JP2014053359A - Cooling jacket, and cooling system using the same - Google Patents

Cooling jacket, and cooling system using the same Download PDF

Info

Publication number
JP2014053359A
JP2014053359A JP2012194926A JP2012194926A JP2014053359A JP 2014053359 A JP2014053359 A JP 2014053359A JP 2012194926 A JP2012194926 A JP 2012194926A JP 2012194926 A JP2012194926 A JP 2012194926A JP 2014053359 A JP2014053359 A JP 2014053359A
Authority
JP
Japan
Prior art keywords
plate
cooling medium
cooling
heat
relay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012194926A
Other languages
Japanese (ja)
Inventor
Toshihiko Tokeiji
鋭彦 渡慶次
Hideki Tsuchiya
秀樹 土屋
Hironori Hanashima
博徳 花島
Makoto Abe
阿部  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Information and Telecommunication Engineering Ltd
Original Assignee
Hitachi Information and Telecommunication Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Information and Telecommunication Engineering Ltd filed Critical Hitachi Information and Telecommunication Engineering Ltd
Priority to JP2012194926A priority Critical patent/JP2014053359A/en
Publication of JP2014053359A publication Critical patent/JP2014053359A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide means of maintaining thermal conductivity to prevent reduction in cooling efficiency even in the case where failures occur in one cooling flow channel.SOLUTION: In a cooling jacket, a plate-like heat exchange plate 30 for heat exchange between a first cooling medium flowing in a plurality of long slits 30a opened so as to be contacted with a plate-like heat reception plate 40 receiving heat from a heating element and to extend in a plate-surface direction and a second cooling medium flowing in a plurality of slits 30b opened so as to be contacted with the heating element and to extend in the plate-surface direction, and first and second cooling flow channels for circulating these first and second cooling mediums individually in the slits 30a and the slits 30b of the heat exchange plate 30, are formed by a relay plate 20 and flow dividing tubes 10 to 13.

Description

本発明は、発熱体の熱を吸収して放熱するための冷却ジャケット及び前記冷却ジャケットを使用した冷却システムに係り、特に複数の冷却流路を内蔵して故障に対する冗長性を向上した前記冷却ジャケット及び前記冷却ジャケットを使用した水冷システムに関する。   The present invention relates to a cooling jacket for absorbing and dissipating heat from a heating element, and a cooling system using the cooling jacket, and more particularly, the cooling jacket having a plurality of cooling channels built therein and improving redundancy for failure. And a water cooling system using the cooling jacket.

従来、発熱体、例えばコンピュータ用のCPU(Central Processing Unit)、GPU(Graphics Processing Unit)、APU(Accelerated Processing Unit)等の半導体素子は、稼働状態において高熱になることが知られており、これら半導体素子を冷却するために半導体素子に送風を行う送風ジャケットや内部に循環する水等を介して放熱を行う冷却(水冷)ジャケットが知られている。   Conventionally, it has been known that semiconductor elements such as a heating element such as a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), and an APU (Accelerated Processing Unit) for a computer become hot in an operating state. There are known a jacket for blowing air to a semiconductor element in order to cool the element and a cooling (water cooling) jacket for releasing heat through water circulating inside the semiconductor element.

この従来技術による冷却ジャケットに関する技術が記載された文献としては、下記の特許文献が挙げられ、特許文献1には、冷却ジャケットとラジエータと2個の循環ポンプとを備え、2台の循環ポンプの一方がその機能を停止した場合においても、他方の循環ポンプにより液体冷媒の循環を維持するように逆止弁及びバイパス通路を形成する複数の配管を施した冗長性のある冷却システムが記載され、特許文献2には、空冷ファンを有する冷却ジャケットに熱交換器を介して冷媒を循環する循環路を有する空冷・水冷兼用の冷却システムが記載され、特許文献3には、冷却水給水用の流入継手及び冷却水排出用の流出継手を対向する二辺に配置した板状の天板と、前記冷却水が前記流入継手から流出継手に向かって流れるための流路をコ字形状に形成する開口部を設けた板状の流路板と、この流路板の開口部を天板と協動して塞ぐ板形状のベース板とを有し、天板と流路板とベース板とを積層した状態で開口部の周縁を密閉した冷却ジャケットが記載さ、特許文献4には、冷却媒体の流路を2系統渦巻き状に形成した冷却ジャケットが記載されている。   As a document describing the technology related to the cooling jacket according to the prior art, the following patent document can be cited. Patent Document 1 includes a cooling jacket, a radiator, and two circulation pumps, and includes two circulation pumps. A redundant cooling system is described in which a plurality of pipes forming a check valve and a bypass passage are provided so that the circulation of the liquid refrigerant is maintained by the other circulation pump even when one of the functions is stopped. Patent Document 2 describes an air cooling / water cooling cooling system having a circulation path for circulating a refrigerant through a heat exchanger in a cooling jacket having an air cooling fan, and Patent Document 3 describes an inflow for supplying cooling water. A plate-shaped top plate in which a joint and an outflow joint for discharging cooling water are arranged on two opposite sides, and a flow path for the cooling water to flow from the inflow joint to the outflow joint A plate-like flow path plate provided with an opening formed in a shape, and a plate-shaped base plate that closes the opening of the flow path plate in cooperation with the top plate. A cooling jacket in which the periphery of the opening is sealed in a state where the base plate is laminated is described, and Patent Document 4 describes a cooling jacket in which the flow path of the cooling medium is formed in a two-system spiral shape.

特開2005−228237号公報JP 2005-228237 A 特開2007−116055号公報JP 2007-1116055 A 特開2011−208814号公報JP 2011-208814 A 特開平8−204079号公報Japanese Patent Laid-Open No. 8-204079

前記の特許文献1に記載の冷却システムは、循環ポンプの故障に備えた2系統の冷媒流路を用意しておき、一方の循環ポンプが故障した場合であっても、他方の循環ポンプを用いて冷却を維持することができるものの、冷媒に目詰まりが発生した場合は発熱体の冷却を行うことができないという課題があり、前記の特許文献2に記載の技術は、水冷及び空冷の2系統の冷却システムによって一方の冷却系統が故障した場合であっても他方の冷却系によって冷却を維持することができるものの、充分な冷却性能を維持するが困難であるという課題があり、特許文献3に記載の技術は、簡易な構造で冷却システムを構成することができるものの、冷媒に目詰まりが発生した場合は発熱体の冷却を行うことができないという課題があり、特許文献4に記載の技術は平行して2系統渦巻き状に形成したことにより循環ポンプ容量を大きくすることなく効率よく発熱体を冷却することができるものの、一対の冷媒入出力口から冷媒を1台の循環ポンプを用いて循環させるため、循環ポンプに障害が発生した場合は冷却性能を維持することが困難であるという課題があった。   In the cooling system described in Patent Document 1, two refrigerant flow paths are prepared in preparation for a failure of the circulation pump, and even if one of the circulation pumps fails, the other circulation pump is used. However, if the refrigerant is clogged, there is a problem that the heating element cannot be cooled, and the technique described in Patent Document 2 has two systems, water cooling and air cooling. Even if one cooling system fails due to the other cooling system, although cooling can be maintained by the other cooling system, there is a problem that it is difficult to maintain sufficient cooling performance. Although the described technology can constitute a cooling system with a simple structure, there is a problem that the heating element cannot be cooled when clogging occurs in the refrigerant. Although the described technology enables the heat generating element to be efficiently cooled without increasing the circulation pump capacity by forming the two-system spirals in parallel, the refrigerant is supplied from a pair of refrigerant input / output ports to one circulation pump. Therefore, there is a problem that it is difficult to maintain the cooling performance when a failure occurs in the circulation pump.

本発明の目的は、前述の従来技術による課題を解決しようとするものであり、冷却馬体の目詰まりや循環ポンプに障害が発生した場合であっても熱伝導率を維持して冷却効率を低下させることがない冷却ジャケット及び前記冷却ジャケットを使用した冷却システムを提供することである。   An object of the present invention is to solve the above-described problems caused by the prior art, and even when the cooling horse is clogged or a failure occurs in the circulation pump, the thermal conductivity is maintained and the cooling efficiency is improved. It is to provide a cooling jacket that does not decrease and a cooling system using the cooling jacket.

前記目的を達成するために請求項1に記載の本発明は、第1の流入ポートから流入した第1の冷却媒体を平面方向に分流すると共に第2の流入ポートから流入した第2の冷却媒体を平面方向に分流する板状の分流手段と、前記分流手段によって分流した第1の冷却媒体を複数の開口部を通して下層に中継すると共に前記分流した第2の冷却媒体を複数の開口部を通して下層に中継する板状の中継手段と、前記中継手段によって中継された第1の冷却媒体を板面方向に流すと共に前記中継手段によって中継された第2の冷却媒体を板面方向に流し、前記第1の冷却媒体を板面方向に流して前記中継手段及び分流手段を通って第1の流出ポートから流出させると共に前記第2の冷却媒体を板面方向に流して前記中継手段及び分流手段を通って第2の流出ポートから流出させる板状の熱交換手段と、前記熱交換手段と接して発熱体からの熱を前記熱交換手段を流れる第1及び第2の冷却媒体と熱交換を行う板状の受熱手段とを密閉的に積層し、前記第1の冷却媒体が流れる第1の冷却流路と前記第2の冷却媒体が流れる第2の冷却流路とを備えることを特徴とする。   In order to achieve the above object, the present invention according to claim 1 is characterized in that the first cooling medium flowing in from the first inflow port is shunted in the plane direction and the second cooling medium flowing in from the second inflow port. Plate-like flow dividing means for diverting the liquid in a plane direction, the first cooling medium diverted by the diversion means to the lower layer through a plurality of openings, and the divided second cooling medium to the lower layer through a plurality of openings A plate-like relay means for relaying to the plate, a first cooling medium relayed by the relay means in the plate surface direction, and a second cooling medium relayed by the relay means in the plate surface direction, The first cooling medium flows in the plate surface direction and flows out from the first outflow port through the relay means and the diversion means, and the second cooling medium flows in the plate surface direction through the relay means and the diversion means. Second Plate-shaped heat exchange means for flowing out from the outflow port, and plate-shaped heat receiving means for exchanging heat from the heating element in contact with the heat exchange means with the first and second cooling media flowing through the heat exchange means And a second cooling flow path through which the second cooling medium flows, and a first cooling flow path through which the first cooling medium flows.

また、請求項2に記載の発明は、発熱体に接触され、前記発熱体からの熱を受ける板状の受熱板と、前記発熱体と接して内部の板面方向に延びるように開口された複数の長尺状第1スリットを流れる第1の冷却媒体及び前記発熱体と接して内部の板面方向に延びるように開口された複数の長尺状第2スリットを流れる第2の冷却媒体との間で熱交換を行うための板状の熱交換板と、前記熱交換板と接して板面垂直方向に開口された複数の開口部に前記第1及び第2の冷却媒体を個別に流す板状の中継板と、前記中継板の一側端に接して円筒状の第1の流入ポートから第1の冷却媒体を流入し、前記中継板の開口部を通した第1の冷却媒体を前記熱交換板の長尺状第1スリットの一端に供給する第1の分流管と、前記中継板と接して円筒状の第2の流入ポートから第2の冷却媒体を流入し、前記中継板の開口部を通して第2の冷却媒体を前記熱交換板の長尺状第2スリットの一端に供給する第2の分流管と、前記中継板の他側端に接して前記熱交換板の長尺状第1スリットを流通した第1の冷却媒体を前記中継板の開口部を通して流入し、円筒状の第1の流出ポートから流出する第3の分流管と、前記分流管及び中継板と接して前記熱交換板の長尺状第2スリットを流通した第2の冷却媒体を前記中継板の開口部を通して流入し、円筒状の第2の流出ポートから流出する第4の分流管とを備え、前記第1の冷却媒体が流れる第1の冷却流路と前記第2の冷却媒体が流れる第2の冷却流路とを備えることを特徴とする。   The invention according to claim 2 is in contact with the heating element, and has a plate-shaped heat receiving plate that receives heat from the heating element, and is opened to extend in the direction of the internal plate surface in contact with the heating element. A first cooling medium flowing through a plurality of elongated first slits, and a second cooling medium flowing through a plurality of elongated second slits opened so as to contact the heating element and extend in the direction of the internal plate surface; The first and second cooling media are individually passed through a plate-shaped heat exchange plate for exchanging heat between them and a plurality of openings that are in contact with the heat exchange plate and open in the direction perpendicular to the plate surface. A plate-like relay plate and a first cooling medium flowing in from a cylindrical first inflow port in contact with one end of the relay plate and passing through the opening of the relay plate A first shunt pipe to be supplied to one end of the elongated first slit of the heat exchange plate, and a cylindrical first in contact with the relay plate; A second shunt pipe that feeds the second cooling medium from an inflow port of the second flow path and supplies the second cooling medium to one end of the elongated second slit of the heat exchange plate through the opening of the relay plate; The first cooling medium flowing through the long first slit of the heat exchange plate in contact with the other end of the relay plate flows in through the opening of the relay plate, and flows out from the cylindrical first outlet port. A second cooling medium that is in contact with the third flow dividing pipe, the flow dividing pipe and the relay plate and flows through the elongated second slit of the heat exchange plate flows in through the opening of the relay plate, and has a cylindrical shape. A fourth branch pipe that flows out from the two outflow ports, and includes a first cooling channel through which the first cooling medium flows and a second cooling channel through which the second cooling medium flows. Features.

