JP2014054116A - Electrical power system - Google Patents

Electrical power system Download PDF

Info

Publication number
JP2014054116A
JP2014054116A JP2012197827A JP2012197827A JP2014054116A JP 2014054116 A JP2014054116 A JP 2014054116A JP 2012197827 A JP2012197827 A JP 2012197827A JP 2012197827 A JP2012197827 A JP 2012197827A JP 2014054116 A JP2014054116 A JP 2014054116A
Authority
JP
Japan
Prior art keywords
power
distribution system
output
transformer
storage device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012197827A
Other languages
Japanese (ja)
Inventor
Masayuki Nogi
雅之 野木
Koji Maki
康次 真木
Yosuke Nakazawa
洋介 中沢
Yoshiro Hasegawa
義朗 長谷川
Toshiaki Edahiro
俊昭 枝広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2012197827A priority Critical patent/JP2014054116A/en
Publication of JP2014054116A publication Critical patent/JP2014054116A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrical power system which reduces capacity of balance transformer required at a self-operation, and stably supplies power to a wide range of loads in a house at low cost.SOLUTION: An electrical power system of one embodiment comprises a solar panel, an inverter that converts output from the solar panel to an alternating current by interconnecting with a single-phase three-wire type power distribution system, a power storage device, a power converter that converts the output from the storage device to an alternating current by interconnecting with the power distribution system to discharge the power storage device, and converts the alternating current being generated in the power distribution system to a direct current to charge the power storage device, a first switch arranged between the power converter and the power distribution system, a transformer, a second switch arranged between the power converter and a primary side of the transformer, and a third switch arranged between a secondary side of the transformer and the power distribution system. When performing a self-operation output, the first switch is opened, the second and third switches are closed, and the inverter is interconnected with the power distribution system in which a system voltage is established by the power converter.

Description

本発明は、単相3線式の配電網において自立運転する電源システムに関する。   The present invention relates to a power supply system that operates independently in a single-phase three-wire distribution network.

太陽光発電などの自然エネルギーの普及により一般住宅においても太陽光発電装置を導入する家屋が増えている。日本の住宅用の配電方式は単相3線式方式が普及しており、太陽光パネルはパワーコンディショナを介して連系運転される。一方、地震等によって電力系統が停電になった場合には、自立運転出力用の回路に切り替え、専用自立運転プラグから電源供給することが可能になっている。   Due to the widespread use of natural energy such as solar power generation, more and more houses have installed solar power generation equipment in ordinary houses. A single-phase three-wire system is widely used as a distribution system for residential buildings in Japan, and solar panels are interconnected via a power conditioner. On the other hand, when a power failure occurs due to an earthquake or the like, it is possible to switch to a circuit for output of independent operation and supply power from a dedicated autonomous operation plug.

また、専用の電源プラグではなく、住宅内の単相3線式の配電網全体を自立運転で電力供給する方式も提案されている。   In addition, a method has been proposed in which power is supplied to the entire single-phase, three-wire distribution network in the house, instead of a dedicated power plug.

特許第3327774号公報Japanese Patent No. 3327774

従来文献では、単相3線式の配電網について、電力系統からり切り離された場合に、インバータが自立運転することが開示されている。しかしながら、太陽光パネルに接続されるインバータが単相3線式で自立運転するためには、従来では、単相−単相3線式で系統連系するためのバランストランスが必要になる。このバランストランスは、単相出力の太陽光パワーコンディショナで単相3線のR−N相、T−N相間の電圧バランスを保つために必要であり、コスト増に大きく直結する部品である。   The conventional literature discloses that a single-phase three-wire distribution network operates independently when the inverter is disconnected from the power system. However, in order for the inverter connected to the solar panel to operate independently in a single-phase three-wire system, conventionally, a balance transformer is required for system interconnection in a single-phase-single-phase three-wire system. This balance transformer is a single-phase output solar power conditioner that is necessary for maintaining the voltage balance between the RN phase and the TN phase of the single-phase three-wire, and is a component that is directly connected to an increase in cost.

そこで実施形態は、自立運転時に必要とされるバランストランスの容量を低減し、低コストで宅内の広範囲の負荷に安定的に電力供給する電源システムを実現することを課題とする。   Therefore, an object of the embodiment is to realize a power supply system that reduces the capacity of a balance transformer that is required during independent operation and stably supplies power to a wide range of loads in a home at low cost.

