JP2014051453A - Procedures for synthesis of subphthalocyanine with 3,5-bis(pentafluorosulfanyl)-phenyl group and novel subphthalocyanine with 3,5-bis(pentafluorosulfanyl)-phenyl group - Google Patents

Procedures for synthesis of subphthalocyanine with 3,5-bis(pentafluorosulfanyl)-phenyl group and novel subphthalocyanine with 3,5-bis(pentafluorosulfanyl)-phenyl group Download PDF

Info

Publication number
JP2014051453A
JP2014051453A JP2012196790A JP2012196790A JP2014051453A JP 2014051453 A JP2014051453 A JP 2014051453A JP 2012196790 A JP2012196790 A JP 2012196790A JP 2012196790 A JP2012196790 A JP 2012196790A JP 2014051453 A JP2014051453 A JP 2014051453A
Authority
JP
Japan
Prior art keywords
subphthalocyanine
pentafluorosulfanyl
bis
derivative
phenyl group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012196790A
Other languages
Japanese (ja)
Inventor
Tetsuo Shibata
哲男 柴田
Noriji Iida
紀士 飯田
Etsuko Tokunaga
恵津子 徳永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya Institute of Technology NUC
Original Assignee
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Institute of Technology NUC filed Critical Nagoya Institute of Technology NUC
Priority to JP2012196790A priority Critical patent/JP2014051453A/en
Publication of JP2014051453A publication Critical patent/JP2014051453A/en
Pending legal-status Critical Current

Links

Landscapes

  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide synthetic procedures for subphthalocyanine with pentafluorosulfanyl group having suppression effects of aggregation and to provide novel subphthalocyanine with 3,5-bis(pentafluorosulfanyl)-phenyl group.SOLUTION: We have synthesized subphthalocyanine with 3,5-bis(pentafluorosulfanyl)-phenyl group, which is a bulky substituent, at the α and β positions for suppression of the aggregation. By this synthesis, we have succeeded in controlling the aggregation of subphthalocyanine. Furthermore, spectroscopic measurement revealed an extremely high fluorescence quantum yield. Due to these properties, this compound is expected to have a potential for the development of optical materials.

Description

本発明は3,5-ビス(ペンタフルオロスルファニル)−フェニル基を有するサブフタロシアニンの製造方法及び3,5-ビス(ペンタフルオロスルファニル)−フェニル基を有する新規サブフタロシアニンに関するものである。 The present invention relates to a method for producing a subphthalocyanine having a 3,5-bis (pentafluorosulfanyl) -phenyl group and a novel subphthalocyanine having a 3,5-bis (pentafluorosulfanyl) -phenyl group.

サブフタロシアニンは機能性色素として光学材料、有機半導体、光線力学的治療のための光増感剤などの応用が期待されている化合物である。 サブフタロシアニンは中心にホウ素原子を持つフタロシアニン類縁体化合物であり、フタロシアニンはジイミノイソインドリンユニットを四つ有する平面構造を持つのに対して、サブフタロシアニンはそれを三つしか有しておらずお椀型の三次元構造を有している(非特許文献 1)。他にも紫外可視吸収スペクトルにおいてフタロシアニンの極大吸収波長が700 nm付近にあるのに対してサブフタロシアニンのそれは500 nmから600 nm付近とフタロシアニンより大きくブルーシフトしているという特徴がある。サブフタロシアニンの応用を考えた場合、溶液状態における凝集作用を抑制することが必要である。それは凝集を起こしてしまうとサブフタロシアニン特有の光学的性質が失われるという問題点があるからである。   Subphthalocyanine is a compound expected to be used as a functional dye, such as an optical material, an organic semiconductor, and a photosensitizer for photodynamic therapy. Subphthalocyanine is a phthalocyanine analog compound having a boron atom in the center, and phthalocyanine has a planar structure having four diiminoisoindoline units, while subphthalocyanine has only three of them. It has a three-dimensional structure of the mold (Non-Patent Document 1). In addition, in the UV-visible absorption spectrum, the maximum absorption wavelength of phthalocyanine is around 700 nm, whereas that of subphthalocyanine is characterized by being blue-shifted from 500 nm to 600 nm, which is larger than phthalocyanine. When considering the application of subphthalocyanine, it is necessary to suppress the aggregation action in the solution state. This is because, when aggregation occurs, the optical properties peculiar to subphthalocyanine are lost.

Claessens, G. C; Gonzalez-Rodrigues, D; Torres. T; Chem. Rev, 2002, 102, 835-853Claessens, G. C; Gonzalez-Rodrigues, D; Torres. T; Chem. Rev, 2002, 102, 835-853

本発明は上記点に鑑みて、凝集を抑制するためかさ高い置換基である3,5-ビス(ペンタフルオロスルファニル)−フェニル基を用い、鈴木・宮浦カップリング反応によりフタロニトリルのα位とβ位に置換基を導入し凝集抑制効果を有するペンタフルオロスルファニル基をもつフタロシアニンの製造方法及び3,5-ビス(ペンタフルオロスルファニル)−フェニル基を有する新規サブフタロシアニンを提供することを目的とする。    In view of the above points, the present invention uses a bulky substituent 3,5-bis (pentafluorosulfanyl) -phenyl group to suppress aggregation, and the α-position and β-position of phthalonitrile by Suzuki-Miyaura coupling reaction. It is an object of the present invention to provide a method for producing a phthalocyanine having a pentafluorosulfanyl group having a substituent suppressing effect by introducing a substituent at the position and a novel subphthalocyanine having a 3,5-bis (pentafluorosulfanyl) -phenyl group.

