JP2014051708A - Copper base alloy for electrical and electronic parts and its manufacturing method - Google Patents

Copper base alloy for electrical and electronic parts and its manufacturing method Download PDF

Info

Publication number
JP2014051708A
JP2014051708A JP2012197271A JP2012197271A JP2014051708A JP 2014051708 A JP2014051708 A JP 2014051708A JP 2012197271 A JP2012197271 A JP 2012197271A JP 2012197271 A JP2012197271 A JP 2012197271A JP 2014051708 A JP2014051708 A JP 2014051708A
Authority
JP
Japan
Prior art keywords
mass
copper
less
heat treatment
cold rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012197271A
Other languages
Japanese (ja)
Inventor
Tomoya Kuji
智也 久慈
Yoshiki Sawai
祥束 沢井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2012197271A priority Critical patent/JP2014051708A/en
Publication of JP2014051708A publication Critical patent/JP2014051708A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a copper base alloy for electrical and electronic parts satisfying specification properties of ESH individual of C1940, maintaining heat resistance and having low magnetism, and to provide its manufacturing method.SOLUTION: A copper base alloy for electrical and electronic parts contains Fe of 2.1 mass% to 2.6 mass%, P of 0.015 mass% to 0.15 mass%, Zn of 0.05 mass% to 0.2 mass% and the balance Cu with inevitable impurities, and has a tensile strength of 505 MPa to 590 MPa, a Vickers hardness of 145 Hv to 170 Hv, a conductivity of 60% IACS or more and a maximum permeability of 1.045 to 1.060.

Description

本発明は、リードフレーム等の電気・電子部品に好適な電気・電子部品用銅基合金及びその製造方法に関するものである。   The present invention relates to a copper-based alloy for electrical / electronic components suitable for electrical / electronic components such as lead frames, and a method for producing the same.

電気・電子機器に用いられる半導体部品には、電気・電子部品としてリードフレームを用いるパッケージ構造のものがある。近年、リードフレームは、半導体部品の小型化要求に伴い、多ピン化や簿肉化が進められている。このような状況において、リードフレームの素材にはより高い強度や導電率が求められている。リードフレームに用いられる電気・電子部品用銅基合金として、要求特性を比較的良好に満足する材料としてはC1940(JISH3100:2006)のESH(Extra Spring Hard)質別が挙げられる。C1940は、2.1mass%以上2.6mass%以下のFe、0.015mass%以上0.15mass%以下のP、0.05mass%以上0.2mass%以下のZnを添加した銅基合金であり、ESH質別はSH(Spring Hard)質別を上回るように加工硬化させたものである。   Some semiconductor components used in electric / electronic devices have a package structure using a lead frame as an electric / electronic component. In recent years, lead frames have been increased in the number of pins and book thickness in accordance with the demand for downsizing of semiconductor components. Under such circumstances, higher strength and electrical conductivity are required for the lead frame material. As a copper base alloy for electric and electronic parts used for a lead frame, CSH (Extra Spring Hard) classification of C1940 (JIS 3100: 2006) can be cited as a material that satisfies the required characteristics relatively well. C1940 is a copper-based alloy to which 2.1 mass% or more and 2.6 mass% or less of Fe, 0.015 mass% or more and 0.15 mass% or less of P, 0.05 mass% or more and 0.2 mass% or less of Zn is added, The ESH quality is a work hardened so as to exceed the SH (Spring Hard) quality.

この電気・電子部品用銅基合金は、前述した強度や導電率が要求される他、耐熱性も要求される。リードフレームは、電気・電子部品用銅基合金を打ち抜き加工やエッチング加工することで成形されるが、このうち打ち抜き加工は電気・電子部品用銅基合金中にひずみを蓄積させる。電気・電子部品用銅基合金中に蓄積されたひずみは、エッチング加工によって開放されるが、これがピン変形の原因となってしまう。そのため、打ち抜き加工によって電気・電子部品用銅基合金中に蓄積されたひずみを除去する焼鈍を行っている。この焼鈍において、耐熱性が低い電気・電子部品用銅基合金は軟化してしまい、これもまたピン変形の原因となる。   This copper-based alloy for electric / electronic parts is required to have the above-described strength and electrical conductivity, as well as heat resistance. The lead frame is formed by punching or etching a copper base alloy for electric / electronic parts, and the punching process accumulates strain in the copper base alloy for electric / electronic parts. The strain accumulated in the copper-based alloy for electrical / electronic parts is released by etching, which causes pin deformation. Therefore, annealing is performed to remove strain accumulated in the copper-based alloy for electric / electronic parts by punching. In this annealing, the copper base alloy for electric / electronic parts having low heat resistance is softened, which also causes pin deformation.

従って、電気・電子部品用銅基合金には、電気・電子部品用銅基合金中に蓄積されたひずみを除去する焼鈍によって軟化しない程度の耐熱性が要求される。C1940を含むFeを主添加元素とした銅基合金(以下、Cu−Fe合金という)の耐熱性の制御は、Fe析出物を制御することが有効であるとされており、このことは様々な文献に記載されている。例えば、特許文献1には、析出したFe粒子のうち直径が40nm以下のFe粒子の合金中の体積分率が0.2%以上であれば、ひずみ除去の加熱をしても強度の低下が比較的少ない耐熱性に優れたリードフレーム用Cu−Fe系合金材を提供できることが記載されている。   Therefore, the copper base alloy for electric / electronic parts is required to have heat resistance that does not soften by annealing to remove the strain accumulated in the copper base alloy for electric / electronic parts. Control of heat resistance of a copper base alloy (hereinafter referred to as Cu-Fe alloy) containing Fe containing C1940 as a main additive element is considered to be effective in controlling Fe precipitates. It is described in the literature. For example, in Patent Document 1, if the volume fraction in the alloy of Fe particles having a diameter of 40 nm or less among the precipitated Fe particles is 0.2% or more, the strength is reduced even if heating for strain removal is performed. It is described that a Cu—Fe-based alloy material for lead frames having a relatively low heat resistance can be provided.

特開平11−80862号公報Japanese Patent Laid-Open No. 11-80862 特開2011−208271号公報JP 2011-208271 A 特開平7−18355号公報Japanese Patent Laid-Open No. 7-18355 特開平7−62504号公報JP 7-62504 A 特開2010−95749号公報JP 2010-95749 A

美馬源次郎、外3名、「時効後強圧延した銅−2.3%鉄合金の焼鈍による軟化挙動について」、日本金属学会誌、日本金属学会、1969年、第33巻、第5号、p.521−526Genjiro Mima, 3 others, “Softening behavior of annealed copper-2.3% iron alloy after aging”, Journal of the Japan Institute of Metals, 1969, Vol. 33, No. 5, p. . 521-526 堀茂徳ほか、伸銅技術研究会誌、1970年、第9巻、p.201Hori Shigetoku et al., Journal of Copper Technology Research, 1970, Vol. 9, p. 201

前述の通り、Cu−Fe合金の耐熱性の制御には、Fe析出物の制御が重要であるが、Fe析出物には非磁性のγ−Feと強磁性のα−Feの二形態が存在することが知られており、それぞれの耐熱性への影響が異なる。   As described above, control of Fe precipitates is important for controlling the heat resistance of Cu-Fe alloys, but there are two forms of Fe precipitates: non-magnetic γ-Fe and ferromagnetic α-Fe. Are known to have different effects on heat resistance.

ところで、高周波信号を伝送する用途、又は動作周波数が高い用途、例えば、メモリICでは、伝送信号等の周波数が増加すると、磁性の増大と共にインピーダンスが増加してしまうため、リードフレームの磁性が伝送特性に影響を与える。よって、Cu−Fe合金中に強磁性のα−Feを分散させることは、高周波信号を伝送する用途においては好ましくない。   By the way, in applications where high-frequency signals are transmitted or applications where the operating frequency is high, for example, in memory ICs, when the frequency of transmission signals, etc. increases, impedance increases with increasing magnetism. To affect. Therefore, it is not preferable to disperse the ferromagnetic α-Fe in the Cu—Fe alloy in applications where high frequency signals are transmitted.