1実施形態の電源システムは、太陽光パネルと、単相3線式の配電系統に連系して前記太陽光パネルの出力を交流に変換するインバータと、蓄電装置と、前記配電系統に連系して前記蓄電装置の出力を交流に変換して前記蓄電装置を放電し、及び前記配電系統に発生している交流を直流に変換して前記蓄電装置を充電する電力変換器と、前記電力変換器と前記配電系統の間に設けられた第1開閉器と、トランスと、前記電力変換器と前記トランスの1次側間に設けられた第2開閉器と、前記トランスの2次側と前記配電系統の間に設けられた第3開閉器とを具備し、自立運転出力する場合、前記第1開閉器は解放され、前記第2及び第3開閉器は投入され、前記インバータは、前記電力変換器によって系統電圧が確立された配電系統に連系する。   A power supply system according to an embodiment includes a solar panel, an inverter that is connected to a single-phase three-wire distribution system and converts the output of the solar panel into alternating current, a power storage device, and the distribution system. A power converter that converts the output of the power storage device into alternating current to discharge the power storage device, and converts alternating current generated in the power distribution system into direct current to charge the power storage device, and the power conversion A first switch provided between the transformer and the power distribution system, a transformer, a second switch provided between the power converter and a primary side of the transformer, a secondary side of the transformer, and the transformer A third switch provided between the power distribution systems, and when the self-sustained operation is output, the first switch is released, the second and third switches are turned on, and the inverter Link to the distribution system where the system voltage is established by the converter .

第1実施形態に係る宅内電源システムの全体構成を示す図である。1 is a diagram illustrating an overall configuration of a home power supply system according to a first embodiment. 自立運転時の開閉器7〜9の開閉状態を示す図である。It is a figure which shows the open / close state of the switches 7-9 at the time of a self-supporting operation. 第2実施形態に係る宅内電源システムの全体構成を示す図である。It is a figure which shows the whole structure of the household power supply system which concerns on 2nd Embodiment.

[第1実施形態](基本構成)
以下、電源システムの第1実施形態を図1に従って具体的に説明する。
First Embodiment (Basic configuration)
Hereinafter, the first embodiment of the power supply system will be described in detail with reference to FIG.

図1は、第1実施形態に係る太陽光発電装置及び蓄電装置を含む宅内電源システムの全体構成を示す図である。1は電力会社の電力系統から引き込まれる単相3線式電源を表す。単相3線式電源1は、N相を中点としてR−T相間にAC200Vを発生する。2は太陽光パネルモジュールであり、3は蓄電池である。4は単相3線式電源に接続される宅内負荷(様々な家電機器)を示している。   FIG. 1 is a diagram illustrating an overall configuration of a home power supply system including a solar power generation device and a power storage device according to the first embodiment. Reference numeral 1 represents a single-phase three-wire power source drawn from the power system of the power company. The single-phase three-wire power source 1 generates AC 200 V between the RT phases with the N phase as a midpoint. 2 is a solar panel module, and 3 is a storage battery. Reference numeral 4 denotes a home load (various home appliances) connected to a single-phase three-wire power source.

5は太陽光パワーコンディショナ(PCS)であり、制御部5a、昇圧チョッパ部5b、平滑コンデンサC1、C2、インバータ5c、LCフィルタ5dを含む。昇圧チョッパ部5bは制御部5aの制御の下、太陽光パネル2の電圧を昇圧し最大電力点追従制御を行う。太陽光パネル2は日照量に応じて出力電圧及び出力電力が変化する。また太陽光パネル2は負荷電流が日照量に応じた所定値を超えると急激に出力電圧が低下するとともに出力電力が低下する。制御部5aは太陽光パネル2が最大電力で動作するよう昇圧チョッパ5bを用いて、太陽光パネル2の出力電圧及び電流を制御する。この制御を最大電力点追従制御という。   A solar power conditioner (PCS) 5 includes a control unit 5a, a step-up chopper unit 5b, smoothing capacitors C1 and C2, an inverter 5c, and an LC filter 5d. The step-up chopper unit 5b boosts the voltage of the solar panel 2 under the control of the control unit 5a and performs maximum power point tracking control. The solar panel 2 changes its output voltage and output power according to the amount of sunlight. Moreover, when the load current exceeds a predetermined value corresponding to the amount of sunlight, the output voltage of the solar panel 2 rapidly decreases and the output power decreases. The controller 5a controls the output voltage and current of the solar panel 2 using the boost chopper 5b so that the solar panel 2 operates at the maximum power. This control is called maximum power point tracking control.