上記目的を達成するため,請求項1に記載の発明では、1,3-ビス(ペンタフルオロスルファニル)-5-ブロモベンゼンをボロン酸誘導体とし、これをカップリング反応によりフタロニトリルのβ位およびα位にそれぞれ導入した。すなわち請求項1記載の発明は次の一般式(1) In order to achieve the above object, according to the first aspect of the present invention, 1,3-bis (pentafluorosulfanyl) -5-bromobenzene is used as a boronic acid derivative, which is coupled to the β-position and α of phthalonitrile by a coupling reaction. Each was introduced. That is, the invention according to claim 1 has the following general formula (1)

で表されるサブフタロシアニン誘導体の製造方法であり、
(1)3,5-ビス(ペンタフルオロスルファニル)フェニルボロン酸誘導体を4位に脱離基を持つフタロニトリル誘導体と0価のパラジウム触媒、塩基存在下にて鈴木・宮浦カップリング反応させる第一工程と
(2)前記第一工程の後、ホウ素化合物とともに該化合物を反応させる第二工程を含むサブフタロシアニンの合成方法にある。
請求項2項記載の発明は3,5-ビス(ペンタフルオロスルファニル)-フェニルボロン酸誘導体がボロン酸、ボロン酸エステル、トリフルオロボレートからなる群から選択されている請求項1記載の方法にある。
請求項3項記載の発明は4位に脱離基を持つフタロニトリル誘導体の脱離基が塩素、臭素、ヨウ素のハロゲン原子、トシレート、トリフレート、メシチレートからなる群から選択されている請求項1または2記載の方法にある。
請求項4項記載の発明は、次の一般式(2)
Is a method for producing a subphthalocyanine derivative represented by:
(1) First, a Suzuki-Miyaura coupling reaction of a 3,5-bis (pentafluorosulfanyl) phenylboronic acid derivative with a phthalonitrile derivative having a leaving group at the 4-position in the presence of a zero-valent palladium catalyst and a base And (2) a method for synthesizing a subphthalocyanine including a second step of reacting the compound with a boron compound after the first step.
The invention according to claim 2 is the method according to claim 1, wherein the 3,5-bis (pentafluorosulfanyl) -phenylboronic acid derivative is selected from the group consisting of boronic acid, boronic acid ester, and trifluoroborate. .
The invention according to claim 3 is characterized in that the leaving group of the phthalonitrile derivative having a leaving group at the 4-position is selected from the group consisting of chlorine, bromine, iodine halogen atoms, tosylate, triflate and mesitylate. Or in the method described in 2.
The invention according to claim 4 has the following general formula (2)

で表されるサブフタロシアニン誘導体の製造方法であり、
(1)3,5-ビス(ペンタフルオロスルファニル)-フェニルボロン酸誘導体を3位に脱離基を持つフタロニトリル誘導体を0価のパラジウム触媒、塩基存在下にて鈴木・宮浦カップリング反応させる第一工程と
(2)前記第一工程の後、ホウ素化合物とともに該化合物を反応させる第二工程を含むサブフタロシアニンの合成方法にある。
請求項5項記載の発明は3,5-ビス(ペンタフルオロスルファニル)-フェニルボロン酸誘導体がボロン酸、ボロン酸エステル、トリフルオロボレートからなる群から選択されている請求項4記載の方法にある。
請求項第6項記載の発明は3位に脱離基を持つフタロニトリル誘導体の脱離基が塩素、臭素、ヨウ素のハロゲン原子、トシレート、トリフレート、メシチレートからなる群から選択されている請求項4または5記載の方法にある。
また、請求項7および8記載の発明は、前記一般式(1)および(2) で表されるサブフタロシアニン誘導体にある。
原料となるフタロニトリルは下記非特許文献2を参考に鈴木・宮浦カップリングによって合成可能である。
(非特許文献2)Sugimori, T.; Okamoto, S.; Kotoh, N.; Honda, M.; Kasuga, K.; Chem. Lett. 2000, 1200
Is a method for producing a subphthalocyanine derivative represented by:
(1) Suzuki-Miyaura coupling reaction of a 3,5-bis (pentafluorosulfanyl) -phenylboronic acid derivative with a phthalonitrile derivative having a leaving group at the 3-position in the presence of a zero-valent palladium catalyst and a base One step and (2) a method for synthesizing subphthalocyanine comprising a second step of reacting the compound with a boron compound after the first step.
The invention according to claim 5 is the method according to claim 4, wherein the 3,5-bis (pentafluorosulfanyl) -phenylboronic acid derivative is selected from the group consisting of boronic acid, boronic acid ester and trifluoroborate. .
The invention according to claim 6 is characterized in that the leaving group of the phthalonitrile derivative having a leaving group at the 3-position is selected from the group consisting of chlorine, bromine, iodine halogen atoms, tosylate, triflate and mesitylate. It is in the method of 4 or 5.
The inventions according to claims 7 and 8 reside in the subphthalocyanine derivatives represented by the general formulas (1) and (2).
The starting phthalonitrile can be synthesized by Suzuki-Miyaura coupling with reference to Non-Patent Document 2 below.
(Non-Patent Document 2) Sugimori, T .; Okamoto, S .; Kotoh, N .; Honda, M .; Kasuga, K .; Chem. Lett. 2000, 1200