また、請求項3に記載の発明は、発熱体に接触され、前記発熱体からの熱を受ける板状の受熱板と、前記発熱体と接して内部の平面方向に延びるように開口された複数の長尺状第1スリットを流れる第1の冷却媒体及び前記発熱体と接して内部の板面方向に延びるように開口された複数の長尺状第2スリットを流れる第2の冷却媒体との間で熱交換を行うための板状の熱交換板と、前記熱交換板と接して板面垂直方向に開口された複数の開口部に前記第1の冷却媒体を流すと共に板面垂直方向に開口された複数の開口部に前記第2の冷却媒体を流す板状の第1の中継板と、前記第1の中継板と接して第3スリットによって第1の冷却媒体を板面方向に分流させると共に第4スリットによって第2の冷却媒体を板面方向に分流させる分流板と、前記分流板と接して板面に対して垂直方向に開口された複数の開口部に第1の冷却媒体を通すと共に板面に対して垂直方向に開口された複数の開口部に第2の冷却媒体を通す板状の第2の中継板と、前記第2の中継板と接して第1の流入ポートから第1の冷却媒体を流入し、円筒状の第1の流出ポートから流出すると共に円筒状の第2の流入ポートから第2の冷却媒体を流入し、円筒状の第2の流出ポートから流出する板状の接続板と、前記接続板と第1の流入ポート及び流出ポートと第2の流入及び流出ポートとを密閉的に覆う天板とを備え、前記第1の冷却媒体が流れる第1の冷却流路と前記第2の冷却媒体が流れる第2の冷却流路とを備えることを特徴とする。   According to a third aspect of the present invention, there is provided a plate-shaped heat receiving plate that is in contact with the heat generating element and receives heat from the heat generating element, and a plurality of openings that are in contact with the heat generating element and extend in an inner plane direction. A first cooling medium that flows through the long first slit and a second cooling medium that flows through the plurality of long second slits opened so as to extend in the direction of the inner plate surface in contact with the heating element. A plate-shaped heat exchange plate for exchanging heat between the first cooling medium and a plurality of openings that are in contact with the heat exchange plate and opened in the plate surface vertical direction and in the plate surface vertical direction A plate-shaped first relay plate that allows the second cooling medium to flow through the plurality of openings that are opened, and a first slit that is in contact with the first relay plate and is divided into the plate surface direction by a third slit. And a flow dividing plate for dividing the second cooling medium in the plate surface direction by the fourth slit, The first cooling medium is passed through a plurality of openings that are in contact with the flow dividing plate and opened in a direction perpendicular to the plate surface, and a second cooling is provided in the plurality of openings that are opened in a direction perpendicular to the plate surface. A plate-like second relay plate through which the medium passes, and a first cooling medium flows in from the first inflow port in contact with the second relay plate, flows out of the cylindrical first outflow port, and cylinders A plate-like connection plate that flows in the second cooling medium from the second inflow port having a shape and flows out from the second outflow port having a cylindrical shape, the connection plate, the first inflow port, the outflow port, and the second A top plate that hermetically covers the inflow and outflow ports, and includes a first cooling channel through which the first cooling medium flows and a second cooling channel through which the second cooling medium flows. It is characterized by.

また、請求項4に記載の発明は、第1の流入ポートから流入した第1の冷却媒体を平面方向に分流すると共に第2の流入ポートから流入した第2の冷却媒体を平面方向に分流する板状の分流手段と、前記分流手段によって分流した第1の冷却媒体を複数の開口部を通して下層に中継すると共に前記分流した第2の冷却媒体を複数の開口部を通して下層に中継する板状の中継手段と、前記中継手段によって中継された第1の冷却媒体を板面方向に流すと共に前記中継手段によって中継された第2の冷却媒体を板面方向に流し、前記第1の冷却媒体を板面方向に流して前記中継手段及び分流手段を通って第1の流出ポートから流出させると共に前記第2の冷却媒体を板面方向に流して前記中継手段及び分流手段を通って第2の流出ポートから流出させる板状の熱交換手段と、前記熱交換手段と接して発熱体からの熱を前記熱交換手段を流れる第1及び第2の冷却媒体と熱交換を行う板状の受熱手段とを密閉的に積層し、前記第1の冷却媒体が流れる第1の冷却流路と前記第2の冷却媒体が流れる第2の冷却流路とを備える冷却ジャケットを使用した冷却システムであって、
前記冷却ジャケットの第1の流入ポートに第1の冷却媒体の流入口を接続し、第1の流出ポートに冷第1の冷却媒体の流出口を接続した第1の外部冷却流路を形成する第1のパイプと、前記第2の流入ポートに第2の冷却媒体の流入口を接続し、前記第2の流出ポートに第2の冷却媒体の流出口を接続した第2の外部冷却流路を形成する第2のパイプと、前記第1外部冷却流路中に設けられ、循環する第1の冷却媒体を貯めるための第1タンクと、前記第2外部冷却流路中に設けられ、循環する第2の冷却媒体を貯めるための第2タンクと、前記第1外部冷却流路中に設けられ、前記第1の冷却媒体を循環させるための第1循環ポンプと、前記第2外部冷却流路中に設けられ、前記第2の冷却媒体を循環させるための第2循環ポンプと、前記第1外部冷却流路中に設けられ、循環する冷却媒体からの熱を放熱するためのファンを有する第1ラジエータと、前記第2外部冷却流路中に設けられ、循環する冷却媒体からの熱を放熱するためのファンを有する第2ラジエータと、前記第1及び第2の循環ポンプの冷却媒体の循環量並びにラジエータのファン回転数を独立して駆動する制御部とを備えたことを特徴とする。
According to a fourth aspect of the present invention, the first cooling medium flowing in from the first inflow port is divided in the plane direction and the second cooling medium flowing in from the second inflow port is divided in the plane direction. A plate-shaped flow dividing means and a plate-shaped relay that relays the first cooling medium divided by the flow dividing means to the lower layer through a plurality of openings and relays the divided second cooling medium to the lower layer through a plurality of openings. The relay means and the first cooling medium relayed by the relay means flow in the plate surface direction, the second cooling medium relayed by the relay means flows in the plate surface direction, and the first cooling medium is moved to the plate surface. Flow in the surface direction and flow out from the first outflow port through the relay means and the diversion means, and flow the second cooling medium in the plate surface direction through the relay means and the diversion means to the second outflow port. Leaked from A plate-shaped heat exchanging means that contacts the heat exchanging means, and a plate-shaped heat receiving means that exchanges heat from the heating element with the first and second cooling media flowing through the heat exchanging means. And a cooling system using a cooling jacket comprising a first cooling channel through which the first cooling medium flows and a second cooling channel through which the second cooling medium flows,
A first external cooling flow path is formed in which a first cooling medium inflow port is connected to the first inflow port of the cooling jacket, and a cold first cooling medium outflow port is connected to the first outflow port. A second external cooling flow path in which a second cooling medium inflow port is connected to the first pipe and the second inflow port, and a second cooling medium outflow port is connected to the second outflow port. A second pipe for forming the first external cooling flow path, a first tank for storing a circulating first cooling medium, and a second tank for cooling in the second external cooling flow path. A second tank for storing the second cooling medium, a first circulation pump provided in the first external cooling flow path for circulating the first cooling medium, and the second external cooling flow A second circulation pump provided in the path for circulating the second cooling medium; 1 a first radiator having a fan for dissipating heat from the circulating cooling medium provided in the external cooling flow path; and heat from the circulating cooling medium provided in the second external cooling flow path. A second radiator having a fan for radiating heat, and a controller for independently driving the circulation amount of the cooling medium of the first and second circulation pumps and the fan rotation speed of the radiator are provided. .

また、請求項5に記載の発明は、発熱体に接触され、前記発熱体からの熱を受ける板状の受熱板と、前記発熱体と接して板面方向に延びるように開口された複数の長尺状第1スリットを流れる第1の冷却媒体及び前記発熱体と接して内部の板面方向に延びるように開口された複数の長尺状第2スリットを流れる第2の冷却媒体との間で熱交換を行うための板状の熱交換板と、前記熱交換板と接して板面垂直方向に開口された複数の開口部に前記第1及び第2の冷却媒体を個別に流す板状の中継板と、前記中継板の一側端に接して円筒状の第1の流入ポートから第1の冷却媒体を流入し、前記中継板の開口部を通した第1の冷却媒体を前記熱交換板の長尺状第1スリットの一端に供給する第1の分流管と、前記中継板と接して円筒状の第2の流入ポートから第2の冷却媒体を流入し、前記中継板の開口部を通して第2の冷却媒体を前記熱交換板の長尺状第2スリットの一端に供給する第2の分流管と、前記中継板に接して前記熱交換板の長尺状第1スリットを流通した第1の冷却媒体を前記中継板の開口部を通して流入し、円筒状の第1の流出ポートから流出する第3の分流管と、前記分流管及び中継板と接して前記熱交換板の長尺状第2スリットを流通した第2の冷却媒体を前記中継板の開口部を通して流入し、円筒状の第2の流出ポートから流出する第4の分流管とを備え、前記第1の冷却媒体が流れる第1の冷却流路と前記第2の冷却媒体が流れる第2の冷却流路とを備える冷却ジャケットを使用した冷却システムであって、
前記冷却ジャケットの第1の流入ポートに第1の冷却媒体の流入口を接続し、第1の流出ポートに冷第1の冷却媒体の流出口を接続した第1の外部冷却流路を形成する第1のパイプと、前記第2の流入ポートに第2の冷却媒体の流入口を接続し、前記第2の流出ポートに第2の冷却媒体の流出口を接続した第2の外部冷却流路を形成する第2のパイプと、前記第1外部冷却流路中に設けられ、循環する第1の冷却媒体を貯めるための第1タンクと、前記第2外部冷却流路中に設けられ、循環する第2の冷却媒体を貯めるための第2タンクと、前記第1外部冷却流路中に設けられ、前記第1の冷却媒体を循環させるための第1循環ポンプと、前記第2外部冷却流路中に設けられ、前記第2の冷却媒体を循環させるための第2循環ポンプと、前記第1外部冷却流路中に設けられ、循環する冷却媒体からの熱を放熱するためのファンを有する第1ラジエータと、前記第2外部冷却流路中に設けられ、循環する冷却媒体からの熱を放熱するためのファンを有する第2ラジエータと、前記第1及び第2の循環ポンプの冷却媒体の循環量並びにラジエータのファン回転数を独立して駆動する制御部とを備えたことを特徴とする。
According to a fifth aspect of the present invention, there is provided a plate-shaped heat receiving plate that is in contact with the heating element and receives heat from the heating element, and a plurality of openings that are in contact with the heating element and extend in the plate surface direction. Between the first cooling medium flowing through the long first slit and the second cooling medium flowing through the plurality of long second slits opened so as to extend in the direction of the internal plate surface in contact with the heating element. A plate-like heat exchange plate for performing heat exchange in the plate, and a plate-like shape for flowing the first and second cooling media individually through a plurality of openings that are in contact with the heat exchange plate and opened in the plate surface vertical direction The first cooling medium flows in from a cylindrical first inflow port in contact with one end of the relay plate and the relay plate, and the first cooling medium that passes through the opening of the relay plate flows into the heat. A first shunt pipe to be supplied to one end of the long first slit of the exchange plate, and a cylindrical second flow in contact with the relay plate A second shunt pipe for supplying the second cooling medium from the port and supplying the second cooling medium to one end of the elongated second slit of the heat exchange plate through the opening of the relay plate; A third shunt pipe that flows in through the opening of the relay plate and flows out from the cylindrical first outlet port through the first cooling medium flowing through the long first slit of the heat exchange plate in contact with The second cooling medium flowing through the long second slit of the heat exchange plate in contact with the flow dividing pipe and the relay plate flows in through the opening of the relay plate and flows out from the cylindrical second outlet port. A cooling system using a cooling jacket including a first cooling flow path through which the first cooling medium flows and a second cooling flow path through which the second cooling medium flows. There,
A first external cooling flow path is formed in which a first cooling medium inflow port is connected to the first inflow port of the cooling jacket, and a cold first cooling medium outflow port is connected to the first outflow port. A second external cooling flow path in which a second cooling medium inflow port is connected to the first pipe and the second inflow port, and a second cooling medium outflow port is connected to the second outflow port. A second pipe for forming the first external cooling flow path, a first tank for storing a circulating first cooling medium, and a second tank for cooling in the second external cooling flow path. A second tank for storing the second cooling medium, a first circulation pump provided in the first external cooling flow path for circulating the first cooling medium, and the second external cooling flow A second circulation pump provided in the path for circulating the second cooling medium; 1 a first radiator having a fan for dissipating heat from the circulating cooling medium provided in the external cooling flow path; and heat from the circulating cooling medium provided in the second external cooling flow path. A second radiator having a fan for radiating heat, and a controller for independently driving the circulation amount of the cooling medium of the first and second circulation pumps and the fan rotation speed of the radiator are provided. .

