 5 controls the superheater 4 based on a parameter related to the dryness of the steam generated by the boiler 2, and determines the superheat degree of the superheated steam St <b> 2 heated by the superheater 4 as the target. Control to superheat.

ここで、蒸気の乾き度とは、蒸気中の気相部分と液相分との重量割合を表す指標であり、さらに言えば、湿り飽和蒸気中に含まれる乾き飽和蒸気の割合を表す指標である。蒸気の乾き度は、例えば、下記の数式(2)で表すことができる。

乾き度=(1−湿り度)=(1−蒸気中の液相分重量/全蒸気重量) ・・・ (2)
Here, the degree of dryness of the steam is an index that represents the weight ratio between the gas phase portion in the steam and the liquid phase, and more specifically, an index that represents the ratio of the dry saturated steam contained in the wet saturated steam. is there. The dryness of the steam can be expressed by, for example, the following formula (2).

Dryness = (1-wetness) = (1-liquid weight in steam / total steam weight) (2)

過熱器4における飽和蒸気St1の過熱では、例えば、100%乾き蒸気を過熱するための熱量は、[比熱×蒸気量×過熱度]で定まるが、蒸気中に水分が含まれている場合(すなわち、乾き度<1の場合)、さらに蒸気潜熱分の熱量が余計に必要になる。このため、過熱器4に流入する飽和蒸気St1の乾き度は、過熱器4での飽和蒸気St1の過熱に影響を与えることとなる。例えば、過熱器4は、乾き度が高い飽和蒸気St1と、同等の圧力で乾き度が低い飽和蒸気St1とを同等の過熱度まで過熱する場合、乾き度が高い飽和蒸気St1より乾き度が低い飽和蒸気St1を過熱する場合のほうがより多くの熱量が必要となる。   In the overheating of the saturated steam St1 in the superheater 4, for example, the amount of heat for superheating 100% dry steam is determined by [specific heat × steam amount × superheat degree], but when steam contains moisture (ie, In the case of dryness <1), an additional amount of heat corresponding to the latent heat of steam is required. For this reason, the dryness of the saturated steam St1 flowing into the superheater 4 affects the overheating of the saturated steam St1 in the superheater 4. For example, when the superheater 4 superheats the saturated steam St1 having a high dryness and the saturated steam St1 having a low dryness at the same pressure to the same superheat degree, the superheater 4 has a lower dryness than the saturated steam St1 having a high dryness. A larger amount of heat is required when the saturated steam St1 is overheated.

本実施形態の制御装置5は、飽和蒸気St1の乾き度が過熱器4での飽和蒸気St1の過熱に与える影響を踏まえて、飽和蒸気St1の乾き度に関するパラメータに基づいて過熱器4を制御する。   The control device 5 of the present embodiment controls the superheater 4 based on a parameter related to the dryness of the saturated steam St1, based on the influence of the dryness of the saturated steam St1 on the superheat of the saturated steam St1 in the superheater 4. .

ここで、飽和蒸気St1の乾き度に関するパラメータは、飽和蒸気St1の乾き度に変化をもたらす物理量であり、典型的には、ボイラ2の運転状態に関する物理量である。乾き度に影響を与えるボイラ2の運転状態に関する物理量としては、例えば、ボイラ2の負荷状態を表す物理量、ボイラ2内の圧力、ボイラ2への給水の水質、ボイラ2の缶水の濃縮度、ボイラ2の運転時間等が挙げられる。ここでは、飽和蒸気St1の乾き度に関するパラメータは、例えば、ボイラ2が燃焼式である場合には、ボイラ2の燃焼量及びボイラ2内の圧力、ボイラ2の缶水の濃縮度、ボイラ2の運転時間等のうちの少なくとも1つを含む。ボイラ2の燃焼量は、燃料供給経路22の圧力、ボイラ制御装置25が出力する燃料弁25の開閉信号や当該燃料弁25の開度等に基づいて検出することができる。ボイラ2内の圧力は、缶内圧力センサ9によって検出される缶体21内の圧力(以下、「缶内圧力」という場合がある。)を用いることができる。ボイラ2への給水の水質は、予め検査し取得したものや各種センサにより検出したものを用いることができる。ボイラ2の内部の缶水の濃縮度は、濃縮度センサ10によって検出されるボイラ2の缶水の濃縮度を用いることができる。ボイラ2の運転時間は、ボイラ制御装置25のタイマによって計測されるボイラ2の運転時間を用いることができる。また、例えば、ボイラ2が電気式である場合には、飽和蒸気St1の乾き度に関するパラメータは、上記ボイラ2の燃焼量にかえてボイラ2での電気ヒータの出力(インプット電圧)を用いることができる。   Here, the parameter related to the dryness of the saturated steam St1 is a physical quantity that causes a change in the dryness of the saturated steam St1, and is typically a physical quantity related to the operating state of the boiler 2. Examples of the physical quantity related to the operation state of the boiler 2 that affects the dryness include, for example, a physical quantity indicating the load state of the boiler 2, the pressure in the boiler 2, the quality of water supplied to the boiler 2, the concentration of the boiler water in the boiler 2, The operation time of the boiler 2 is mentioned. Here, the parameters related to the dryness of the saturated steam St1 are, for example, when the boiler 2 is a combustion type, the combustion amount of the boiler 2 and the pressure in the boiler 2, the concentration of the boiler water in the boiler 2, and the boiler 2 It includes at least one of driving hours and the like. The combustion amount of the boiler 2 can be detected based on the pressure of the fuel supply path 22, the opening / closing signal of the fuel valve 25 output from the boiler control device 25, the opening degree of the fuel valve 25, and the like. As the pressure in the boiler 2, the pressure in the can body 21 (hereinafter also referred to as “in-can pressure”) detected by the in-can pressure sensor 9 can be used. The quality of the water supplied to the boiler 2 may be one that has been inspected and acquired in advance or one that has been detected by various sensors. As the concentration of the can water inside the boiler 2, the concentration of the can water of the boiler 2 detected by the concentration sensor 10 can be used. As the operation time of the boiler 2, the operation time of the boiler 2 measured by the timer of the boiler control device 25 can be used. Further, for example, when the boiler 2 is an electric type, the output (input voltage) of the electric heater in the boiler 2 is used as a parameter relating to the dryness of the saturated steam St1 instead of the combustion amount of the boiler 2. it can.