用いる触媒は特に限定されないが0価のパラジウムなどを用いることができる。触媒はあらかじめ調整したものを用いることもできるし、系中で調整したものを用いることもできる。触媒の配位子は特に限定されないがホスフィン配位子が使用可能であり、例えばトリフェニルホスフィン、トリメチルホスフィン、トリiso-プロピルホスフィン、トリtert-ブチルホスフィン、ジフェニルホスフィノフェロセン、ジフェニルホスフィノペンタセンなどが使用できる。用いる塩基は弱塩基である炭酸カリウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸セシウム、リン酸ナトリウム、リン酸カリウム、強塩基である水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化バリウムなどを使用することができる。溶媒の種類は特に限定されないが,ジエチルエーテル,ジイソプロピルエーテル,n−ブチルメチルエーテル,tert−ブチルメチルエーテル,テトラヒドロフラン,ジオキサン等のエーテル系溶媒;ヘプタン,ヘキサン,シクロペンタン,シクロヘキサン等の炭化水素系溶媒;クロロホルム,四塩化炭素,塩化メチレン,ジクロロエタン,トリクロロエタン等のハロゲン化炭化水素系溶媒;ベンゼン,トルエン,キシレン,クメン,シメン,メシチレン,ジイソプロピルベンゼン,ピリジン,ピリミジン,ピラジン,ピリダジン等の芳香族系溶媒;酢酸エチル等のエステル系溶媒;アセトン,メチルエチルケトン等のケトン系溶媒;ジメチルスルホキシド,ジメチルホルムアミド等の溶媒;メタノール,エタノール,プロパノール,イソプロピルアルコール,アミノエタノール,N,N-ジメチルアミノエタノール等のアルコール系溶媒;イオン性液体、水が挙げられ、またこれらの混合溶媒も用いることができる。反応温度は室温から150℃の間で可能であるが好ましくは80℃である。
サブフタロシアニン誘導体の合成は下記非特許文献3を参考に原料であるフタロニトリル誘導体を用いて合成可能である。
(非特許文献3) Claessens, G. C.; Gonzalez-Rodrigues, D.; Rey, D. B.; Torres. T.; Mark, G.; Schuchmann, H.; Sonntag, v. C; MacDonald, G. J.; Nohr, S. R.; Eur. J. Org. Chem. 2003, 2547-2551
The catalyst to be used is not particularly limited, and zero-valent palladium or the like can be used. A catalyst prepared in advance can be used, or a catalyst prepared in the system can be used. Although the ligand of the catalyst is not particularly limited, a phosphine ligand can be used, such as triphenylphosphine, trimethylphosphine, triiso-propylphosphine, tritert-butylphosphine, diphenylphosphinoferrocene, diphenylphosphinopentacene, etc. Can be used. Uses weak bases such as potassium carbonate, sodium carbonate, sodium bicarbonate, cesium carbonate, sodium phosphate, potassium phosphate, and strong bases such as lithium hydroxide, sodium hydroxide, potassium hydroxide, barium hydroxide can do. The type of solvent is not particularly limited, but ether solvents such as diethyl ether, diisopropyl ether, n-butyl methyl ether, tert-butyl methyl ether, tetrahydrofuran and dioxane; hydrocarbon solvents such as heptane, hexane, cyclopentane and cyclohexane Halogenated hydrocarbon solvents such as chloroform, carbon tetrachloride, methylene chloride, dichloroethane, and trichloroethane; aromatic solvents such as benzene, toluene, xylene, cumene, cymene, mesitylene, diisopropylbenzene, pyridine, pyrimidine, pyrazine, and pyridazine Ester solvents such as ethyl acetate; ketone solvents such as acetone and methyl ethyl ketone; solvents such as dimethyl sulfoxide and dimethylformamide; methanol, ethanol, propanol, isopropyl alcohol Alcoholic solvents such as alcohol, aminoethanol, N, N-dimethylaminoethanol; ionic liquids and water, and mixed solvents thereof can also be used. The reaction temperature can be between room temperature and 150 ° C, but is preferably 80 ° C.
The synthesis of the subphthalocyanine derivative can be performed using the phthalonitrile derivative as a raw material with reference to Non-Patent Document 3 below.
(Non-Patent Document 3) Claessens, GC; Gonzalez-Rodrigues, D .; Rey, DB; Torres. T .; Mark, G .; Schuchmann, H .; Sonntag, v. C; MacDonald, GJ; Nohr, SR; Eur. J. Org. Chem. 2003, 2547-2551