しかし、耐熱性を制御するためにCu−Fe合金中にFe析出物を分散させることは必要である。そのため、γ−FeのみでCu−Fe合金の耐熱性を担保できることが理想であるが、常温においてγ−Feは加工によりα−Feに変態することが知られており(例えば、非特許文献1参照)、加工硬化によって高強度を得ているESH質別にとってγ−Feのみでの耐熱性の制御は非常に困難である。   However, it is necessary to disperse Fe precipitates in the Cu-Fe alloy in order to control heat resistance. Therefore, it is ideal that only the γ-Fe can ensure the heat resistance of the Cu—Fe alloy, but it is known that γ-Fe is transformed into α-Fe by processing at room temperature (for example, Non-Patent Document 1). Reference), it is very difficult to control the heat resistance only with γ-Fe for ESH categorization that has obtained high strength by work hardening.

従って、如何にしてCu−Fe合金中に分散するα−Feを減少させて耐熱性を得るかが課題となる。特許文献1では、Fe析出物の直径や体積分率を規定しているが、Fe析出物の形態がα−Feであるのか又はγ−Feであるのかについては何ら言及されていない。   Therefore, how to obtain heat resistance by reducing α-Fe dispersed in the Cu—Fe alloy is an issue. In patent document 1, although the diameter and volume fraction of Fe precipitate are prescribed | regulated, it is not mentioned at all about whether the form of Fe precipitate is (alpha) -Fe or (gamma) -Fe.

そこで、本発明の目的は、C1940のESH質別の規格特性を満たし、耐熱性を維持しつつ、より磁性の低い電気・電子部品用銅基合金及びその製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a copper-based alloy for electric and electronic parts having lower magnetic properties while satisfying the standard characteristics of C1940 according to ESH quality and maintaining heat resistance, and a method for producing the same.

この目的を達成するために創案された本発明は、2.1mass%以上2.6mass%以下のFe、0.015mass%以上0.15mass%以下のP、0.05mass%以上0.2mass%以下のZnを含有し、残部がCuと不可避的不純物とからなり、引張強さが505MPa以上590MPa以下、ビッカース硬さが145Hv以上170Hv以下、導電率が60%IACS以上、最大透磁率が1.045以上1.060以下である電気・電子部品用銅基合金である。   The present invention devised to achieve this object is Fe of 2.1 mass% or more and 2.6 mass% or less, P of 0.015 mass% or more and 0.15 mass% or less, 0.05 mass% or more and 0.2 mass% or less. Zn, with the balance being Cu and unavoidable impurities, tensile strength of 505 MPa to 590 MPa or less, Vickers hardness of 145 Hv to 170 Hv, conductivity of 60% IACS or more, and maximum magnetic permeability of 1.045. It is a copper-based alloy for electric / electronic parts having a value of 1.060 or less.

飽和磁化が26.5emu/cm3以上30.5emu/cm3以下であると良い。 The saturation magnetization is preferably 26.5 emu / cm 3 or more and 30.5 emu / cm 3 or less.

450℃で5分間加熱する耐熱性試験後における硬さ残存率が90%以上であると良い。   The residual hardness after the heat resistance test heated at 450 ° C. for 5 minutes is preferably 90% or more.

また、本発明は、2.1mass%以上2.6mass%以下のFe、0.015mass%以上0.15mass%以下のP、0.05mass%以上0.2mass%以下のZnを含有し、残部がCuと不可避的不純物からなる鋳塊に、熱間圧延、第1の冷間圧延、第1の熱処理、第2の冷間圧延、第2の熱処理、第3の冷間圧延、及び第3の熱処理を順次施して製造された電気・電子部品用銅基合金において、前記第2の熱処理は、1℃/分で所望の温度まで昇温すると共に1℃/分で所望の温度まで降温して行われ、前記第3の冷間圧延は、加工度を70%以上80%以下として行われる電気・電子部品用銅基合金である。   Further, the present invention contains 2.1 mass% or more and 2.6 mass% or less of Fe, 0.015 mass% or more and 0.15 mass% or less of P, 0.05 mass% or more and 0.2 mass% or less of Zn, and the balance is To an ingot made of Cu and inevitable impurities, hot rolling, first cold rolling, first heat treatment, second cold rolling, second heat treatment, third cold rolling, and third In the copper-based alloy for electric / electronic parts manufactured by sequentially performing the heat treatment, the second heat treatment is performed at 1 ° C./min to a desired temperature and at 1 ° C./min to a desired temperature. The third cold rolling is a copper-based alloy for electrical / electronic parts performed at a working degree of 70% to 80%.

また、本発明は、2.1mass%以上2.6mass%以下のFe、0.015mass%以上0.15mass%以下のP、0.05mass%以上0.2mass%以下のZnを含有し、残部がCuと不可避的不純物からなる鋳塊に、熱間圧延、第1の冷間圧延、第1の熱処理、第2の冷間圧延、第2の熱処理、第3の冷間圧延、及び第3の熱処理を順次施す電気・電子部品用銅基合金の製造方法において、前記第2の熱処理は、1℃/分で所望の温度まで昇温すると共に1℃/分で所望の温度まで降温して行い、前記第3の冷間圧延は、加工度を70%以上80%以下として行う電気・電子部品用銅基合金の製造方法である。   Further, the present invention contains 2.1 mass% or more and 2.6 mass% or less of Fe, 0.015 mass% or more and 0.15 mass% or less of P, 0.05 mass% or more and 0.2 mass% or less of Zn, and the balance is To an ingot made of Cu and inevitable impurities, hot rolling, first cold rolling, first heat treatment, second cold rolling, second heat treatment, third cold rolling, and third In the method for producing a copper-based alloy for electrical / electronic parts that is sequentially subjected to heat treatment, the second heat treatment is performed by raising the temperature to a desired temperature at 1 ° C./min and lowering the temperature to a desired temperature at 1 ° C./min. The third cold rolling is a method for producing a copper-based alloy for electric / electronic parts performed at a working degree of 70% to 80%.

本発明によれば、C1940のESH質別の規格特性を満たし、耐熱性を維持しつつ、より磁性の低い電気・電子部品用銅基合金及びその製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the copper base alloy for electrical and electronic components with lower magnetism and its manufacturing method can be provided, satisfy | filling the standard characteristic according to ESH quality of C1940, and maintaining heat resistance.

実施例1における磁化測定結果を示す図である。It is a figure which shows the magnetization measurement result in Example 1. FIG. 飽和磁化と硬さ残存率との関係に着目して整理した図である。It is the figure arranged paying attention to the relationship between saturation magnetization and hardness residual rate.

以下、本発明の好適な実施の形態を説明する。   Hereinafter, preferred embodiments of the present invention will be described.

本実施の形態に係る電気・電子部品用銅基合金は、2.1mass%以上2.6mass%以下のFe、0.015mass%以上0.15mass%以下のP、0.05mass%以上0.2mass%以下のZnを含有し、残部がCuと不可避的不純物とからなり、引張強さが505MPa以上590MPa以下、ビッカース硬さが145Hv以上170Hv以下、導電率が60%IACS以上、最大透磁率が1.045以上1.060以下であることを特徴とする。これらの特性に加えて、飽和磁化が26.5emu/cm3以上30.5emu/cm3以下、450℃で5分間加熱する耐熱性試験後における硬さ残存率が90%以上であることが好ましい。 The copper-based alloy for electrical / electronic parts according to the present embodiment includes 2.1 mass% or more and 2.6 mass% or less of Fe, 0.015 mass% or more and 0.15 mass% or less of P, 0.05 mass% or more and 0.2 mass% or less. % Zn or less, the balance consisting of Cu and inevitable impurities, tensile strength of 505 MPa to 590 MPa or less, Vickers hardness of 145 Hv to 170 Hv, conductivity of 60% IACS or more, maximum magnetic permeability of 1 0.045 or more and 1.060 or less. In addition to these characteristics, the saturation magnetization is preferably 26.5 emu / cm 3 or more and 30.5 emu / cm 3 or less, and the hardness remaining ratio after a heat resistance test heated at 450 ° C. for 5 minutes is preferably 90% or more. .