また、請求項6に記載の発明は、発熱体に接触され、前記発熱体からの熱を受ける板状の受熱板と、前記発熱体と接して板面方向に延びるように開口された複数の長尺状第1スリットを流れる第1の冷却媒体及び前記発熱体と接して内部の板面方向に延びるように開口された複数の長尺状第2スリットを流れる第2の冷却媒体との間で熱交換を行うための板状の熱交換板と、前記熱交換板と接して板面垂直方向に開口された複数の開口部に前記第1の冷却媒体を流すと共に板面垂直方向に開口された複数の開口部に前記第2の冷却媒体を流す板状の第1の中継板と、前記第1の中継板と接して第3スリットによって第1の冷却媒体を板面方向に分流させると共に第4スリットによって第2の冷却媒体を板面方向に分流させる分流板と、前記分流板と接して板面に対して垂直方向に開口された複数の開口部に第1の冷却媒体を通すと共に板面に対して垂直方向に開口された複数の開口部に第2の冷却媒体を通す板状の第2の中継板と、前記第2の中継板と接して第1の流入ポートから第1の冷却媒体を流入し、円筒状の第1の流出ポートから流出すると共に円筒状の第2の流入ポートから第2の冷却媒体を流入し、円筒状の第2の流出ポートから流出する板状の接続板と、前記接続板と第1の流入ポート及び流出ポートと第2の流入及び流出ポートとを密閉的に覆う天板とを備え、前記第1の冷却媒体が流れる第1の冷却流路と前記第2の冷却媒体が流れる第2の冷却流路とを備える冷却ジャケットを使用した冷却システムであって、
前記冷却ジャケットの第1の流入ポートに第1の冷却媒体の流入口を接続し、第1の流出ポートに冷第1の冷却媒体の流出口を接続した第1の外部冷却流路を形成する第1のパイプと、前記第2の流入ポートに第2の冷却媒体の流入口を接続し、前記第2の流出ポートに第2の冷却媒体の流出口を接続した第2の外部冷却流路を形成する第2のパイプと、前記第1外部冷却流路中に設けられ、循環する第1の冷却媒体を貯めるための第1タンクと、前記第2外部冷却流路中に設けられ、循環する第2の冷却媒体を貯めるための第2タンクと、前記第1外部冷却流路中に設けられ、前記第1の冷却媒体を循環させるための第1循環ポンプと、前記第2外部冷却流路中に設けられ、前記第2の冷却媒体を循環させるための第2循環ポンプと、前記第1外部冷却流路中に設けられ、循環する冷却媒体からの熱を放熱するためのファンを有する第1ラジエータと、前記第2外部冷却流路中に設けられ、循環する冷却媒体からの熱を放熱するためのファンを有する第2ラジエータと、前記第1及び第2の循環ポンプの冷却媒体の循環量並びにラジエータのファン回転数を独立して駆動する制御部とを備えたことを特徴とする。
According to a sixth aspect of the present invention, there is provided a plate-shaped heat receiving plate that is in contact with the heating element and receives heat from the heating element, and a plurality of openings that are in contact with the heating element and extend in the plate surface direction. Between the first cooling medium flowing through the long first slit and the second cooling medium flowing through the plurality of long second slits opened so as to extend in the direction of the internal plate surface in contact with the heating element. And a plate-like heat exchange plate for performing heat exchange at the same time, and the first cooling medium is allowed to flow through a plurality of openings that are in contact with the heat exchange plate and open in the plate surface vertical direction, and the plate surface is opened in the vertical direction. A plate-like first relay plate that allows the second cooling medium to flow through the plurality of openings, and a first slit that is in contact with the first relay plate and is divided in the plate surface direction by a third slit. And a flow dividing plate for diverting the second cooling medium in the plate surface direction by the fourth slit, The first cooling medium is passed through a plurality of openings that are in contact with the plate and opened in a direction perpendicular to the plate surface, and a second cooling medium is provided in the plurality of openings that are opened in a direction perpendicular to the plate surface. A plate-like second relay plate to be passed through, the first cooling medium flows in from the first inflow port in contact with the second relay plate, flows out of the cylindrical first outflow port, and is cylindrical A plate-like connection plate that flows in the second cooling medium from the second inflow port and flows out from the cylindrical second outflow port, the connection plate, the first inflow port, the outflow port, and the second inflow A cooling jacket comprising a first cooling channel through which the first cooling medium flows and a second cooling channel through which the second cooling medium flows. The cooling system used,
A first external cooling flow path is formed in which a first cooling medium inflow port is connected to the first inflow port of the cooling jacket, and a cold first cooling medium outflow port is connected to the first outflow port. A second external cooling flow path in which a second cooling medium inflow port is connected to the first pipe and the second inflow port, and a second cooling medium outflow port is connected to the second outflow port. A second pipe for forming the first external cooling flow path, a first tank for storing a circulating first cooling medium, and a second tank for cooling in the second external cooling flow path. A second tank for storing the second cooling medium, a first circulation pump provided in the first external cooling flow path for circulating the first cooling medium, and the second external cooling flow A second circulation pump provided in the path for circulating the second cooling medium; 1 a first radiator having a fan for dissipating heat from the circulating cooling medium provided in the external cooling flow path; and heat from the circulating cooling medium provided in the second external cooling flow path. A second radiator having a fan for radiating heat, and a controller for independently driving the circulation amount of the cooling medium of the first and second circulation pumps and the fan rotation speed of the radiator are provided. .

また、請求項7に記載の発明は、請求項4から6何れかに記載の冷却システムにおいて、前記制御部が、前記第1及び第2の外部冷却流路系統共に第1及び第2の循環ポンプの循環量並びにラジエータのファン回転数を最大に設定したフル冷却モードと、一方の外部冷却流路の第1又は第2の循環ポンプの循環量並びにラジエータのファン回転数を最大に設定しておき、障害発生時に他系統を動作せるバックアップモードと、前記第1及び第2の外部冷却流路系統共に動作させ、前記発熱体の発熱温度に応じて循環ポンプの循環量並びにラジエータのファン回転数を制御する省エネ運転モードの何れかの動作を行うことを特徴とする。   The invention according to claim 7 is the cooling system according to any one of claims 4 to 6, wherein the control unit is configured to perform the first and second circulations in both the first and second external cooling flow paths. Full cooling mode in which the circulation amount of the pump and the fan rotation speed of the radiator are set to the maximum, and the circulation amount of the first or second circulation pump in one of the external cooling flow paths and the fan rotation speed of the radiator are set to the maximum. In addition, the backup mode for operating other systems when a failure occurs and the first and second external cooling flow path systems are operated, and the circulation amount of the circulation pump and the fan rotation speed of the radiator according to the heat generation temperature of the heating element Any one of the energy-saving operation modes for controlling the operation is performed.

本発明による冷却ジャケット及び冷却システムは、発熱体からの熱を受ける板状の受熱板と接して内部の板面方向に延びるように開口された複数の長尺状第1スリットを流れる第1の冷却媒体及び前記発熱体と接して内部の板面方向に延びるように開口された複数の長尺状第2スリットを流れる第2の冷却媒体との間で熱交換を行うための板状の熱交換板と、第1の冷却媒体と第2の冷却媒体を熱交換板の第1及び第2の長尺状スリットに個別に循環させる第1の冷却流路と第2の冷却流路とを設けたことによって、一方の冷却流路に障害が発生した場合であっても熱伝導率を維持して冷却効率の低下を防止することができる。   The cooling jacket and the cooling system according to the present invention have a first flowing through a plurality of elongated first slits opened so as to extend in the direction of the inner plate surface in contact with a plate-shaped heat receiving plate that receives heat from the heating element. Plate-like heat for exchanging heat between the cooling medium and the second cooling medium flowing through a plurality of elongated second slits opened so as to extend in the direction of the inner plate surface in contact with the heating medium. An exchange plate, a first cooling channel and a second cooling channel for individually circulating the first cooling medium and the second cooling medium through the first and second elongated slits of the heat exchange plate, By providing, even if a failure occurs in one cooling flow path, it is possible to maintain the thermal conductivity and prevent the cooling efficiency from being lowered.

本発明の第1の実施形態による冷却ジャケットの外観を示す図The figure which shows the external appearance of the cooling jacket by the 1st Embodiment of this invention 本発明の第1の実施形態による冷却ジャケットの分解組み立て構造及び第1流路を示す図The figure which shows the decomposition | disassembly assembly structure and 1st flow path of the cooling jacket by the 1st Embodiment of this invention. 本発明の第1の実施形態による冷却ジャケットの分解組み立て構造及び第2流路を示す図The figure which shows the decomposition | disassembly assembly structure of the cooling jacket by the 1st Embodiment of this invention, and a 2nd flow path. 本発明の第2の実施形態による冷却ジャケットの外観を示す図The figure which shows the external appearance of the cooling jacket by the 2nd Embodiment of this invention. 本発明の第2の実施形態による冷却ジャケットの分解組み立て構造及び第1流路を示す図The figure which shows the decomposition | disassembly assembly structure and 1st flow path of the cooling jacket by the 2nd Embodiment of this invention. 本発明の第2の実施形態による冷却ジャケットの分解組み立て構造及び第2流路を示す図The figure which shows the decomposition | disassembly assembly structure and 2nd flow path of the cooling jacket by the 2nd Embodiment of this invention.

以下、本発明による冷却ジャケット及び前記冷却ジャケットを使用した冷却システムの実施形態について説明する。
[第1の実施形態]
本発明の第1の実施形態による冷却ジャケットは、図1に示す如く、CPU等の発熱体である半導体素子の上面に接触され、前記発熱体からの熱を受ける板状の受熱板40と、前記受熱板40と接して内部の平面(板面)方向に延びるように開口された長尺状の複数スリットを流通する水等の冷却媒体と熱交換を行うための板状の熱交換板30と、前記熱交換板30と接して上下方向(平面に対して垂直方向)に開口された複数の開口部を通して冷却媒体を流すための板状の中継板20と、前記中継板20の一側端に接して円筒状のポートAinから冷却媒体を流入し、前記中継板20の開口部を通して冷却媒体を前記熱交換板30のスリットの一端に流入する分流管10と、前記分流管10及び中継板20と接して円筒状のポートBinから冷却媒体を流入し、前記中継板20の開口部を通して冷却媒体を前記熱交換板30のスリットの一端に流入する分流管11と、前記中継板20の他側端に接して前記ポートBinから冷却媒体を流入し、熱交換板30の長尺状スリットを流通した冷却媒体を前記中継板20の開口部を通して流入し、円筒状のポートBoutから流出する分流管13と、前記分流管13及び中継板20と接して前記ポートAinから冷却媒体を流入し、熱交換板30の長尺状スリットを流通した冷却媒体を前記中継板20の開口部を通して流入し、円筒状のポートAoutから流出する分流管12とを備え、前記分流管10のポートAinから流入した冷却媒体を中継板20の開口部を通して分流させながら熱交換板30の長尺状スリットの一端に流入し、前記長尺状スリット内を流通させて前記受熱板40からの熱を受熱した冷却媒体を長尺状スリットの他端から中継板20の開口部を介して分流管12のポートAoutから流出すると共に、前記分流管11のポートBinから流入した冷却媒体を中継板20の開口部を通して分流させながら熱交換板30の長尺状スリットの一端に流入し、前記長尺状スリット内を流通させて前記受熱板40からの熱を受熱した冷却媒体を長尺状スリットの他端から中継板20の開口部を介して分流管13のポートBoutから流出するように構成されている。
Hereinafter, an embodiment of a cooling jacket according to the present invention and a cooling system using the cooling jacket will be described.
[First Embodiment]
The cooling jacket according to the first embodiment of the present invention, as shown in FIG. 1, is in contact with the upper surface of a semiconductor element that is a heat generating element such as a CPU, and has a plate-shaped heat receiving plate 40 that receives heat from the heat generating element, A plate-shaped heat exchange plate 30 for exchanging heat with a cooling medium such as water that circulates through a plurality of elongated slits opened so as to be in contact with the heat receiving plate 40 and extend in an inner plane (plate surface) direction. A plate-shaped relay plate 20 for flowing the cooling medium through a plurality of openings that are in contact with the heat exchange plate 30 and opened in the vertical direction (perpendicular to the plane), and one side of the relay plate 20 A shunt pipe 10 that flows in through the opening of the relay plate 20 and flows into the one end of the slit of the heat exchange plate 30 through the opening of the relay plate 20, the shunt pipe 10 and the relay A cylindrical port Bin in contact with the plate 20 A cooling medium flows in and flows through the opening of the relay plate 20 and flows into the one end of the slit of the heat exchange plate 30. The shunt pipe 11 contacts the other end of the relay plate 20 and cools from the port Bin. The cooling medium flowing in through the elongated slit of the heat exchange plate 30 flows in through the opening of the relay plate 20 and flows out from the cylindrical port Bout, and the flow dividing tube 13 and the relay. A cooling medium flows in from the port Ain in contact with the plate 20, flows through the elongated slit of the heat exchange plate 30, flows in through the opening of the relay plate 20, and flows out from the cylindrical port Aout Pipe 12 and flowing into one end of the long slit of the heat exchange plate 30 while diverting the cooling medium flowing in from the port Ain of the flow dividing pipe 10 through the opening of the relay plate 20, The cooling medium that has circulated through the long slit and received heat from the heat receiving plate 40 flows out from the port Aout of the branch pipe 12 through the opening of the relay plate 20 from the other end of the long slit. The cooling medium flowing in from the port Bin of the flow dividing pipe 11 flows into one end of the long slit of the heat exchange plate 30 while being divided through the opening of the relay plate 20, and circulates in the long slit to The cooling medium that has received heat from the heat receiving plate 40 is configured to flow out from the port Bout of the branch pipe 13 through the opening of the relay plate 20 from the other end of the long slit.