インバータ5cは制御部5aの制御の下、昇圧チョッパ部5bにより昇圧された直流電圧を系統連系してPWM変調する。ここで系統連系とは、配電系統21に発生している単相3線式交流と同位相で交流電圧を出力することを言う。LCフィルタ5dはインバータ5cから出力されるPWM波形の電圧を、正弦波の電圧に変換する。   The inverter 5c performs PWM modulation on the DC voltage boosted by the boost chopper unit 5b under the control of the control unit 5a. Here, grid connection means that an AC voltage is output in the same phase as the single-phase three-wire AC generated in the distribution system 21. The LC filter 5d converts the PWM waveform voltage output from the inverter 5c into a sine wave voltage.

6は蓄電池PCSであり、制御部6a、双方向(昇降圧)チョッパ6b、平滑コンデンサC3、C4、電力変換器6c、LCフィルタ6dを含む。双方向チョッパ6bは制御部6aの制御の下、蓄電池3の出力電圧を昇圧して蓄電池3を放電させ、及び制御部6aの制御の下、平滑コンデンサC4の電圧を降圧して蓄電池3を充電する。電力変換器6cは制御部5aの制御の下、双方向チョッパ6bにより昇圧された直流電圧を、系統連系してPWM変調する。LCフィルタ6dは電力変換器6cから出力されるPWM波形の電圧を、正弦波の電圧に変換する。また電力変換器6cは蓄電池3を充電する際に、制御部6aの制御の下、LCフィルタ6dから提供される交流電力を直流電力に変換し、双方向チョッパ6bに提供する。   A storage battery PCS 6 includes a control unit 6a, a bidirectional (buck-boost) chopper 6b, smoothing capacitors C3 and C4, a power converter 6c, and an LC filter 6d. The bidirectional chopper 6b boosts the output voltage of the storage battery 3 to discharge the storage battery 3 under the control of the control unit 6a, and charges the storage battery 3 by reducing the voltage of the smoothing capacitor C4 under the control of the control unit 6a. To do. The power converter 6c performs PWM modulation on the DC voltage boosted by the bidirectional chopper 6b under the control of the control unit 5a. The LC filter 6d converts the PWM waveform voltage output from the power converter 6c into a sine wave voltage. Further, when charging the storage battery 3, the power converter 6c converts the AC power provided from the LC filter 6d into DC power under the control of the control unit 6a, and provides it to the bidirectional chopper 6b.

7は配電系統21を単相3線式電源1に接続するか否かを選択するための開閉器であり、8は蓄電池PCS6の系統連系用開閉器、9は自立運転時に閉路する開閉器であり、10は1次側単相入力を単相3線出力するためのトランスである。20はこの宅内電源システムを総合的に制御する主制御部である。主制御部20は開閉器7〜9の開閉を制御するとともに、制御部5a、5bに指令を与えることにより、太陽光PCS及び蓄電池PCSを制御する。   7 is a switch for selecting whether or not the distribution system 21 is connected to the single-phase three-wire power source 1, 8 is a switch for system interconnection of the storage battery PCS 6, and 9 is a switch that is closed during independent operation. 10 is a transformer for outputting the single-phase primary-phase input to the single-phase three-wire output. Reference numeral 20 denotes a main control unit that comprehensively controls the home power supply system. The main control unit 20 controls the switching of the switches 7 to 9 and controls the solar PCS and the storage battery PCS by giving commands to the control units 5a and 5b.

図1の開閉器の開閉状態は、システムが系統連系を行っている状態を示しており、太陽光PCSと蓄電池PCSが単相3線式配電系統に系統連系している。系統連系している場合、太陽光PCSは単相3線式電源1と共に宅内負荷に電力を供給する。また太陽光PCSは日照が十分に強ければ、電力系統と宅内負荷と蓄電池に電力を供給する。また、日照が十分あり、宅内負荷に対する電力供給に余裕があり、系統電圧か高く系統に電力を供給できない場合、余剰発電電力は蓄電池に蓄電される。   The open / closed state of the switch in FIG. 1 indicates a state where the system is grid-connected, and the solar power PCS and the storage battery PCS are grid-connected to the single-phase three-wire distribution system. In the case of grid connection, the solar PCS supplies power to the in-house load together with the single-phase three-wire power source 1. In addition, if the sunlight PCS is sufficiently strong, it supplies power to the power system, the home load, and the storage battery. In addition, when there is sufficient sunshine, there is a margin in power supply to the home load, and when the system voltage is high and power cannot be supplied to the system, surplus generated power is stored in the storage battery.