そして、例えば、ボイラ2が燃焼式である場合、飽和蒸気St1の乾き度は、ボイラ2の缶内圧力が低く、ボイラ2の燃焼量が多いほど(つまり燃焼負荷が高いほど)低くなる傾向にある。一方、飽和蒸気St1の乾き度は、ボイラ2の缶内圧力が高く、ボイラ2の燃焼量が少ないほど(つまり燃焼負荷が低いほど)高くなる傾向にある。同様に、ボイラ2が電気式である場合、飽和蒸気St1の乾き度は、ボイラ2の缶内圧力が低く、ボイラ2での電気ヒータの出力(インプット電圧)が大きいほど(つまり電気出力負荷が高いほど)低くなる傾向にある。一方、飽和蒸気St1の乾き度は、ボイラ2の缶内圧力が高く、ボイラ2での電気ヒータの出力が小さいほど(つまり電気出力負荷が低いほど)高くなる傾向にある。   For example, when the boiler 2 is a combustion type, the dryness of the saturated steam St1 tends to be lower as the pressure inside the boiler 2 is lower and the combustion amount of the boiler 2 is larger (that is, the combustion load is higher). is there. On the other hand, the dryness of the saturated steam St1 tends to increase as the pressure inside the boiler of the boiler 2 is higher and the combustion amount of the boiler 2 is smaller (that is, the combustion load is lower). Similarly, when the boiler 2 is an electric type, the dryness of the saturated steam St1 is such that the lower the pressure in the can of the boiler 2 and the higher the output (input voltage) of the electric heater in the boiler 2 (that is, the electric output load is). It tends to be lower). On the other hand, the dryness of the saturated steam St1 tends to increase as the pressure inside the boiler of the boiler 2 is higher and the output of the electric heater in the boiler 2 is smaller (that is, the electrical output load is lower).

また、ボイラ2は、運転時間が長くなると、蒸発を繰り返すことで缶水中の不純物の濃度が高くなり、缶体21内の缶水の泡立ちが大きくなる傾向にある。そして、ボイラ2は、缶水の泡立ちが大きくなると、缶水の一部が蒸気に混入する、いわゆるキャリーオーバーと呼ばれる現象が起こり、飽和蒸気St1の乾き度は低下する。このように、ボイラ2から供給される飽和蒸気St1の乾き度は、缶水の濃縮度に応じて変化する。このため、ボイラ2は、缶水の濃縮度が許容値を超えた場合や運転時間が許容時間を超えた場合、ボイラ2の運転終了時にボイラ2内の缶水を全て排出する全ブローを行い、全ての缶水を新水に入れ替える。また、一般的には、許容される蒸気の乾き度を保つようにするためボイラ2の運転中は、缶水の濃縮度が許容値以下で維持するよう、ボイラ2の運転を行いながら、缶水の一部を排出し、新水と入れ替える濃縮ブロー(間欠ブロー)操作を自動で行う。   Moreover, when the operation time becomes long, the boiler 2 tends to increase the concentration of impurities in the can water by repeating evaporation, and the foaming of the can water in the can body 21 tends to increase. And when the foaming of can water becomes large in the boiler 2, a phenomenon called so-called carry-over in which part of the can water is mixed into the steam occurs, and the dryness of the saturated steam St1 decreases. Thus, the dryness of the saturated steam St1 supplied from the boiler 2 changes according to the concentration of the can water. For this reason, the boiler 2 performs all blows which discharge all the can water in the boiler 2 when the operation of the boiler 2 is finished when the concentration of the can water exceeds the allowable value or the operation time exceeds the allowable time. , Replace all canned water with fresh water. In general, during operation of the boiler 2 in order to keep the permissible steam dryness, the boiler 2 is operated while the boiler 2 is operated so that the concentration of the can water is kept below the allowable value. Concentration blow (intermittent blow) operation to discharge part of the water and replace it with fresh water is performed automatically.

そして、飽和蒸気St1の乾き度は、ボイラ2の運転時間が長くなると、缶水の濃縮度の上昇によって低くなる傾向にあり、ボイラ2の運転時間が短いと、缶水の濃縮度があまり上昇しないため高くなる傾向にある。これにはボイラ2への給水の水質も関連しており、給水の電気伝導度が高ければ、ボイラ2の運転時間が短くても濃縮度は高まり、乾き度は低下する傾向になり、給水の電気伝導度が低ければ、ボイラ2の運転時間が長くなっても、濃縮度は進まず、乾き度は低下しない。なお、ボイラ2の運転時間は、典型的には、前回の全ブローからの総運転時間を用いればよい。この場合、ボイラ2の運転時間は、例えば、100%負荷で1時間作動させた場合を1時間とし、50%負荷で1時間作動させた場合を0.5時間とし、前回の全ブローからの時間を積算していけばよい。   And the dryness of saturated steam St1 tends to become low with the increase in the concentration of can water when the operation time of the boiler 2 becomes long, and when the operation time of the boiler 2 is short, the concentration of the can water rises too much. It tends to be high because it does not. This is also related to the quality of the water supplied to the boiler 2. If the electric conductivity of the water supply is high, the enrichment will increase even if the operation time of the boiler 2 is short, and the dryness will tend to decrease. If the electric conductivity is low, even if the operation time of the boiler 2 becomes long, the concentration does not advance and the dryness does not decrease. In addition, what is necessary is just to use the total operation time from the last all blows typically as the operation time of the boiler 2. FIG. In this case, the operation time of the boiler 2 is, for example, 1 hour when operated at 100% load for 1 hour, 0.5 hour when operated at 50% load for 1 hour, Just add up the time.

本実施形態の制御装置5は、飽和蒸気St1の乾き度に関するパラメータとして、ボイラ2の燃焼量(ボイラ2が電気式の場合は電気ヒータの出力)、缶内圧力、ボイラ2への給水の水質、ボイラ2の缶水の濃縮度、ボイラ2の運転時間等のうちの少なくとも1つに基づいて、過熱器4の制御量を制御する。ここで、過熱器4の制御量は、上述した加熱出力であり、過熱器4が電気式である場合には、過熱器4内の電気ヒータへの電圧(インプット)、過熱器4が熱交換器式である場合には、過熱器4内に供給される熱交換媒体の供給量や温度である。   The control device 5 of the present embodiment uses the combustion amount of the boiler 2 (output of the electric heater when the boiler 2 is an electric type), the pressure in the can, and the quality of water supplied to the boiler 2 as parameters relating to the dryness of the saturated steam St1. The control amount of the superheater 4 is controlled based on at least one of the concentration of the boiler water in the boiler 2, the operation time of the boiler 2, and the like. Here, the control amount of the superheater 4 is the heating output described above. When the superheater 4 is an electric type, the voltage (input) to the electric heater in the superheater 4 and the superheater 4 exchange heat. In the case of a vessel type, it is the supply amount and temperature of the heat exchange medium supplied into the superheater 4.