この電気・電子部品用銅基合金を構成する各成分について、添加の理由と共に数値限定の理由を説明する。   The reasons for limiting the numerical values of each component constituting the copper-based alloy for electric / electronic parts will be described together with the reason for addition.

(1)Fe、P、Znについて
C1940の規格成分であり、数値限定の範囲はこの規格に準ずるものである。
(1) About Fe, P, Zn These are standard components of C1940, and the range of numerical limitation conforms to this standard.

(2)他の元素成分について
C1940の規格成分の他、不純物として混入することを避けることができない元素として、Mg、Al、Si、Sn、Ti、Cr、Mn、Co、Ni、Zr、C、Oがある。これらは原料や脱酸剤等に含有される元素であり、鋳造時等に混入する可能性がある元素である。これらの元素は合計0.1mass%以下であれば、電気・電子部品用銅基合金に何ら悪影響を与えることはなく、不可避的不純物として許容可能である。
(2) Other element components In addition to the standard components of C1940, elements that cannot be mixed as impurities include Mg, Al, Si, Sn, Ti, Cr, Mn, Co, Ni, Zr, C, There is O. These are elements contained in raw materials, deoxidizers, and the like, and are elements that may be mixed during casting. If the total amount of these elements is 0.1 mass% or less, the copper-based alloy for electric / electronic parts is not adversely affected and is acceptable as an inevitable impurity.

次に、電気・電子部品用銅基合金の各特性について、数値限定の理由を説明する。   Next, the reason for limiting the numerical values of each characteristic of the copper-based alloy for electric / electronic parts will be described.

(1)引張強さ、ビッカース硬さ、導電率について
電気・電子部品用銅基合金は日本国内においてJISH3100:2006で規格されているC1940のESH質別に改良を加えたものである。この規格特性は、引張強さが505MPa以上590MPa以下、ビッカース硬さが145Hv以上170Hv以下、導電率が60%IACS以上であり、数値限定の範囲はこの規格に準ずるものである。
(1) Tensile strength, Vickers hardness, electrical conductivity Copper base alloys for electrical and electronic parts are improved according to the ESH quality of C1940 standardized in JISH3100: 2006 in Japan. As for the standard characteristics, the tensile strength is 505 MPa to 590 MPa, the Vickers hardness is 145 Hv to 170 Hv, the electrical conductivity is 60% IACS or more, and the numerical limit range conforms to this standard.

なお、引張強さはJISZ2241:2011に準じて測定し、ビッカース硬さは試験片を常温硬化樹脂に埋め込んで圧延方向に垂直な断面からJISZ2244:2009に準じて測定し、導電率は4端子法を用いて測定した電気抵抗からJISH0505:1975に記載の換算式(断面積一定法)を用いて算出する。   The tensile strength is measured according to JISZ2241: 2011, the Vickers hardness is measured according to JISZ2244: 2009 from a cross section perpendicular to the rolling direction by embedding a test piece in a room temperature curable resin, and the conductivity is measured by the 4-terminal method. It calculates using the conversion formula (constant cross-sectional area method) described in JISH0505: 1975 from the electrical resistance measured using.

(2)最大透磁率について
透磁率は高周波信号のインピーダンスに影響を与える特性である。例えば、高周波電流が導体を流れるときに生じる現象として表皮効果が挙げられる。これは、導体を流れる電流の周波数が高くなるほど電流が導体の表面に集中するという現象であり、電流が流れる実効面積が減少して交流抵抗が高くなるものである。この導体を流れる電流の周波数と表皮深さとの関係は下式(1)で表される。
(2) Maximum magnetic permeability Magnetic permeability is a characteristic that affects the impedance of a high-frequency signal. For example, a skin effect is a phenomenon that occurs when a high-frequency current flows through a conductor. This is a phenomenon that the current concentrates on the surface of the conductor as the frequency of the current flowing through the conductor increases, and the effective area through which the current flows decreases and the AC resistance increases. The relationship between the frequency of the current flowing through this conductor and the skin depth is expressed by the following equation (1).

ここで、dは表皮深さ(電流が表面電流の1/eとなる深さ)、ρは導体の電気抵抗、ωは角周波数(周波数をfとしたとき2πfで表される)、μは導体の透磁率である。式(1)から分かるように、透磁率が大きくなると表皮深さは薄くなる、即ち電流が流れる面積が狭くなる。最大透磁率が数値限定の範囲であれば表皮効果を低減でき、電気・電子部品用銅基合金を高周波信号を伝送する用途、又は動作周波数が高い用途に好適に用いることができる。   Here, d is the skin depth (the depth at which the current becomes 1 / e of the surface current), ρ is the electrical resistance of the conductor, ω is the angular frequency (expressed by 2πf when the frequency is f), and μ is The magnetic permeability of the conductor. As can be seen from equation (1), when the magnetic permeability increases, the skin depth decreases, that is, the area through which current flows decreases. If the maximum magnetic permeability is in a numerically limited range, the skin effect can be reduced, and the copper-based alloy for electrical / electronic parts can be suitably used for applications that transmit high-frequency signals or that have a high operating frequency.

なお、最大透磁率は、体積磁化と磁場とから磁束密度を算出し、その磁束密度から磁場を除した値の中で最大の値とする。   The maximum magnetic permeability is the maximum value among values obtained by calculating the magnetic flux density from the volume magnetization and the magnetic field and dividing the magnetic flux density from the magnetic flux density.

(3)硬さ残存率について
前述の通り、リードフレームに用いられる電気・電子部品用銅基合金には耐熱性が要求される。耐熱性はある温度である時間保持した後に維持できる強度で評価される。ここでは、450℃で5分間加熱する耐熱性試験後における硬さ残存率を耐熱性として評価する。硬さ残存率は、450℃で5分間加熱する耐熱性試験後におけるビッカース硬さを耐熱性試験前のビッカース硬さで除して百分率で表した値である。硬さ残存率が大きいほど耐熱性に優れるため、数値限定の範囲を90%以上とした。
(3) Residual hardness As described above, heat resistance is required for copper-based alloys for electrical and electronic parts used in lead frames. The heat resistance is evaluated by a strength that can be maintained after being held for a certain time at a certain temperature. Here, the hardness remaining rate after a heat resistance test heated at 450 ° C. for 5 minutes is evaluated as heat resistance. The hardness remaining rate is a value expressed as a percentage by dividing the Vickers hardness after the heat resistance test heated at 450 ° C. for 5 minutes by the Vickers hardness before the heat resistance test. The greater the residual hardness rate, the better the heat resistance. Therefore, the numerical limit range is 90% or more.

(4)飽和磁化について
飽和磁化は、強磁性体内の全ての磁気モーメントが磁場方向に揃ったときの磁化である。ここでは、0Oeから55000Oeまでの磁化を測定し、最大となる磁化を試験片の体積で除した体積磁化を飽和磁化とする。飽和磁化の低下は、Fe析出物のうち強磁性のα−Feの体積率の減少と対応していると考えられる。飽和磁化が小さいほど伝送特性に与える影響が小さくなるため、数値限定の範囲を前述のように規定した。
(4) Saturation magnetization Saturation magnetization is the magnetization when all the magnetic moments in the ferromagnetic body are aligned in the direction of the magnetic field. Here, the magnetization from 0 Oe to 55000 Oe is measured, and the volume magnetization obtained by dividing the maximum magnetization by the volume of the test piece is defined as saturation magnetization. The decrease in saturation magnetization is considered to correspond to the decrease in the volume fraction of ferromagnetic α-Fe in the Fe precipitate. The smaller the saturation magnetization, the smaller the influence on the transmission characteristics. Therefore, the numerical range is defined as described above.

