JP2014054312A - Electronic endoscope device and imaging module - Google Patents

Electronic endoscope device and imaging module Download PDF

Info

Publication number
JP2014054312A
JP2014054312A JP2012199535A JP2012199535A JP2014054312A JP 2014054312 A JP2014054312 A JP 2014054312A JP 2012199535 A JP2012199535 A JP 2012199535A JP 2012199535 A JP2012199535 A JP 2012199535A JP 2014054312 A JP2014054312 A JP 2014054312A
Authority
JP
Japan
Prior art keywords
light
imaging module
imaging
cover glass
optical member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012199535A
Other languages
Japanese (ja)
Inventor
Osamu Kuroda
黒田  修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2012199535A priority Critical patent/JP2014054312A/en
Priority to PCT/JP2013/062845 priority patent/WO2014041844A1/en
Publication of JP2014054312A publication Critical patent/JP2014054312A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00096Optical elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00186Optical arrangements with imaging filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/05Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
    • A61B1/051Details of CCD assembly
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2461Illumination
    • G02B23/2469Illumination using optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2476Non-optical details, e.g. housings, mountings, supports
    • G02B23/2484Arrangements in relation to a camera or imaging device

Abstract

PROBLEM TO BE SOLVED: To reduce flare light attributable to an optical member bonded to a front surface of an imaging device and improve quality of a picked-up image.SOLUTION: In an imaging module that includes an imaging device 58, an optical member 55 bonded to a light receiving surface of the imaging device 58 for guiding incident light to an effective area of the imaging device 58, and a translucent light absorbing layer 55a laminated on a side end face perpendicular to the effective area of the optical member 55, a refraction index n2 of the light absorbing layer 55a to the optical member 55 formed of a material of a refraction index n1 is n2≒n1.

Description

本発明は、電子内視鏡装置及び撮像モジュールに係り、特に、フレア対策を施した電子内視鏡装置及び撮像モジュールに関する。   The present invention relates to an electronic endoscope apparatus and an imaging module, and more particularly, to an electronic endoscope apparatus and an imaging module with a countermeasure against flare.

内視鏡スコープ先端部に撮像モジュールを内蔵し、この撮像モジュールで撮像した被検体の体腔内観察画像をモニタ画面に表示する電子内視鏡装置では、撮像画像の品質を向上させるために、フレア対策を施したものがある。   In an electronic endoscope apparatus that has a built-in imaging module at the distal end of an endoscope scope and displays a body cavity observation image of a subject imaged by the imaging module on a monitor screen, a flare is used to improve the quality of the captured image. Some measures have been taken.

例えば下記の特許文献1に記載の電子内視鏡装置では、入射光の光路を撮像素子受光面側に略直角に変更するプリズムの前段にフレア絞りを設け、入射光路内で反射したフレア光が撮像素子に入射しない様にしている。   For example, in the electronic endoscope apparatus described in Patent Document 1 below, a flare stop is provided in front of a prism that changes the optical path of incident light to a substantially right angle on the light receiving surface side of the image sensor, and flare light reflected in the incident optical path is The light is not incident on the image sensor.

しかし、上述したフレア絞りを通過した入射光であっても、例えば、撮像素子受光面を保護するために撮像素子前面に貼り付けたカバーガラスの側端面で反射する場合があり、この反射光が撮像素子に入射すると、撮像画質を劣化させてしまう。   However, even incident light that has passed through the flare stop described above may be reflected by, for example, the side end surface of a cover glass attached to the front surface of the image sensor to protect the light receiving surface of the image sensor. When the light enters the image sensor, the image quality of the image is deteriorated.

カバーガラスの側端面での反射を抑制するために、例えば下記の特許文献2では、カバーガラスの側端面に低屈折材料で成る多層膜或いは単層膜を反射防止部材として設け、反射防止部材内に浸入してきた光を吸収する様にしている。   In order to suppress reflection at the side end surface of the cover glass, for example, in Patent Document 2 below, a multilayer film or a single layer film made of a low refractive material is provided on the side end surface of the cover glass as an antireflection member, It is designed to absorb the light that has penetrated the water.

特開2009―288682号公報JP 2009-288682 A 特開平5―75934号公報JP-A-5-75934

特許文献2に記載の従来技術では、カバーガラスの側端面から反射防止部材内に浸入してきた光を反射防止部材内で吸収してしまい、この浸入光が迷光となって撮像素子側に洩れ出るのを阻止することができる。しかし、カバーガラスの側端面に向かって進む光のうち、カバーガラス側端面と反射防止部材との境界面で反射した光は、反射防止部材内に入ることなく、撮像素子側に反射されてしまう。この反射光が撮像素子に受光されると、撮像画像の画質が劣化してしまう。   In the prior art described in Patent Document 2, light that has entered the antireflection member from the side end face of the cover glass is absorbed in the antireflection member, and this intrusion light becomes stray light and leaks to the image sensor side. Can be prevented. However, of the light traveling toward the side end face of the cover glass, the light reflected at the boundary surface between the cover glass side end face and the antireflection member is reflected to the image sensor side without entering the antireflection member. . When the reflected light is received by the image sensor, the image quality of the captured image is degraded.

なお、カバーガラスを例に説明したが、例えば特許文献1に記載されたプリズム等の他の光学部材に撮像素子を直接取り付ける場合も同様であり、光学部材の側端面での反射を抑制する必要がある。   Although the cover glass has been described as an example, the same applies to the case where the imaging element is directly attached to another optical member such as a prism described in Patent Document 1, for example, and it is necessary to suppress reflection on the side end surface of the optical member. There is.

本発明の目的は、カバーガラス等の光学部材の側端面で反射した光が撮像素子に入射するのを抑制し、撮像画像の画質向上を図ることができる撮像モジュールと、この撮像モジュールを搭載した電子内視鏡装置を提供することにある。   An object of the present invention is to mount an imaging module capable of suppressing the light reflected by the side end surface of an optical member such as a cover glass from entering the imaging element and improving the image quality of the captured image, and the imaging module. An electronic endoscope apparatus is provided.

本発明の撮像モジュールは、撮像素子と、該撮像素子の受光面に貼り合わされ該撮像素子の有効エリアに入射光を導く光学部材と、該光学部材の前記有効エリアに対し垂直となる側端面に積層された半透明の光吸収層とを備える撮像モジュールであって、屈折率n1の材料で形成された前記光学部材に対し、前記光吸収層の屈折率n2をn2≒n1としたことを特徴とする。   The imaging module of the present invention includes an imaging element, an optical member that is bonded to the light receiving surface of the imaging element and guides incident light to an effective area of the imaging element, and a side end surface that is perpendicular to the effective area of the optical member. An imaging module including a laminated translucent light absorption layer, wherein the refractive index n2 of the light absorption layer is set to n2≈n1 with respect to the optical member formed of a material having a refractive index n1. And

本発明の電子内視鏡装置は、上記の撮像モジュールを内視鏡スコープ先端部に内蔵したことを特徴とする。   An electronic endoscope apparatus according to the present invention is characterized in that the imaging module described above is built in a distal end portion of an endoscope scope.