この第1の実施形態による分流管10は、図2に示す如く、ポートAinから流入した冷却媒体を図面下方(受熱板40方向)に分流して流出するために間隔を空けて開口部10aを開口し、前記分流管11は、図3に示す如く、ポートBinから流入した冷却媒体を図面下方(受熱板40方向)に分流して流出するために間隔を空けて開口部11bを開口し、前記分流管12は、図2に示す如く、熱交換板30の長尺状スリットを流通した冷却媒体を中継板20の開口部を通して流入し、円筒状のポートAoutから流出するために間隔を空けて開口された開口部12aを開口し、前記分流管13は、図3に示す如く、熱交換板30の長尺状スリットを流通した冷却媒体を中継板20の開口部を通して流入し、円筒状のポートBoutから流出するために間隔を空けて開口された開口部13bを開口するように構成されている。   As shown in FIG. 2, the flow dividing pipe 10 according to the first embodiment has openings 10 a at intervals in order to divide and flow out the cooling medium flowing in from the port Ain downward (toward the heat receiving plate 40). As shown in FIG. 3, the flow dividing pipe 11 opens the opening 11 b with a space in order to divert and flow out the cooling medium flowing in from the port Bin downward (toward the heat receiving plate 40). As shown in FIG. 2, the flow dividing pipe 12 is spaced from the cooling medium flowing through the elongated slit of the heat exchange plate 30 through the opening of the relay plate 20 and out of the cylindrical port Aout. As shown in FIG. 3, the flow dividing pipe 13 flows the cooling medium flowing through the long slit of the heat exchange plate 30 through the opening of the relay plate 20 and is cylindrical. From port Bout At intervals in order to appear it is configured so as to open the opening formed 13b.

前記中継板20は、図2及び図3に示す如く、前記した分流管10から分流管13の開口部と対向して複数の開口部20a1及び開口部20b1並びに開口部20b1及び開口部20b2を開口するように構成されている。   As shown in FIGS. 2 and 3, the relay plate 20 opens a plurality of openings 20a1 and 20b1 and openings 20b1 and 20b2 so as to face the openings of the flow dividing pipes 10 to 13. Is configured to do.

前記熱交換板30は、前記中継板20の開口部20a1から流入される冷却媒体を一端に受け、長尺状に開口されて他端から冷却媒体を前記中継板20の開口部20a2に向かって流出するように開口されたスリット30aと、前記中継板20の開口部20b1から流入される冷却媒体を一端に受け、長尺状に開口されて他端から冷却媒体を前記中継板20の開口部20b2に向かって流出するように開口されたスリット30bとを交互に開口するように構成されている。   The heat exchange plate 30 receives the cooling medium flowing in from the opening 20a1 of the relay plate 20 at one end, is opened in a long shape, and receives the cooling medium from the other end toward the opening 20a2 of the relay plate 20. The slit 30a opened to flow out and the cooling medium flowing in from the opening 20b1 of the relay plate 20 are received at one end, and the cooling medium is opened from the other end to the cooling plate from the other end. The slits 30b opened so as to flow out toward 20b2 are alternately opened.

このように構成された第1の実施形態による冷却ジャケットは、図2に破線で示した如く、分流管10のポートAinから流入した第1の冷却媒体を分流管10及び中継板20によって分流しながら熱交換板30の長尺状のスリット30aの一端に供給し、前記スリット30aを受熱板40と接しながら発熱体からの熱を奪った第1の冷却媒体を前記スリット30aの他端から上方の中継板20の開口部20a2を介して分流管12に導いてポートAoutから排出する第1の冷却流路と、分流管11のポートBinから流入した第2の冷却媒体を分流管10及び中継板20によって分流しながら熱交換板30の長尺状のスリット30bの一端に供給し、前記スリット30bを受熱板40と接しながら発熱体からの熱を奪った第2の冷却媒体を前記スリット30bの他端から上方の中継板20の開口部20b2を介して分流管13に導いてポートBoutから排出する第2の冷却流路とを形成している。   In the cooling jacket according to the first embodiment configured as described above, the first cooling medium flowing in from the port Ain of the flow dividing pipe 10 is divided by the flow dividing pipe 10 and the relay plate 20 as indicated by broken lines in FIG. The first cooling medium that is supplied to one end of the elongated slit 30a of the heat exchange plate 30 and deprives the heat from the heating element while contacting the slit 30a with the heat receiving plate 40 is moved upward from the other end of the slit 30a. The first cooling flow path that is led to the flow dividing pipe 12 through the opening 20a2 of the relay plate 20 and discharged from the port Aout, and the second cooling medium that has flowed in from the port Bin of the flow dividing pipe 11 are connected to the flow dividing pipe 10 and the relay. A second cooling medium that is supplied to one end of the elongated slit 30b of the heat exchange plate 30 while being diverted by the plate 20, and takes heat from the heating element while contacting the slit 30b with the heat receiving plate 40. Forming a second cooling flow passage for discharging from the other end from the leading to the distribution pipe 13 through the opening 20b2 of the upper relay plate 20 port Bout of the slit 30b.

前記分流管10から分流管13と中継板20と熱交換板30と受熱板40は、例えば、ステンレス、チタン、無酸素銅、輪青銅、ニッケル等の材料によって形成し、熱拡散接合又はロウ付けし、周縁を密閉して製造することができるが、これら材質及び接合方法に限られるものではない。   The flow dividing tube 10 to the flow dividing tube 13, the relay plate 20, the heat exchange plate 30 and the heat receiving plate 40 are made of, for example, a material such as stainless steel, titanium, oxygen-free copper, ring bronze, nickel, etc., and are heat diffusion bonded or brazed. However, it can be manufactured by sealing the periphery, but is not limited to these materials and joining methods.

このように本実施形態による冷却ジャケットは、熱交換板30に長尺状のスリット30a及びスリット30bとを交互に設け、これらスリット30a及びスリット30bに独立して第1の冷却流路を通る第1の冷却媒体と第2の冷却流路を通る第2の冷却媒体とを独立して循環させることによって、受熱板40の全面にわたって発熱体からの熱を冷却媒体により吸収することができると共に、一方の冷却流路に障害が発生した場合であっても、他方の冷却流路によって冷却性能を維持することができる。   As described above, in the cooling jacket according to the present embodiment, the long slits 30a and the slits 30b are alternately provided in the heat exchange plate 30, and the first cooling flow path independently passes through the slits 30a and 30b. By independently circulating the first cooling medium and the second cooling medium passing through the second cooling flow path, heat from the heating element can be absorbed by the cooling medium over the entire surface of the heat receiving plate 40, and Even when a failure occurs in one cooling channel, the cooling performance can be maintained by the other cooling channel.

特に、本実施形態による冷却ジャケットは、熱交換板30に2系統の冷却流路を交互且つ全面にわたって配置したことによって、一方の冷却流路に障害が発生した場合であっても、受熱板40の全面にわたって設けられた他方の冷却流路を循環する冷却媒体によって受熱板40の全面から熱を吸収して冷却性能を維持することができる。   In particular, in the cooling jacket according to the present embodiment, the heat receiving plate 40 is provided even when a failure occurs in one cooling channel by arranging two cooling channels in the heat exchange plate 30 alternately and over the entire surface. Heat can be absorbed from the entire surface of the heat receiving plate 40 by the cooling medium that circulates through the other cooling channel provided over the entire surface, and the cooling performance can be maintained.

また、本実施形態による冷却ジャケットは、前述した冷却ジャケットのポートAinに冷却媒体の流入口を接続し、ポートAoutに冷却媒体の流出口を接続した第1の外部冷却流路を形成するパイプと、冷却ジャケットのポートBinに冷却媒体の流入口を接続し、ポートBoutに冷却媒体の流出口を接続した第2の外部冷却流路を形成するパイプと、前記第1外部冷却流路中に設けられ、循環する冷却媒体を貯めるための第1タンクと、前記第2外部冷却流路中に設けられ、循環する冷却媒体を貯めるための第2タンクと、前記第1外部冷却流路中に設けられ、冷却媒体を循環させるための第1循環ポンプと、前記第2外部冷却流路中に設けられ、冷却媒体を循環させるための第2循環ポンプと、前記第1外部冷却流路中に設けられ、循環する冷却媒体からの熱を放熱するためのファンを有する第1ラジエータと、前記第2外部冷却流路中に設けられ、循環する冷却媒体からの熱を放熱するためのファンを有する第2ラジエータと、前記第1及び第2の循環ポンプの冷却媒体の循環量並びに第1及び第のラジエータのファン回転数を独立して駆動する制御部とから冷却システムを構成することができる。   The cooling jacket according to the present embodiment includes a pipe that forms a first external cooling flow path in which a cooling medium inflow port is connected to the above-described cooling jacket port Ain and a cooling medium outflow port is connected to the port Aout. A pipe for forming a second external cooling flow path in which a cooling medium inlet is connected to the port Bin of the cooling jacket and a cooling medium outlet is connected to the port Bout; and a pipe provided in the first external cooling flow path A first tank for storing a circulating cooling medium, and a second tank for storing the circulating cooling medium, and a second tank for storing the circulating cooling medium, provided in the first external cooling path. A first circulation pump for circulating the cooling medium and a second circulation pump for circulating the cooling medium, and a second circulation pump for circulating the cooling medium. And A first radiator having a fan for radiating heat from the circulating cooling medium, and a second radiator having a fan provided in the second external cooling flow path for radiating heat from the circulating cooling medium And a cooling system can be comprised from the control part which drives independently the circulation amount of the cooling medium of the said 1st and 2nd circulation pump, and the fan rotation speed of a 1st and 1st radiator.

このように構成した冷却システムは、例えば、(1)両系統共に循環ポンプの循環量並びにラジエータのファン回転数を最大に設定したフル冷却モードと、(2)片系統のみの循環ポンプの循環量並びにラジエータのファン回転数を最大に設定しておき、障害発生時に他系統を動作せるバックアップモードと、(3)両系統共に動作させるが、発熱体の発熱温度に応じて循環ポンプの循環量並びにラジエータのファン回転数を制御する省エネ運転モードの何れかを採用することができる。   The cooling system configured as described above includes, for example, (1) a full cooling mode in which the circulation amount of the circulation pump and the fan rotation speed of the radiator are set to the maximum in both systems, and (2) the circulation amount of the circulation pump of only one system. In addition, the fan speed of the radiator is set to the maximum, and the backup mode in which other systems are operated when a failure occurs, and (3) both systems are operated, but depending on the heat generation temperature of the heating element, the circulation amount of the circulation pump and Any of the energy saving operation modes for controlling the fan rotation speed of the radiator can be adopted.