本発明の化合物には三種類の構造異性体、または回転異性体が存在するがこれらの異性体はいずれも本発明の範囲に含まれる。また構造異性体の任意の混合物も本発明の範囲に含まれる。本発明の3,5−ビス(ペンタフルオロスルファニル)−フェニル基を有するサブフタロシアニンは種類に応じて塩を形成する場合があり、また水和物、溶媒和物として存在する場合があるがこれらの物質はいずれも本発明の範囲に含まれる。
使用するホウ素化合物としては三塩化ホウ素、三臭化ホウ素、三フッ化ホウ素、トリフェニルボラン、二塩化フェニルホウ素が使用できるが好ましくは三塩化ホウ素である。また試薬の当量数は原料のフタロニトリルに対して0.33当量から用いることができるが望ましくは3.0当量が良い。
溶媒の種類は特に限定されないが,ジエチルエーテル,ジイソプロピルエーテル,n−ブチルメチルエーテル,tert−ブチルメチルエーテル,テトラヒドロフラン,ジオキサン等のエーテル系溶媒;ヘプタン,ヘキサン,シクロペンタン,シクロヘキサン等の炭化水素系溶媒;クロロホルム,四塩化炭素,塩化メチレン,ジクロロエタン,トリクロロエタン等のハロゲン化炭化水素系溶媒;ベンゼン,トルエン,キシレン,クメン,シメン,メシチレン,ジイソプロピルベンゼン,ピリジン,ピリミジン,ピラジン,ピリダジン等の芳香族系溶媒;酢酸エチル等のエステル系溶媒;アセトン,メチルエチルケトン等のケトン系溶媒;ジメチルスルホキシド,ジメチルホルムアミド等の溶媒;メタノール,エタノール,プロパノール,イソプロピルアルコール,アミノエタノール,N,N-ジメチルアミノエタノール等のアルコール系溶媒;超臨界二酸化炭素,イオン性液体が挙げられるが,p-キシレンが最も好ましい。
There are three types of structural isomers or rotational isomers in the compounds of the present invention, and these isomers are all included in the scope of the present invention. Also, any mixture of structural isomers is within the scope of the present invention. The subphthalocyanine having a 3,5-bis (pentafluorosulfanyl) -phenyl group of the present invention may form a salt depending on the type, and may exist as a hydrate or solvate. Any substance is within the scope of the present invention.
As the boron compound to be used, boron trichloride, boron tribromide, boron trifluoride, triphenylborane, and phenylboron dichloride can be used, but boron trichloride is preferred. Further, the number of equivalents of the reagent can be used from 0.33 equivalents to the starting phthalonitrile, but preferably 3.0 equivalents.
The type of solvent is not particularly limited, but ether solvents such as diethyl ether, diisopropyl ether, n-butyl methyl ether, tert-butyl methyl ether, tetrahydrofuran and dioxane; hydrocarbon solvents such as heptane, hexane, cyclopentane and cyclohexane Halogenated hydrocarbon solvents such as chloroform, carbon tetrachloride, methylene chloride, dichloroethane, and trichloroethane; aromatic solvents such as benzene, toluene, xylene, cumene, cymene, mesitylene, diisopropylbenzene, pyridine, pyrimidine, pyrazine, and pyridazine Ester solvents such as ethyl acetate; ketone solvents such as acetone and methyl ethyl ketone; solvents such as dimethyl sulfoxide and dimethylformamide; methanol, ethanol, propanol, isopropyl alcohol Alcohol, aminoethanol, N, N-dimethylaminoethanol and other alcohol solvents; supercritical carbon dioxide, ionic liquids, and the like, with p-xylene being most preferred.

反応温度としては室温から150℃の間で可能であるが望ましいのは140℃である。   The reaction temperature can be between room temperature and 150 ° C, but is preferably 140 ° C.

合成したサブフタロシアニンのUV/Visスペクトルおよび蛍光スペクトルを示す図であって、β−(3,5−ビス−ペンタフルオロスルファニル−フェニル)−サブフタロシアニンの塩化メチレン中でのUV/Visスペクトルである。It is a figure which shows the UV / Vis spectrum and fluorescence spectrum of the synthetic | combination subphthalocyanine, Comprising: It is a UV / Vis spectrum in the methylene chloride of (beta)-(3,5-bis-pentafluorosulfanyl-phenyl) -subphthalocyanine. 合成したサブフタロシアニンのUV/Visスペクトルおよび蛍光スペクトルを示す図であって、α−(3,5−ビス−ペンタフルオロスルファニル−フェニル)−サブフタロシアニンの塩化メチレン中でのUV/Visスペクトルである。It is a figure which shows the UV / Vis spectrum and fluorescence spectrum of the synthetic | combination subphthalocyanine, Comprising: It is a UV / Vis spectrum in the methylene chloride of (alpha)-(3,5-bis-pentafluorosulfanyl-phenyl) -subphthalocyanine. 合成したサブフタロシアニンのUV/Visスペクトルおよび蛍光スペクトルを示す図であって、β−(3,5−ビス−ペンタフルオロスルファニル−フェニル)−サブフタロシアニンの塩化メチレン中での蛍光スペクトルである。It is a figure which shows the UV / Vis spectrum and fluorescence spectrum of the synthetic | combination subphthalocyanine, Comprising: It is a fluorescence spectrum in the methylene chloride of (beta)-(3,5-bis-pentafluorosulfanyl-phenyl) -subphthalocyanine. 合成したサブフタロシアニンのUV/Visスペクトルおよび蛍光スペクトルを示す図であって、α−(3,5−ビス−ペンタフルオロスルファニル−フェニル)−サブフタロシアニンの塩化メチレン中での蛍光スペクトルである。図1から図4に合成したフタロシアニンのUV/Visスペクトルおよび蛍光スペクトルを示す。次表1は、β−(3,5−ビス−ペンタフルオロスルファニル−フェニル)−サブフタロシアニンのUV/Visスペクトルである。It is a figure which shows the UV / Vis spectrum and fluorescence spectrum of the synthetic | combination subphthalocyanine, Comprising: It is a fluorescence spectrum in the methylene chloride of (alpha)-(3,5-bis-pentafluorosulfanyl-phenyl) -subphthalocyanine. FIGS. 1 to 4 show the UV / Vis spectrum and fluorescence spectrum of the synthesized phthalocyanine. Table 1 below shows the UV / Vis spectrum of β- (3,5-bis-pentafluorosulfanyl-phenyl) -subphthalocyanine.

次表2は、α−(3,5−ビス−ペンタフルオロスルファニル−フェニル)−サブフタロシアニンのUV/Visスペクトルである。 Table 2 below shows the UV / Vis spectrum of α- (3,5-bis-pentafluorosulfanyl-phenyl) -subphthalocyanine.