本発明によれば、光学部材の側端面で反射する光を極力低下することができるため、光学部材の側端面に起因するフレア光を抑制でき、高品質な画像を撮像できると共に、装置の小型化を図ることが可能となる。   According to the present invention, since the light reflected by the side end surface of the optical member can be reduced as much as possible, flare light caused by the side end surface of the optical member can be suppressed, a high-quality image can be taken, and the size of the apparatus can be reduced. Can be achieved.

本発明の一実施形態に係る電子内視鏡装置の全体構成図である。1 is an overall configuration diagram of an electronic endoscope apparatus according to an embodiment of the present invention. 図1に示す電子内視鏡の先端部の先端面正面図である。It is a front end surface front view of the front-end | tip part of the electronic endoscope shown in FIG. 図1に示す電子内視鏡の先端部の縦断面図である。It is a longitudinal cross-sectional view of the front-end | tip part of the electronic endoscope shown in FIG. 図3の撮像素子部分の拡大断面模式図である。FIG. 4 is an enlarged schematic cross-sectional view of an image sensor portion of FIG. 図3に示す実施形態のプリズム,フレア絞り,撮像素子の分解斜視図である。It is a disassembled perspective view of the prism of the embodiment shown in FIG. 3, a flare stop, and an image sensor. カバーガラス端面の光吸収膜(光吸収層)との界面における入射光と反射光の説明図である。It is explanatory drawing of the incident light and reflected light in an interface with the light absorption film (light absorption layer) of a cover glass end surface. 像高1.4mmと像高1.6mmの入射光における具体例の説明図である。It is explanatory drawing of the specific example in incident light with an image height of 1.4 mm and an image height of 1.6 mm. 図7の条件を示すテーブル図である。It is a table figure which shows the conditions of FIG. 図7のカバーガラスと光吸収膜との界面部分の拡大図である。It is an enlarged view of the interface part of the cover glass of FIG. 7, and a light absorption film.

以下、本発明の一実施形態について、図面を参照して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1は本発明の一実施形態に係る電子内視鏡装置のシステム全体を示した構成図である。本実施形態の電子内視鏡装置(内視鏡システム)10は、内視鏡スコープ12と、本体装置を構成するプロセッサ装置14及び光源装置16とから構成される。内視鏡スコープ12は、患者(被検体)の体腔内に挿入される可撓性の挿入部20と、挿入部20の基端部分に連設された操作部22と、プロセッサ装置14及び光源装置16に接続されるユニバーサルコード24とを備えている。   FIG. 1 is a configuration diagram showing the entire system of an electronic endoscope apparatus according to an embodiment of the present invention. An electronic endoscope apparatus (endoscope system) 10 according to the present embodiment includes an endoscope scope 12, a processor device 14 and a light source device 16 that constitute a main body device. The endoscope scope 12 includes a flexible insertion portion 20 that is inserted into a body cavity of a patient (subject), an operation portion 22 that is connected to a proximal end portion of the insertion portion 20, a processor device 14, and a light source. And a universal cord 24 connected to the device 16.

挿入部20の先端には先端部26が連設され、先端部26内に、体腔内撮影用の撮像チップ(撮像素子)54(図3参照)が内蔵される。先端部26の後方には、複数の湾曲駒を連結した湾曲部28が設けられている。湾曲部28は、操作部22に設けられたアングルノブ30が操作されたとき、挿入部20内に挿設されたワイヤが押し/引きされ、上下左右方向に湾曲動作する。これにより、先端部26が体腔内で所望の方向に向けられる。   A distal end portion 26 is connected to the distal end of the insertion portion 20, and an imaging chip (imaging device) 54 (see FIG. 3) for intra-body cavity imaging is built in the distal end portion 26. Behind the distal end portion 26 is provided a bending portion 28 in which a plurality of bending pieces are connected. When the angle knob 30 provided in the operation section 22 is operated, the bending section 28 is bent / moved in the vertical and horizontal directions by pushing / pulling the wire inserted in the insertion section 20. Thereby, the front-end | tip part 26 is orientated in the desired direction within a body cavity.

ユニバーサルコード24の基端にはコネクタ36が設けられている。コネクタ36は、複合タイプのものであり、プロセッサ装置14に接続される他、光源装置16にも接続される。   A connector 36 is provided at the base end of the universal cord 24. The connector 36 is of a composite type and is connected to the light source device 16 in addition to being connected to the processor device 14.

プロセッサ装置14は、ユニバーサルコード24内に挿通されたケーブル68(図3参照)を介して内視鏡スコープ12に給電を行い、撮像チップ54の駆動を制御すると共に、撮像チップ54からケーブル68を介して伝送された撮像信号を受信し、受信した撮像信号に各種信号処理を施して画像データに変換する。   The processor device 14 supplies power to the endoscope scope 12 via a cable 68 (see FIG. 3) inserted into the universal cord 24, controls the driving of the imaging chip 54, and connects the cable 68 from the imaging chip 54. The received image signal is received, and various signal processing is performed on the received image signal to convert it into image data.

プロセッサ装置14で変換された画像データは、プロセッサ装置14にケーブル接続されたモニタ38に内視鏡撮影画像(観察画像)として表示される。また、プロセッサ装置14は、コネクタ36を介して光源装置16とも電気的に接続され、光源装置16を含め電子内視鏡装置10の動作を統括的に制御する。   The image data converted by the processor device 14 is displayed as an endoscopic image (observation image) on a monitor 38 connected to the processor device 14 by a cable. The processor device 14 is also electrically connected to the light source device 16 via the connector 36, and comprehensively controls the operation of the electronic endoscope device 10 including the light source device 16.

図2は、内視鏡スコープ12の先端部26の先端面26aを示した正面図である。図2に示すように、先端部26の先端面26aには、観察窓40と、照明窓42と、鉗子出口44と、送気・送水用ノズル46が設けられている。   FIG. 2 is a front view showing the distal end surface 26 a of the distal end portion 26 of the endoscope scope 12. As shown in FIG. 2, an observation window 40, an illumination window 42, a forceps outlet 44, and an air / water supply nozzle 46 are provided on the distal end surface 26 a of the distal end portion 26.

観察窓40は、先端面26aの中央且つ片側に偏心して配置されている。照明窓42は、観察窓40に関して対称な位置に2個配され、体腔内の被観察部位に光源装置16からの照明光を照射する。   The observation window 40 is arranged eccentric to the center and one side of the distal end surface 26a. Two illumination windows 42 are arranged at symmetrical positions with respect to the observation window 40, and irradiate illumination light from the light source device 16 to a site to be observed in the body cavity.

鉗子出口44は、挿入部20内に配設された鉗子チャンネル70(図3参照)に接続され、操作部22に設けられた鉗子口34(図1参照)に連通している。鉗子口34には、注射針や高周波メスなどが先端に配された各種処置具が挿通され、各種処置具の先端が鉗子出口44から体腔内に出される。   The forceps outlet 44 is connected to a forceps channel 70 (see FIG. 3) disposed in the insertion portion 20 and communicates with a forceps port 34 (see FIG. 1) provided in the operation portion 22. Various treatment tools having an injection needle, a high-frequency knife or the like disposed at the distal end are inserted into the forceps port 34, and the distal ends of the various treatment instruments are ejected from the forceps outlet 44 into the body cavity.