このように本実施形態による冷却ジャケット及び冷却システムは、熱交換板30に冷却媒体の冷却流路を複数のスリットによって交互に設けたことによって、両系統の冷却流路においても同等の放熱面積及び冷却性能を有することができると共に、簡易な構造且つ小型のために高密度に実装されているCPU等の発熱体に取り付けることができる。   As described above, the cooling jacket and the cooling system according to the present embodiment are provided with the cooling channels of the cooling medium alternately in the heat exchange plate 30 by the plurality of slits, so that the same heat radiation area and the cooling path of both systems can be obtained. In addition to having cooling performance, it can be attached to a heating element such as a CPU mounted with high density due to its simple structure and small size.

[第2の実施形態]
本発明の第2の実施形態による冷却ジャケットは、図4に示す如く、CPU等の発熱体である半導体素子の上面に接触され、前記発熱体からの熱を受ける板状の受熱板40と、この受熱板40と接して板面方向に延びるように開口された長尺状の複数スリットを流通する冷却媒体と熱交換を行うための板状の熱交換板600と、前記熱交換板600と接して上下方向(平面に対して垂直方向)に開口された複数の開口部に冷却媒体を通すための板状の第1の中継板500と、前記第1の中継板500と接して内部のスリットによって冷却媒体を平面方向に分流させる分流板400と、前記分流板400と接して上下方向(平面に対して垂直方向)に開口された複数の開口部に冷却媒体を通すための板状の第2の中継板300と、前記第2の中継板300と接して冷却媒体円筒状のポートAinから冷却媒体を流入し、円筒状のポートAoutから流出すると共に円筒状のポートBinから冷却媒体を流入し、円筒状のポートBoutから流出する接続板200と、前記接続板200及びポートAin、ポートAout、ポートBin、ポートBoutを覆う天板100とを備える。
[Second Embodiment]
As shown in FIG. 4, the cooling jacket according to the second embodiment of the present invention is in contact with the upper surface of a semiconductor element that is a heat generating element such as a CPU, and has a plate-shaped heat receiving plate 40 that receives heat from the heat generating element. A plate-shaped heat exchange plate 600 for exchanging heat with a cooling medium that circulates through a plurality of elongated slits that are opened to extend in the plate surface direction in contact with the heat receiving plate 40, and the heat exchange plate 600 A plate-like first relay plate 500 for passing a cooling medium through a plurality of openings that are in contact with each other and opened in the vertical direction (perpendicular to the plane); A diverting plate 400 for diverting the cooling medium in the plane direction by the slits, and a plate-like shape for passing the cooling medium through a plurality of openings that are in contact with the diverting plate 400 and opened in the vertical direction (perpendicular to the plane). The second relay plate 300 and the second medium A connecting plate that contacts the plate 300 and flows in the cooling medium from the cylindrical port Ain, flows out from the cylindrical port Aout, flows in the cooling medium from the cylindrical port Bin, and flows out from the cylindrical port Bout 200 and the connection plate 200 and the top plate 100 covering the port Ain, the port Aout, the port Bin, and the port Bout.

この冷却ジャケットは、前記接続板200のスリットに接続したポートAinから流入した冷却媒体を前記スリット及び第1中継板300の開口部を通して分流板400に供給し、前記分流板400が供給された冷却媒体をスリットによって平面方向に複数に分流して第1中継板500に供給し、前記第1中継板500が分流板400のスリットに沿って開口された複数の開口部によって熱交換板600の長尺状スリットの一端に流入し、前記長尺状スリット内を流通させて前記受熱板40からの熱を受熱した冷却媒体を長尺状スリットの他端から第1中継板500の開口部、分流板400のスリット、第2中継板300の開口部を通して接続板200のスリットに供給し、ポートAoutから流出すると共に、前記接続板200のスリットに接続したポートBinから流入した冷却媒体を前記スリット及び第1中継板300の開口部を通して分流板400に供給し、前記分流板400が供給された冷却媒体をスリットによって平面方向に複数に分流して第1中継板500に供給し、前記第1中継板500が分流板400のスリットに沿って開口された複数の開口部によって熱交換板600の長尺状スリットの一端に流入し、前記長尺状スリット内を流通させて前記受熱板40からの熱を受熱した冷却媒体を長尺状スリットの他端から第1中継板500の開口部、分流板400のスリット、第2中継板300の開口部を通して接続板200のスリットに供給し、ポートBoutから流出するように構成されている。   The cooling jacket supplies the cooling medium flowing from the port Ain connected to the slit of the connection plate 200 to the flow dividing plate 400 through the slit and the opening of the first relay plate 300, and the cooling flow supplied to the flow dividing plate 400 is provided. The medium is divided into a plurality of planes in the plane direction by the slits and supplied to the first relay plate 500, and the length of the heat exchange plate 600 is increased by the plurality of openings in which the first relay plate 500 is opened along the slits of the flow dividing plate 400. A cooling medium that has flowed into one end of the long slit and circulated through the long slit and received heat from the heat receiving plate 40 is separated from the other end of the long slit to the opening of the first relay plate 500, The slits of the connection plate 200 are supplied to the slits of the connection plate 200 through the slits of the plate 400 and the opening of the second relay plate 300 and flow out from the port Aout. The cooling medium flowing in from the connected port Bin is supplied to the flow dividing plate 400 through the slit and the opening of the first relay plate 300, and the cooling medium supplied with the flow dividing plate 400 is divided into a plurality of planes by the slit. The first relay plate 500 is supplied to the first relay plate 500, and the first relay plate 500 flows into one end of the long slit of the heat exchange plate 600 through a plurality of openings that are opened along the slit of the flow dividing plate 400. From the other end of the long slit, an opening of the first relay plate 500, a slit of the flow dividing plate 400, and an opening of the second relay plate 300 are passed through the cooling medium that has circulated through the slit and received heat from the heat receiving plate 40. It is configured to be supplied to the slit of the connection plate 200 through the portion and to flow out from the port Bout.

すなわち、本実施形態による冷却ジャケットは、前述した第1実施形態同様にポートAinから流入した第1の冷却媒体をポートAoutから流出する第1の冷却流路と、ポートBinから流入した第2の冷却媒体をポートBoutから流出する第2の冷却流路とを独立して形成している。   That is, the cooling jacket according to the present embodiment is similar to the first embodiment described above, in which the first cooling medium flowing from the port Aout flows out the first cooling medium flowing from the port Ain and the second cooling medium flowing from the port Bin. A second cooling flow path through which the cooling medium flows out from the port Bout is formed independently.

この第2の実施形態による接続板200は、図5に示す如く、ポートAinから流入した冷却媒体を中央近辺まで導いて図面下方(受熱板40方向)に流出するために長尺且つ鍵状に流路を形成したスリット200a1と、ポートBinから流入した冷却媒体を中央近辺まで導いて図面下方に流出するために長尺且つ鍵状に流路を形成したスリット200b1と、ポートAinから流入し、第2中継板300から上昇した冷却媒体をポートAoutに導くスリット200a2と、ポートBinから流入し、第2中継板300から上昇した冷却媒体をポートBoutに導くスリット200b2とを形成している。   As shown in FIG. 5, the connection plate 200 according to the second embodiment is long and key-shaped to guide the cooling medium flowing in from the port Ain to the vicinity of the center and flow out downward (toward the heat receiving plate 40). A slit 200a1 that forms a flow path, a slit 200b1 that forms a long and key-shaped flow path to guide the cooling medium flowing in from the port Bin to the vicinity of the center and flow out downward in the drawing, and flows in from the port Ain. A slit 200a2 that guides the cooling medium rising from the second relay plate 300 to the port Aout and a slit 200b2 that flows from the port Bin and guides the cooling medium rising from the second relay plate 300 to the port Bout are formed.

前記第2の中継板300は、前記接続板200のスリット200a1の端部から流入した冷却媒体を分流板400に流出するように開口された開口部300a1と、ポートAinから流入し、分流板400から上昇した冷却媒体を接続板200のスリット200a2に導く開口部300a2とを形成している。   The second relay plate 300 flows from the opening 300a1 that is opened so that the cooling medium flowing in from the end of the slit 200a1 of the connection plate 200 flows out to the flow dividing plate 400 and the port Ain. The opening 300a2 which guides the cooling medium rising from the above to the slit 200a2 of the connection plate 200 is formed.

前記分流板400は、前記ポートAinから流入し、第2の中継板300の開口部300a1を通して中央近傍に流入した冷却媒体を平面2方向(平面縁方向)に分流するスリット400a1と、前記第1中継板500から上昇した冷却媒体を前記第2の中継板300の開口部300a2に導くように開口されたスリット400a2とを形成している。   The flow dividing plate 400 flows from the port Ain and splits the cooling medium flowing into the vicinity of the center through the opening 300a1 of the second relay plate 300 in two plane directions (plane edge direction), and the first A slit 400 a 2 is formed so as to guide the cooling medium rising from the relay plate 500 to the opening 300 a 2 of the second relay plate 300.

前記第1の中継板500は、前記ポートAinから流入し、前記分流板400のスリット400a1から流出した冷却媒体を前記スリット400a1方向に沿って下方に流出するように開口された複数の開口部500a1と、前記ポートBinから流入し、前記熱交換板600のスリットの両端部から流出した冷却媒体を第2中継板の開口部500a2を通して分流板400のスリット400a2に流出するように開口された開口部500a2とを形成している。   The first relay plate 500 has a plurality of openings 500a1 that are opened so that the cooling medium flowing in from the port Ain and flowing out from the slit 400a1 of the flow dividing plate 400 flows downward along the slit 400a1 direction. The cooling medium flowing in from the port Bin and flowing out from both ends of the slit of the heat exchanging plate 600 through the opening 500a2 of the second relay plate to the slit 400a2 of the flow dividing plate 400. 500a2.

前記熱交換板600は、前記ポートAinから流入し、前記第1の中継板500の開口部500a1から流出した冷却媒体を中央近傍に導入した平面2方向に導くように長尺状に開口されたスリット600a1と、前記ポートBinから流入し、前記第1の中継板500の開口部500b1から流出した冷却媒体を中央近傍に導入した平面2方向に導くように長尺状に開口されたスリット600b1(図6参照)とを交互に形成している。   The heat exchange plate 600 is opened in a long shape so as to guide the cooling medium flowing in from the port Ain and flowing out from the opening 500a1 of the first relay plate 500 in the two planes introduced near the center. A slit 600b1 (elongated to open the slit 600a1 and the cooling medium flowing in from the port Bin and flowing out from the opening 500b1 of the first relay plate 500 in the two planes introduced near the center) Are alternately formed.

このように構成された第2の実施形態による冷却ジャケットは、図5に破線で示した如く、分流管10のポートAinから流入した第1の冷却媒体を、接続板200のスリット200a1と第2中継板300の開口部300a1と分流板400のスリット400a1と第1中継板500の開口部500a1と熱交換板600のスリット600a1の中央近傍に流入し、前記スリット600a1を流れることによって受熱板40からの熱を吸収させ、第1中継板500の開口部500a2と分流板400のスリット400a2と第2中継板300の開口部300a2を通して接続板200のポートAoutから流出する第1の冷却流路と、図6に破線で示した如く、分流管10のポートBinから流入した第2の冷却媒体を、接続板200のスリット200b1と第2中継板300の開口部300b1と分流板400のスリット400b1と第1中継板500の開口部500b1と熱交換板600のスリット600b1の中央近傍に流入し、前記スリット600b1を流れることによって受熱板40からの熱を吸収させ、第1中継板500の開口部500b2と分流板400のスリット400b2と第2中継板300の開口部300b2を通して接続板200のポートBoutから流出する第2の冷却流路とを形成している。   In the cooling jacket according to the second embodiment configured as described above, as shown by a broken line in FIG. 5, the first cooling medium flowing in from the port Ain of the branch pipe 10 is passed through the slit 200 a 1 of the connection plate 200 and the second cooling medium. It flows into the vicinity of the center of the opening 300a1 of the relay plate 300, the slit 400a1 of the flow dividing plate 400, the opening 500a1 of the first relay plate 500, and the slit 600a1 of the heat exchange plate 600, and flows from the heat receiving plate 40 by flowing through the slit 600a1. A first cooling flow path that flows out from the port Aout of the connection plate 200 through the opening 500a2 of the first relay plate 500, the slit 400a2 of the flow dividing plate 400, and the opening 300a2 of the second relay plate 300; As indicated by a broken line in FIG. 6, the second cooling medium flowing in from the port Bin of the flow dividing pipe 10 is allowed to flow through the connection plate 200. 200b1, the opening 300b1 of the second relay plate 300, the slit 400b1 of the flow dividing plate 400, the opening 500b1 of the first relay plate 500, and the slit 600b1 of the heat exchange plate 600, and flows through the slit 600b1. As a result, the heat from the heat receiving plate 40 is absorbed and flows out from the port Bout of the connection plate 200 through the opening 500b2 of the first relay plate 500, the slit 400b2 of the flow dividing plate 400, and the opening 300b2 of the second relay plate 300. The cooling flow path is formed.