この電気・電子部品用銅基合金は、2.1mass%以上2.6mass%以下のFe、0.015mass%以上0.15mass%以下のP、0.05mass%以上0.2mass%以下のZnを含有し、残部がCuと不可避的不純物からなる鋳塊に、熱間圧延、第1の冷間圧延、第1の熱処理、第2の冷間圧延、第2の熱処理、第3の冷間圧延、及び第3の熱処理を順次施して製造される。   This copper-based alloy for electrical / electronic parts contains 2.1 mass% or more and 2.6 mass% or less Fe, 0.015 mass% or more and 0.15 mass% or less P, 0.05 mass% or more and 0.2 mass% or less Zn. Contained in the ingot consisting of Cu and inevitable impurities, hot rolling, first cold rolling, first heat treatment, second cold rolling, second heat treatment, third cold rolling , And a third heat treatment in sequence.

このとき、第2の熱処理は、1℃/分で所望の温度まで昇温すると共に1℃/分で所望の温度まで降温して行われ、第3の冷間圧延は、加工度を70%以上80%以下として行われる。これにより、前述した特性を満足する電気・電子部品用銅基合金が得られる。   At this time, the second heat treatment is performed by raising the temperature to a desired temperature at 1 ° C./min and lowering the temperature to the desired temperature at 1 ° C./min, and the third cold rolling has a workability of 70%. More than 80% is performed. As a result, a copper-based alloy for electric / electronic parts that satisfies the above-described characteristics can be obtained.

以上説明したように、本発明によれば、α−Feの磁性に着目し、電気・電子部品用銅基合金の飽和磁化を評価することで、耐熱性の関係を明らかにし、これによって、C1940のESH質別の規格特性を満たし、耐熱性を維持しつつ、より磁性の低い電気・電子部品用銅基合金及びその製造方法を提供することができる。   As described above, according to the present invention, the relationship between the heat resistance is clarified by paying attention to the magnetism of α-Fe and evaluating the saturation magnetization of the copper-based alloy for electric / electronic parts. It is possible to provide a copper-based alloy for electric / electronic parts having a lower magnetic property and a method for producing the same while satisfying the standard characteristics of each ESH quality and maintaining heat resistance.

次に、本発明の実施例を説明する。   Next, examples of the present invention will be described.

(実施例1)
先ず、2.2mass%のFe、0.02mass%のP、0.1mass%のZnを含有し、残部がCuと不可避的不純物とからなる銅基合金を高周波誘導加熱型溶解炉で溶解・鋳造し、幅が450mm、厚さが200mm、長さが6000mmの直方体形状の鋳塊を作製した。この鋳塊を950℃の温度で保持した後、厚さが12mmになるまで熱間圧延を実施した。そして、この銅基合金を幅が20mm、厚さが12mm、長さが300mmとなるように切り分けた後、その表面を片面2mm程度研削した。次いで、この銅基合金板の厚さが2.0mmになるまで第1の冷間圧延を実施した。その後、この銅基合金板を750℃の塩浴に60秒浸漬させて第1の熱処理としてひずみ取り焼鈍を実施した。第1の熱処理後は、表面酸化膜等を研削し、厚さが0.75mmになるまで第2の冷間圧延を実施した。更に、第2の冷間圧延を実施した銅基合金板をコイル状に巻き、窒素雰囲気中のバッチ式炉で第2の熱処理として時効熱処理を実施した。第2の熱処理では、1℃/分で450℃まで昇温し、この温度で15時間保持した。保持した後は、1℃/分の冷却速度で100℃まで冷却し、100℃でバッチ式炉から取り出して室温まで冷却した。その後、冷却した銅基合金板を厚さが0.15mmになるまで加工度を80%として第3の冷間圧延を実施した。最後に、第3の熱処理として400℃の塩浴に1分浸漬させた。
Example 1
First, a copper-base alloy containing 2.2 mass% Fe, 0.02 mass% P, 0.1 mass% Zn, and the balance of Cu and inevitable impurities is melted and cast in a high frequency induction heating type melting furnace. Then, a rectangular ingot having a width of 450 mm, a thickness of 200 mm, and a length of 6000 mm was produced. After this ingot was kept at a temperature of 950 ° C., hot rolling was performed until the thickness became 12 mm. The copper base alloy was cut so that the width was 20 mm, the thickness was 12 mm, and the length was 300 mm, and then the surface was ground by about 2 mm on one side. Next, first cold rolling was performed until the thickness of the copper-based alloy plate reached 2.0 mm. Thereafter, the copper-based alloy plate was immersed in a salt bath at 750 ° C. for 60 seconds, and strain relief annealing was performed as a first heat treatment. After the first heat treatment, the surface oxide film or the like was ground and the second cold rolling was performed until the thickness became 0.75 mm. Further, the copper base alloy plate subjected to the second cold rolling was wound in a coil shape, and an aging heat treatment was carried out as a second heat treatment in a batch furnace in a nitrogen atmosphere. In the second heat treatment, the temperature was raised to 450 ° C. at 1 ° C./min and held at this temperature for 15 hours. After being held, it was cooled to 100 ° C. at a cooling rate of 1 ° C./min, taken out from the batch furnace at 100 ° C., and cooled to room temperature. Thereafter, a third cold rolling was carried out at a working degree of 80% until the thickness of the cooled copper-based alloy plate became 0.15 mm. Finally, as a third heat treatment, it was immersed in a salt bath at 400 ° C. for 1 minute.

以上の工程を経て得られた銅基合金条の引張強さ、ビッカース硬さ、導電率、450℃で5分間加熱する耐熱性試験後における硬さ残存率を評価した。引張強さは、5号試験片を用いてJISZ2241:2011に準拠して評価した。導電率は、前述の通り電気抵抗から換算した。このとき、電気抵抗は、端子間距離を200mmとして、4端子法を用いて電圧−電流特性(VI特性)を測定し、この傾きを測定値とした。ビッカース硬さは、圧延方向と垂直な面からJISZ2244:2009に準拠して評価した。このとき、試験力は100kgf、試験力の保持時間は10秒とした。硬さ残存率は、450℃に加熱した塩浴に供試材を5分間浸漬させた後、直ちに水冷した試験片について、ビッカース硬さを前述したのと同様にして評価し、これと前述したビッカース硬さとを用いて算出した。また、飽和磁化は、SQUID(QUANTUM DESIGN社製)を用いて0Oeから55000Oeまで2000Oe毎に磁化を測定し、この中の最大値を試験片の体積で除した値とした。測定温度は300K、試験片のサイズは直径が約2.6mm、厚みが0.15mmとした。最大透磁率は、体積磁化と磁場とから磁束密度を算出し、磁束密度から磁場を除した値の中で最大の値とした。   The tensile strength, Vickers hardness, electrical conductivity, and hardness remaining rate after a heat resistance test heated at 450 ° C. for 5 minutes were evaluated. The tensile strength was evaluated based on JISZ2241: 2011 using a No. 5 test piece. The conductivity was converted from the electrical resistance as described above. At this time, the electrical resistance was measured by measuring the voltage-current characteristic (VI characteristic) using a four-terminal method with a distance between terminals of 200 mm, and using this slope as a measured value. Vickers hardness was evaluated according to JISZ2244: 2009 from a plane perpendicular to the rolling direction. At this time, the test force was 100 kgf, and the test force holding time was 10 seconds. The hardness residual rate was evaluated in the same manner as described above for the Vickers hardness of the test piece immediately immersed in a salt bath heated to 450 ° C. for 5 minutes and then immediately water-cooled. It calculated using Vickers hardness. Further, the saturation magnetization was measured by measuring the magnetization every 2000 Oe from 0 Oe to 55000 Oe using SQUID (manufactured by QUANTUM DESIGN), and the value obtained by dividing the maximum value by the volume of the test piece. The measurement temperature was 300 K, the test piece size was about 2.6 mm in diameter, and the thickness was 0.15 mm. The maximum magnetic permeability was calculated by calculating the magnetic flux density from the volume magnetization and the magnetic field, and taking the maximum value among the values obtained by dividing the magnetic field from the magnetic flux density.