送気・送水用ノズル46は、操作部22に設けられた送気・送水ボタン32(図1参照)の操作に応じて、光源装置16に内蔵された送気・送水装置から供給される洗浄水や空気を、観察窓40や体腔内に向けて噴射する。   The air supply / water supply nozzle 46 is cleaned from the air supply / water supply device built in the light source device 16 in accordance with the operation of the air supply / water supply button 32 (see FIG. 1) provided in the operation unit 22. Water or air is jetted toward the observation window 40 or the body cavity.

図3は内視鏡スコープ12の先端部26の縦断面図である。図3に示すように、観察窓40の奥には、撮像モジュール50が配置されている。本実施形態の撮像モジュール50は、対物レンズ光学系51と、プリズム56と、カバーガラス55と撮像チップ54とを備える。   FIG. 3 is a longitudinal sectional view of the distal end portion 26 of the endoscope scope 12. As shown in FIG. 3, an imaging module 50 is disposed in the back of the observation window 40. The imaging module 50 of this embodiment includes an objective lens optical system 51, a prism 56, a cover glass 55, and an imaging chip 54.

この撮像モジュール50は、体腔内の被観察部位からの像光を取り込むための対物レンズ光学系51を保持する鏡筒52を持つ。鏡筒52は、挿入部20の中心軸に対物レンズ光学系51の光軸が平行となるように取り付けられている。鏡筒52の後端には、対物レンズ光学系51を経由した被観察部位の像光を、略直角に曲げて撮像チップ54に向けて導光するプリズム56が接続されている。   The imaging module 50 has a lens barrel 52 that holds an objective lens optical system 51 for capturing image light from a site to be observed in a body cavity. The lens barrel 52 is attached so that the optical axis of the objective lens optical system 51 is parallel to the central axis of the insertion portion 20. Connected to the rear end of the lens barrel 52 is a prism 56 that guides the image light of the site to be observed via the objective lens optical system 51 toward the imaging chip 54 by bending it at a substantially right angle.

撮像チップ54は、半導体チップに信号読出回路が形成されその上に有機層でなる光電変換層が積層された単板式カラー画像撮像用の撮像素子58と、撮像素子58の駆動及び信号の入出力を行う周辺回路60とが半導体チップに形成された撮像チップであり、支持基板62上に実装されている。   The imaging chip 54 includes a single-chip color image imaging device 58 in which a signal reading circuit is formed on a semiconductor chip and a photoelectric conversion layer made of an organic layer formed thereon, and driving of the imaging device 58 and input / output of signals. The peripheral circuit 60 for performing the imaging is an imaging chip formed on a semiconductor chip, and is mounted on a support substrate 62.

撮像素子58の撮像面(受光面)58aには、透明ガラス製の平行平板でなる保護用カバーガラス55の下面側が接着材で貼り付け固定され、このカバーガラス55の上面が、プリズム56の光出射面に接着材で貼り付け固定される。つまり、撮像面58aとプリズム56の光出射面とは平行に対面するように配置される。   The lower surface side of the protective cover glass 55 made of a transparent glass parallel plate is affixed and fixed to the imaging surface (light receiving surface) 58 a of the image sensor 58 with an adhesive, and the upper surface of the cover glass 55 is the light of the prism 56. Affixed to the exit surface with an adhesive. That is, the imaging surface 58a and the light exit surface of the prism 56 are arranged to face each other in parallel.

挿入部20の後端に向けて延設された支持基板62の後端部には、複数の入出力端子62aが支持基板62の幅方向に並べて設けられている。入出力端子62aには、ユニバーサルコード24を介してプロセッサ装置14との各種信号のやり取りを媒介するための信号線66が接合されている。入出力端子62aは、支持基板62に形成された配線やボンディングパッド等(図示せず)を介して撮像チップ54内の周辺回路60と電気的に接続されている。   A plurality of input / output terminals 62 a are arranged in the width direction of the support substrate 62 at the rear end portion of the support substrate 62 extending toward the rear end of the insertion portion 20. A signal line 66 for mediating the exchange of various signals with the processor device 14 through the universal cord 24 is joined to the input / output terminal 62a. The input / output terminal 62a is electrically connected to the peripheral circuit 60 in the imaging chip 54 via wiring, bonding pads, etc. (not shown) formed on the support substrate 62.

信号線66は、可撓性の管状のケーブル68内にまとめて挿通されている。ケーブル68は、挿入部20、操作部22、及びユニバーサルコード24の各内部を挿通し、コネクタ36に接続されている。   The signal lines 66 are collectively inserted into a flexible tubular cable 68. The cable 68 is inserted through each of the insertion unit 20, the operation unit 22, and the universal cord 24 and is connected to the connector 36.

また、図2,図3では図示を省略しているが、照明窓42の奥には、照明部が設けられている。照明部には、光源装置16からの照明光を導くライトガイドの光出射端が配されており、この光出射端が照明窓42に対面して設けられている。ライトガイドは、ケーブル68と同様に、挿入部20、操作部22、及びユニバーサルコード24の各内部を挿通し、コネクタ36に入射端が接続されている。   Although not shown in FIGS. 2 and 3, an illumination unit is provided in the back of the illumination window 42. The illumination unit is provided with a light guide end of a light guide that guides illumination light from the light source device 16, and the light exit end is provided facing the illumination window 42. Like the cable 68, the light guide is inserted through each of the insertion unit 20, the operation unit 22, and the universal cord 24, and the incident end is connected to the connector 36.

尚、本実施形態で用いる撮像素子58は、光電変換層積層型であるが、半導体チップ表面に複数のフォトダイオードを二次元配列した周知のCCD型イメージセンサやCMOS型イメージセンサでも良い。   The image sensor 58 used in this embodiment is a photoelectric conversion layer stacked type, but may be a known CCD image sensor or CMOS image sensor in which a plurality of photodiodes are two-dimensionally arranged on the surface of a semiconductor chip.

図4は、図3に示す撮像素子58部分の拡大断面模式図である。光電変換層積層型の撮像素子58は、半導体基板110に形成される。この半導体基板110の表面部には、信号読出回路としてのCMOS回路等のMOS回路71が画素毎に形成されている。信号読出回路は、CCD型でも良い。光電変換層積層型撮像素子については、本願出願人が先に出願し既に公開された特開2011―243945号などがある。   FIG. 4 is an enlarged schematic cross-sectional view of the image sensor 58 portion shown in FIG. The photoelectric conversion layer stacked type imaging device 58 is formed on the semiconductor substrate 110. On the surface of the semiconductor substrate 110, a MOS circuit 71 such as a CMOS circuit as a signal readout circuit is formed for each pixel. The signal readout circuit may be a CCD type. JP-A-2011-243945, which was previously filed by the applicant of the present application and has already been disclosed, is known as a photoelectric conversion layer stacked type imaging device.