より詳細には、制御装置5は、上記のように乾き度に関するパラメータに応じて変化する飽和蒸気St1の乾き度が低いほど、過熱器4の加熱出力(制御量)を大きくする。一方、制御装置5は、飽和蒸気St1の乾き度が高いほど、過熱器4の加熱出力(制御量)を小さくする。   More specifically, the control device 5 increases the heating output (control amount) of the superheater 4 as the dryness of the saturated steam St1, which changes according to the parameter related to the dryness as described above, is lower. On the other hand, the control device 5 decreases the heating output (control amount) of the superheater 4 as the dryness of the saturated steam St1 is higher.

一例として、過熱度設定部11は、上記飽和蒸気St1の乾き度に関するパラメータに基づいて、マップ、あるいは、数式モデルから飽和蒸気St1の乾き度を算出する。この場合、飽和蒸気St1の乾き度は、例えば、実地評価等に基づいて、飽和蒸気St1の乾き度に関するパラメータ(ボイラ2の燃焼量(ボイラ2が電気式の場合は電気ヒータの出力)、缶内圧力、ボイラ2への給水の水質、ボイラ2の缶水の濃縮度、ボイラ2の運転時間)との相関関係が予め設定されて、マップ、あるいは、数式モデル等として制御装置5の記憶部に格納されている。   As an example, the superheat degree setting unit 11 calculates the dryness of the saturated steam St1 from a map or a mathematical model based on the parameter related to the dryness of the saturated steam St1. In this case, the degree of dryness of the saturated steam St1 is determined based on, for example, on-site evaluation, parameters related to the degree of dryness of the saturated steam St1 (combustion amount of the boiler 2 (output of the electric heater when the boiler 2 is an electric type), can) The internal pressure, the quality of water supplied to the boiler 2, the concentration of boiler water in the boiler 2, the operation time of the boiler 2) are set in advance, and the storage unit of the control device 5 as a map or mathematical model Stored in

そして、過熱度設定部11は、現時点での蒸気供給経路3の放熱量と、算出した飽和蒸気St1の乾き度と、蒸気使用機器50で許容される過熱度とに基づいて目標過熱度を設定する。そして、制御装置5は、この目標過熱度と乾き度とに基づいて、過熱器4の加熱出力(制御量)を算出し、算出した加熱出力となるように過熱器4を制御する。この場合、過熱器4の加熱出力は、飽和蒸気St1の乾き度が低いほど、大きくなるように設定されている。なお、制御装置5は、上記飽和蒸気St1の乾き度に関するパラメータと、現時点での蒸気供給経路3の放熱量と、蒸気使用機器50で許容される過熱度とに基づいて、マップ等から直接過熱器4の加熱出力(制御量)を算出し、当該算出した加熱出力となるように過熱器4を制御するようにしてもよい。   The superheat degree setting unit 11 sets the target superheat degree based on the current heat dissipation amount of the steam supply path 3, the calculated dryness of the saturated steam St <b> 1, and the superheat degree allowed by the steam using device 50. To do. And the control apparatus 5 calculates the heating output (control amount) of the superheater 4 based on this target superheat degree and dryness, and controls the superheater 4 so that it may become the calculated heating output. In this case, the heating output of the superheater 4 is set so as to increase as the dryness of the saturated steam St1 decreases. Note that the control device 5 directly superheats from a map or the like based on the parameters related to the dryness of the saturated steam St1, the heat dissipation amount of the steam supply path 3 at the present time, and the degree of superheat allowed by the steam using device 50. The heating output (control amount) of the heater 4 may be calculated, and the superheater 4 may be controlled so as to obtain the calculated heating output.

上記のように構成される蒸気供給システム1は、過熱器4で過熱される過熱蒸気St2の過熱度を目標過熱度に調節する際に、ボイラ2が発生させた蒸気の乾き度に関するパラメータに基づいて過熱器4が制御される。これにより、蒸気供給システム1は、ボイラ2の運転状態等に応じて飽和蒸気St1の乾き度が変化し、過熱器4に流入する飽和蒸気St1の乾き度が変化しても、当該乾き度の変化に応じて過熱器4での加熱出力が調節されることで、過熱器4で飽和蒸気St1の乾き度に応じた熱量を飽和蒸気St1に付与することができる。この結果、蒸気供給システム1は、過熱蒸気St2の過熱度を精度よく調節でき、安定した過熱度の過熱蒸気St2を発生させることができる。したがって、蒸気供給システム1は、過熱器4で過熱した過熱蒸気St2の過熱度をより確実に目標過熱度で安定化させることができ、所望の過熱度の蒸気を安定的に供給することができる。   The steam supply system 1 configured as described above is based on a parameter related to the dryness of steam generated by the boiler 2 when the superheat degree of the superheated steam St2 heated by the superheater 4 is adjusted to the target superheat degree. Thus, the superheater 4 is controlled. Thereby, even if the dryness of saturated steam St1 changes according to the operating state etc. of the boiler 2, and the dryness of saturated steam St1 which flows into the superheater 4 changes, the steam supply system 1 of the said dryness changes. By adjusting the heating output in the superheater 4 according to the change, the superheater 4 can give the amount of heat corresponding to the dryness of the saturated steam St1 to the saturated steam St1. As a result, the steam supply system 1 can accurately adjust the superheat degree of the superheated steam St2, and can generate the superheated steam St2 having a stable superheat degree. Therefore, the steam supply system 1 can more reliably stabilize the superheat degree of the superheated steam St2 heated by the superheater 4 at the target superheat degree, and can stably supply the steam having a desired superheat degree. .