前記天板100と接続板200と第2中継板300と分流板400と第1中継板500と熱交換板600と受熱板40は、第1実施形態と同様に、ステンレス、チタン、無酸素銅、輪青銅、ニッケル等の材料によって形成し、熱拡散接合又はロウ付けし、周縁を密閉して製造することができるが、これら材質及び接合方法に限られるものではない。また、各板材は、例えば、縦横が寸法54mm×54mmであり、厚みが、天板0.3mm、接続板11.3mm、第1中継板7.8mm、分流板7.3mm、第2中継板3.8mm、熱交換板3.3mm、受熱板1.3mmと計約34mm程度の小型に製造することができ、第1実施形態においても同様である。   The top plate 100, the connection plate 200, the second relay plate 300, the flow dividing plate 400, the first relay plate 500, the heat exchange plate 600, and the heat receiving plate 40 are made of stainless steel, titanium, oxygen-free copper, as in the first embodiment. It can be made of a material such as ring bronze, nickel, etc., heat diffusion bonded or brazed, and sealed at the periphery, but is not limited to these materials and bonding methods. Each plate has dimensions of 54 mm × 54 mm in length and width, and has a thickness of 0.3 mm for the top plate, 11.3 mm for the connection plate, 7.8 mm for the first relay plate, 7.3 mm for the flow dividing plate, and the second relay plate. A total of about 34 mm can be manufactured, such as 3.8 mm, a heat exchange plate 3.3 mm, and a heat receiving plate 1.3 mm, and the same applies to the first embodiment.

このように第2の実施形態による冷却ジャケットは、熱交換板600に長尺状のスリット600a1及びスリット600b2とを交互に設け、これらスリット600a1及びスリット600b2に独立して第1の冷却流路からの第1の冷却媒体と第2の冷却流路からの第2の冷却媒体とを独立して循環させることによって、受熱板40の全面にわたって発熱体からの熱を冷却媒体により吸収することができると共に、一方の冷却流路に障害が発生した場合であっても、他方の冷却流路によって冷却性能を維持することができ、熱交換板600に2系統の冷却流路(長尺状スリット)を交互且つ全面にわたって配置したことによって、一方の冷却流路に障害が発生した場合であっても、受熱板40の全面にわたって設けられた他方の冷却流路を循環する冷却媒体によって受熱板40の全面から熱を吸収して冷却性能を維持することができる。   As described above, in the cooling jacket according to the second embodiment, the long slits 600a1 and the slits 600b2 are alternately provided in the heat exchange plate 600, and the first cooling flow path is independent of the slits 600a1 and 600b2. By independently circulating the first cooling medium and the second cooling medium from the second cooling flow path, the heat from the heating element can be absorbed by the cooling medium over the entire surface of the heat receiving plate 40. At the same time, even when a failure occurs in one cooling channel, the cooling performance can be maintained by the other cooling channel, and two systems of cooling channels (long slits) are provided in the heat exchange plate 600. Even if a failure occurs in one cooling channel, the other cooling channel provided over the entire surface of the heat receiving plate 40 can be provided by arranging the alternating and over the entire surface. It can absorb heat from the entire surface of the heat receiving plate 40 by the cooling medium to the ring to maintain the cooling performance.

更に、本実施形態なよる冷却ジャケットは、第1の実施形態の冷却システムと同様に、冷却ジャケットのポートAinに冷却媒体の流入口を接続し、ポートAoutに冷却媒体の流出口を接続した第1の外部冷却流路を形成するパイプと、冷却ジャケットのポートBinに冷却媒体の流入口を接続し、ポートBoutに冷却媒体の流出口を接続した第2の外部冷却流路を形成するパイプと、前記第1外部冷却流路中に設けられ、循環する冷却媒体を貯めるための第1タンクと、前記第2外部冷却流路中に設けられ、循環する冷却媒体を貯めるための第2タンクと、前記第1外部冷却流路中に設けられ、冷却媒体を循環させるための第1循環ポンプと、前記第2外部冷却流路中に設けられ、冷却媒体を循環させるための第2循環ポンプと、前記第1外部冷却流路中に設けられ、循環する冷却媒体からの熱を放熱するためのファンを有する第1ラジエータと、前記第2外部冷却流路中に設けられ、循環する冷却媒体からの熱を放熱するためのファンを有する第2ラジエータと、前記第1及び第2の循環ポンプの冷却媒体の循環量並びに第1及び第のラジエータのファン回転数を独立して駆動する制御部とから冷却システムを構成することができる。   Further, the cooling jacket according to the present embodiment is similar to the cooling system of the first embodiment in that the cooling medium inlet is connected to the port Ain of the cooling jacket and the cooling medium outlet is connected to the port Aout. A pipe that forms one external cooling flow path, and a pipe that forms a second external cooling flow path in which a cooling medium inlet is connected to port Bin of the cooling jacket and a cooling medium outlet is connected to port Bout; A first tank for storing the circulating cooling medium provided in the first external cooling channel, and a second tank for storing the circulating cooling medium provided in the second external cooling channel; A first circulation pump provided in the first external cooling flow path for circulating the cooling medium, and a second circulation pump provided in the second external cooling flow path for circulating the cooling medium; The above 1 a first radiator having a fan for dissipating heat from the circulating cooling medium provided in the external cooling flow path; and heat from the circulating cooling medium provided in the second external cooling flow path. A cooling system comprising: a second radiator having a fan for radiating heat; and a controller for independently driving the circulation amount of the cooling medium of the first and second circulation pumps and the fan rotation speed of the first and second radiators. Can be configured.

このように構成した冷却システムは、例えば、(1)両系統共に循環ポンプの循環量並びにラジエータのファン回転数を最大に設定したフル冷却モードと、(2)片系統のみの循環ポンプの循環量並びにラジエータのファン回転数を最大に設定しておき、障害発生時に他系統を動作せるバックアップモードと、(3)両系統共に動作させるが、発熱体の発熱温度に応じて循環ポンプの循環量並びにラジエータのファン回転数を制御する省エネ運転モードの何れかを採用することができる。   The cooling system configured as described above includes, for example, (1) a full cooling mode in which the circulation amount of the circulation pump and the fan rotation speed of the radiator are set to the maximum in both systems, and (2) the circulation amount of the circulation pump of only one system. In addition, the fan speed of the radiator is set to the maximum, and the backup mode in which other systems are operated when a failure occurs, and (3) both systems are operated, but depending on the heat generation temperature of the heating element, the circulation amount of the circulation pump and Any of the energy saving operation modes for controlling the fan rotation speed of the radiator can be adopted.

このように本実施形態による冷却ジャケット及び冷却システムは、熱交換板600に冷却媒体の冷却流路を複数のスリットによって交互に設けたことによって、両系統の冷却流路においても同等の放熱面積及び冷却性能を有することができると共に、簡易な構造且つ小型のために高密度に実装されているCPU等の発熱体に取り付けることができる。   As described above, the cooling jacket and the cooling system according to the present embodiment alternately provide the cooling medium cooling channels with the plurality of slits in the heat exchange plate 600, so that the same heat radiation area and the same heat dissipation area and the cooling channels in both systems can be obtained. In addition to having cooling performance, it can be attached to a heating element such as a CPU mounted with high density due to its simple structure and small size.

なお、本発明による冷却ジャケットの構造は、前述した実施形態の形状に限定されるものではなく、複数のポートから流入した冷却媒体を平面方向に個々に分流する板状の分流手段と、前記分流手段によって分流した個々の冷却媒体を複数の開口部を通して下層に中継する板状の中継手段と、前記中継手段によって中継された冷却媒体を個々に平面方向に流し、前記中継手段及び分流手段を通って複数のポートから流出させる板状の熱交換手段と、前記熱交換手段と接して発熱体からの熱を前記熱交換手段を流れる冷却媒体と熱交換を行う板状の受熱手段とを積層し、周縁を密閉する構造のものも本発明に含まれる。   Note that the structure of the cooling jacket according to the present invention is not limited to the shape of the above-described embodiment, but a plate-like flow dividing means for individually dividing the cooling medium flowing in from a plurality of ports in the plane direction, and the flow dividing The plate-like relay means for relaying the individual cooling medium divided by the means to the lower layer through a plurality of openings, and the cooling medium relayed by the relay means are individually flowed in the plane direction and passed through the relay means and the flow dividing means. A plate-like heat exchange means for flowing out from a plurality of ports, and a plate-like heat receiving means for exchanging heat from the heating element in contact with the heat exchange means and a cooling medium flowing through the heat exchange means. Also, the present invention includes a structure that seals the periphery.

また、本発明による冷却ジャケットの冷却対象は、半導体素子に限られるものではなく、例えば、筒状の外周面を持つ電気モータの外周面に密着するように湾曲した板状部材を用いて構成しても良い。   In addition, the cooling target of the cooling jacket according to the present invention is not limited to the semiconductor element. For example, the cooling jacket is configured by using a plate-like member curved so as to be in close contact with the outer peripheral surface of the electric motor having a cylindrical outer peripheral surface. May be.

10から13 分流管、20 中継板、30 熱交換板、40 受熱板、
100 天板、200 接続板、300 第2中継板、400 分流板、
500 第1中継板、600 熱交換板
10 to 13 branch pipe, 20 relay plate, 30 heat exchange plate, 40 heat receiving plate,
100 top plate, 200 connection plate, 300 second relay plate, 400 shunt plate,
500 First relay plate, 600 Heat exchange plate

Claims (7)