次に、単相3線式電源1に接続されている電力系統が停電した場合の動作について、図2を参照して説明する。図2は自立運転時の開閉器7〜9の開閉状態を示す。   Next, the operation when the power system connected to the single-phase three-wire power source 1 fails will be described with reference to FIG. FIG. 2 shows the open / close state of the switches 7 to 9 during the independent operation.

R−T相の系統電圧が所定値以下となると、主制御部20は停電と判断し、開閉器7を開き、太陽光PCS5を停止し、開閉器8を開いて開閉器9を投入し、蓄電池PCS6の動作を開始させ、その後太陽光PCS5の動作を開始させる。このとき制御部6aは、宅内配電網のR−T相間電圧がAC200Vとなるように、チョッパ6b、電力変換器6dを制御する。これにより、トランス10を介して蓄電池PCSが宅内の単相3線式配電網に対して電源供給する。   When the R-T phase system voltage is less than or equal to a predetermined value, the main control unit 20 determines that a power failure has occurred, opens the switch 7, stops the solar PCS 5, opens the switch 8, opens the switch 9, The operation of the storage battery PCS6 is started, and then the operation of the solar light PCS5 is started. At this time, the control unit 6a controls the chopper 6b and the power converter 6d so that the R-T phase voltage of the home power distribution network becomes AC 200V. Thereby, the storage battery PCS supplies power to the single-phase three-wire distribution network in the house via the transformer 10.

宅内配線R−T相間には200V家電機器が接続され、宅内配線RN相間及びTN相間には様々な100V家電機器が任意の数だけ接続されており、任意の数の家電機器が電源ONとなっている。従って、バランストランス10を使用することなく、単にスイッチ8を閉じて自立運転すると、宅内配線R−N相間及びT−N相間の消費電力量は一般に異なり、宅内配線R−N相間の電圧及びT−N相間の電圧にアンバランスが生じる。例えば宅内配線R−N相間電圧が130V、T−N相間電圧が70Vというような電圧となることが想定される。このような場合、100V家電機器は正常に動作しないばかりか損傷する可能性もある。本実施形態のようにバランストランスを介して、蓄電池PCSの電力を宅内負荷に供給することで、宅内配線R−N相間の電圧及びT−N相間の電圧にアンバランスは生じない。太陽光PCSは、蓄電池PCSが出力する電圧に連系してAC200Vを宅内負荷に供給する。   200V home appliances are connected between the home wiring RT phases, and any number of various 100V home appliances are connected between the home wiring RN phases and TN phases, and any number of home appliances are turned on. ing. Therefore, if the switch 8 is simply closed and the self-sustained operation is performed without using the balance transformer 10, the power consumption between the home wiring RN phases and the TN phases generally differs, and the voltage between the home wiring RN phases and the T -N-phase voltage is unbalanced. For example, it is assumed that the voltage between the home wiring RN phase is 130V and the voltage between the TN phase is 70V. In such a case, the 100V home appliance does not operate normally and may be damaged. By supplying the power of the storage battery PCS to the home load via the balance transformer as in the present embodiment, no imbalance occurs in the voltage between the home wiring RN phase and the voltage between the TN phases. Photovoltaic PCS is connected to the voltage output from storage battery PCS and supplies AC200V to the residential load.