したがって、蒸気供給システム1は、蒸気供給経路3で蒸気使用機器50に至る前に蒸気の一部が凝縮することを抑制することができ、ドレンが発生することをより確実に抑制することができる。よって、蒸気供給システム1は、例えば、発生したドレンを蒸気供給経路3の外部に排出することに起因して一部蒸気が排出されることによる熱損失が生じることを抑制することができる。また、蒸気供給システム1は、蒸気供給経路3でのドレンの発生を抑制することができることから、例えば、蒸気供給経路3上のスチームトラップの数を削減することができ、トラップロス、トラップ配管ロス等を抑制することができる。これにより、蒸気供給システム1は、より効率のよい運転を行うことができると共に、製造コストを削減することができ、また、保守点検の負担を低減することができる。さらに、蒸気供給システム1は、蒸気供給経路3でのドレンの発生を抑制することができることから、蒸気供給経路3内の蒸気流速を向上させることができ、このため、蒸気供給経路3を構成する配管口径をサイズダウンすることができる。これにより、蒸気供給システム1は、蒸気供給経路3を構成する配管全体での放熱量自体を低減することができるので、この点でも熱損失を抑制し、より効率のよい運転を行うことができる。また、蒸気供給システム1は、例えば、冷態起動時に蒸気供給経路3内に発生したドレンを過熱器4で過熱された過熱蒸気St2によって再蒸発させることで、ドレン顕熱を再生させ、ドレン量を低減することもできる。さらに、蒸気供給システム1は、蒸気供給経路3でのドレンの発生を抑制することができることから、いわゆるエロージョン(配管侵食)やウォータハンマ(水撃作用)等の発生も抑制することができる。また、蒸気供給システム1は、蒸気供給経路3でのドレンの発生を抑制することができることから、例えば、蒸気供給経路3に設けられる流量計(不図示)等の各種センサの検出精度の低下を抑制することができる。   Therefore, the steam supply system 1 can suppress a part of the steam from condensing before reaching the steam using device 50 in the steam supply path 3, and can more reliably suppress the generation of drain. . Therefore, the steam supply system 1 can suppress the occurrence of heat loss due to the partial discharge of steam due to, for example, discharging the generated drain to the outside of the steam supply path 3. Further, since the steam supply system 1 can suppress the generation of drain in the steam supply path 3, for example, the number of steam traps on the steam supply path 3 can be reduced, and trap loss and trap pipe loss can be reduced. Etc. can be suppressed. Thereby, the steam supply system 1 can perform more efficient operation, can reduce the manufacturing cost, and can reduce the burden of maintenance and inspection. Furthermore, since the steam supply system 1 can suppress the generation of drain in the steam supply path 3, the steam flow rate in the steam supply path 3 can be improved, and thus the steam supply path 3 is configured. The pipe diameter can be reduced. Thereby, since the steam supply system 1 can reduce the heat radiation amount itself in the entire pipe constituting the steam supply path 3, the heat loss can be suppressed also in this respect, and more efficient operation can be performed. . Further, the steam supply system 1 regenerates drain sensible heat by re-evaporating the drain generated in the steam supply path 3 at the time of cold start with the superheated steam St2 superheated by the superheater 4, and the amount of drain Can also be reduced. Furthermore, since the steam supply system 1 can suppress the generation of drain in the steam supply path 3, the generation of so-called erosion (piping erosion), water hammer (water hammer action), and the like can also be suppressed. Further, since the steam supply system 1 can suppress the generation of drain in the steam supply path 3, for example, the detection accuracy of various sensors such as a flow meter (not shown) provided in the steam supply path 3 is reduced. Can be suppressed.

以上で説明した実施形態に係る蒸気供給システム1によれば、蒸気を発生させるボイラ2と、ボイラ2によって発生させた蒸気を蒸気使用機器50まで送気する蒸気供給経路3と、蒸気供給経路3上に設けられ、ボイラ2によって発生させた蒸気を過熱する過熱器4と、過熱器4を制御する制御装置5とを備える。制御装置5は、ボイラ2によって発生させた蒸気の乾き度に関するパラメータに基づいて当該乾き度を推定し、推定した乾き度に基づいて過熱器4を制御し、過熱器4で過熱される蒸気の過熱度を所定の過熱度(目標過熱度)に制御する。したがって、蒸気供給システム1は、蒸気の乾き度に応じて蒸気の過熱度を安定化することができるので、ドレンの発生を抑制することができ、ドレン排出の際の一部蒸気の排出に伴う熱損失を低減することができる。これにより、蒸気供給システム1は、例えば、より効率のよい運転を行うことができる。   According to the steam supply system 1 according to the embodiment described above, the boiler 2 that generates steam, the steam supply path 3 that supplies the steam generated by the boiler 2 to the steam using device 50, and the steam supply path 3 A superheater 4 that is provided above and superheats the steam generated by the boiler 2 and a control device 5 that controls the superheater 4 are provided. The control device 5 estimates the dryness based on a parameter relating to the dryness of the steam generated by the boiler 2, controls the superheater 4 based on the estimated dryness, and controls the steam superheated by the superheater 4. The superheat degree is controlled to a predetermined superheat degree (target superheat degree). Therefore, since the steam supply system 1 can stabilize the degree of superheat of the steam according to the dryness of the steam, it is possible to suppress the generation of drain and accompany the discharge of a part of the steam when draining. Heat loss can be reduced. Thereby, the steam supply system 1 can perform more efficient operation, for example.

[実施形態2]
図2は、実施形態2に係る蒸気供給システムの概略構成を示す図である。実施形態2に係る蒸気供給システムは、バイパス経路と流量調節装置とを備える点で実施形態1とは異なる。その他、上述した実施形態と共通する構成、作用、効果については、重複した説明はできるだけ省略する。
[Embodiment 2]
FIG. 2 is a diagram illustrating a schematic configuration of a steam supply system according to the second embodiment. The steam supply system according to the second embodiment is different from the first embodiment in that it includes a bypass path and a flow rate adjusting device. In addition, about the structure, operation | movement, and effect which are common in embodiment mentioned above, the overlapping description is abbreviate | omitted as much as possible.

図2に示す本実施形態の蒸気供給システム201は、上記の蒸気供給システム1(図1参照)の構成に加えて、さらに、バイパス経路としてのバイパス配管210と、流量調節装置としての流量調節弁211とを備える。   In addition to the configuration of the steam supply system 1 (see FIG. 1), the steam supply system 201 of the present embodiment shown in FIG. 2 further includes a bypass pipe 210 as a bypass path and a flow rate control valve as a flow rate control device. 211.