図1および図2により
β位とα位にそれぞれ置換基を導入したサブフタロシアニンの極大吸収波長を比較すると両者の間にほとんど差は見られない。これはα位に導入されたフェニル基は立体障害のために平面ではなく直角に近い角度で存在し、それによって共役面が切れているためだと考えられる。またピリジンの添加によってもスペクトルに変化は見られないことからこれらのサブフタロシアニンは溶液中で凝集を起こしていないことがわかる。
次表3は、β−(3,5−ビス−ペンタフルオロスルファニル−フェニル)−サブフタロシアニンの蛍光スペクトルである。
Comparing the maximum absorption wavelengths of subphthalocyanines into which substituents are introduced at the β-position and α-position respectively in FIGS. 1 and 2, there is almost no difference between the two. This is considered to be because the phenyl group introduced at the α-position exists at an angle close to a right angle instead of a plane due to steric hindrance, thereby cutting the conjugate plane. Further, since no change in the spectrum is observed even when pyridine is added, it can be seen that these subphthalocyanines are not aggregated in the solution.
Table 3 below shows the fluorescence spectrum of β- (3,5-bis-pentafluorosulfanyl-phenyl) -subphthalocyanine.

次表4は、α−(3,5−ビス−ペンタフルオロスルファニル−フェニル)−サブフタロシアニンの蛍光スペクトルである。 Table 4 below shows the fluorescence spectrum of α- (3,5-bis-pentafluorosulfanyl-phenyl) -subphthalocyanine.

図3および図4により
蛍光スペクトルにおいて特筆すべきことは蛍光量子収率が著しく高いことである。それぞれのサブフタロシアニンで蛍光量子収率がほぼ定量的であった。一般的にホウ素に塩素が導入されたサブフタロシアニンの蛍光量子収率は高い傾向にあるがほぼ1.0に近い値が観測される。
It should be noted that the fluorescence quantum yield is remarkably high in the fluorescence spectrum according to FIGS. The fluorescence quantum yield was almost quantitative for each subphthalocyanine. In general, the fluorescence quantum yield of subphthalocyanine in which chlorine is introduced into boron tends to be high, but a value close to 1.0 is observed.