図1の系統連系状態であれば、太陽光PCS5のインバータ5c及び蓄電池PCS6の電力変換器6cは単相200Vを出力している。すなわち太陽光PCS5は、系統電圧と同位相でAC200Vを常に出力し、日照量あるいは宅内負荷に応じて出力電流を変化させる。しかし、図2に示すように前述の開閉器動作により蓄電池PCS6がトランス10を介して電力供給する場合は、トランス2次側電圧が単相3線式の所定電圧、すなわち日本ではR−N相間、T−N相間それぞれ単相100Vで、R−T相間が200Vになるように、制御部6aはトランスの変圧比に応じて1次側電圧を決める。例えば1次側と2次側の変圧比が1:2であれば1次側電圧100V、2次側電圧200Vとなる。ここで太陽光PCS5を動作させずに、蓄電池PCSをフル出力させる、すなわち200Vの所定定格電力で自立運転させることを考えた場合、変圧器10のkVA容量は定格出力分必要となり、変圧器のコスト増大に直結してしまう。   If it is the grid connection state of FIG. 1, the inverter 5c of the sunlight PCS5 and the power converter 6c of the storage battery PCS6 output single-phase 200V. That is, the sunlight PCS 5 always outputs AC 200 V in the same phase as the system voltage, and changes the output current according to the amount of sunlight or the house load. However, as shown in FIG. 2, when the storage battery PCS6 supplies power via the transformer 10 by the above-described switch operation, the transformer secondary voltage is a predetermined voltage of a single-phase three-wire system, that is, between RN phases in Japan. The control unit 6a determines the primary side voltage according to the transformation ratio of the transformer so that the single phase is 100V between the TN phases and the VT phase is 200V. For example, if the transformation ratio between the primary side and the secondary side is 1: 2, the primary side voltage is 100V and the secondary side voltage is 200V. Here, when the solar battery PCS5 is not operated and the storage battery PCS is fully output, that is, when it is considered to be operated independently at a predetermined rated power of 200 V, the kVA capacity of the transformer 10 is required for the rated output. This leads directly to increased costs.

そこで本実施形態では、併設している太陽光PCS5が、蓄電池PCS6にて自立運転を行っている配電系統へ系統連系することで、太陽光PCS側からの電力供給が可能になりバランストランスの容量を減らすことが出来る。この自立運転出力を行う場合には、蓄電池PCS6側の自立運転出力容量以下で太陽光PCS5が系統連系することになる。蓄電池PCS6側の自立運転出力容量以上で太陽光PCS5が系統連系すると、R−N相間電圧とT−N相間電圧にアンバランスが生じる。これはR−N相間に接続されている宅内負荷の大きさとT−N相間に接続されている宅内負荷の大きさが一般に異なるからである。例えば、自立運転で宅内負荷6kVAに対して電力供給する必要がある場合、蓄電池PCS6はバランストランスを介して3kVAの出力を行い、太陽光PCS5は最大3kVAで連系することになる。このように、蓄電池3の電力を交流出力する電力変換器6cの容量は、自立運転時に供給する予定である宅内負荷の消費電力の1/2の出力が可能である。尚、宅内配電系統の電圧を確立するのは、図2の場合であれば蓄電池PCSであり、まず蓄電池PCS6が宅内配電系統の電圧を確立した後に、PV−PCS5を連系させる。   Therefore, in the present embodiment, the installed solar PCS 5 is connected to the power distribution system that is operating independently by the storage battery PCS 6, thereby enabling power supply from the solar PCS side and the balance transformer. Capacity can be reduced. In the case of performing this self-sustained operation output, the solar power PCS 5 is grid-connected with the self-sustained operation output capacity on the storage battery PCS6 side or less. When the solar PCS 5 is grid-connected at a capacity equal to or higher than the self-sustained operation output capacity on the storage battery PCS 6 side, an imbalance occurs between the RN phase voltage and the TN phase voltage. This is because the magnitude of the in-home load connected between the RN phases is generally different from the magnitude of the in-home load connected between the TN phases. For example, when it is necessary to supply power to the in-house load 6 kVA in the self-sustained operation, the storage battery PCS 6 outputs 3 kVA through the balance transformer, and the solar light PCS 5 is interconnected at a maximum of 3 kVA. In this way, the capacity of the power converter 6c that AC-outputs the power of the storage battery 3 can output ½ of the power consumption of the home load that is to be supplied during the autonomous operation. In the case of FIG. 2, it is the storage battery PCS that establishes the voltage of the home distribution system. First, after the storage battery PCS6 establishes the voltage of the home distribution system, the PV-PCS 5 is interconnected.