第1の流入ポートから流入した第1の冷却媒体を平面方向に分流すると共に第2の流入ポートから流入した第2の冷却媒体を平面方向に分流する板状の分流手段と、前記分流手段によって分流した第1の冷却媒体を複数の開口部を通して下層に中継すると共に前記分流した第2の冷却媒体を複数の開口部を通して下層に中継する板状の中継手段と、前記中継手段によって中継された第1の冷却媒体を板面方向に流すと共に前記中継手段によって中継された第2の冷却媒体を板面方向に流し、前記第1の冷却媒体を板面方向に流して前記中継手段及び分流手段を通って第1の流出ポートから流出させると共に前記第2の冷却媒体を板面方向に流して前記中継手段及び分流手段を通って第2の流出ポートから流出させる板状の熱交換手段と、前記熱交換手段と接して発熱体からの熱を前記熱交換手段を流れる第1及び第2の冷却媒体と熱交換を行う板状の受熱手段とを密閉的に積層し、前記第1の冷却媒体が流れる第1の冷却流路と前記第2の冷却媒体が流れる第2の冷却流路とを備える冷却ジャケット。   A plate-like diverter for diverting the first cooling medium flowing in from the first inflow port in the plane direction and diverting the second cooling medium flowing in from the second inflow port in the plane direction; and The first cooling medium that has been diverted is relayed to the lower layer through a plurality of openings, and the second cooling medium that has been diverted is relayed to the lower layer through a plurality of openings, and relayed by the relay means The first cooling medium flows in the plate surface direction, the second cooling medium relayed by the relay means flows in the plate surface direction, the first cooling medium flows in the plate surface direction, and the relay means and the diversion means Plate-like heat exchange means for flowing out from the first outflow port through the second cooling medium and flowing out from the second outflow port through the relay means and the diversion means by flowing the second cooling medium in the plate surface direction; Above A plate-shaped heat receiving means for exchanging heat from the first and second cooling media flowing through the heat exchanging means and the plate-shaped heat receiving means for exchanging heat from the heating element in contact with the exchanging means are hermetically stacked, and the first cooling medium A cooling jacket comprising a first cooling flow path that flows and a second cooling flow path through which the second cooling medium flows. 発熱体に接触され、前記発熱体からの熱を受ける板状の受熱板と、前記発熱体と接して内部の板面方向に延びるように開口された複数の長尺状第1スリットを流れる第1の冷却媒体及び前記発熱体と接して内部の板面方向に延びるように開口された複数の長尺状第2スリットを流れる第2の冷却媒体との間で熱交換を行うための板状の熱交換板と、前記熱交換板と接して板面垂直方向に開口された複数の開口部に前記第1及び第2の冷却媒体を個別に流す板状の中継板と、前記中継板の一側端に接して円筒状の第1の流入ポートから第1の冷却媒体を流入し、前記中継板の開口部を通した第1の冷却媒体を前記熱交換板の長尺状第1スリットの一端に供給する第1の分流管と、前記中継板と接して円筒状の第2の流入ポートから第2の冷却媒体を流入し、前記中継板の開口部を通して第2の冷却媒体を前記熱交換板の長尺状第2スリットの一端に供給する第2の分流管と、前記中継板の他側端に接して前記熱交換板の長尺状第1スリットを流通した第1の冷却媒体を前記中継板の開口部を通して流入し、円筒状の第1の流出ポートから流出する第3の分流管と、前記分流管及び中継板と接して前記熱交換板の長尺状第2スリットを流通した第2の冷却媒体を前記中継板の開口部を通して流入し、円筒状の第2の流出ポートから流出する第4の分流管とを備え、前記第1の冷却媒体が流れる第1の冷却流路と前記第2の冷却媒体が流れる第2の冷却流路とを備える冷却ジャケット。   A plate-shaped heat receiving plate that is in contact with the heat generating element and receives heat from the heat generating element, and a plurality of first slits that are in contact with the heat generating element and open in the direction of the inner plate surface. A plate shape for exchanging heat between the first cooling medium and the second cooling medium flowing through a plurality of elongated second slits opened in contact with the heating element and extending in the inner plate surface direction. A heat exchanger plate, a plate-like relay plate that allows the first and second cooling media to flow individually through a plurality of openings that are in contact with the heat exchanger plate and opened in the direction perpendicular to the plate surface, and The first cooling medium flows in from the cylindrical first inflow port in contact with the one side end, and the first cooling medium that has passed through the opening of the relay plate passes through the elongated first slit of the heat exchange plate. A first shunt pipe to be supplied to one end of the second cooling medium, and a second coolant from the cylindrical second inlet port in contact with the relay plate And a second shunt pipe for supplying the second cooling medium to one end of the elongated second slit of the heat exchange plate through the opening of the relay plate, and in contact with the other end of the relay plate A third branch pipe that flows in the first cooling medium flowing through the long first slit of the heat exchange plate through the opening of the relay plate and flows out from the cylindrical first outlet port; A second cooling medium that has been in contact with the tube and the relay plate and has passed through the elongated second slit of the heat exchange plate flows in through the opening of the relay plate, and flows out from the cylindrical second outlet port. A cooling jacket comprising a first cooling flow path through which the first cooling medium flows and a second cooling flow path through which the second cooling medium flows. 発熱体に接触され、前記発熱体からの熱を受ける板状の受熱板と、前記発熱体と接して内部の平面方向に延びるように開口された複数の長尺状第1スリットを流れる第1の冷却媒体及び前記発熱体と接して内部の板面方向に延びるように開口された複数の長尺状第2スリットを流れる第2の冷却媒体との間で熱交換を行うための板状の熱交換板と、前記熱交換板と接して板面垂直方向に開口された複数の開口部に前記第1の冷却媒体を流すと共に板面垂直方向に開口された複数の開口部に前記第2の冷却媒体を流す板状の第1の中継板と、前記第1の中継板と接して第3スリットによって第1の冷却媒体を板面方向に分流させると共に第4スリットによって第2の冷却媒体を板面方向に分流させる分流板と、前記分流板と接して板面に対して垂直方向に開口された複数の開口部に第1の冷却媒体を通すと共に板面に対して垂直方向に開口された複数の開口部に第2の冷却媒体を通す板状の第2の中継板と、前記第2の中継板と接して第1の流入ポートから第1の冷却媒体を流入し、円筒状の第1の流出ポートから流出すると共に円筒状の第2の流入ポートから第2の冷却媒体を流入し、円筒状の第2の流出ポートから流出する板状の接続板と、前記接続板と第1の流入ポート及び流出ポートと第2の流入及び流出ポートとを密閉的に覆う天板とを備え、前記第1の冷却媒体が流れる第1の冷却流路と前記第2の冷却媒体が流れる第2の冷却流路とを備える冷却ジャケット。   A plate-shaped heat receiving plate that is in contact with the heat generating element and receives heat from the heat generating element, and a first flowing through a plurality of elongated first slits that are in contact with the heat generating element and open in the plane direction inside. A plate-like shape for exchanging heat with the second cooling medium flowing through a plurality of elongated second slits opened so as to extend in the inner plate surface direction in contact with the cooling medium and the heating element The first cooling medium is allowed to flow through a heat exchange plate and a plurality of openings that are in contact with the heat exchange plate and open in the direction perpendicular to the plate surface, and the second openings in the openings that are open in the direction perpendicular to the plate surface. A plate-like first relay plate through which the cooling medium flows, and the first cooling medium in a plate surface direction by the third slit in contact with the first relay plate and the second cooling medium by the fourth slit A shunt plate for shunting in the plate surface direction, and in contact with the shunt plate with respect to the plate surface A plate-like second relay plate that allows the first cooling medium to pass through the plurality of openings opened in the straight direction and allows the second cooling medium to pass through the plurality of openings opened in the direction perpendicular to the plate surface. The first cooling medium flows in from the first inflow port in contact with the second relay plate, flows out of the cylindrical first outflow port, and flows out of the cylindrical second inflow port. A plate-like connection plate that flows in the cooling medium and flows out from the cylindrical second outflow port, and covers the connection plate, the first inflow port, the outflow port, and the second inflow and outflow ports in a sealed manner. A cooling jacket comprising: a top plate; and a first cooling flow path through which the first cooling medium flows and a second cooling flow path through which the second cooling medium flows. 第1の流入ポートから流入した第1の冷却媒体を平面方向に分流すると共に第2の流入ポートから流入した第2の冷却媒体を平面方向に分流する板状の分流手段と、前記分流手段によって分流した第1の冷却媒体を複数の開口部を通して下層に中継すると共に前記分流した第2の冷却媒体を複数の開口部を通して下層に中継する板状の中継手段と、前記中継手段によって中継された第1の冷却媒体を板面方向に流すと共に前記中継手段によって中継された第2の冷却媒体を板面方向に流し、前記第1の冷却媒体を板面方向に流して前記中継手段及び分流手段を通って第1の流出ポートから流出させると共に前記第2の冷却媒体を板面方向に流して前記中継手段及び分流手段を通って第2の流出ポートから流出させる板状の熱交換手段と、前記熱交換手段と接して発熱体からの熱を前記熱交換手段を流れる第1及び第2の冷却媒体と熱交換を行う板状の受熱手段とを密閉的に積層し、前記第1の冷却媒体が流れる第1の冷却流路と前記第2の冷却媒体が流れる第2の冷却流路とを備える冷却ジャケットを使用した冷却システムであって、前記冷却ジャケットの第1の流入ポートに第1の冷却媒体の流入口を接続し、第1の流出ポートに冷第1の冷却媒体の流出口を接続した第1の外部冷却流路を形成する第1のパイプと、前記第2の流入ポートに第2の冷却媒体の流入口を接続し、前記第2の流出ポートに第2の冷却媒体の流出口を接続した第2の外部冷却流路を形成する第2のパイプと、前記第1外部冷却流路中に設けられ、循環する第1の冷却媒体を貯めるための第1タンクと、前記第2外部冷却流路中に設けられ、循環する第2の冷却媒体を貯めるための第2タンクと、前記第1外部冷却流路中に設けられ、前記第1の冷却媒体を循環させるための第1循環ポンプと、前記第2外部冷却流路中に設けられ、前記第2の冷却媒体を循環させるための第2循環ポンプと、前記第1外部冷却流路中に設けられ、循環する冷却媒体からの熱を放熱するためのファンを有する第1ラジエータと、前記第2外部冷却流路中に設けられ、循環する冷却媒体からの熱を放熱するためのファンを有する第2ラジエータと、前記第1及び第2の循環ポンプの冷却媒体の循環量並びにラジエータのファン回転数を独立して駆動する制御部とを備える冷却システム。   A plate-like diverter for diverting the first cooling medium flowing in from the first inflow port in the plane direction and diverting the second cooling medium flowing in from the second inflow port in the plane direction; and The first cooling medium that has been diverted is relayed to the lower layer through a plurality of openings, and the second cooling medium that has been diverted is relayed to the lower layer through a plurality of openings, and relayed by the relay means The first cooling medium flows in the plate surface direction, the second cooling medium relayed by the relay means flows in the plate surface direction, the first cooling medium flows in the plate surface direction, and the relay means and the diversion means Plate-like heat exchange means for flowing out from the first outflow port through the second cooling medium and flowing out from the second outflow port through the relay means and the diversion means by flowing the second cooling medium in the plate surface direction; Above A plate-shaped heat receiving means for exchanging heat from the first and second cooling media flowing through the heat exchanging means and the plate-shaped heat receiving means for exchanging heat from the heating element in contact with the exchanging means are hermetically stacked, and the first cooling medium A cooling system using a cooling jacket having a first cooling flow path that flows and a second cooling flow path through which the second cooling medium flows, wherein the first cooling port is provided with a first cooling port. A first pipe forming a first external cooling flow path connected to the medium inlet and connected to the first outlet port to the outlet of the cold first cooling medium; and to the second inlet port. A second pipe that forms a second external cooling flow path that connects a second cooling medium inflow port and connects a second cooling medium outflow port to the second outflow port, and the first external cooling. A first tank for storing a circulating first cooling medium provided in the flow path; A second tank for storing the circulating second cooling medium provided in the second external cooling flow path, and a second tank provided in the first external cooling flow path for circulating the first cooling medium. A first circulation pump and a second circulation pump provided in the second external cooling flow path for circulating the second cooling medium, and provided in the first external cooling flow path for circulation. A first radiator having a fan for radiating heat from the cooling medium; a second radiator provided in the second external cooling flow path and having a fan for radiating heat from the circulating cooling medium; A cooling system comprising: a controller that independently drives a circulation amount of the cooling medium of the first and second circulation pumps and a fan rotational speed of the radiator. 発熱体に接触され、前記発熱体からの熱を受ける板状の受熱板と、前記発熱体と接して板面方向に延びるように開口された複数の長尺状第1スリットを流れる第1の冷却媒体及び前記発熱体と接して内部の板面方向に延びるように開口された複数の長尺状第2スリットを流れる第2の冷却媒体との間で熱交換を行うための板状の熱交換板と、前記熱交換板と接して板面垂直方向に開口された複数の開口部に前記第1及び第2の冷却媒体を個別に流す板状の中継板と、前記中継板の一側端に接して円筒状の第1の流入ポートから第1の冷却媒体を流入し、前記中継板の開口部を通した第1の冷却媒体を前記熱交換板の長尺状第1スリットの一端に供給する第1の分流管と、前記中継板と接して円筒状の第2の流入ポートから第2の冷却媒体を流入し、前記中継板の開口部を通して第2の冷却媒体を前記熱交換板の長尺状第2スリットの一端に供給する第2の分流管と、前記中継板に接して前記熱交換板の長尺状第1スリットを流通した第1の冷却媒体を前記中継板の開口部を通して流入し、円筒状の第1の流出ポートから流出する第3の分流管と、前記分流管及び中継板と接して前記熱交換板の長尺状第2スリットを流通した第2の冷却媒体を前記中継板の開口部を通して流入し、円筒状の第2の流出ポートから流出する第4の分流管とを備え、前記第1の冷却媒体が流れる第1の冷却流路と前記第2の冷却媒体が流れる第2の冷却流路とを備える冷却ジャケットを使用した冷却システムであって、前記冷却ジャケットの第1の流入ポートに第1の冷却媒体の流入口を接続し、第1の流出ポートに冷第1の冷却媒体の流出口を接続した第1の外部冷却流路を形成する第1のパイプと、前記第2の流入ポートに第2の冷却媒体の流入口を接続し、前記第2の流出ポートに第2の冷却媒体の流出口を接続した第2の外部冷却流路を形成する第2のパイプと、前記第1外部冷却流路中に設けられ、循環する第1の冷却媒体を貯めるための第1タンクと、前記第2外部冷却流路中に設けられ、循環する第2の冷却媒体を貯めるための第2タンクと、前記第1外部冷却流路中に設けられ、前記第1の冷却媒体を循環させるための第1循環ポンプと、前記第2外部冷却流路中に設けられ、前記第2の冷却媒体を循環させるための第2循環ポンプと、前記第1外部冷却流路中に設けられ、循環する冷却媒体からの熱を放熱するためのファンを有する第1ラジエータと、前記第2外部冷却流路中に設けられ、循環する冷却媒体からの熱を放熱するためのファンを有する第2ラジエータと、前記第1及び第2の循環ポンプの冷却媒体の循環量並びにラジエータのファン回転数を独立して駆動する制御部とを備える冷却システム。   A plate-shaped heat receiving plate that is in contact with the heating element and receives heat from the heating element, and a first flowing through a plurality of elongated first slits that are in contact with the heating element and open in the plate surface direction. Plate-like heat for exchanging heat between the cooling medium and the second cooling medium flowing through a plurality of elongated second slits opened so as to extend in the direction of the inner plate surface in contact with the heating medium. An exchange plate, a plate-like relay plate through which the first and second cooling media individually flow through a plurality of openings that are in contact with the heat exchange plate and open in the direction perpendicular to the plate surface, and one side of the relay plate The first cooling medium flows in from the cylindrical first inflow port in contact with the end, and the first cooling medium that has passed through the opening of the relay plate passes through one end of the long first slit of the heat exchange plate. The second cooling medium flows from a first inflow port which is in contact with the first shunt pipe supplied to the relay plate and the relay plate. A second shunt pipe for supplying the second cooling medium to one end of the elongated second slit of the heat exchange plate through the opening of the relay plate, and a length of the heat exchange plate in contact with the relay plate. The first cooling medium flowing through the first slit is introduced through the opening of the relay plate, and is in contact with the third branch pipe flowing out from the cylindrical first outlet port, and the branch pipe and the relay plate. And a fourth branch pipe for flowing the second cooling medium flowing through the long second slit of the heat exchange plate through the opening of the relay plate and flowing out from the cylindrical second outlet port. A cooling system using a cooling jacket comprising a first cooling channel through which the first cooling medium flows and a second cooling channel through which the second cooling medium flows, wherein the first cooling jacket A first coolant inlet is connected to the inlet port of the A first pipe that forms a first external cooling flow path in which an outlet of the cold first cooling medium is connected to the outlet port, and an inlet of the second cooling medium is connected to the second inlet port; A second pipe that forms a second external cooling flow path in which an outlet of a second cooling medium is connected to the second outflow port; and a first pipe that is provided in the first external cooling flow path and circulates. A first tank for storing the second cooling medium, a second tank for storing the circulating second cooling medium, and a second tank for storing the circulating second cooling medium. A first circulation pump for circulating the first cooling medium; a second circulation pump provided in the second external cooling flow path for circulating the second cooling medium; 1 A fan provided in the external cooling flow path to dissipate heat from the circulating cooling medium. A first radiator having a second radiator provided in the second external cooling flow path and having a fan for radiating heat from the circulating cooling medium; and cooling mediums for the first and second circulation pumps And a control unit that independently drives the circulation amount of the radiator and the fan rotational speed of the radiator. 発熱体に接触され、前記発熱体からの熱を受ける板状の受熱板と、前記発熱体と接して板面方向に延びるように開口された複数の長尺状第1スリットを流れる第1の冷却媒体及び前記発熱体と接して内部の板面方向に延びるように開口された複数の長尺状第2スリットを流れる第2の冷却媒体との間で熱交換を行うための板状の熱交換板と、前記熱交換板と接して板面垂直方向に開口された複数の開口部に前記第1の冷却媒体を流すと共に板面垂直方向に開口された複数の開口部に前記第2の冷却媒体を流す板状の第1の中継板と、前記第1の中継板と接して第3スリットによって第1の冷却媒体を板面方向に分流させると共に第4スリットによって第2の冷却媒体を板面方向に分流させる分流板と、前記分流板と接して板面に対して垂直方向に開口された複数の開口部に第1の冷却媒体を通すと共に板面に対して垂直方向に開口された複数の開口部に第2の冷却媒体を通す板状の第2の中継板と、前記第2の中継板と接して第1の流入ポートから第1の冷却媒体を流入し、円筒状の第1の流出ポートから流出すると共に円筒状の第2の流入ポートから第2の冷却媒体を流入し、円筒状の第2の流出ポートから流出する板状の接続板と、前記接続板と第1の流入ポート及び流出ポートと第2の流入及び流出ポートとを密閉的に覆う天板とを備え、前記第1の冷却媒体が流れる第1の冷却流路と前記第2の冷却媒体が流れる第2の冷却流路とを備える冷却ジャケットを使用した冷却システムであって、前記冷却ジャケットの第1の流入ポートに第1の冷却媒体の流入口を接続し、第1の流出ポートに冷第1の冷却媒体の流出口を接続した第1の外部冷却流路を形成する第1のパイプと、前記第2の流入ポートに第2の冷却媒体の流入口を接続し、前記第2の流出ポートに第2の冷却媒体の流出口を接続した第2の外部冷却流路を形成する第2のパイプと、前記第1外部冷却流路中に設けられ、循環する第1の冷却媒体を貯めるための第1タンクと、前記第2外部冷却流路中に設けられ、循環する第2の冷却媒体を貯めるための第2タンクと、前記第1外部冷却流路中に設けられ、前記第1の冷却媒体を循環させるための第1循環ポンプと、前記第2外部冷却流路中に設けられ、前記第2の冷却媒体を循環させるための第2循環ポンプと、前記第1外部冷却流路中に設けられ、循環する冷却媒体からの熱を放熱するためのファンを有する第1ラジエータと、前記第2外部冷却流路中に設けられ、循環する冷却媒体からの熱を放熱するためのファンを有する第2ラジエータと、前記第1及び第2の循環ポンプの冷却媒体の循環量並びにラジエータのファン回転数を独立して駆動する制御部とを備える冷却システム。   A plate-shaped heat receiving plate that is in contact with the heating element and receives heat from the heating element, and a first flowing through a plurality of elongated first slits that are in contact with the heating element and open in the plate surface direction. Plate-like heat for exchanging heat between the cooling medium and the second cooling medium flowing through a plurality of elongated second slits opened so as to extend in the direction of the inner plate surface in contact with the heating medium. The first cooling medium is allowed to flow through a plurality of openings that are in contact with the heat exchange plate and in the direction perpendicular to the plate surface, and the second openings in the plurality of openings that are open in the direction perpendicular to the plate surface. A plate-like first relay plate for flowing the cooling medium, and the first cooling medium in a plate surface direction by the third slit in contact with the first relay plate and the second cooling medium by the fourth slit. A diverter plate for diverting in the plate surface direction, and a direction perpendicular to the plate surface in contact with the diverter plate A plate-like second relay plate that allows the first cooling medium to pass through the plurality of openings that are open to the plate and passes the second cooling medium to the plurality of openings that are opened in a direction perpendicular to the plate surface; The first cooling medium flows in from the first inflow port in contact with the second relay plate, flows out from the cylindrical first outflow port, and flows from the cylindrical second inflow port to the second cooling medium. A plate-like connection plate that flows out from the cylindrical second outflow port, and a top plate that hermetically covers the connection plate, the first inflow port, the outflow port, and the second inflow and outflow port A cooling system using a cooling jacket comprising a first cooling channel through which the first cooling medium flows and a second cooling channel through which the second cooling medium flows, wherein the cooling jacket A first cooling medium inlet is connected to the first inlet port of the first A first pipe that forms a first external cooling flow path in which an outlet of the cold first cooling medium is connected to the outflow port; and an inlet of the second cooling medium is connected to the second inflow port; A second pipe that forms a second external cooling flow path in which an outlet of a second cooling medium is connected to the second outflow port; and a first pipe that is provided in the first external cooling flow path and circulates. A first tank for storing the second cooling medium, a second tank for storing the circulating second cooling medium, and a second tank for storing the circulating second cooling medium. A first circulation pump for circulating the first cooling medium; a second circulation pump provided in the second external cooling flow path for circulating the second cooling medium; 1 Fan provided in the external cooling flow path for radiating heat from the circulating cooling medium A second radiator having a fan for dissipating heat from a circulating cooling medium provided in the second external cooling flow path, and cooling the first and second circulation pumps A cooling system comprising: a controller that independently drives a circulation amount of a medium and a fan rotational speed of the radiator. 前記制御部が、前記第1及び第2の外部冷却流路系統共に第1及び第2の循環ポンプの循環量並びにラジエータのファン回転数を最大に設定したフル冷却モードと、一方の外部冷却流路の第1又は第2の循環ポンプの循環量並びにラジエータのファン回転数を最大に設定しておき、障害発生時に他系統を動作せるバックアップモードと、前記第1及び第2の外部冷却流路系統共に動作させ、前記発熱体の発熱温度に応じて循環ポンプの循環量並びにラジエータのファン回転数を制御する省エネ運転モードの何れかの動作を行う請求項4から6何れかに記載の冷却システム。
In the first and second external cooling flow paths, the control unit sets a full cooling mode in which the circulation amounts of the first and second circulation pumps and the fan rotation speed of the radiator are set to a maximum, and one external cooling flow. A backup mode in which the circulation amount of the first or second circulation pump of the passage and the fan rotation speed of the radiator are set to the maximum, and other systems are operated when a failure occurs, and the first and second external cooling flow paths The cooling system according to any one of claims 4 to 6, wherein the cooling system is operated together to perform any one of the energy saving operation modes in which the circulation amount of the circulation pump and the fan rotation speed of the radiator are controlled according to the heat generation temperature of the heating element. .
JP2012194926A 2012-09-05 2012-09-05 Cooling jacket, and cooling system using the same Pending JP2014053359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012194926A JP2014053359A (en) 2012-09-05 2012-09-05 Cooling jacket, and cooling system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012194926A JP2014053359A (en) 2012-09-05 2012-09-05 Cooling jacket, and cooling system using the same