半導体基板110の表面には絶縁層111が積層されると共に、この絶縁層111内に配線層112が埋設される。この配線層112は、上層を透過して洩れてきた入射光が信号読出回路71等に入射しない様にする遮蔽板の機能も果たす。   An insulating layer 111 is laminated on the surface of the semiconductor substrate 110, and a wiring layer 112 is embedded in the insulating layer 111. The wiring layer 112 also functions as a shielding plate that prevents incident light that has leaked through the upper layer from entering the signal readout circuit 71 and the like.

絶縁層111の表面には、画素毎に区分けされ上方(光入射方向)から見たとき正方格子状に配列される複数の画素電極膜113が成膜されている。各画素電極膜113には、半導体基板110の表面にまで達する縦配線114が立設され、各縦配線114は、半導体基板110の表面に形成された図示省略の信号電荷蓄積部に接続される。   On the surface of the insulating layer 111, a plurality of pixel electrode films 113 are formed which are divided for each pixel and are arranged in a square lattice when viewed from above (light incident direction). Each pixel electrode film 113 is provided with a vertical wiring 114 extending up to the surface of the semiconductor substrate 110, and each vertical wiring 114 is connected to a signal charge storage unit (not shown) formed on the surface of the semiconductor substrate 110. .

画素毎に設けられた信号読出回路71は、対応する信号電荷蓄積部に蓄積された信号電荷量に応じた信号を被写体画像信号として外部に読み出す様になっている。本実施形態では、画素電極膜113は、有効画素領域(撮像領域)に設けられる。   The signal readout circuit 71 provided for each pixel reads out a signal corresponding to the signal charge amount stored in the corresponding signal charge storage unit to the outside as a subject image signal. In the present embodiment, the pixel electrode film 113 is provided in the effective pixel region (imaging region).

正方格子状に配列形成された複数の画素電極膜113の上には、光電変換機能を有する受光層103が各画素電極膜共通に一枚構成で積層され、その上に、同様に一枚構成の上部電極膜(対向電極膜,共通電極膜ともいう。)104が、画素電極膜113に対して光入射側の上層として積層される。図3で説明した受光面58aは、受光層103が該当し、受光層103と、これを上下に挟む下部電極膜(画素電極膜)113,上部電極膜104とで光電変換部が形成される。   On the plurality of pixel electrode films 113 arranged in a square lattice pattern, a light receiving layer 103 having a photoelectric conversion function is laminated in a single configuration in common with each pixel electrode film. The upper electrode film (also referred to as a counter electrode film or a common electrode film) 104 is stacked on the pixel electrode film 113 as an upper layer on the light incident side. The light receiving surface 58a described in FIG. 3 corresponds to the light receiving layer 103, and a photoelectric conversion portion is formed by the light receiving layer 103, the lower electrode film (pixel electrode film) 113 and the upper electrode film 104 sandwiching the light receiving layer 103 vertically. .

上部電極膜104は、絶縁層111の表面に露出する対向電圧供給電極膜115に配線116を介して電気的に接続状態となっており、配線116を介して、撮像素子外部から所要電圧が印加される。   The upper electrode film 104 is electrically connected to the counter voltage supply electrode film 115 exposed on the surface of the insulating layer 111 through the wiring 116, and a required voltage is applied from the outside of the imaging device through the wiring 116. Is done.

上部電極膜104の上には保護層117が積層され、その上に、各画素電極膜113に対応するカラーフィルタ120が積層される。例えば三原色の赤(R)緑(G)青(B)のカラーフィルタがベイヤ配列され、或いは、補色系のカラーフィルタが積層される。カラーフィルタ層120の上に、オーバーコート層(保護層)118が積層される。   A protective layer 117 is laminated on the upper electrode film 104, and a color filter 120 corresponding to each pixel electrode film 113 is laminated thereon. For example, three primary color red (R), green (G), and blue (B) color filters are arranged in a Bayer array, or complementary color color filters are stacked. An overcoat layer (protective layer) 118 is laminated on the color filter layer 120.

オーバーコート層118の上に、ガラス製の平行平板でなる保護用カバーガラス55が接着材で貼り付け固定される。カバーガラス55は、本実施形態では矩形形状を成し、その四周の側端面に、半透明の光吸収膜(光吸収層)55aが塗布されている。カバーガラス55は、撮像素子58の矩形状の有効画素領域(有効エリア:撮像領域)の全域を完全に覆う様に、有効画素領域より若干大きめに成形されている。   On the overcoat layer 118, a protective cover glass 55 made of a glass parallel plate is attached and fixed with an adhesive. In the present embodiment, the cover glass 55 has a rectangular shape, and a translucent light absorption film (light absorption layer) 55a is applied to the side end faces of the four circumferences. The cover glass 55 is formed slightly larger than the effective pixel area so as to completely cover the entire rectangular effective pixel area (effective area: imaging area) of the image sensor 58.

本実施形態の撮像素子58は、通常のイメージセンサで画素毎に積層されるマイクロレンズ(トップレンズ)は設けられておらず、マイクロレンズ非搭載型となっている。このため、カラーフィルタ層120とオーバーコート層118との間は隙間が無い密着状態になっており、オーバーコート層118の表面は平面になっている。   The imaging device 58 of the present embodiment is not provided with a microlens (top lens) that is stacked for each pixel by a normal image sensor, and is a non-microlens mounting type. Therefore, the color filter layer 120 and the overcoat layer 118 are in close contact with no gap, and the surface of the overcoat layer 118 is flat.

このため、カバーガラス55を、撮像素子58のオーバーコート層118表面に直貼りすることができる。また、プリズム56の光出射面と受光層103との間に隙間が全く形成されない構造のため、隙間内の防湿を図る必要がなく、湿気による撮像画像の画質劣化を心配する必要がない。   For this reason, the cover glass 55 can be directly attached to the surface of the overcoat layer 118 of the image sensor 58. In addition, since there is no gap formed between the light emitting surface of the prism 56 and the light receiving layer 103, it is not necessary to prevent moisture in the gap, and there is no need to worry about deterioration in image quality of a captured image due to moisture.

上述した上部電極膜104は、受光層103に光を入射させる必要があるため入射光に対して透明な導電性材料で構成される。上部電極膜104の材料としては、可視光に対する透過率が高く、抵抗値が小さい透明導電性酸化物(TCO:Transparent Conducting Oxide)を用いることができる。   Since the upper electrode film 104 described above needs to make light incident on the light receiving layer 103, it is made of a conductive material transparent to the incident light. As a material of the upper electrode film 104, a transparent conductive oxide (TCO) having a high transmittance for visible light and a small resistance value can be used.

Au(金)などの金属薄膜も用いることができるが、透過率を90%以上得ようとして膜厚を薄くすると、抵抗値が極端に増大するため、TCOの方が好ましい。TCOとして、特に、酸化インジウム錫(ITO)、酸化インジウム、酸化錫、弗素ドープ酸化錫(FTO)、酸化亜鉛、アルミニウムドープ酸化亜鉛(AZO)、酸化チタン等を好ましく用いることができる。プロセス簡易性、低抵抗性、透明性の観点からはITOが最も好ましい。なお、上部電極膜104は、実施形態では全画素で共通の一枚構成としているが、画素毎に分割し各々を電源に接続する構成であっても良い。   A metal thin film such as Au (gold) can also be used. However, if the film thickness is reduced in order to obtain a transmittance of 90% or more, the resistance value increases drastically, so TCO is preferable. As TCO, indium tin oxide (ITO), indium oxide, tin oxide, fluorine-doped tin oxide (FTO), zinc oxide, aluminum-doped zinc oxide (AZO), titanium oxide, and the like can be preferably used. ITO is most preferable from the viewpoints of process simplicity, low resistance, and transparency. Note that the upper electrode film 104 is configured to be common to all pixels in the embodiment, but may be configured to be divided for each pixel and connected to a power source.