また本実施形態では図2のように、自立運転時のみにバランストランス10を介して蓄電池PCS6が宅内負荷に電力供給する。単相3線式電源1との系統連系時にバランストランスを介したまま連系運転しても良いが、自立運転モードが単相3線式電源1の電力系統が停電した場合に適用されることを想定すれば、常にバランストランスを介して充放電するのは効率悪化の観点から良くないとも言える。従って、本実施形態では、自立運転モード時のみバランストランスを介して蓄電池PCSから出力する方式を適用している。   In this embodiment, as shown in FIG. 2, the storage battery PCS 6 supplies power to the home load via the balance transformer 10 only during the independent operation. Although the grid-connected operation may be performed via the balance transformer when the system is connected to the single-phase three-wire power source 1, the self-sustained operation mode is applied when the power system of the single-phase three-wire power source 1 fails. Assuming this, it can be said that charging / discharging through the balance transformer is not always good from the viewpoint of deterioration of efficiency. Therefore, in the present embodiment, a method of outputting from the storage battery PCS via the balance transformer only in the self-sustained operation mode is applied.

尚、本実施形態では停電時の自立運転について説明したが、例えば電力不足の時、ユーザが意図的に系統連系運転から自立運転に切り替えてもよい。この場合、ユーザから操作部(図示されず)を介して主制御部20に自立運転モードを指令する信号が入力される。主制御部20はこの信号に応答して、開閉器7を開く。この後の動作は前述した停電時の動作と同様であるから省略する。   In addition, although this embodiment demonstrated the independent operation at the time of a power failure, for example, when power is insufficient, the user may intentionally switch from the grid interconnection operation to the independent operation. In this case, a signal for instructing the independent operation mode is input to the main control unit 20 from the user via an operation unit (not shown). The main controller 20 opens the switch 7 in response to this signal. Since the subsequent operation is the same as the operation at the time of the power failure described above, a description thereof will be omitted.

[第2実施形態]
次に、電源システムの第2実施形態を図3を用いて説明する。
[Second Embodiment]
Next, a second embodiment of the power supply system will be described with reference to FIG.

図3の第2実施形態では、太陽光PCS5の直流リンク部5e、5fと蓄電池PCS6の直流リンク部6e、6fが、スイッチ回路14を介して接続されている。   In the second embodiment of FIG. 3, the direct current link portions 5 e and 5 f of the solar light PCS 5 and the direct current link portions 6 e and 6 f of the storage battery PCS 6 are connected via the switch circuit 14.

太陽光発電の場合であると電源が不安定となるため、図2の実施形態では自立運転出力を高出力で安定して出力することが出来ない。従って図3の実施形態では、蓄電池PCS6と太陽光PCS5の直流リンク部が逆流防止手段としてのダイオード11を介して接続され、この問題を解消している。   In the case of photovoltaic power generation, the power supply becomes unstable, and therefore, the self-sustained operation output cannot be stably output at a high output in the embodiment of FIG. Therefore, in the embodiment of FIG. 3, the DC link portion of the storage battery PCS6 and the solar light PCS5 is connected via the diode 11 as the backflow prevention means, and this problem is solved.

太陽光PCS5が無負荷状態で停止している際に、太陽光パネルの発電によって昇圧チョッパ部のダイオード13を介して、直流コンデンサC2が充電されて400V以上の高電圧になってしまう場合がある。そのような状況下で蓄電池PCS6の直流リンクを太陽光PCSの直流リンクに直接つなげてしまった場合電位差から過電流が流れる可能性がある。これを防止するために逆流防止のダイオード11が接続されている。太陽光PCS5の直流リンク電圧が高く、蓄電池PCS6の直流リンク電圧が低い場合、蓄電池PCS6が宅内配電系統に自立出力して系統電圧を確立したのち、太陽光PCS5が連系運転すればよい。太陽光PCS5の出力が低下した場合、蓄電池PCS側直流リンクから太陽光PCS5の直流リンクへ電流が流れ2つの直流リンク電圧は同電位となり、太陽光PCSから電流が安定して出力される。   When the solar PCS 5 is stopped in a no-load state, the DC capacitor C2 may be charged via the diode 13 of the step-up chopper unit by the power generation of the solar panel, resulting in a high voltage of 400V or higher. . Under such circumstances, if the DC link of the storage battery PCS6 is directly connected to the DC link of the solar PCS, an overcurrent may flow from the potential difference. In order to prevent this, a backflow prevention diode 11 is connected. When the DC link voltage of the solar PCS 5 is high and the DC link voltage of the storage battery PCS 6 is low, the solar PCS 5 may be connected to the grid after the storage battery PCS 6 outputs a self-sustained output to the home distribution system and establishes the system voltage. When the output of the solar PCS 5 decreases, a current flows from the storage battery PCS-side DC link to the DC link of the solar PCS 5 so that the two DC link voltages have the same potential, and the current is stably output from the solar PCS.