Publications (1)

Publication Number Publication Date
JP2014053359A true JP2014053359A (en) 2014-03-20

Family

ID=50611601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012194926A Pending JP2014053359A (en) 2012-09-05 2012-09-05 Cooling jacket, and cooling system using the same

Country Status (1)

Country Link
JP (1) JP2014053359A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111879058A (en) * 2020-08-27 2020-11-03 深圳市绿谷离子镀膜科技有限公司 Brand-new target material cooling system
CN115966533B (en) * 2022-12-01 2023-09-05 山东大学 Manifold type micro-channel radiator with countercurrent region

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59193053A (en) * 1983-04-15 1984-11-01 Mitsubishi Electric Corp Electronic apparatus
JPH02121355A (en) * 1988-10-28 1990-05-09 Shimadzu Corp Ceramic multilayer substrate
JPH05152475A (en) * 1991-09-30 1993-06-18 Toshiba Corp Semiconductor device
JPH09102568A (en) * 1995-10-05 1997-04-15 Mitsubishi Electric Corp Plate type heat sink
JP2005268305A (en) * 2004-03-16 2005-09-29 Mitsubishi Electric Corp Heatsink
JP2009076561A (en) * 2007-09-19 2009-04-09 Fujitsu Ltd Cooling apparatus, heat receiver, heat exchanger, and tank
JP2011017516A (en) * 2009-07-10 2011-01-27 Mitsubishi Electric Corp Plate laminated type cooling device and method of manufacturing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59193053A (en) * 1983-04-15 1984-11-01 Mitsubishi Electric Corp Electronic apparatus
JPH02121355A (en) * 1988-10-28 1990-05-09 Shimadzu Corp Ceramic multilayer substrate
JPH05152475A (en) * 1991-09-30 1993-06-18 Toshiba Corp Semiconductor device
JPH09102568A (en) * 1995-10-05 1997-04-15 Mitsubishi Electric Corp Plate type heat sink
JP2005268305A (en) * 2004-03-16 2005-09-29 Mitsubishi Electric Corp Heatsink
JP2009076561A (en) * 2007-09-19 2009-04-09 Fujitsu Ltd Cooling apparatus, heat receiver, heat exchanger, and tank
JP2011017516A (en) * 2009-07-10 2011-01-27 Mitsubishi Electric Corp Plate laminated type cooling device and method of manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111879058A (en) * 2020-08-27 2020-11-03 深圳市绿谷离子镀膜科技有限公司 Brand-new target material cooling system
CN111879058B (en) * 2020-08-27 2024-01-02 浙江丰望镀膜科技有限公司 Brand new target cooling system
CN115966533B (en) * 2022-12-01 2023-09-05 山东大学 Manifold type micro-channel radiator with countercurrent region

Similar Documents

Publication Publication Date Title
US7259965B2 (en) Integrated circuit coolant microchannel assembly with targeted channel configuration
CN109244824B (en) LD module cooling device and laser device
KR20040050910A (en) High heat flux single-phase heat exchanger
JP2005020881A (en) Drive unit
CN110060967A (en) A kind of two-sided cooling radiator
CN110874127A (en) Heat transfer device with fluid conduit
JP4941398B2 (en) Stacked cooler
JP2014053359A (en) Cooling jacket, and cooling system using the same
WO2014065696A1 (en) Computer module cooler
CN113490394A (en) Vein bionic microchannel coupling jet flow heat exchange system
KR20080076222A (en) Laminated heat exchanger and fabricating method thereof
CN107966057A (en) A kind of plate heat exchanger and its application method
US20210210218A1 (en) Jet impingement cooling apparatus and method
CN109075244B (en) Energy recovery unit for vehicle
JP5046748B2 (en) Gas cooler for hot water system
CN109890186A (en) A kind of cooler flow path and double radiating surface liquid cooling plates with asymmetric topology structure
JP2008235572A (en) Electronic component cooling device
WO2018096812A1 (en) Cooling device
JP7370128B2 (en) battery cooling system
JP4517962B2 (en) Cooling device for electronic equipment
CN105298618B (en) engineering mechanical radiating system
EP4358665A1 (en) Thermal management system
US20240138108A1 (en) Thermal management system
JP2015152229A (en) Plate-type heat exchanger
CN217994055U (en) Runner integrated component and vehicle with same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160609

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170302