以下,実施形態により本発明をさらに具体的に説明するが,本発明の範囲は下記の実施形態に限定されることはない。
(第1実施形態)
4−(3,5−ビス−ペンタフルオロスルファニル−フェニル)−フタロニトリルの合成
窒素置換した50 ml のナスフラスコに4-ヨードフタロニトリル200 mg(0.787 mmol), 3,5-ビス(ペンタフルオロスルファニル)-フェニルボロン酸324 mg(0.866 mmol), 酢酸パラジウム17.7 mg(0.0787 mmol), トリフェニルホスフィン 83 mg(0.315 mmol), リン酸カリウム 501 mg (2.362 mg), 十分脱気を行ったトルエン / 水 = 1 / 1 の混合溶媒17 mlを加え90℃にて反応を10 時間行った。薄層シリカゲルクロマトグラフィーで原料消失を確認後室温まで冷却し,水を加え希釈したのち酢酸エチルで抽出を行い,有機層を飽和食塩水 で洗い,硫酸ナトリウムで乾燥させ濃縮した。粗生成物をシリカゲルカラムクロマトグラフィー (ヘキサン / 酢酸エチル = 8 / 2)で精製し目的物を223 mg(収率62%)で得た。
1H NMR (300 MHz, CDCl3): δ = 7.93-8.043 (m, 3H), 8.09 (d, 2H, J = 1.8 Hz), 8.27 (t, 1H, J = 2.4 Hz,1.8Hz)
19F NMR (282 MHz, CDCl3): δ = -149.9 (quintet, 2F, J = 151 Hz) -167.3 (d, 8F, J = 149 Hz)
(第2実施形態)
3−(3,5−ビス−ペンタフルオロスルファニル−フェニル)−フタロニトリルの合成
窒素置換した50 ml ナスフラスコにトリフルオロスルホン酸2,3-ジシアノ-フェニルエステル210 mg(0.761 mmol), 3,5-ビス(ペンタフルオロスルファニル)-フェニルボロン酸285 mg(0.761 mmol)、酢酸パラジウム 8.7 mg(0.0390 mmol), トリフェニルホスフィン40.7 mg(0.155
mmol), リン酸カリウム(485 mg, 2.28 mmol), 十分に脱気を行ったトルエン / 水 = 1 / 1 の混合溶媒17 ml を加え90℃にて反応を2.5 時間行った。薄層シリカゲルクロマトグラフィー で原料消失を確認後室温まで冷却し,水を加え希釈したのち酢酸エチルで抽出を行い,有機層を飽和食塩水で洗い,硫酸ナトリウムで乾燥させ濃縮した。粗生成物をシリカゲルカラムクロマトグラフィー (ヘキサン / 酢酸エチル = 7 / 3)で精製し目的物を212 mg(収率61%)で得た。
1H NMR (300 MHz, CDCl3): δ = 7.82 (d, 1H, J = 6.5 Hz), 7.92 (q, 1H, J = 7.7 Hz), 7.96 (d, 1H, J = 6.5 Hz), 8.11(s, 2H), 8.30 (s, 1H)
19F NMR (282 MHz, CDCl3): δ = -150.0 (quintet, 2F, J = 150.8 Hz), -167.3 (d, 8F, J = 150.8 Hz)
(第3実施形態)
β−(3,5−ビス−ペンタフルオロスルファニル−フェニル)−サブフタロシアニンの合成
アルゴン置換をした10 ml ナスフラスコに4-(3',5'-ビスペンタフルオロスルファニルフェニル)-フタロニトリル100 mg(0.219 mmol),三塩化ホウ素の1 mol/lのp-キシレン溶液0.8 ml(0.789 mmol)を加え,140℃に加熱した。8 時間反応させたのち,室温まで冷却しアルゴン置換を2 回行った。水をくわえて希釈し、酢酸エチルで抽出し,有機層を飽和食塩水で洗い硫酸ナトリウムで乾燥させ濃縮した。これを吸着シリカゲルカラムクロマトグラフィー (ヘキサン / 酢酸エチル = 9 / 1)で精製し目的物を収率6.9%で得た。また異性体を収率7.8%で得た。
1H NMR (300 MHz, CDCl3): δ = 8.48 (s, 3H), 8.58(d, 3H, J = 8.1 Hz), 8.84 (s, 6H), 9.10 (d, 3H, J = 8.1 Hz), 9.42 (s, 3H)
19F NMR (282 MHz, CDCl3): δ = -149.8 (quintet, 6F J = 150.9 Hz), -167.3 (d, 24F, J = 150.3 Hz)
IR (KBr): 3853, 3735, 2649, 3446, 3116, 2933, 2873, 1717, 1654, 1558, 1457, 1558, 1457, 1185, 1139,
MALDI-TOF calculated for C42H18BClF30N6S6 [M-H+- 1413.92 found 1413.77
(第4実施形態)α−(3,5−ビス−ペンタフルオロスルファニル−フェニル)−サブフタロシアニンの合成
アルゴン 置換をした30 ml ナスフラスコに3-(3',5'-ビスペンタフルオロスルファニルフェニル)-フタロニトリル100 mg(0.219 mmol), 三塩化ホウ素の1 mol/lのp-キシレン溶液0.8 ml(0.789 mmol)を加え,140℃に加熱した。5時間反応させたのち,室温まで冷却しアルゴン置換を2回行った。水をくわえて希釈し,酢酸エチルで抽出し,有機層を飽和食塩水で洗浄し硫酸ナトリウムで乾燥させ濃縮した。これをシリカゲルクロマトグラフィー (ヘキサン / 酢酸エチル = 9 / 1→7 /3)で精製し目的物を収率15%で得た。
1H NMR (300 MHz, CDCl3): δ = 7.96 (d, 3H, J = 6.9 Hz), 8.05(t, 3H, J = 7.5 Hz), 8.47 (s, 3H), 8.61 (d, 3H, J = 8.4 Hz), 8.80 (s, 6H)
19F NMR (282 MHz, CDCl3): δ = -148.2 (q, 1F, J = 150 Hz), -167.11 (d, 4F, J = 150 Hz)
MALDI-TOF calculated for C42H18BClF30N6S6 [M-H+- 1413.92 found 1415.55
Hereinafter, the present invention will be described more specifically with reference to embodiments, but the scope of the present invention is not limited to the following embodiments.
(First embodiment)
Synthesis of 4- (3,5-bis-pentafluorosulfanyl-phenyl) -phthalonitrile Into a nitrogen-substituted 50 ml eggplant flask, 200 mg (0.787 mmol) of 4-iodophthalonitrile, 3,5-bis (pentafluorosulfanyl) ) -Phenylboronic acid 324 mg (0.866 mmol), palladium acetate 17.7 mg (0.0787 mmol), triphenylphosphine 83 mg (0.315 mmol), potassium phosphate 501 mg (2.362 mg), fully degassed toluene / water = 17 ml of a mixed solvent of 1/1 was added and the reaction was carried out at 90 ° C for 10 hours. After confirming the disappearance of the raw materials by thin-layer silica gel chromatography, the mixture was cooled to room temperature, diluted with water and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over sodium sulfate and concentrated. The crude product was purified by silica gel column chromatography (hexane / ethyl acetate = 8/2) to obtain 223 mg (yield 62%) of the desired product.
1 H NMR (300 MHz, CDCl3): δ = 7.93-8.043 (m, 3H), 8.09 (d, 2H, J = 1.8 Hz), 8.27 (t, 1H, J = 2.4 Hz, 1.8Hz)
19 F NMR (282 MHz, CDCl3): δ = -149.9 (quintet, 2F, J = 151 Hz) -167.3 (d, 8F, J = 149 Hz)
(Second Embodiment)
Synthesis of 3- (3,5-bis-pentafluorosulfanyl-phenyl) -phthalonitrile Into a nitrogen-substituted 50 ml eggplant flask, trifluorosulfonic acid 2,3-dicyano-phenyl ester 210 mg (0.761 mmol), 3,5 -Bis (pentafluorosulfanyl) -phenylboronic acid 285 mg (0.761 mmol), palladium acetate 8.7 mg (0.0390 mmol), triphenylphosphine 40.7 mg (0.155
mmol), potassium phosphate (485 mg, 2.28 mmol), 17 ml of a fully degassed mixed solvent of toluene / water = 1/1 were added, and the reaction was carried out at 90 ° C. for 2.5 hours. After confirming the disappearance of the raw materials by thin layer silica gel chromatography, the mixture was cooled to room temperature, diluted with water and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over sodium sulfate and concentrated. The crude product was purified by silica gel column chromatography (hexane / ethyl acetate = 7/3) to obtain 212 mg of the desired product (yield 61%).
1 H NMR (300 MHz, CDCl3): δ = 7.82 (d, 1H, J = 6.5 Hz), 7.92 (q, 1H, J = 7.7 Hz), 7.96 (d, 1H, J = 6.5 Hz), 8.11 ( s, 2H), 8.30 (s, 1H)
19 F NMR (282 MHz, CDCl3): δ = -150.0 (quintet, 2F, J = 150.8 Hz), -167.3 (d, 8F, J = 150.8 Hz)
(Third embodiment)
Synthesis of β- (3,5-bis-pentafluorosulfanyl-phenyl) -subphthalocyanine In a 10 ml eggplant flask with argon substitution, 100 mg of 4- (3 ′, 5′-bispentafluorosulfanylphenyl) -phthalonitrile ( 0.219 mmol), 0.8 ml (0.789 mmol) of 1 mol / l p-xylene solution of boron trichloride was added and heated to 140 ° C. After reacting for 8 hours, it was cooled to room temperature and purged with argon twice. The mixture was diluted with water and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over sodium sulfate, and concentrated. This was purified by adsorption silica gel column chromatography (hexane / ethyl acetate = 9/1) to obtain the desired product in a yield of 6.9%. The isomer was obtained in a yield of 7.8%.
1H NMR (300 MHz, CDCl3): δ = 8.48 (s, 3H), 8.58 (d, 3H, J = 8.1 Hz), 8.84 (s, 6H), 9.10 (d, 3H, J = 8.1 Hz), 9.42 (s, 3H)
19F NMR (282 MHz, CDCl3): δ = -149.8 (quintet, 6F J = 150.9 Hz), -167.3 (d, 24F, J = 150.3 Hz)
IR (KBr): 3853, 3735, 2649, 3446, 3116, 2933, 2873, 1717, 1654, 1558, 1457, 1558, 1457, 1185, 1139,
MALDI-TOF calculated for C 42 H 18 BClF 30 N 6 S 6 [MH + ] - 1413.92 found 1413.77
(Fourth Embodiment) Synthesis of α- (3,5-bis-pentafluorosulfanyl-phenyl) -subphthalocyanine Argon In a substituted 30 ml eggplant flask with 3- (3 ′, 5′-bispentafluorosulfanylphenyl) -Phthalonitrile 100 mg (0.219 mmol), 0.8 ml (0.789 mmol) of 1 mol / l p-xylene solution of boron trichloride was added and heated to 140 ° C. After reacting for 5 hours, the mixture was cooled to room temperature and purged with argon twice. The mixture was diluted with water and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over sodium sulfate, and concentrated. This was purified by silica gel chromatography (hexane / ethyl acetate = 9/1 → 7/3) to obtain the desired product in a yield of 15%.
1 H NMR (300 MHz, CDCl3): δ = 7.96 (d, 3H, J = 6.9 Hz), 8.05 (t, 3H, J = 7.5 Hz), 8.47 (s, 3H), 8.61 (d, 3H, J = 8.4 Hz), 8.80 (s, 6H)
19 F NMR (282 MHz, CDCl3): δ = -148.2 (q, 1F, J = 150 Hz), -167.11 (d, 4F, J = 150 Hz)
MALDI-TOF calculated for C 42 H 18 BClF 30 N 6 S 6 [MH + ] - 1413.92 found 1415.55