また、太陽光パネル2の発電量が大きく、太陽光PCSの直流リンク電圧が蓄電池PCSの直流リンク電圧に対して同電位以上となった場合は、ダイオード11をスイッチング素子12により短絡することでバイパスし、太陽光パネルの発電電力を蓄電池の充電に直接回すことが可能となる。   Further, when the power generation amount of the solar panel 2 is large and the direct current link voltage of the solar light PCS becomes equal to or higher than the direct current link voltage of the storage battery PCS, the diode 11 is short-circuited by the switching element 12 to be bypassed. In addition, the power generated by the solar panel can be directly used for charging the storage battery.

以上のように構成、実施することで、自立運転時に必要とされるバランストランスの容量を低減し、低コストで宅内の広範囲の負荷に安定的に電力供給することが出来るようになる。   With the configuration and implementation as described above, the capacity of the balance transformer required during the independent operation can be reduced, and power can be stably supplied to a wide range of loads in the home at low cost.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

1…単相3線式電源、2…太陽光パネルモジュール、3…蓄電池、4…宅内負荷、5…太陽光パワーコンディショナ(PCS)、5a…制御部、5b…昇圧チョッパ、5c…インバータ、5d…LCフィルタ、6…蓄電池PCS、6a…制御部、6b…双方向チョッパ、6c…電力変換器、6d…LCフィルタ、7、8、9…開閉器、10…バランストランス、20…主制御部、C1、C2…平滑コンデンサ。   DESCRIPTION OF SYMBOLS 1 ... Single phase 3 wire type power supply, 2 ... Solar panel module, 3 ... Storage battery, 4 ... Home load, 5 ... Solar power conditioner (PCS), 5a ... Control part, 5b ... Boost chopper, 5c ... Inverter, 5d ... LC filter, 6 ... Storage battery PCS, 6a ... Control unit, 6b ... Bidirectional chopper, 6c ... Power converter, 6d ... LC filter, 7, 8, 9 ... Switch, 10 ... Balance transformer, 20 ... Main control Part, C1, C2 ... smoothing capacitor.

Claims (6)

太陽光パネルと、
単相3線式の配電系統に連系して前記太陽光パネルの出力を交流に変換するインバータと、
蓄電装置と、
前記配電系統に連系して前記蓄電装置の出力を交流に変換して前記蓄電装置を放電し、及び前記配電系統に発生している交流を直流に変換して前記蓄電装置を充電する電力変換器と、
前記電力変換器と前記配電系統の間に設けられた第1開閉器と、
トランスと、
前記電力変換器と前記トランスの1次側間に設けられた第2開閉器と、
前記トランスの2次側と前記配電系統の間に設けられた第3開閉器とを具備し、
自立運転出力する場合、前記第1開閉器は解放され、前記第2及び第3開閉器は投入され、前記インバータは、前記電力変換器によって系統電圧が確立された配電系統に連系することを特徴とする電源システム。
Solar panels,
An inverter connected to a single-phase three-wire distribution system to convert the output of the solar panel into alternating current;
A power storage device;
Power conversion for connecting the power distribution system to convert the output of the power storage device into alternating current to discharge the power storage device, and converting the alternating current generated in the power distribution system to direct current to charge the power storage device And
A first switch provided between the power converter and the power distribution system;
A transformer,
A second switch provided between the power converter and the primary side of the transformer;
A third switch provided between the secondary side of the transformer and the power distribution system;
In the case of self-sustained operation output, the first switch is released, the second and third switches are turned on, and the inverter is connected to a power distribution system in which a system voltage is established by the power converter. A featured power supply system.
前記配電系統が単相3線式の電源から電力を供給されている場合、前記蓄電装置の放電電力は前記電力変換器から前記トランスを介さずに前記配電系統に供給されることを特徴とする請求項1記載の電源システム。   When the power distribution system is supplied with power from a single-phase three-wire power source, the discharge power of the power storage device is supplied from the power converter to the power distribution system without passing through the transformer. The power supply system according to claim 1. 自立運転時に前記インバータの出力は、前記電力変換器の出力よりも小さくなるように制御されることを特徴とする請求項1または2記載の電源システム。   3. The power supply system according to claim 1, wherein the output of the inverter is controlled to be smaller than the output of the power converter during the self-sustained operation. 前記インバータの直流側と前記電力変換器の直流側が並列接続されていることを特徴とする請求項1乃至3のうち1項記載の電源システム。   4. The power supply system according to claim 1, wherein a direct current side of the inverter and a direct current side of the power converter are connected in parallel. 前記インバータの直流側と前記電力変換器の直流側を並列接続する経路に逆流防止手段が設けられ、前記太陽光パネル側の電力が蓄電装置側に供給されないように構成されていることを特徴とする請求項4記載の電源システム。   A backflow prevention means is provided in a path connecting the DC side of the inverter and the DC side of the power converter in parallel, and the solar panel side power is not supplied to the power storage device side. The power supply system according to claim 4. 前記逆流防止手段を短絡するスイッチを具備し、前記インバータの直流側電圧と前記電力変換器の直流側電圧の電圧差が所定値以下になった場合、前記スイッチが投入されることを特徴とする請求項5記載の電源システム。   A switch for short-circuiting the backflow prevention means is provided, and the switch is turned on when a voltage difference between the DC side voltage of the inverter and the DC side voltage of the power converter becomes a predetermined value or less. The power supply system according to claim 5.
JP2012197827A 2012-09-07 2012-09-07 Electrical power system Pending JP2014054116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012197827A JP2014054116A (en) 2012-09-07 2012-09-07 Electrical power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012197827A JP2014054116A (en) 2012-09-07 2012-09-07 Electrical power system