バイパス配管210は、蒸気供給経路3から分岐し過熱器4をバイパスして再び蒸気供給経路3と合流する。バイパス配管210は、蒸気供給経路3を流れる蒸気の流動方向に対して、過熱器4の上流側と、過熱器4の下流側とを接続する。ここでは、バイパス配管210は、一端が飽和蒸気配管31に接続して当該飽和蒸気配管31から分岐し、他端が過熱蒸気配管32に接続して当該過熱蒸気配管32に合流する。バイパス配管210は、蒸気が内部を流通可能であり、ボイラ2で発生させた飽和蒸気St1の一部を飽和蒸気配管31から過熱器4をバイパスさせて過熱蒸気配管32に送気することができる。なお、このバイパス配管210は、複数の配管を組み合わせることによって構成されてもよい。   The bypass pipe 210 branches from the steam supply path 3, bypasses the superheater 4, and merges with the steam supply path 3 again. The bypass pipe 210 connects the upstream side of the superheater 4 and the downstream side of the superheater 4 with respect to the flow direction of the steam flowing through the steam supply path 3. Here, the bypass pipe 210 has one end connected to the saturated steam pipe 31 and branched from the saturated steam pipe 31, and the other end connected to the superheated steam pipe 32 and joined to the superheated steam pipe 32. In the bypass pipe 210, steam can flow inside, and a part of the saturated steam St <b> 1 generated in the boiler 2 can be sent from the saturated steam pipe 31 to the superheated steam pipe 32 by bypassing the superheater 4. . The bypass pipe 210 may be configured by combining a plurality of pipes.

流量調節弁211は、制御装置5によって制御され、過熱器4への蒸気の流量とバイパス配管210への蒸気の流量とを調節可能である。流量調節弁211は、バイパス配管210上に設けられ、弁開度を調節することでバイパス配管210の流路断面積を調節することができる。   The flow rate adjustment valve 211 is controlled by the control device 5 and can adjust the flow rate of steam to the superheater 4 and the flow rate of steam to the bypass pipe 210. The flow rate adjusting valve 211 is provided on the bypass pipe 210, and the flow passage cross-sectional area of the bypass pipe 210 can be adjusted by adjusting the valve opening degree.

したがって、蒸気供給システム201は、制御装置5が流量調節弁211を制御し所定の弁開度に調節されると、飽和蒸気配管31からバイパス配管210へ飽和蒸気St1の一部が流れる。そして、蒸気供給システム201は、バイパス配管210へ流れた飽和蒸気St1が過熱器4をバイパスして過熱蒸気配管32に合流し、過熱器4で過熱された過熱蒸気St2と混合される。これにより、蒸気供給システム201は、過熱器4で過熱された過熱蒸気St2と、バイパス配管210を流れて過熱蒸気配管32に合流した飽和蒸気St1とが混合されて、過熱蒸気St2の熱が飽和蒸気St1に奪われて、所定の過熱度の過熱蒸気St2となり、蒸気使用機器50に送気される。   Therefore, in the steam supply system 201, when the control device 5 controls the flow rate adjustment valve 211 to be adjusted to a predetermined valve opening, a part of the saturated steam St1 flows from the saturated steam pipe 31 to the bypass pipe 210. In the steam supply system 201, the saturated steam St <b> 1 flowing to the bypass pipe 210 bypasses the superheater 4, joins the superheated steam pipe 32, and is mixed with the superheated steam St <b> 2 superheated by the superheater 4. Thereby, the steam supply system 201 mixes the superheated steam St2 superheated by the superheater 4 and the saturated steam St1 that flows through the bypass pipe 210 and joins the superheated steam pipe 32, and the heat of the superheated steam St2 is saturated. Deprived of the steam St1, it becomes superheated steam St2 of a predetermined superheat degree and is sent to the steam using device 50.

なお、本実施形態の圧力センサ6は、飽和蒸気配管31において、蒸気の流動方向に対して当該飽和蒸気配管31とバイパス配管210との分岐部位より上流側の検出位置で飽和蒸気配管31内の送気圧力を検出する。また、過熱蒸気温度センサ8は、過熱蒸気配管32において、蒸気の流動方向に対して当該過熱蒸気配管32とバイパス配管210との合流部位より下流側の検出位置で過熱蒸気配管32内の過熱蒸気St2の温度を検出する。この過熱蒸気温度センサ8の検出位置は、過熱器4から当該検出位置までの過熱蒸気配管32の放熱量を無視でき、かつ、バイパス配管210から過熱蒸気配管32に合流した飽和蒸気St1が過熱器4で過熱された過熱蒸気St2と十分に混合される位置に設定される。なお、この蒸気供給システム201は、過熱蒸気配管32とバイパス配管210との合流部位に、飽和蒸気St1と過熱蒸気St2とを十分に混合するための混合三方弁等が設けられていてもよい。   Note that the pressure sensor 6 of the present embodiment is provided in the saturated steam pipe 31 in the saturated steam pipe 31 at a detection position upstream of the branching portion between the saturated steam pipe 31 and the bypass pipe 210 in the steam flow direction. Detect air supply pressure. In addition, the superheated steam temperature sensor 8 is connected to the superheated steam pipe 32 at a detection position downstream from the junction of the superheated steam pipe 32 and the bypass pipe 210 with respect to the flow direction of the steam. The temperature of St2 is detected. The detection position of the superheated steam temperature sensor 8 can ignore the amount of heat dissipated in the superheated steam pipe 32 from the superheater 4 to the detection position, and the saturated steam St1 joined to the superheated steam pipe 32 from the bypass pipe 210 is superheater. 4 is set at a position where it is sufficiently mixed with the superheated steam St2 heated at 4. In the steam supply system 201, a mixing three-way valve or the like for sufficiently mixing the saturated steam St1 and the superheated steam St2 may be provided at a joining portion of the superheated steam pipe 32 and the bypass pipe 210.

