JP2014051247A - Vehicle driving mechanism - Google Patents

Vehicle driving mechanism Download PDF

Info

Publication number
JP2014051247A
JP2014051247A JP2012198639A JP2012198639A JP2014051247A JP 2014051247 A JP2014051247 A JP 2014051247A JP 2012198639 A JP2012198639 A JP 2012198639A JP 2012198639 A JP2012198639 A JP 2012198639A JP 2014051247 A JP2014051247 A JP 2014051247A
Authority
JP
Japan
Prior art keywords
rotor
power
internal combustion
combustion engine
output torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2012198639A
Other languages
Japanese (ja)
Inventor
Koji Yoshihara
康二 吉原
Hideto Kubo
秀人 久保
Hiroto Hayashi
裕人 林
Kiyoshi Kamitsuji
清 上辻
Shohei Matsumoto
祥平 松本
Shuji Yumoto
修士 湯本
Hirofumi Fujiwara
弘文 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2012198639A priority Critical patent/JP2014051247A/en
Priority to PCT/JP2013/066080 priority patent/WO2014038262A1/en
Publication of JP2014051247A publication Critical patent/JP2014051247A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/448Electrical distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/24Energy storage means
    • B60W2710/242Energy storage means for electrical energy
    • B60W2710/244Charge state
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vehicle driving mechanism including an engine and a double-rotor type motor as power sources and capable of reducing loss generated due to power circulation while maintaining charging amount of a battery in a high speed cruising state.SOLUTION: A vehicle driving mechanism 100 includes an engine 10, a double-rotor type motor 20, a battery 30, and a control unit 40. In a high speed cruising state of a vehicle, the control unit 40 reduces output torque Tof the engine 10 when charging amount (SOC) of the battery 30 is more than a prescribed threshold Th and increases the output torque Tof the engine 10 when the charging amount of the battery 30 is less than the prescribed threshold Th.

Description

この発明は、車両駆動機構に係り、特にエンジンおよびモータを動力源として備えるハイブリッド自動車の車両駆動機構に関する。   The present invention relates to a vehicle drive mechanism, and more particularly to a vehicle drive mechanism of a hybrid vehicle including an engine and a motor as power sources.

エンジンおよびモータを動力源として備えるハイブリッド自動車の普及が始まっている。特許文献1の図8には、エンジンおよび2重ロータ型モータを備えるハイブリッド自動車の車両駆動機構が開示されている。ここで開示されている2重ロータ型モータは、エンジンの駆動軸に連結される第1ロータと、第1ロータの径方向外側に配設されて車軸に連結される第2ロータと、第2ロータの径方向外側に配設されてハウジングに固定されるステータとを有している。第1ロータには第1コイルが設けられており、ステータには第2コイルが設けられている。また、第2ロータの内周側には、第1ロータの第1コイルと対向するように第1磁石が設けられており、第2ロータの外周側には、ステータの第2コイルと対向するように第2磁石が設けられている。また、第1、第2コイルは、直流−交流の相互変換が可能な電力変換ユニットを介してバッテリに接続されており、バッテリとの間で電力の授受を行う。   The spread of hybrid vehicles equipped with engines and motors as power sources has begun. FIG. 8 of Patent Document 1 discloses a vehicle drive mechanism of a hybrid vehicle including an engine and a double rotor type motor. The double rotor type motor disclosed here includes a first rotor coupled to an engine drive shaft, a second rotor disposed radially outside the first rotor and coupled to an axle, and a second rotor. And a stator that is disposed radially outside the rotor and is fixed to the housing. The first rotor is provided with a first coil, and the stator is provided with a second coil. A first magnet is provided on the inner peripheral side of the second rotor so as to face the first coil of the first rotor, and on the outer peripheral side of the second rotor, the second coil of the stator faces. A second magnet is provided as described above. The first and second coils are connected to the battery via a power conversion unit capable of DC-AC mutual conversion, and exchange power with the battery.

上記の車両駆動機構を搭載したハイブリッド自動車において、車軸の回転速度がエンジンの回転速度を上回り、かつエンジンの出力トルクが車軸の要求トルクよりも大きい走行状態(以下、「高速巡航状態」という)においては、エンジンの動力による第1ロータの回転と、バッテリからの電力で第2ロータが回転して車両の走行が行われる。また、第2ロータが回転すると、第2コイル中に誘起電圧が発生して発電が行われる。この際に発電される交流電力は、電力変換ユニットによって直流電力に変換され、その一部は再び交流電力に変換されて第1コイルに供給され、残りはバッテリに充電される。   In a hybrid vehicle equipped with the vehicle drive mechanism described above, in a traveling state in which the rotational speed of the axle exceeds the rotational speed of the engine and the output torque of the engine is greater than the required torque of the axle (hereinafter referred to as “high-speed cruise state”) The vehicle travels as the first rotor is rotated by the power of the engine and the second rotor is rotated by electric power from the battery. Further, when the second rotor rotates, an induced voltage is generated in the second coil to generate power. The AC power generated at this time is converted into DC power by the power conversion unit, part of which is converted again into AC power and supplied to the first coil, and the rest is charged into the battery.