Publications (1)

Publication Number Publication Date
JP2014054116A true JP2014054116A (en) 2014-03-20

Family

ID=50612064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012197827A Pending JP2014054116A (en) 2012-09-07 2012-09-07 Electrical power system

Country Status (1)

Country Link
JP (1) JP2014054116A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016171683A (en) * 2015-03-13 2016-09-23 シャープ株式会社 Power system and control method of power system
CN107223308A (en) * 2016-05-30 2017-09-29 胡炎申 Photovoltaic generating system and photovoltaic power generation apparatus based on photovoltaic balanced device
JP2021065008A (en) * 2019-10-11 2021-04-22 住友電気工業株式会社 Self-supporting power supply system, power supply device, and control method of self-supporting power supply system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016171683A (en) * 2015-03-13 2016-09-23 シャープ株式会社 Power system and control method of power system
CN107223308A (en) * 2016-05-30 2017-09-29 胡炎申 Photovoltaic generating system and photovoltaic power generation apparatus based on photovoltaic balanced device
JP2021065008A (en) * 2019-10-11 2021-04-22 住友電気工業株式会社 Self-supporting power supply system, power supply device, and control method of self-supporting power supply system

Similar Documents

Publication Publication Date Title
Anand et al. Optimal voltage level for DC microgrids
Lu et al. Photovoltaic-battery-powered DC bus system for common portable electronic devices
CN105305598B (en) Uninterruptible power supply and method of operation
US10033190B2 (en) Inverter with at least two DC inputs, photovoltaic system comprising such an inverter and method for controlling an inverter
US9647568B1 (en) Bi-directional multi-port applications
US20140217827A1 (en) Apparatus for and method of operation of a power inverter system
WO2012144357A1 (en) Power supply device, control method for power supply device, and dc power supply system
US20100320837A1 (en) Electrical energy and distribution system
JP5541982B2 (en) DC power distribution system
CN104428988A (en) Bi-directional energy converter with multiple dc sources
JP2011200096A (en) Power storage system
WO2017169665A1 (en) Power conditioner, power supply system, and current control method
JP2015002605A (en) Power control and storage device
CN106716775B (en) Uninterruptible power system with preliminary filling electric transducer
US20120119583A1 (en) Combined dc power source and battery power converter
JP5931345B2 (en) Uninterruptible power supply system
JP2014054116A (en) Electrical power system
JP4405654B2 (en) Power converter and power generator
KR101587488B1 (en) High efficiency battery charge/discharge system and method in grid-tied system
JP5895143B2 (en) Power storage device
Shukla et al. Control and implementation of bi-directional converter for power management of unbalanced DC microgrid
JP6391473B2 (en) Battery system
JP6722295B2 (en) Power conversion system, power supply system, and power conversion device
JP5931346B2 (en) Uninterruptible power supply system
Subhana et al. Emergency backup power to a rural hospital in disaster condition

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131219

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140109