この銅基合金条の引張強さは548MPa、ビッカース硬さは157Hv、導電率は60%IACS、硬さ残存率は94%であり、C1940のESH質別の規格特性及び耐熱性を満足していた。また、飽和磁化は26.6emu/cm3であった。これは、後述する従来例に比べて低い値である。更に、最大透磁率は1.046であった。図1に実施例1における磁化測定結果を示す。 This copper-based alloy strip has a tensile strength of 548 MPa, a Vickers hardness of 157 Hv, an electrical conductivity of 60% IACS, and a hardness residual rate of 94%, which satisfies the standard characteristics and heat resistance of C1940 according to ESH quality. It was. The saturation magnetization was 26.6 emu / cm 3 . This is a lower value than the conventional example described later. Furthermore, the maximum magnetic permeability was 1.046. FIG. 1 shows the result of magnetization measurement in Example 1.

(実施例2)
先ず、2.2mass%のFe、0.02mass%のP、0.1mass%のZnを含有し、残部がCuと不可避的不純物とからなる銅基合金を高周波誘導加熱型溶解炉で溶解・鋳造し、幅が450mm、厚さが200mm、長さが6000mmの直方体形状の鋳塊を作製した。この鋳塊を950℃の温度で保持した後、厚さが12mmになるまで熱間圧延を実施した。そして、この銅基合金を幅が20mm、厚さが12mm、長さが300mmとなるように切り分けた後、その表面を片面2mm程度研削した。次いで、この銅基合金板の厚さが2.0mmになるまで第1の冷間圧延を実施した。その後、この銅基合金板を750℃の塩浴に60秒浸漬させて第1の熱処理としてひずみ取り焼鈍を実施した。第1の熱処理後は、表面酸化膜等を研削し、厚さが0.5mmになるまで第2の冷間圧延を実施した。更に、第2の冷間圧延を実施した銅基合金板をコイル状に巻き、窒素雰囲気中のバッチ式炉で第2の熱処理として時効熱処理を実施した。第2の熱処理では、1℃/分で450℃まで昇温し、この温度で15時間保持した。保持した後は、1℃/分の冷却速度で100℃まで冷却し、100℃でバッチ式炉から取り出して室温まで冷却した。その後、冷却した銅基合金板を厚さが0.15mmになるまで加工度を70%として第3の冷間圧延を実施した。最後に、第3の熱処理として400℃の塩浴に1分浸漬させた。
(Example 2)
First, a copper-base alloy containing 2.2 mass% Fe, 0.02 mass% P, 0.1 mass% Zn, and the balance of Cu and inevitable impurities is melted and cast in a high frequency induction heating type melting furnace. Then, a rectangular ingot having a width of 450 mm, a thickness of 200 mm, and a length of 6000 mm was produced. After this ingot was kept at a temperature of 950 ° C., hot rolling was performed until the thickness became 12 mm. The copper base alloy was cut so that the width was 20 mm, the thickness was 12 mm, and the length was 300 mm, and then the surface was ground by about 2 mm on one side. Next, first cold rolling was performed until the thickness of the copper-based alloy plate reached 2.0 mm. Thereafter, the copper-based alloy plate was immersed in a salt bath at 750 ° C. for 60 seconds, and strain relief annealing was performed as a first heat treatment. After the first heat treatment, the surface oxide film or the like was ground, and the second cold rolling was performed until the thickness became 0.5 mm. Further, the copper base alloy plate subjected to the second cold rolling was wound in a coil shape, and an aging heat treatment was carried out as a second heat treatment in a batch furnace in a nitrogen atmosphere. In the second heat treatment, the temperature was raised to 450 ° C. at 1 ° C./min and held at this temperature for 15 hours. After being held, it was cooled to 100 ° C. at a cooling rate of 1 ° C./min, taken out from the batch furnace at 100 ° C., and cooled to room temperature. After that, the third cold rolling was carried out at a workability of 70% until the thickness of the cooled copper-based alloy plate became 0.15 mm. Finally, as a third heat treatment, it was immersed in a salt bath at 400 ° C. for 1 minute.

この銅基合金条の引張強さは546MPa、ビッカース硬さは161Hv、導電率は62%IACS、硬さ残存率は96%であり、C1940のESH質別の規格特性及び耐熱性を満足していた。また、飽和磁化は28.2emu/cm3であった。これは、後述する従来例に比べて低い値である。更に、最大透磁率は1.055であった。 This copper-based alloy strip has a tensile strength of 546 MPa, a Vickers hardness of 161 Hv, an electrical conductivity of 62% IACS, a residual hardness of 96%, and satisfies the standard characteristics and heat resistance of C1940 according to ESH quality. It was. The saturation magnetization was 28.2 emu / cm 3 . This is a lower value than the conventional example described later. Furthermore, the maximum magnetic permeability was 1.055.

(従来例)
先ず、2.2mass%のFe、0.03mass%のP、0.1mass%のZnを含有し、残部がCuと不可避的不純物とからなる銅基合金を高周波誘導加熱型溶解炉で溶解・鋳造し、幅が450mm、厚さが200mm、長さが6000mmの直方体形状の鋳塊を作製した。この鋳塊を950℃の温度で保持した後、厚さが12mmになるまで熱間圧延を実施した。そして、その表面及び裏面をそれぞれ1mm研削した。次いで、この銅基合金板の厚さが2.5mmになるまで第1の冷間圧延を実施した。その後、連続焼鈍炉において2.5m/分の速度で雰囲気温度930℃の加熱帯を通過させて材料の最高温度を925℃とし、続いて冷却帯及び水冷プールを通過させて急冷する第1の熱処理を実施した。このとき、900℃以上での保持時間は1分であった。第1の熱処理後は、表面酸化膜等を研削し、厚さが0.75mmになるまで第2の冷間圧延を実施した。更に、第2の熱処理として、窒素雰囲気にした電気炉中で600℃の温度で2時間加熱し、冷却速度を5℃/分として450℃まで降温し、この温度で2時間加熱し、冷却速度を5℃/分として室温まで降温した。その後、電気炉から取り出した銅基合金板を厚さが0.15mmになるまで加工度を80%として第3の冷間圧延を実施した。最後に、第3の熱処理として、50m/分の速度で雰囲気温度が460℃の加熱帯を通過させた。
(Conventional example)
First, a copper-based alloy containing 2.2 mass% Fe, 0.03 mass% P, 0.1 mass% Zn, and the balance consisting of Cu and inevitable impurities is melted and cast in a high frequency induction heating type melting furnace. Then, a rectangular ingot having a width of 450 mm, a thickness of 200 mm, and a length of 6000 mm was produced. After this ingot was kept at a temperature of 950 ° C., hot rolling was performed until the thickness became 12 mm. And the surface and the back surface were each ground by 1 mm. Next, the first cold rolling was performed until the thickness of the copper-based alloy plate became 2.5 mm. Thereafter, in the continuous annealing furnace, the material is passed through a heating zone having an atmospheric temperature of 930 ° C. at a speed of 2.5 m / min to set the maximum temperature of the material to 925 ° C., and then passed through the cooling zone and the water-cooled pool to be rapidly cooled. A heat treatment was performed. At this time, the holding time at 900 ° C. or higher was 1 minute. After the first heat treatment, the surface oxide film or the like was ground and the second cold rolling was performed until the thickness became 0.75 mm. Further, as a second heat treatment, heating was performed at a temperature of 600 ° C. for 2 hours in an electric furnace in a nitrogen atmosphere, the temperature was lowered to 450 ° C. at a cooling rate of 5 ° C./min, and heating was performed at this temperature for 2 hours. Was lowered to room temperature at 5 ° C./min. Thereafter, the third cold rolling was carried out at a working degree of 80% until the thickness of the copper-based alloy plate taken out from the electric furnace became 0.15 mm. Finally, as a third heat treatment, a heating zone having an ambient temperature of 460 ° C. was passed at a speed of 50 m / min.