Claims (8)

次の一般式(1)

で表されるサブフタロシアニン誘導体の製造方法であり、
(1)3,5-ビス(ペンタフルオロスルファニル)-フェニルボロン酸誘導体を4位に脱離基を持つフタロニトリル誘導体と鈴木・宮浦カップリング反応させる第一工程と
(2)前記第一工程の後、金属塩とともに該化合物を反応させる第二工程を含むサブフタロシアニンの合成方法。
The following general formula (1)

Is a method for producing a subphthalocyanine derivative represented by:
(1) a first step in which a 3,5-bis (pentafluorosulfanyl) -phenylboronic acid derivative is subjected to a Suzuki-Miyaura coupling reaction with a phthalonitrile derivative having a leaving group at the 4-position; and (2) the first step. A method for synthesizing a subphthalocyanine comprising a second step of reacting the compound with a metal salt.
前記3,5-ビス(ペンタフルオロスルファニル)-フェニルボロン酸誘導体がボロン酸、ボロン酸エステル、トリフルオロボレートからなる群から選択されている請求項1記載の方法。 2. The method of claim 1, wherein the 3,5-bis (pentafluorosulfanyl) -phenylboronic acid derivative is selected from the group consisting of boronic acid, boronic ester, and trifluoroborate. 前記4位に脱離基を持つフタロニトリル誘導体の脱離基が塩素、臭素、ヨウ素のハロゲン原子、トシレート、トリフレート、メシチレートからなる群から選択されている請求項1または2記載の方法。 3. The method according to claim 1, wherein the leaving group of the phthalonitrile derivative having a leaving group at the 4-position is selected from the group consisting of chlorine, bromine, iodine halogen atoms, tosylate, triflate, and mesycylate. 次の一般式(2)

で表されるサブフタロシアニン誘導体の製造方法であり、
(1)3,5-ビス(ペンタフルオロスルファニル)-フェニルボロン酸誘導体を3位に脱離基を持つフタロニトリル誘導体と鈴木・宮浦カップリング反応させる第一工程と
(2)前記第一工程の後、金属塩とともに該化合物を反応させる第二工程を含むサブフタロシアニンの合成方法。
The following general formula (2)