下部電極膜(画素電極膜)113は、画素毎に分割された薄膜であり、透明又は不透明の導電性材料で構成される。下部電極膜113の材料として、Cr,In,Al,Ag、W、TiN(窒化チタン)等の金属や、TCOを用いることができる。   The lower electrode film (pixel electrode film) 113 is a thin film divided for each pixel, and is made of a transparent or opaque conductive material. As a material of the lower electrode film 113, a metal such as Cr, In, Al, Ag, W, TiN (titanium nitride), or TCO can be used.

保護層117、オーバーコート層118は、透明な絶縁材料、シリコン酸化膜、シリコン窒化膜、酸化ジルコニウム、酸化タンタル、酸化チタン、酸化ハフニウム、酸化マグネシウム、アルミナ(Al)、ポリパラキシレン系樹脂、アクリル樹脂、全フッ素透明樹脂(サイトップ)等で構成される。 The protective layer 117 and the overcoat layer 118 are made of a transparent insulating material, silicon oxide film, silicon nitride film, zirconium oxide, tantalum oxide, titanium oxide, hafnium oxide, magnesium oxide, alumina (Al 2 O 3 ), polyparaxylene series Resin, acrylic resin, all-fluorine transparent resin (Cytop), etc.

保護層117、オーバーコート層118は、化学気相法(CVD法)、原子層堆積法(ALD ALCVD)等の周知の技術で形成し、必要に応じてCVD法、原子層堆積法等で堆積された複数の絶縁膜と組み合わせた多層膜であってもよい。平滑化層、オーバーコート層は、成膜した後、化学機械研磨(CMP)により、凸部を除去し平滑、平坦化する。   The protective layer 117 and the overcoat layer 118 are formed by a known technique such as a chemical vapor deposition method (CVD method) or an atomic layer deposition method (ALD ALCVD), and are deposited by a CVD method, an atomic layer deposition method, or the like as necessary. It may be a multilayer film combined with a plurality of insulating films. The smoothing layer and the overcoat layer are formed and then smoothed and flattened by removing the convex portions by chemical mechanical polishing (CMP).

保護層117、オーバーコート層118の厚みはそれぞれの機能を果たし、かつ極力薄いことが望ましく、それぞれ、0.1μm〜10μmが好ましい。   The thickness of the protective layer 117 and the overcoat layer 118 fulfills their respective functions and is desirably as thin as possible, preferably 0.1 μm to 10 μm.

図5は、撮像チップ54と、カバーガラス55と、プリズム56の分解斜視図である。プリズム56が取り付けられている対物レンズ光学系51の図示は省略している。撮像チップ54の撮像素子58表面にカバーガラス55が接着材により貼り付け固定されており、このカバーガラス55の表面を、接着材により、プリズム56の光出射面に貼り付けることにより、撮像モジュールが製造される。   FIG. 5 is an exploded perspective view of the imaging chip 54, the cover glass 55, and the prism 56. The illustration of the objective lens optical system 51 to which the prism 56 is attached is omitted. A cover glass 55 is attached and fixed to the surface of the image pickup device 58 of the image pickup chip 54 with an adhesive, and the surface of the cover glass 55 is attached to the light emitting surface of the prism 56 with an adhesive, whereby the image pickup module is mounted. Manufactured.

図6は、カバーガラス55の端部断面図である。カバーガラス55は、屈折率n1の透明材料を平行平板状に成形して構成し、その四周の側端面に、屈折率n2の半透明膜でなる光吸収膜55aを形成している。   FIG. 6 is an end cross-sectional view of the cover glass 55. The cover glass 55 is formed by forming a transparent material having a refractive index n1 into a parallel plate shape, and a light absorption film 55a made of a semi-transparent film having a refractive index n2 is formed on a side end surface of the four circumferences thereof.

本実施形態では、フレア光対策として、次に記載する2つの対策(a)(b)を併用することにしている。   In the present embodiment, two countermeasures (a) and (b) described below are used in combination as a countermeasure against flare light.

対策(a):カバーガラス55と光吸収膜55aとの境界面で光が反射しない様に、両者の屈折率の関係をn1≒n2とする。   Countermeasure (a): The relationship between the refractive indexes of both is set to n1≈n2 so that the light is not reflected at the boundary surface between the cover glass 55 and the light absorption film 55a.

対策(b):カバーガラス55と光吸収膜55aとの境界面で反射した光(フレア光)が撮像チップ54の有効撮像領域(有効エリア)に入らない様に、撮像チップ54の有効エリアに対してカバーガラス55の大きさを決めている。   Countermeasure (b): In an effective area of the imaging chip 54, the light (flare light) reflected by the boundary surface between the cover glass 55 and the light absorption film 55a does not enter the effective imaging area (effective area) of the imaging chip 54. On the other hand, the size of the cover glass 55 is determined.

先ず、対策(a)について説明する。カバーガラス55の側端面と光吸収膜55aとの境界面に入射してくる光80は、境界面で反射する反射光81と、境界面を通して光吸収膜55a内に浸入する透過光82とに分けられる。反射光81は、入射光80が斜め入射光の場合、撮像素子58側に入射することになる。   First, the countermeasure (a) will be described. The light 80 incident on the boundary surface between the side end surface of the cover glass 55 and the light absorption film 55a is reflected light 81 reflected by the boundary surface and transmitted light 82 entering the light absorption film 55a through the boundary surface. Divided. The reflected light 81 is incident on the image sensor 58 side when the incident light 80 is obliquely incident light.

入射光80のうち、どの程度が反射光81になるかの反射率Rは、屈折率n1,n2と境界面への入射角によって決められる。境界面に垂直に入射する光の反射率Rは、周知の様に、{(n1−n2)/(n1+n2)}の2乗で表される。このため、光吸収膜55aの屈折率n2をカバーガラス55の屈折率n1にすることで、原理的に反射光81を無くすことができる。つまり、n1=n2とは、カバーガラス55と光吸収膜55aとの間に光学的な界面が存在しないことを意味し、これは、斜め入射光に対しても言えることである。   The reflectivity R of how much of the incident light 80 becomes the reflected light 81 is determined by the refractive indexes n1 and n2 and the incident angle to the boundary surface. As is well known, the reflectance R of light perpendicularly incident on the boundary surface is represented by the square of {(n1-n2) / (n1 + n2)}. For this reason, the reflected light 81 can be eliminated in principle by setting the refractive index n2 of the light absorption film 55a to the refractive index n1 of the cover glass 55. That is, n1 = n2 means that there is no optical interface between the cover glass 55 and the light absorption film 55a, and this is also true for obliquely incident light.