この銅基合金条の引張強さは546MPa、ビッカース硬さは166Hv、導電率は62%IACS、硬さ残存率は95%であり、C1940のESH質別の規格特性及び耐熱性を満足していた。しかし、飽和磁化は31.1emu/cm3であり、最大透磁率は1.061であった。 This copper-based alloy strip has a tensile strength of 546 MPa, a Vickers hardness of 166 Hv, an electrical conductivity of 62% IACS, and a hardness residual rate of 95%, satisfying the standard characteristics and heat resistance of C1940 by ESH quality. It was. However, the saturation magnetization was 31.1 emu / cm 3 and the maximum magnetic permeability was 1.061.

(比較例1)
先ず、2.2mass%のFe、0.03mass%のP、0.1mass%のZnを含有し、残部がCuと不可避的不純物とからなる銅基合金を高周波誘導加熱型溶解炉で溶解・鋳造し、幅が450mm、厚さが200mm、長さが6000mmの直方体形状の鋳塊を作製した。この鋳塊を950℃の温度で保持した後、厚さが12mmになるまで熱間圧延を実施した。そして、その表面及び裏面をそれぞれ1mm研削した。次いで、この銅基合金板の厚さが2.5mmになるまで第1の冷間圧延を実施した。その後、連続焼鈍炉において2.5m/分の速度で雰囲気温度930℃の加熱帯を通過させて材料の最高温度を925℃とし、続いて冷却帯及び水冷プールを通過させて急冷する第1の熱処理を実施した。このとき、900℃以上での保持時間は1分であった。第1の熱処理後は、表面酸化膜等を研削し、厚さが0.5mmになるまで第2の冷間圧延を実施した。更に、第2の熱処理として、窒素雰囲気にした電気炉中で600℃の温度で2時間加熱し、冷却速度を5℃/分として450℃まで降温し、この温度で2時間加熱し、冷却速度を5℃/分として室温まで降温した。その後、電気炉から取り出した銅基合金板を厚さが0.15mmになるまで加工度を70%として第3の冷間圧延を実施した。最後に、第3の熱処理として、50m/分の速度で雰囲気温度が460℃の加熱帯を通過させた。
(Comparative Example 1)
First, a copper-based alloy containing 2.2 mass% Fe, 0.03 mass% P, 0.1 mass% Zn, and the balance consisting of Cu and inevitable impurities is melted and cast in a high frequency induction heating type melting furnace. Then, a rectangular ingot having a width of 450 mm, a thickness of 200 mm, and a length of 6000 mm was produced. After this ingot was kept at a temperature of 950 ° C., hot rolling was performed until the thickness became 12 mm. And the surface and the back surface were each ground by 1 mm. Next, the first cold rolling was performed until the thickness of the copper-based alloy plate became 2.5 mm. Thereafter, in the continuous annealing furnace, the material is passed through a heating zone having an atmospheric temperature of 930 ° C. at a speed of 2.5 m / min to set the maximum temperature of the material to 925 ° C., and then passed through the cooling zone and the water-cooled pool to be rapidly cooled. A heat treatment was performed. At this time, the holding time at 900 ° C. or higher was 1 minute. After the first heat treatment, the surface oxide film or the like was ground, and the second cold rolling was performed until the thickness became 0.5 mm. Further, as a second heat treatment, heating was performed at a temperature of 600 ° C. for 2 hours in an electric furnace in a nitrogen atmosphere, the temperature was lowered to 450 ° C. at a cooling rate of 5 ° C./min, and heating was performed at this temperature for 2 hours. Was lowered to room temperature at 5 ° C./min. Thereafter, the third cold rolling was carried out at a workability of 70% until the thickness of the copper-based alloy plate taken out from the electric furnace reached 0.15 mm. Finally, as a third heat treatment, a heating zone having an ambient temperature of 460 ° C. was passed at a speed of 50 m / min.

この銅基合金条の引張強さは515MPa、ビッカース硬さは159Hv、導電率は63%IACS、硬さ残存率は97%であり、C1940のESH質別の規格特性及び耐熱性を満足していた。しかし、飽和磁化は31.7emu/cm3であり、最大透磁率は1.062であった。 This copper-based alloy strip has a tensile strength of 515 MPa, a Vickers hardness of 159 Hv, an electrical conductivity of 63% IACS, and a hardness residual rate of 97%, which satisfies the standard characteristics and heat resistance of C1940 according to ESH quality. It was. However, the saturation magnetization was 31.7 emu / cm 3 and the maximum permeability was 1.062.

(比較例2)
先ず、2.2mass%のFe、0.03mass%のP、0.1mass%のZnを含有し、残部がCuと不可避的不純物とからなる銅基合金を高周波誘導加熱型溶解炉で溶解・鋳造し、幅が450mm、厚さが200mm、長さが6000mmの直方体形状の鋳塊を作製した。この鋳塊を950℃の温度で保持した後、厚さが12mmになるまで熱間圧延を実施した。そして、その表面及び裏面をそれぞれ1mm研削した。次いで、この銅基合金板の厚さが2.5mmになるまで第1の冷間圧延を実施した。その後、連続焼鈍炉において2.5m/分の速度で雰囲気温度930℃の加熱帯を通過させて材料の最高温度を925℃とし、続いて冷却帯及び水冷プールを通過させて急冷する第1の熱処理を実施した。このとき、900℃以上での保持時間は1分であった。第1の熱処理後は、表面酸化膜等を研削し、厚さが1.5mmになるまで第2の冷間圧延を実施した。更に、第2の熱処理として、窒素雰囲気にした電気炉中で600℃の温度で2時間加熱し、冷却速度を5℃/分として450℃まで降温し、この温度で2時間加熱し、冷却速度を5℃/分として室温まで降温した。その後、電気炉から取り出した銅基合金板を厚さが0.15mmになるまで加工度を90%として第3の冷間圧延を実施した。最後に、第3の熱処理として、50m/分の速度で雰囲気温度が460℃の加熱帯を通過させた。
(Comparative Example 2)
First, a copper-based alloy containing 2.2 mass% Fe, 0.03 mass% P, 0.1 mass% Zn, and the balance consisting of Cu and inevitable impurities is melted and cast in a high frequency induction heating type melting furnace. Then, a rectangular ingot having a width of 450 mm, a thickness of 200 mm, and a length of 6000 mm was produced. After this ingot was kept at a temperature of 950 ° C., hot rolling was performed until the thickness became 12 mm. And the surface and the back surface were each ground by 1 mm. Next, the first cold rolling was performed until the thickness of the copper-based alloy plate became 2.5 mm. Thereafter, in the continuous annealing furnace, the material is passed through a heating zone having an atmospheric temperature of 930 ° C. at a speed of 2.5 m / min to set the maximum temperature of the material to 925 ° C., and then passed through the cooling zone and the water-cooled pool to be rapidly cooled. A heat treatment was performed. At this time, the holding time at 900 ° C. or higher was 1 minute. After the first heat treatment, the surface oxide film or the like was ground, and second cold rolling was performed until the thickness became 1.5 mm. Further, as a second heat treatment, heating was performed at a temperature of 600 ° C. for 2 hours in an electric furnace in a nitrogen atmosphere, the temperature was lowered to 450 ° C. at a cooling rate of 5 ° C./min, and heating was performed at this temperature for 2 hours. Was lowered to room temperature at 5 ° C./min. Thereafter, the third cold rolling was carried out at a workability of 90% until the thickness of the copper-based alloy plate taken out from the electric furnace reached 0.15 mm. Finally, as a third heat treatment, a heating zone having an ambient temperature of 460 ° C. was passed at a speed of 50 m / min.

この銅基合金条の引張強さは561MPa、ビッカース硬さは170Hv、導電率は55%IACS、硬さ残存率は83%であり、C1940のESH質別の規格特性及び耐熱性を満足しなかった。また、飽和磁化は30.2emu/cm3であり、最大透磁率は1.053であった。 This copper-based alloy strip has a tensile strength of 561 MPa, a Vickers hardness of 170 Hv, an electrical conductivity of 55% IACS, and a hardness residual rate of 83%, and does not satisfy the standard characteristics and heat resistance of C1940 by ESH quality. It was. The saturation magnetization was 30.2 emu / cm 3 and the maximum magnetic permeability was 1.053.