そして、本実施形態の制御装置5は、過熱度設定部11が設定した目標過熱度に基づいて、過熱器4及び流量調節弁211を制御し、過熱蒸気St2の過熱度を調節する。すなわち、制御装置5は、圧力センサ6が検出した送気圧力から求められる飽和蒸気温度と、過熱蒸気温度センサ8が検出した過熱蒸気温度とに応じて現時点での実際の過熱度を算出する。そして、制御装置5は、算出した現時点での実際の過熱度が目標過熱度となるように過熱器4及び流量調節弁211を制御する。この場合、制御装置5は、過熱器4を制御し当該過熱器4における加熱出力を調節することに加えて、流量調節弁211を制御しバイパス配管210への飽和蒸気St1の流量(以下、「バイパス流量」という場合がある。)を調節することで、過熱器4で過熱される過熱蒸気St2の過熱度を目標過熱度に調節する。   And the control apparatus 5 of this embodiment controls the superheater 4 and the flow control valve 211 based on the target superheat degree which the superheat degree setting part 11 set, and adjusts the superheat degree of the superheated steam St2. That is, the control device 5 calculates the actual superheat degree at the present time according to the saturated steam temperature obtained from the air supply pressure detected by the pressure sensor 6 and the superheated steam temperature detected by the superheated steam temperature sensor 8. Then, the control device 5 controls the superheater 4 and the flow rate adjustment valve 211 so that the calculated actual superheat degree at the present time becomes the target superheat degree. In this case, the control device 5 controls the superheater 4 and adjusts the heating output in the superheater 4, and also controls the flow rate adjustment valve 211 to flow the saturated steam St <b> 1 to the bypass pipe 210 (hereinafter, “ By adjusting the “bypass flow rate”, the superheat degree of the superheated steam St2 heated by the superheater 4 is adjusted to the target superheat degree.

このとき、制御装置5は、飽和蒸気St1の乾き度に関するパラメータとして、ボイラ2の燃焼量(ボイラ2が電気式の場合は電気ヒータの出力)、缶内圧力、ボイラ2への給水の水質、ボイラ2の缶水の濃縮度、ボイラ2の運転時間等のうちの少なくとも1つに基づいて、過熱器4の制御量及び流量調節弁211の制御量を制御する。ここでは、過熱器4の制御量は、上述した加熱出力であり、過熱器4が電気式である場合には、過熱器4内の電気ヒータへの電圧(インプット)、過熱器4が熱交換器式である場合には、過熱器4内に供給される熱交換媒体の供給量や温度(インプット)である。流量調節弁211の制御量は、流量調節弁211の弁開度である。   At this time, the control device 5 includes, as parameters relating to the dryness of the saturated steam St1, the combustion amount of the boiler 2 (output of the electric heater when the boiler 2 is an electric type), the pressure in the can, the quality of the water supplied to the boiler 2, The control amount of the superheater 4 and the control amount of the flow rate adjustment valve 211 are controlled based on at least one of the concentration of the can water of the boiler 2 and the operation time of the boiler 2. Here, the control amount of the superheater 4 is the heating output described above. When the superheater 4 is an electric type, the voltage (input) to the electric heater in the superheater 4 and the superheater 4 exchange heat. In the case of a vessel type, it is the supply amount and temperature (input) of the heat exchange medium supplied into the superheater 4. The control amount of the flow control valve 211 is the valve opening degree of the flow control valve 211.

この場合、過熱度設定部11は、上記と同様に、現時点での蒸気供給経路3の放熱量と、飽和蒸気St1の乾き度に関するパラメータに基づいて算出した飽和蒸気St1の乾き度と、蒸気使用機器50で許容される過熱度とに基づいて目標過熱度を設定する。そして、制御装置5は、この目標過熱度と乾き度とに基づいて、過熱器4の加熱出力(制御量)及び流量調節弁211の弁開度(制御量)を算出し、算出した加熱出力となるように過熱器4を制御し、算出した弁開度となるように流量調節弁211を制御する。   In this case, the superheat degree setting unit 11, similarly to the above, the degree of dryness of the saturated steam St <b> 1 calculated based on the current heat dissipation amount of the steam supply path 3, the parameter related to the dryness of the saturated steam St <b> 1, and steam use The target superheat degree is set based on the superheat degree allowed by the device 50. And the control apparatus 5 calculates the heating output (control amount) of the superheater 4 and the valve opening degree (control amount) of the flow control valve 211 based on this target superheat degree and dryness, and calculated heating output The superheater 4 is controlled such that the flow rate adjustment valve 211 is controlled so as to achieve the calculated valve opening.

なお、制御装置5は、過熱蒸気温度センサ8によって検出される過熱蒸気温度に基づいて流量調節弁211を制御しバイパス流量を調整するようにしてもよい。より詳細には、制御装置5は、過熱蒸気温度センサ8によって検出される過熱蒸気温度に応じた蒸気の実際の過熱度と目標過熱度との偏差に基づいて流量調節弁211を制御し、バイパス配管210への蒸気の流量を調節するようにしてもよい。   The control device 5 may control the flow rate adjustment valve 211 based on the superheated steam temperature detected by the superheated steam temperature sensor 8 to adjust the bypass flow rate. More specifically, the control device 5 controls the flow rate control valve 211 based on the deviation between the actual superheat degree of the steam and the target superheat degree according to the superheated steam temperature detected by the superheated steam temperature sensor 8, and bypasses it. You may make it adjust the flow volume of the vapor | steam to the piping 210. FIG.

以上で説明した実施形態に係る蒸気供給システム201は、ドレンの発生を抑制することができるので、ドレン排出の際の一部蒸気の排出に伴う熱損失を低減することができ、これにより、例えば、より効率のよい運転を行うことができる。   Since the steam supply system 201 according to the embodiment described above can suppress the generation of drain, it is possible to reduce heat loss due to partial steam discharge during drain discharge. , More efficient driving can be performed.

さらに、以上で説明した実施形態に係る蒸気供給システム201によれば、蒸気供給経路3から分岐し過熱器4をバイパスして再び蒸気供給経路3と合流するバイパス配管210と、制御装置5によって制御され、過熱器4への蒸気の流量とバイパス配管210への蒸気の流量とを調節可能である流量調節弁211とを備える。したがって、蒸気供給システム201は、過熱器4をバイパスさせる飽和蒸気St1の流量を調節して過熱度を調節することで、単に過熱器4の加熱出力を調節して過熱度を調節させる場合と比較して、例えば、過熱器4等の装置全体の保有熱の影響等にかかわらず、応答性よく過熱蒸気St2の過熱度を調節することができる。   Furthermore, according to the steam supply system 201 according to the embodiment described above, the control is performed by the bypass pipe 210 that branches from the steam supply path 3, bypasses the superheater 4, and merges with the steam supply path 3 again. And a flow rate adjusting valve 211 that can adjust the flow rate of the steam to the superheater 4 and the flow rate of the steam to the bypass pipe 210. Accordingly, the steam supply system 201 adjusts the degree of superheat by adjusting the flow rate of the saturated steam St1 that bypasses the superheater 4, so as to adjust the degree of superheat simply by adjusting the heating output of the superheater 4. Thus, for example, the degree of superheat of the superheated steam St2 can be adjusted with good responsiveness regardless of the influence of the retained heat of the entire apparatus such as the superheater 4.