しかし、実際に別材料でn1=n2となる材料を選択するのは困難であるため、光吸収膜55aの屈折率n2を
0.9×n1≦n2≦1.1×n1
程度の値としても、良い。この程度の違いであれば、境界面の反射光の比率を実際上問題無い程度に低下させることができる。
However, since it is difficult to actually select a material that satisfies n1 = n2 with another material, the refractive index n2 of the light absorption film 55a is set to 0.9 × n1 ≦ n2 ≦ 1.1 × n1.
The degree value is also good. With such a difference, the ratio of the reflected light at the boundary surface can be reduced to a practically no problem level.

或いは、カバーガラス55の基材と光吸収膜55aの基材とを同一材料としても良い。例えばカバーガラス55の端面部分に、光吸収用として、特定波長に対して吸収率が高いフィルタ材料である色素粒子や顔料粒子、または、ND(減光)フィルタ材料たとえばカーボンブラック粒子等を混入させ、半透明な光吸収膜55aを形成しても良い。特定波長とは、白色光撮影で用いられる400nm〜700nmとするのが良く、例えば中心となる緑の波長550nmとしても良い。   Or it is good also considering the base material of the cover glass 55, and the base material of the light absorption film 55a as the same material. For example, in the end face portion of the cover glass 55, for absorption of light, pigment particles or pigment particles, which are filter materials having high absorptance with respect to a specific wavelength, or ND (darkening) filter materials such as carbon black particles are mixed. Alternatively, a translucent light absorbing film 55a may be formed. The specific wavelength is preferably 400 nm to 700 nm used in white light photography, and may be, for example, a central green wavelength of 550 nm.

この場合、光吸収用の微粒子を混入して光吸収膜55a部分の屈折率がカバーガラス55の基材の屈折率と違ってきたとしても、0.9×n1≦n2≦1.1×n1の範囲内とすれば、フレア光の影響を抑制可能である。屈折率をn1≒n2とすることで、光吸収膜55aの膜厚は薄くて済み、カバーガラスの小型化を図ることが可能となり、撮像モジュール全体の小型化にも繋がる。   In this case, even if light absorption fine particles are mixed and the refractive index of the light absorption film 55a is different from the refractive index of the base material of the cover glass 55, 0.9 × n1 ≦ n2 ≦ 1.1 × n1. Within the range, it is possible to suppress the influence of flare light. By setting the refractive index to n1≈n2, the thickness of the light absorption film 55a can be reduced, the cover glass can be downsized, and the entire imaging module can be downsized.

尚、屈折率は、色すなわち光の波長によって異なって来る。このため、上記のn1=n2(あるいはn1≒n2)とする波長は、内視鏡で多く使われる400nm〜700nmの波長帯を考えて、緑色(波長550nm近傍)とするのが望ましい。   The refractive index varies depending on the color, that is, the wavelength of light. For this reason, it is desirable that the wavelength n1 = n2 (or n1≈n2) be green (wavelength near 550 nm) in consideration of a wavelength band of 400 nm to 700 nm often used in endoscopes.

次に、対策(b)について説明する。図7は、カバーガラス55に入射する入射光と像高との関係を示す図である。F値“8”の光学系射出瞳からカバーガラス55に入射する光の内、像高1.4mmとなる入射光と像高1.6mmとなる入射光とを具体的に計算している。計算条件は、図8(a)(b)に示す通りである。   Next, countermeasure (b) will be described. FIG. 7 is a diagram showing the relationship between the incident light incident on the cover glass 55 and the image height. Of the light incident on the cover glass 55 from the optical system exit pupil having an F value of “8”, incident light having an image height of 1.4 mm and incident light having an image height of 1.6 mm are specifically calculated. The calculation conditions are as shown in FIGS. 8 (a) and 8 (b).

今、像高1.4mmの位置を、撮像素子58の有効エリアの端となるようにカバーガラス55を撮像素子チップ58に貼り合わせているとする。そして、光吸収膜55aとカバーガラス55との間の境界面の位置を、光軸中心から1.45mmとしている。光吸収膜55aは薄くて良いため、実質的に、カバーガラス55の端までの大きさを1.45mmとしている。   Now, it is assumed that the cover glass 55 is bonded to the image sensor chip 58 so that the position of the image height of 1.4 mm is the end of the effective area of the image sensor 58. The position of the boundary surface between the light absorption film 55a and the cover glass 55 is 1.45 mm from the center of the optical axis. Since the light absorption film 55a may be thin, the size up to the end of the cover glass 55 is substantially 1.45 mm.

像高1.4mmの入射光は、カバーガラス55の端面には達しないため、迷光は発生しない。これに対し、図7の部分拡大図である図9に示す様に、像高1.6mmの入射光は、カバーガラス55の端面で反射して迷光となり、光軸中心から1.3mmの位置(有効エリア内側)に落ちてしまう。   Since incident light with an image height of 1.4 mm does not reach the end face of the cover glass 55, stray light is not generated. On the other hand, as shown in FIG. 9 which is a partially enlarged view of FIG. 7, incident light having an image height of 1.6 mm is reflected by the end face of the cover glass 55 to become stray light, and is positioned 1.3 mm from the optical axis center. It falls to (inside the effective area).

つまり、この迷光が有効エリア内に落射しないように光学系,撮像系を設計すれば良い。この例で言えば、像高1.4mmまでの範囲を有効エリアとする撮像素子を用い、カバーガラス55の端までの距離を1.45mmとしている。そして、F値“8”の絞りで主光線の入射角が15.0度(図8(a)参照)の光が撮像素子に入射しない光学系とすれば良い。   That is, the optical system and the imaging system may be designed so that this stray light does not fall within the effective area. In this example, an imaging element having an effective area in a range up to an image height of 1.4 mm is used, and the distance to the end of the cover glass 55 is 1.45 mm. Then, an optical system in which light having an incident angle of the principal ray of 15.0 degrees (see FIG. 8A) with an F value “8” is not incident on the image sensor may be used.

上記の説明において、像高1.6mmの入射光に対し、カバーガラス55の端までの距離を1.6mmとすれば、像高1.6mmの入射光はカバーガラス55の端で反射することがなくなる。つまり、迷光は発生しない。しかし、この場合、カバーガラス55の大きさが大きくなってしまう。   In the above description, with respect to incident light with an image height of 1.6 mm, if the distance to the end of the cover glass 55 is 1.6 mm, the incident light with an image height of 1.6 mm is reflected at the end of the cover glass 55. Disappears. That is, no stray light is generated. However, in this case, the size of the cover glass 55 is increased.

近年の内視鏡スコープの太さは、細径化が図られ、9mm径が普通となっているが、更なる細径化が図られている。このため、光学系,撮像系の部材として用いる様々な部品も小型化が必要となる。本実施形態の光学系は、図3に示す様に、プリズム56を用いている。   The diameter of endoscope scopes in recent years has been reduced in diameter, and a diameter of 9 mm has become common, but further reduction in diameter has been achieved. For this reason, various parts used as members of the optical system and the imaging system also need to be miniaturized. The optical system of the present embodiment uses a prism 56 as shown in FIG.