Is a method for producing a subphthalocyanine derivative represented by:
(1) a first step in which a 3,5-bis (pentafluorosulfanyl) -phenylboronic acid derivative is subjected to a Suzuki-Miyaura coupling reaction with a phthalonitrile derivative having a leaving group at the 3-position; and (2) the first step. A method for synthesizing a subphthalocyanine comprising a second step of reacting the compound with a metal salt.
前記3,5-ビス(ペンタフルオロスルファニル)-フェニルボロン酸誘導体がボロン酸、ボロン酸エステル、トリフルオロボレートからなる群から選択されている請求項4記載の方法。 5. The method of claim 4, wherein the 3,5-bis (pentafluorosulfanyl) -phenylboronic acid derivative is selected from the group consisting of boronic acid, boronic acid ester, and trifluoroborate. 前記3位に脱離基を持つフタロニトリル誘導体の脱離基が塩素、臭素、ヨウ素のハロゲン原子、トシレート、トリフレート、メシチレートからなる群から選択されている請求項4または5記載の方法。 The method according to claim 4 or 5, wherein the leaving group of the phthalonitrile derivative having a leaving group at the 3-position is selected from the group consisting of chlorine, bromine, iodine halogen atoms, tosylate, triflate, and mesycylate. 下記一般式(1) で表されるサブフタロシアニン誘導体。
A subphthalocyanine derivative represented by the following general formula (1).
下記一般式(2) で表されるサブフタロシアニン誘導体。
A subphthalocyanine derivative represented by the following general formula (2).
JP2012196790A 2012-09-07 2012-09-07 Procedures for synthesis of subphthalocyanine with 3,5-bis(pentafluorosulfanyl)-phenyl group and novel subphthalocyanine with 3,5-bis(pentafluorosulfanyl)-phenyl group Pending JP2014051453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012196790A JP2014051453A (en) 2012-09-07 2012-09-07 Procedures for synthesis of subphthalocyanine with 3,5-bis(pentafluorosulfanyl)-phenyl group and novel subphthalocyanine with 3,5-bis(pentafluorosulfanyl)-phenyl group

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012196790A JP2014051453A (en) 2012-09-07 2012-09-07 Procedures for synthesis of subphthalocyanine with 3,5-bis(pentafluorosulfanyl)-phenyl group and novel subphthalocyanine with 3,5-bis(pentafluorosulfanyl)-phenyl group

Publications (1)

Publication Number Publication Date
JP2014051453A true JP2014051453A (en) 2014-03-20

Family

ID=50610293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012196790A Pending JP2014051453A (en) 2012-09-07 2012-09-07 Procedures for synthesis of subphthalocyanine with 3,5-bis(pentafluorosulfanyl)-phenyl group and novel subphthalocyanine with 3,5-bis(pentafluorosulfanyl)-phenyl group

Country Status (1)

Country Link
JP (1) JP2014051453A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108371958A (en) * 2018-01-22 2018-08-07 西北大学 A kind of Asia phthalocyanine/titanium dioxide nano photocatalysis agent and its preparation method and application

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108371958A (en) * 2018-01-22 2018-08-07 西北大学 A kind of Asia phthalocyanine/titanium dioxide nano photocatalysis agent and its preparation method and application

Similar Documents

Publication Publication Date Title
WO2009096202A1 (en) Halogenated polycyclic aromatic compound and method for producing the same
Fan et al. Tertiary Amine‐Catalyzed Difluoromethylthiolation of Morita–Baylis–Hillman Carbonates of Isatins with Zard's Trifluoromethylthiolation Reagent
Tian et al. A convenient process for the preparation of heteroaryl trifluoromethyl selenoethers
KR101336840B1 (en) Lewis acid catalyzed halogenation of activated carbon atoms
WO2018168815A1 (en) METHOD FOR PRODUCING 3, 6-DISUBSTITUTED IMIDAZO[1, 2-b]PYRIDAZINE DERIVATIVE
JP2017105717A (en) Method for decreasing by-product of coupling reaction
JP2014051453A (en) Procedures for synthesis of subphthalocyanine with 3,5-bis(pentafluorosulfanyl)-phenyl group and novel subphthalocyanine with 3,5-bis(pentafluorosulfanyl)-phenyl group
WO2018159515A1 (en) Method for producing pentafluorosulfanyl aromatic compound
TW201630852A (en) Method for preparation of fluoro, chloro and fluorochloro alkylated compounds by homogeneous catalysis
JP2007238540A (en) Method for producing optically active alcohol compound
JP2014051452A (en) Procedures for synthesis of phthalocyanine with 3,5-bis(pentafluorosulfanyl)-phenyl group and novel phthalocyanine
Boreux et al. Gold-catalyzed synthesis of β-trifluoromethylated α, β-unsaturated ketones from CF3-substituted propargylic carboxylates and their reactivity in Diels-Alder reactions
Al-Zoubi et al. CuI-catalyzed Ullmann-type coupling of phenols and thiophenols with 5-substituted 1, 2, 3-triiodobenzenes: facile synthesis of mammary carcinoma inhibitor BTO-956 in one step
CN105646326B (en) A kind of preparation method of the ketone compounds of polysubstituted indoles 2
JP2016102090A (en) Method for producing compound having 1,2-amino alcohol skeleton
Adonin et al. Nucleophilic aryloxydefluorination of pentafluorobenzene without noble metal catalysis
JP2008069122A (en) Manufacturing method of nitrogen-containing polycyclic heterocyclic compound
JP6449014B2 (en) Functional group-containing or non-containing cyclic compounds and methods for producing them
JP2017132738A (en) Manufacturing method of bipyridyl compound
EP3782977A1 (en) Cyclopropanation method and reagent
JP2017128525A (en) Method for producing fluorine-containing compound
JP2017036248A (en) New benzoindenofluorenopyrans and method for producing the same
CN111285880A (en) Preparation and application of switch compound containing bisprown ether
JP2017206485A (en) Optically active 1,3-diamine derivative and method for producing the same
JPWO2011111762A1 (en) Method for producing diaryl derivative, novel binaphthyl derivative, method for producing arene derivative, and novel arene derivative