(比較例3)
先ず、2.2mass%のFe、0.02mass%のP、0.1mass%のZnを含有し、残部がCuと不可避的不純物とからなる銅基合金を高周波誘導加熱型溶解炉で溶解・鋳造し、幅が450mm、厚さが200mm、長さが6000mmの直方体形状の鋳塊を作製した。この鋳塊を950℃の温度で保持した後、厚さが12mmになるまで熱間圧延を実施した。そして、この銅基合金を幅が20mm、厚さが12mm、長さが300mmとなるように切り分けた後、その表面を片面2mm程度研削した。次いで、この銅基合金板の厚さが2.0mmになるまで第1の冷間圧延を実施した。その後、この銅基合金板を750℃の塩浴に60秒浸漬させて第1の熱処理としてひずみ取り焼鈍を実施した。第1の熱処理後は、表面酸化膜等を研削し、厚さが1.5mmになるまで第2の冷間圧延を実施した。更に、第2の冷間圧延を実施した銅基合金板をコイル状に巻き、窒素雰囲気中のバッチ式炉で第2の熱処理として時効熱処理を実施した。第2の熱処理では、1℃/分で450℃まで昇温し、この温度で15時間保持した。保持した後は、1℃/分の冷却速度で100℃まで冷却し、100℃でバッチ式炉から取り出して室温まで冷却した。その後、冷却した銅基合金板を厚さが0.15mmになるまで加工度を90%として第3の冷間圧延を実施した。最後に、第3の熱処理として400℃の塩浴に1分浸漬させた。
(Comparative Example 3)
First, a copper-base alloy containing 2.2 mass% Fe, 0.02 mass% P, 0.1 mass% Zn, and the balance of Cu and inevitable impurities is melted and cast in a high frequency induction heating type melting furnace. Then, a rectangular ingot having a width of 450 mm, a thickness of 200 mm, and a length of 6000 mm was produced. After this ingot was kept at a temperature of 950 ° C., hot rolling was performed until the thickness became 12 mm. The copper base alloy was cut so that the width was 20 mm, the thickness was 12 mm, and the length was 300 mm, and then the surface was ground by about 2 mm on one side. Next, first cold rolling was performed until the thickness of the copper-based alloy plate reached 2.0 mm. Thereafter, the copper-based alloy plate was immersed in a salt bath at 750 ° C. for 60 seconds, and strain relief annealing was performed as a first heat treatment. After the first heat treatment, the surface oxide film or the like was ground, and second cold rolling was performed until the thickness became 1.5 mm. Further, the copper base alloy plate subjected to the second cold rolling was wound in a coil shape, and an aging heat treatment was carried out as a second heat treatment in a batch furnace in a nitrogen atmosphere. In the second heat treatment, the temperature was raised to 450 ° C. at 1 ° C./min and held at this temperature for 15 hours. After being held, it was cooled to 100 ° C. at a cooling rate of 1 ° C./min, taken out from the batch furnace at 100 ° C., and cooled to room temperature. Thereafter, a third cold rolling was carried out at a working degree of 90% until the thickness of the cooled copper-based alloy plate became 0.15 mm. Finally, as a third heat treatment, it was immersed in a salt bath at 400 ° C. for 1 minute.

この銅基合金条の引張強さは565MPa、ビッカース硬さは168Hv、導電率は50%IACS、硬さ残存率は83%、飽和磁化は25.7emu/cm3であった。従来例に比べて飽和磁化が低いが、耐熱性が劣っている。耐熱性の低下は、第3の冷間圧延における加工度を90%にしたことで、軟化の駆動力(電気・電子部品用銅基合金に蓄積したひずみによる)をFe析出物が抑制できなくなったためであると考えられる。更に、最大透磁率は1.041であった。 The copper-based alloy strip had a tensile strength of 565 MPa, a Vickers hardness of 168 Hv, an electrical conductivity of 50% IACS, a hardness residual ratio of 83%, and a saturation magnetization of 25.7 emu / cm 3 . Although the saturation magnetization is lower than that of the conventional example, the heat resistance is inferior. The decrease in heat resistance is due to the fact that the workability in the third cold rolling is set to 90%, which makes it impossible for the Fe precipitate to suppress the softening driving force (due to the strain accumulated in the copper-based alloy for electrical and electronic parts). This is probably because Furthermore, the maximum magnetic permeability was 1.041.

本実施例では、実施例1及び2、従来例、比較例1〜3はそれぞれ第3の冷間圧延における加工度を変えている。これらの耐熱性としての硬さ残存率と飽和磁化の関係を図2に示す。図2から分かるように、硬さ残存率が大きくなるほど耐熱性が向上し、飽和磁化が小さいほど磁性が低くなる。いずれも第3の冷間圧延における加工度の増加と共に耐熱性及び飽和磁化は低下しているが、実施例1及び2や比較例3は従来例や比較例1及び2と比較して、同じ加工度における飽和磁化が小さく、α−Feが少ないと考えられる。   In this example, Examples 1 and 2, the conventional example, and Comparative Examples 1 to 3 each change the degree of work in the third cold rolling. FIG. 2 shows the relationship between the hardness residual ratio and saturation magnetization as heat resistance. As can be seen from FIG. 2, the heat resistance improves as the hardness residual ratio increases, and the magnetism decreases as the saturation magnetization decreases. In both cases, the heat resistance and the saturation magnetization are reduced with the increase in the degree of work in the third cold rolling, but Examples 1 and 2 and Comparative Example 3 are the same as the conventional examples and Comparative Examples 1 and 2. It is considered that the saturation magnetization at the degree of processing is small and α-Fe is small.

γ−Feからα−Feへの変態は、析出物のサイズが大きいものほど低い加工度で変態することが報告されている(例えば、非特許文献2参照)。飽和磁化を小さくすることができた実施例1では、それ以外の従来例等とはFeを析出させる第2の熱処理の条件が異なり、これによって適正なサイズのFe析出物を増加させることができ、γ−Feからα−Feへの変態が抑えられたと考えられる。   As for the transformation from γ-Fe to α-Fe, it is reported that the larger the size of the precipitate, the lower the degree of processing (for example, see Non-Patent Document 2). In Example 1 in which the saturation magnetization can be reduced, the conditions of the second heat treatment for precipitating Fe are different from those of other conventional examples, and this makes it possible to increase Fe precipitates of an appropriate size. It is considered that the transformation from γ-Fe to α-Fe was suppressed.

なお、図2では従来例、比較例1及び2、実施例1及び2、比較例3の全てにおいて第3の冷間圧延における加工度と共に飽和磁化が減少している。これは加工によって微細な析出物が再固溶しているためと考えられる。そのため、実際に導電率も低下している。   In FIG. 2, in all of the conventional example, comparative examples 1 and 2, examples 1 and 2, and comparative example 3, the saturation magnetization decreases with the degree of work in the third cold rolling. This is presumably because fine precipitates are re-dissolved by processing. Therefore, the electrical conductivity actually decreases.

以上の通り、本発明によれば、C1940のESH質別の規格特性を満たし、耐熱性を維持しつつ、より磁性の低い電気・電子部品用銅基合金及びその製造方法を提供できることが実証された。   As described above, according to the present invention, it has been demonstrated that a copper-based alloy for electric and electronic parts with lower magnetic properties and a method for producing the same can be provided while satisfying the standard characteristics of C1940 according to ESH quality and maintaining heat resistance. It was.

なお、本実施例では、第1の熱処理を750℃の塩浴に60秒浸漬させることにより行ったが、実態温度とその温度を保持する時間が等価であれば、他の方法を用いても構わない。   In this example, the first heat treatment was performed by immersing in a salt bath at 750 ° C. for 60 seconds, but other methods can be used as long as the actual temperature and the time for holding the temperature are equivalent. I do not care.