しかし、光学レンズを通った入射光を、プリズムを用いずに、撮像素子の受光面で受ける形式の内視鏡スコープの場合、カバーガラスの大きさがそのまま内視鏡スコープの径に影響してしまうため、カバーガラスは小さいほど良い。   However, in the case of an endoscope scope that receives incident light that has passed through an optical lens at the light receiving surface of the image sensor without using a prism, the size of the cover glass directly affects the diameter of the endoscope scope. Therefore, the smaller the cover glass, the better.

本実施形態では、光電変換層積層型固体撮像素子58を用いている関係で、カバーガラスを小さくすることができる。その理由は、図4に示す様に、トップレンズが無く(マイクロレンズ非搭載型)、更に、半導体基板110より上層に受光層103が配置されている関係で、カバーガラス55と受光層103との間の距離を狭くできるためである。つまり、この距離が狭いため、図6の反射光81が有効エリア側に進む距離が短くなり、図9の有効エリアの端位置から、カバーガラス55の端位置までの距離を短くできるためである。   In the present embodiment, the cover glass can be made small because the photoelectric conversion layer stacked solid-state imaging device 58 is used. The reason for this is that, as shown in FIG. 4, there is no top lens (non-microlens mounting type), and the light receiving layer 103 is disposed above the semiconductor substrate 110, so that the cover glass 55, the light receiving layer 103, This is because the distance between the two can be reduced. That is, since this distance is narrow, the distance that the reflected light 81 in FIG. 6 travels to the effective area side is shortened, and the distance from the end position of the effective area in FIG. 9 to the end position of the cover glass 55 can be shortened. .

以上、対策(a)と(b)について説明したが、本実施形態では、両対策を併用してフレア対策を施している。対策(a)だけでも、対策(b)だけでも効果はある。   Although the countermeasures (a) and (b) have been described above, in the present embodiment, both countermeasures are used together to take the countermeasure against flare. The countermeasure (a) alone or the countermeasure (b) alone is effective.

しかし、例えば、対策(a)でn1=n2となる材料で且つカバーガラス55が透明,光吸収膜55aが半透明膜となる材料が得られなければ、若干の反射光が界面で発生し、フレア光が発生する。このフレア光による画質劣化は非常に小さいが、このフレア光の影響も削減したいとき、対策(b)を併用することになる。   However, for example, if a material in which the countermeasure (a) is n1 = n2 and the cover glass 55 is transparent and the light absorption film 55a is a translucent film is obtained, some reflected light is generated at the interface, Flare light is generated. Although the image quality deterioration due to the flare light is very small, when it is desired to reduce the influence of the flare light, the countermeasure (b) is used together.

逆に、カバーガラス55の大きさを小さくし有効エリアより若干大きくした場合、カバーガラス55の端面(光吸収膜との界面)で反射する光が有効エリア内に浸入する虞がある。この反射光(フレア光)は非常に小さいため、あまり問題無いが、このフレア光の影響も削減したいとき、対策(a)を併用すれば良い。   On the contrary, when the size of the cover glass 55 is reduced to be slightly larger than the effective area, there is a possibility that the light reflected by the end surface (interface with the light absorption film) of the cover glass 55 enters the effective area. Since this reflected light (flare light) is very small, there is no problem. However, when it is desired to reduce the influence of this flare light, countermeasure (a) may be used in combination.

尚、上述した実施形態では、カバーガラスを例に説明したが、カバーガラスに限らずに、撮像素子の受光面に対し垂直となる端面(光吸収膜との界面)を持つプリズム等の光学部材でも同様である。また、内視鏡用の撮像モジュールとして説明したが、携帯電話機等の小型電子機器に搭載する撮像モジュールにも適用可能である。   In the above-described embodiment, the cover glass has been described as an example. However, the present invention is not limited to the cover glass, but an optical member such as a prism having an end surface (interface with the light absorption film) perpendicular to the light receiving surface of the image sensor. But the same is true. Although described as an imaging module for an endoscope, the present invention can also be applied to an imaging module mounted on a small electronic device such as a mobile phone.

以上述べた実施形態の撮像モジュールは、撮像素子と、該撮像素子の受光面に貼り合わされ該撮像素子の有効エリアに入射光を導く光学部材と、該光学部材の前記有効エリアに対し垂直となる側端面に積層された半透明の光吸収層とを備える撮像モジュールであって、屈折率n1の材料で形成された前記光学部材に対し、前記光吸収層の屈折率n2をn2≒n1としたことを特徴とする。   The imaging module of the embodiment described above is an imaging device, an optical member that is bonded to the light receiving surface of the imaging device and guides incident light to the effective area of the imaging device, and is perpendicular to the effective area of the optical member. An imaging module including a translucent light absorption layer laminated on a side end surface, wherein the refractive index n2 of the light absorption layer is set to n2≈n1 with respect to the optical member formed of a material having a refractive index n1 It is characterized by that.

また、実施形態の撮像モジュールの前記光吸収層は、前記屈折率n1の材料にND材料または特定波長に対して吸収率が高いフィルタ材料の微粒子を混入して形成されていることを特徴とする。   In the imaging module of the embodiment, the light absorption layer is formed by mixing fine particles of an ND material or a filter material having a high absorption rate with respect to a specific wavelength into the material having the refractive index n1. .

また、実施形態の撮像モジュールの前記n2≒n1は、0.9×n1≦n2≦1.1×n1であることを特徴とする。   In the imaging module of the embodiment, n2≈n1 is 0.9 × n1 ≦ n2 ≦ 1.1 × n1.

また、実施形態の撮像モジュールの前記撮像素子は、マイクロレンズ非搭載型かつ光電変換層積層型であることを特徴とする。   In addition, the imaging element of the imaging module according to the embodiment is a microlens non-mounting type and a photoelectric conversion layer stacking type.

また、実施形態の撮像モジュールの前記屈折率n1,n2の値は、緑色光の波長における屈折率であることを特徴とする。   Moreover, the values of the refractive indexes n1 and n2 of the imaging module according to the embodiment are refractive indexes at the wavelength of green light.

また、実施形態の撮像モジュールは、前記有効エリアに重なる前記光学部材の前記側端面の位置が、該有効エリアの端の位置よりも0.05mmだけ大きいことを特徴とする。なお、0.05mmに限らず、例えば、0.03mm〜0.07mmの範囲の値としても良い。   In the imaging module according to the embodiment, the position of the side end surface of the optical member overlapping the effective area is larger by 0.05 mm than the position of the end of the effective area. The value is not limited to 0.05 mm, and may be a value in the range of 0.03 mm to 0.07 mm, for example.

また、実施形態の電子内視鏡装置は、上記のいずれかに記載の撮像モジュールを、内視鏡スコープ先端部に内蔵したことを特徴とする。   In addition, an electronic endoscope apparatus according to the embodiment is characterized in that the imaging module according to any one of the above is built in a distal end portion of an endoscope scope.

以上述べた実施形態によれば、光学部材に起因するフレア光を最小限に抑制することができ、高品質な撮像画像を得ることが可能となり、装置の小型化を図ることも可能となる。   According to the embodiment described above, flare light caused by the optical member can be suppressed to a minimum, a high-quality captured image can be obtained, and the apparatus can be downsized.