上述した本発明の実施形態に係る蒸気供給システムは、上述した実施形態に限定されず、特許請求の範囲に記載された範囲で種々の変更が可能である。本実施形態に係る蒸気供給システムは、以上で説明した各実施形態の構成要素を適宜組み合わせることで構成してもよい。   The steam supply system according to the above-described embodiment of the present invention is not limited to the above-described embodiment, and various modifications can be made within the scope described in the claims. The steam supply system according to the present embodiment may be configured by appropriately combining the components of the embodiments described above.

例えば、以上で説明した蒸気供給システム1、201は、圧力センサ6にかえて飽和蒸気配管31を送気される飽和蒸気St1の温度を検出する飽和蒸気温度センサを備えていてもよい。この場合、制御装置5は、飽和蒸気温度センサが検出した飽和蒸気St1の温度から飽和蒸気配管31内の送気圧力(飽和蒸気配管31を送気される飽和蒸気St1の圧力)を求めることができる。   For example, the steam supply systems 1, 201 described above may include a saturated steam temperature sensor that detects the temperature of the saturated steam St <b> 1 fed through the saturated steam pipe 31 instead of the pressure sensor 6. In this case, the control device 5 obtains the air supply pressure in the saturated steam pipe 31 (the pressure of the saturated steam St1 supplied through the saturated steam pipe 31) from the temperature of the saturated steam St1 detected by the saturated steam temperature sensor. it can.

また、上述した蒸気供給システム1、201は、複数の蒸気使用機器50に対応させて、複数系統の蒸気供給経路3(蒸気供給ライン)、過熱器4等を備えていてもよい。この場合、蒸気供給システム1、201は、複数系統ごと(つまり蒸気供給ラインごと、蒸気使用機器50ごと)に圧力区分するためのスチームヘッダ等を介して、複数系統の蒸気供給経路3が設けられる。この場合、制御装置5は、各系統ごとに、過熱器4に流入する飽和蒸気St1の乾き度に基づいて、それぞれの系統に対応する過熱器4を制御して、各過熱器4で過熱される蒸気の過熱度を、各系統ごとに所定の過熱度(目標過熱度)に制御すればよい。   Moreover, the steam supply systems 1 and 201 described above may include a plurality of systems of steam supply paths 3 (steam supply lines), a superheater 4, and the like, corresponding to the plurality of steam using devices 50. In this case, the steam supply systems 1, 201 are provided with a plurality of systems of steam supply paths 3 via steam headers or the like for pressure division for each of a plurality of systems (that is, for each steam supply line and for each steam using device 50). . In this case, the control device 5 controls the superheater 4 corresponding to each system based on the dryness of the saturated steam St1 flowing into the superheater 4 for each system, and is superheated by each superheater 4. What is necessary is just to control the superheat degree of the vapor | steam which is a predetermined superheat degree (target superheat degree) for every system | strain.

1、201 蒸気供給システム
2 ボイラ(蒸気発生装置)
3 蒸気供給経路
4 過熱器(蒸気過熱装置)
5 制御装置
6 圧力センサ
7 外気温度センサ
8 過熱蒸気温度センサ
9 缶内圧力センサ
10 濃縮度センサ(検出器)
11 過熱度設定部
21 缶体
22 燃料供給経路
23 燃料弁
24 空気供給経路
25 ボイラ制御装置(計測器)
31 飽和蒸気配管
32 過熱蒸気配管
50 蒸気使用機器
51 スチームトラップ
210 バイパス配管
211 流量調節弁
St1 飽和蒸気
St2 過熱蒸気
1,201 Steam supply system 2 Boiler (steam generator)
3 Steam supply path 4 Superheater (steam superheater)
5 Control Device 6 Pressure Sensor 7 Outside Air Temperature Sensor 8 Superheated Steam Temperature Sensor 9 Can Pressure Sensor 10 Concentration Sensor (Detector)
11 Superheat Degree Setting Unit 21 Can 22 Fuel Supply Path 23 Fuel Valve 24 Air Supply Path 25 Boiler Control Device (Measurement Instrument)
31 Saturated Steam Pipe 32 Superheated Steam Pipe 50 Steam-Used Equipment 51 Steam Trap 210 Bypass Pipe 211 Flow Control Valve St1 Saturated Steam St2 Superheated Steam

Claims (5)