Claims (5)

2.1mass%以上2.6mass%以下のFe、0.015mass%以上0.15mass%以下のP、0.05mass%以上0.2mass%以下のZnを含有し、残部がCuと不可避的不純物とからなり、引張強さが505MPa以上590MPa以下、ビッカース硬さが145Hv以上170Hv以下、導電率が60%IACS以上、最大透磁率が1.045以上1.060以下であることを特徴とする電気・電子部品用銅基合金。   Fe containing 2.1 mass% or more and 2.6 mass% or less, Fe containing 0.015 mass% or more and 0.15 mass% or less, Zn containing 0.05 mass% or more and 0.2 mass% or less, with the balance being Cu and inevitable impurities The tensile strength is 505 MPa to 590 MPa, the Vickers hardness is 145 Hv to 170 Hv, the conductivity is 60% IACS or more, and the maximum permeability is 1.045 to 1.060. Copper base alloy for electronic parts. 飽和磁化が26.5emu/cm3以上30.5emu/cm3以下である請求項1に記載の電気・電子部品用銅基合金。 The copper-based alloy for electrical / electronic parts according to claim 1, wherein the saturation magnetization is 26.5 emu / cm 3 or more and 30.5 emu / cm 3 or less. 450℃で5分間加熱する耐熱性試験後における硬さ残存率が90%以上である請求項1又は2に記載の電気・電子部品用銅基合金。   The copper-based alloy for electrical / electronic parts according to claim 1 or 2, wherein the residual hardness rate after a heat resistance test heated at 450 ° C for 5 minutes is 90% or more. 2.1mass%以上2.6mass%以下のFe、0.015mass%以上0.15mass%以下のP、0.05mass%以上0.2mass%以下のZnを含有し、残部がCuと不可避的不純物からなる鋳塊に、熱間圧延、第1の冷間圧延、第1の熱処理、第2の冷間圧延、第2の熱処理、第3の冷間圧延、及び第3の熱処理を順次施して製造された電気・電子部品用銅基合金において、
前記第2の熱処理は、1℃/分で所望の温度まで昇温すると共に1℃/分で所望の温度まで降温して行われ、前記第3の冷間圧延は、加工度を70%以上80%以下として行われることを特徴とする電気・電子部品用銅基合金。
Fe containing 2.1 mass% or more and 2.6 mass% or less of Fe, 0.015 mass% or more and 0.15 mass% or less of P, 0.05 mass% or more and 0.2 mass% or less of Zn, and the balance from Cu and inevitable impurities Manufactured by sequentially performing hot rolling, first cold rolling, first heat treatment, second cold rolling, second heat treatment, third cold rolling, and third heat treatment on the ingot In the copper-based alloy for electrical and electronic parts,
The second heat treatment is performed by raising the temperature to a desired temperature at 1 ° C./min and lowering the temperature to a desired temperature at 1 ° C./min, and the third cold rolling has a workability of 70% or more. A copper-based alloy for electrical and electronic parts, characterized in that it is performed as 80% or less.
2.1mass%以上2.6mass%以下のFe、0.015mass%以上0.15mass%以下のP、0.05mass%以上0.2mass%以下のZnを含有し、残部がCuと不可避的不純物からなる鋳塊に、熱間圧延、第1の冷間圧延、第1の熱処理、第2の冷間圧延、第2の熱処理、第3の冷間圧延、及び第3の熱処理を順次施す電気・電子部品用銅基合金の製造方法において、
前記第2の熱処理は、1℃/分で所望の温度まで昇温すると共に1℃/分で所望の温度まで降温して行い、前記第3の冷間圧延は、加工度を70%以上80%以下として行うことを特徴とする電気・電子部品用銅基合金の製造方法。
Fe containing 2.1 mass% or more and 2.6 mass% or less of Fe, 0.015 mass% or more and 0.15 mass% or less of P, 0.05 mass% or more and 0.2 mass% or less of Zn, and the balance from Cu and inevitable impurities The ingot is sequentially subjected to hot rolling, first cold rolling, first heat treatment, second cold rolling, second heat treatment, third cold rolling, and third heat treatment. In the method for producing a copper base alloy for electronic parts,
The second heat treatment is performed by raising the temperature to a desired temperature at 1 ° C./min and lowering the temperature to a desired temperature at 1 ° C./min, and the third cold rolling has a workability of 70% to 80%. % Or less, the manufacturing method of the copper base alloy for electrical / electronic components characterized by the above-mentioned.
JP2012197271A 2012-09-07 2012-09-07 Copper base alloy for electrical and electronic parts and its manufacturing method Pending JP2014051708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012197271A JP2014051708A (en) 2012-09-07 2012-09-07 Copper base alloy for electrical and electronic parts and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012197271A JP2014051708A (en) 2012-09-07 2012-09-07 Copper base alloy for electrical and electronic parts and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2014051708A true JP2014051708A (en) 2014-03-20

Family

ID=50610446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012197271A Pending JP2014051708A (en) 2012-09-07 2012-09-07 Copper base alloy for electrical and electronic parts and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2014051708A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111647761A (en) * 2020-04-24 2020-09-11 太原晋西春雷铜业有限公司 Preparation method for overcoming rust defect of frame material C19400 product
CN113365415A (en) * 2020-03-05 2021-09-07 日本梅克特隆株式会社 Printed wiring board and method for manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113365415A (en) * 2020-03-05 2021-09-07 日本梅克特隆株式会社 Printed wiring board and method for manufacturing the same
JP2021141206A (en) * 2020-03-05 2021-09-16 日本メクトロン株式会社 Printed wiring board and manufacturing method thereof
US11219123B2 (en) 2020-03-05 2022-01-04 Nippon Mektron, Ltd. Printed circuit board and method for manufacturing same
CN111647761A (en) * 2020-04-24 2020-09-11 太原晋西春雷铜业有限公司 Preparation method for overcoming rust defect of frame material C19400 product

Similar Documents

Publication Publication Date Title
JP5312920B2 (en) Copper alloy plate or strip for electronic materials
JP5140045B2 (en) Cu-Ni-Si alloy plate or strip for electronic materials
JP2011214088A (en) Cu-Ni-Si-Co COPPER ALLOY FOR ELECTRONIC MATERIAL AND PROCESS FOR PRODUCING SAME
JP2012126934A (en) Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL, AND METHOD FOR PRODUCING THE SAME
JP6366298B2 (en) High-strength copper alloy sheet material and manufacturing method thereof
TWI695075B (en) Copper alloy material and its manufacturing method
TWI429768B (en) Cu-Co-Si based copper alloy for electronic materials and method for producing the same
JP6128976B2 (en) Copper alloy and high current connector terminal material
JP2010007174A (en) Cu-Ni-Si-BASED ALLOY PLATE OR BAR FOR ELECTRONIC MATERIAL
JP4887851B2 (en) Ni-Sn-P copper alloy
TWI471428B (en) Conductive and stress relief characteristics of excellent copper alloy plate
TW201502291A (en) Copper alloy sheet having outstanding electro-conductivity and stress release characteristics
JP2017179502A (en) Copper alloy sheet excellent in strength and conductivity
CN113897558B (en) High-saturation-magnetic-induction high-permeability iron-based soft magnetic material and preparation method thereof
JP2013104068A (en) Cu-Ni-Si-Co-BASED COPPER ALLOY FOR ELECTRONIC MATERIAL
JP2014051708A (en) Copper base alloy for electrical and electronic parts and its manufacturing method
JP2014029016A (en) Copper alloy sheet excellent in conductivity and stress relaxation property
TW201348469A (en) Cu-Zn-Sn-Ni-P-based alloy
JP2011246740A (en) Cu-Co-Si BASED ALLOY SHEET OR STRIP FOR ELECTRONIC MATERIAL
JP5988794B2 (en) Copper alloy sheet and manufacturing method thereof
JP6146695B2 (en) Copper alloy material and connector parts
JP5524901B2 (en) Cu-Ni-Si-Co based copper alloy for electronic materials
JP2016180146A (en) Soft magnetic wire, bar steel and soft magnetic steel component
JP2016176106A (en) ELECTRONIC COMPONENT Cu-Ni-Co-Si ALLOY
JP6730784B2 (en) Cu-Ni-Co-Si alloy for electronic parts