本発明に係る光学部材(実施形態ではカバーガラス)及び光吸収膜を用いることで、撮像モジュールを小型にすることができ、且つ、光学部材によるフレア光の発生を抑制可能となる。このため、電子内視鏡装置に適用することで、小型化を達成でき、また、撮像画像の高品質化を図ることが可能となる。   By using the optical member (cover glass in the embodiment) and the light absorption film according to the present invention, the imaging module can be reduced in size, and generation of flare light by the optical member can be suppressed. For this reason, when applied to an electronic endoscope apparatus, it is possible to achieve downsizing and to improve the quality of a captured image.

10 電子内視鏡装置
12 内視鏡スコープ
14 プロセッサ装置
16 光源装置
38 モニタ
40 観察窓
50 撮像モジュール
51 対物レンズ光学系
54 撮像チップ
55 カバーガラス
55a 光吸収膜
56 プリズム
58 撮像素子
DESCRIPTION OF SYMBOLS 10 Electronic endoscope apparatus 12 Endoscope scope 14 Processor apparatus 16 Light source apparatus 38 Monitor 40 Observation window 50 Imaging module 51 Objective lens optical system 54 Imaging chip 55 Cover glass 55a Light absorption film 56 Prism 58 Imaging element

Claims (7)

撮像素子と、該撮像素子の受光面に貼り合わされ該撮像素子の有効エリアに入射光を導く光学部材と、該光学部材の前記有効エリアに対し垂直となる側端面に積層された半透明の光吸収層とを備える撮像モジュールであって、屈折率n1の材料で形成された前記光学部材に対し、前記光吸収層の屈折率n2をn2≒n1とした撮像モジュール。   An image sensor, an optical member that is bonded to the light receiving surface of the image sensor and guides incident light to the effective area of the image sensor, and translucent light that is stacked on a side end surface that is perpendicular to the effective area of the optical member An imaging module comprising an absorption layer, wherein the refractive index n2 of the light absorption layer is n2≈n1 with respect to the optical member formed of a material having a refractive index n1. 請求項1に記載の撮像モジュールであって、前記光吸収層は前記屈折率n1の材料にND材料または特定波長に対して吸収率が高いフィルタ材料の微粒子を混入して形成されている撮像モジュール。   2. The imaging module according to claim 1, wherein the light absorption layer is formed by mixing fine particles of an ND material or a filter material having a high absorption rate with respect to a specific wavelength into the material having the refractive index n <b> 1. . 請求項1または請求項2に記載の撮像モジュールであって、前記n2≒n1は、0.9×n1≦n2≦1.1×n1である撮像モジュール。   3. The imaging module according to claim 1, wherein the n2≈n1 is 0.9 × n1 ≦ n2 ≦ 1.1 × n1. 請求項1乃至請求項3のいずれか1項に記載の撮像モジュールであって、前記撮像素子は、マイクロレンズ非搭載型かつ光電変換層積層型である撮像モジュール。   4. The imaging module according to claim 1, wherein the imaging element is a microlens non-mounting type and a photoelectric conversion layer stacking type. 5. 請求項1乃至請求項4のいずれか1項に記載の撮像モジュールであって、前記屈折率n1,n2の値は、緑色光の波長における屈折率である撮像モジュール。   5. The imaging module according to claim 1, wherein the values of the refractive indexes n <b> 1 and n <b> 2 are refractive indexes at a wavelength of green light. 請求項1乃至請求項5のいずれか1項に記載の撮像モジュールであって、前記有効エリアに重なる前記光学部材の前記側端面の位置が、該有効エリアの端の位置よりも0.05mmだけ大きい撮像モジュール。   6. The imaging module according to claim 1, wherein the position of the side end surface of the optical member overlapping the effective area is 0.05 mm from the position of the end of the effective area. Large imaging module. 請求項1乃至請求項6のいずれか1項に記載の撮像モジュールを、内視鏡スコープ先端部に内蔵した電子内視鏡装置。   The electronic endoscope apparatus which incorporated the imaging module of any one of Claim 1 thru | or 6 in the endoscope scope front-end | tip part.
JP2012199535A 2012-09-11 2012-09-11 Electronic endoscope device and imaging module Pending JP2014054312A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012199535A JP2014054312A (en) 2012-09-11 2012-09-11 Electronic endoscope device and imaging module
PCT/JP2013/062845 WO2014041844A1 (en) 2012-09-11 2013-05-07 Electronic endoscope device and imaging module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012199535A JP2014054312A (en) 2012-09-11 2012-09-11 Electronic endoscope device and imaging module

Publications (1)

Publication Number Publication Date
JP2014054312A true JP2014054312A (en) 2014-03-27

Family

ID=50277981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012199535A Pending JP2014054312A (en) 2012-09-11 2012-09-11 Electronic endoscope device and imaging module

Country Status (2)

Country Link
JP (1) JP2014054312A (en)
WO (1) WO2014041844A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016007374A (en) * 2014-06-25 2016-01-18 富士フイルム株式会社 Imaging apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08160339A (en) * 1994-12-06 1996-06-21 Olympus Optical Co Ltd Electronic image pickup optical system
JP4794283B2 (en) * 2005-11-18 2011-10-19 パナソニック株式会社 Solid-state imaging device
JP4887452B2 (en) * 2010-03-19 2012-02-29 富士フイルム株式会社 Photoelectric conversion layer stacked solid-state imaging device and imaging apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016007374A (en) * 2014-06-25 2016-01-18 富士フイルム株式会社 Imaging apparatus

Also Published As

Publication number Publication date
WO2014041844A1 (en) 2014-03-20

Similar Documents

Publication Publication Date Title
US20150065798A1 (en) Electronic endoscope device and imaging module therefor
KR102257454B1 (en) Solid state image sensor, method of manufacturing the same, and electronic device
CN108577788B (en) Endoscope with a detachable handle
JP5617063B1 (en) Near-infrared cut filter
JP5849719B2 (en) Light absorber and imaging device using the same
JP5080695B2 (en) Endoscope imaging unit
US8908082B2 (en) Imaging device and mobile information terminal
US20140194748A1 (en) Imaging device
WO2017022450A1 (en) Pinhole camera, electronic apparatus, and manufacturing method
Zilberman et al. The digital flexible ureteroscope: in vitro assessment of optical characteristics
US20220365322A1 (en) Lens assembly, camera, and electronic device
US9706099B2 (en) Camera module and camera apparatus having the same
WO2020243934A1 (en) Optical image acquisition apparatus and electronic device
JP6100195B2 (en) Imaging device
WO2014041844A1 (en) Electronic endoscope device and imaging module
JP2012205849A (en) Electronic endoscope
JP6877705B1 (en) Endoscope and imaging unit provided in the endoscope
JP2016150191A (en) Endoscope
JP6415129B2 (en) Imaging device
JP2012217571A (en) Imaging device
JP2008090026A (en) Image pickup device
CN213213622U (en) Imaging device and terminal
US20180219041A1 (en) Solid-state imaging device and imaging apparatus
JPWO2016143194A1 (en) Imaging device
WO2021210445A1 (en) Imaging device