蒸気を発生させる蒸気発生装置と、
前記蒸気発生装置によって発生させた蒸気を蒸気使用機器まで送気する蒸気供給経路と、
前記蒸気供給経路上に設けられ、前記蒸気発生装置によって発生させた蒸気を過熱する蒸気過熱装置と、
前記蒸気過熱装置を制御する制御装置とを備え、
前記制御装置は、前記蒸気発生装置によって発生させた蒸気の乾き度に関するパラメータに基づいて、前記蒸気過熱装置を制御し、前記蒸気過熱装置で過熱される蒸気の過熱度を所定の過熱度に制御することを特徴とする、
蒸気供給システム。
A steam generator for generating steam;
A steam supply path for sending the steam generated by the steam generator to a steam using device;
A steam superheater that is provided on the steam supply path and superheats the steam generated by the steam generator;
A controller for controlling the steam superheater,
The control device controls the steam superheater based on a parameter related to the dryness of the steam generated by the steam generator, and controls the superheat degree of the steam superheated by the steam superheater to a predetermined superheat degree. It is characterized by
Steam supply system.
前記蒸気発生装置は、燃料を燃焼させた際の燃焼熱によって蒸気を発生させるものであり、
前記蒸気発生装置によって発生させた蒸気の乾き度に関するパラメータは、前記蒸気発生装置での前記燃料の燃焼量、及び、前記蒸気発生装置内の圧力を含む、
請求項1に記載の蒸気供給システム。
The steam generator generates steam by the heat of combustion when fuel is burned,
Parameters relating to the dryness of the steam generated by the steam generator include the amount of fuel burned in the steam generator and the pressure in the steam generator.
The steam supply system according to claim 1.
前記蒸気発生装置は、電気ヒータを熱源として蒸気を発生させるものであり、
前記蒸気発生装置によって発生させた蒸気の乾き度に関するパラメータは、前記蒸気発生装置での前記電気ヒータの出力、及び、前記蒸気発生装置内の圧力を含む、
請求項1に記載の蒸気供給システム。
The steam generator generates steam using an electric heater as a heat source,
Parameters relating to the dryness of the steam generated by the steam generator include the output of the electric heater in the steam generator and the pressure in the steam generator.
The steam supply system according to claim 1.
前記蒸気発生装置は、内部の水の濃縮度を検出する検出器を有し、
前記蒸気発生装置によって発生させた蒸気の乾き度に関するパラメータは、前記検出器によって検出される前記蒸気発生装置の内部の水の濃縮度を含む、
請求項1乃至請求項3のいずれか1項に記載の蒸気供給システム。
The steam generator has a detector for detecting the concentration of water inside,
The parameter relating to the dryness of the steam generated by the steam generator includes the concentration of water inside the steam generator detected by the detector.
The steam supply system according to any one of claims 1 to 3.
前記蒸気発生装置は、運転時間を計測する計測器を有し、
前記蒸気発生装置によって発生させた蒸気の乾き度に関するパラメータは、前記計測器によって計測される前記蒸気発生装置の運転時間を含む、
請求項1乃至請求項4のいずれか1項に記載の蒸気供給システム。
The steam generator has a measuring instrument for measuring the operation time,
The parameter relating to the dryness of the steam generated by the steam generator includes an operation time of the steam generator measured by the measuring instrument.
The steam supply system according to any one of claims 1 to 4.
JP2012199942A 2012-09-11 2012-09-11 Steam supply system Active JP5936966B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012199942A JP5936966B2 (en) 2012-09-11 2012-09-11 Steam supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012199942A JP5936966B2 (en) 2012-09-11 2012-09-11 Steam supply system

Publications (2)

Publication Number Publication Date
JP2014055694A true JP2014055694A (en) 2014-03-27
JP5936966B2 JP5936966B2 (en) 2016-06-22

Family

ID=50613172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012199942A Active JP5936966B2 (en) 2012-09-11 2012-09-11 Steam supply system

Country Status (1)

Country Link
JP (1) JP5936966B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017044384A (en) * 2015-08-25 2017-03-02 中部電力株式会社 High-temperature fluid generation device
JP2017166714A (en) * 2016-03-14 2017-09-21 三浦工業株式会社 Steam super-heating system
CN110529722A (en) * 2019-09-26 2019-12-03 中国电力工程顾问集团西北电力设计院有限公司 Pipeline trapping method and system based on steam superheat parameter
JP2020124713A (en) * 2014-10-30 2020-08-20 スティーム イー ホールディングス リミテッド Liquid dispensing apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60245906A (en) * 1984-05-21 1985-12-05 株式会社東芝 Controller for steam temperature of boiler
JPH06346706A (en) * 1993-06-08 1994-12-20 Kubota Corp Garbage burning device
JPH09137911A (en) * 1995-11-15 1997-05-27 Tlv Co Ltd Device for preventing generation of drain of steam conveying tube
JP2005121262A (en) * 2003-10-15 2005-05-12 Tlv Co Ltd Controller of steam quality
JP2013092312A (en) * 2011-10-26 2013-05-16 Azbil Corp Dryness control device and dryness control method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60245906A (en) * 1984-05-21 1985-12-05 株式会社東芝 Controller for steam temperature of boiler
JPH06346706A (en) * 1993-06-08 1994-12-20 Kubota Corp Garbage burning device
JPH09137911A (en) * 1995-11-15 1997-05-27 Tlv Co Ltd Device for preventing generation of drain of steam conveying tube
JP2005121262A (en) * 2003-10-15 2005-05-12 Tlv Co Ltd Controller of steam quality
JP2013092312A (en) * 2011-10-26 2013-05-16 Azbil Corp Dryness control device and dryness control method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020124713A (en) * 2014-10-30 2020-08-20 スティーム イー ホールディングス リミテッド Liquid dispensing apparatus
JP2017044384A (en) * 2015-08-25 2017-03-02 中部電力株式会社 High-temperature fluid generation device
JP2017166714A (en) * 2016-03-14 2017-09-21 三浦工業株式会社 Steam super-heating system
CN110529722A (en) * 2019-09-26 2019-12-03 中国电力工程顾问集团西北电力设计院有限公司 Pipeline trapping method and system based on steam superheat parameter

Also Published As

Publication number Publication date
JP5936966B2 (en) 2016-06-22

Similar Documents

Publication Publication Date Title
KR101607722B1 (en) Method for operating a waste heat steam generator
JP5936966B2 (en) Steam supply system
KR101606293B1 (en) Method for operating a recirculating waste heat steam generator
JP6593024B2 (en) Boiler system
AU2008328934A1 (en) Method for operating a once-through steam generator and forced-flow-once-through steam generator
JP5925652B2 (en) Engine system
JP5936965B2 (en) Steam supply system
JP2014055696A (en) Steam superheating system
CN110056849B (en) Water supply method for waste heat recovery boiler and waste heat recovery boiler
US10196939B2 (en) Method for low load operation of a power plant with a once-through boiler
US20180230860A1 (en) Waste heat utilization assembly of an internal combustion engine, and a method for operating said waste heat utilization assembly
JP5988789B2 (en) Steam supply system
JP2005009792A (en) Waste heat recovery boiler
JP6623859B2 (en) Steam heating system
JP4074237B2 (en) Steam dryness measuring device
US20220034240A1 (en) Method and controller for preventing formation of droplets in a heat exchanger
JP2016114311A (en) Hot water boiler
CN107110488B (en) Feed water preheating system bypass
JP4152842B2 (en) Steam dryness measuring device
JP7000875B2 (en) Boiler system
JP6255932B2 (en) Boiler system
JP2010261660A (en) Combustion control method and control system for boiler
KR20050068664A (en) Once through heat recovery steam generator and its bypass line structure
JP2004019963A (en) Once-through waste-heat boiler
JP4402467B2 (en) Combined power plant and control method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160511

R150 Certificate of patent or registration of utility model

Ref document number: 5936966

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250