特開2005−47396号公報JP-A-2005-47396

上記の高速巡航状態においては、第2ロータの回転によって第2コイルで発電される電力の一部が第1ロータの第1コイルに供給される動力循環が起こり、この際に循環する電力は電力変換ユニットを経由する際にその一部が失われるため、第2コイルから第1コイルへの動力循環に伴って損失が発生する。後述するように、エンジンの出力トルクを減少させれば、第2コイルから第1コイルへ循環する電力を減少させて動力循環に伴う損失を低減させることができるが、それと同時にバッテリに充電される電力も減少してしまう。そのため、バッテリの充電量が少ない状態においては、エンジンの出力トルクを減少させることは避けることが好ましい。   In the above high-speed cruise state, a power circulation occurs in which a part of the electric power generated by the second coil is supplied to the first coil of the first rotor due to the rotation of the second rotor. Since a part of it is lost when passing through the conversion unit, loss occurs along with the power circulation from the second coil to the first coil. As will be described later, if the engine output torque is reduced, the power circulating from the second coil to the first coil can be reduced to reduce the loss accompanying the power circulation, but at the same time the battery is charged. Electricity will also decrease. Therefore, it is preferable to avoid reducing the output torque of the engine in a state where the charge amount of the battery is small.

この発明はこのような問題を解決するためになされたものであり、エンジンおよび2重ロータ型モータを動力源として備える車両駆動機構であって、高速巡航状態において、バッテリの充電量を維持しながら動力循環に伴って発生する損失を低減させることができる車両駆動機構を提供することを目的とする。   The present invention has been made to solve such a problem, and is a vehicle drive mechanism including an engine and a double rotor type motor as a power source, while maintaining the charge amount of a battery in a high-speed cruise state. It aims at providing the vehicle drive mechanism which can reduce the loss which generate | occur | produces with power circulation.

上記の課題を解決するために、この発明に係る車両駆動機構は、燃料を燃焼させて動力を発生させる内燃機関(エンジン)と、内燃機関に駆動軸を介して機械的に連結される第1回転子、第1回転子の径方向外側に配設されると共に車軸に機械的に連結される第2回転子、および第2回転子の径方向外側に配設される固定子を含み、第1回転子および第2回転子は、一方が第1コイルを有すると共に他方が第1磁石または第1磁気突極部を有し、第2回転子および固定子は、一方が第2コイルを有すると共に他方が第2磁石または第2磁気突極部を有する、回転電機(2重ロータ型モータ)と、回転電機の第1、第2コイルと電気的に接続される蓄電手段(バッテリ)と、第2回転子の回転速度が第1回転子の回転速度を上回り、かつ内燃機関の出力トルクが車軸の要求トルクよりも大きい場合に、蓄電手段の充電量に基づいて内燃機関の出力トルクを制御する制御手段とを備えることを特徴とする。   In order to solve the above problems, a vehicle drive mechanism according to the present invention includes an internal combustion engine (engine) that generates power by burning fuel, and a first mechanically connected to the internal combustion engine via a drive shaft. A rotor, a second rotor disposed on the outer side in the radial direction of the first rotor and mechanically coupled to the axle, and a stator disposed on the outer side in the radial direction of the second rotor, One of the first rotor and the second rotor has a first coil, and the other has a first magnet or a first magnetic salient pole, and one of the second rotor and the stator has a second coil. And the other having a second magnet or a second magnetic salient pole part, a rotating electrical machine (double rotor type motor), power storage means (battery) electrically connected to the first and second coils of the rotating electrical machine, The rotational speed of the second rotor exceeds the rotational speed of the first rotor, and the internal combustion machine When the output torque is greater than the required torque of the axle, characterized in that it comprises a control means for controlling the output torque of the internal combustion engine based on the charge amount of the power storage means.

好適には、制御手段は、蓄電手段の充電量が所定の閾値を上回っている場合には、内燃機関の出力トルクを減少させ、蓄電手段の充電量が所定の閾値を下回っている場合には、内燃機関の出力トルクを増加させる。   Preferably, the control means reduces the output torque of the internal combustion engine when the charge amount of the power storage means exceeds a predetermined threshold value, and when the charge amount of the power storage means falls below a predetermined threshold value. Increase the output torque of the internal combustion engine.

さらに好適には、制御手段は、内燃機関の出力トルクをT、内燃機関の回転速度をω、車軸の要求トルクをT、車軸の回転速度をω、内燃機関から供給される動力の変換効率をη、蓄電手段に必要な充電電力をPBAT’として、蓄電手段の充電量が所定の閾値を上回っている場合には、内燃機関の出力トルクを、T=(T・ω)/(η・ω)に従って算出される値まで減少させ、蓄電手段の充電量が所定の閾値を下回っている場合には、内燃機関の出力トルクを、T=(PBAT’+T・ω)/ωに従って算出される値まで増加させる。 More preferably, the control means has the output torque T E of the internal combustion engine, the rotational speed of the internal combustion engine ω E , the required torque of the axle T W , the rotational speed of the axle ω W , and the power supplied from the internal combustion engine. If the conversion efficiency of η and the charging power required for the power storage means are P BAT ′, and the charge amount of the power storage means exceeds a predetermined threshold, the output torque of the internal combustion engine is expressed as T E = (T W · When it is decreased to a value calculated according to ω W ) / (η · ω E ) and the charge amount of the power storage means is below a predetermined threshold, the output torque of the internal combustion engine is expressed as T E = (P BAT ' Increase to a value calculated according to + T W · ω W ) / ω E.

この発明に係る車両駆動機構によれば、高速巡航状態において、バッテリの充電量を維持しながら動力循環に伴って発生する損失を低減させることができる。   According to the vehicle drive mechanism according to the present invention, it is possible to reduce a loss caused by power circulation while maintaining a charge amount of a battery in a high-speed cruise state.

この発明の実施の形態に係る車両駆動機構の構成を示す図である。It is a figure which shows the structure of the vehicle drive mechanism which concerns on embodiment of this invention. この発明の実施の形態に係る車両駆動機構におけるコントロールユニットによって実行される制御を示すフローチャートである。It is a flowchart which shows the control performed by the control unit in the vehicle drive mechanism which concerns on embodiment of this invention. この発明の実施の形態に係る車両駆動機構におけるバッテリの充電量とその際に必要な充電電力との関係の一例を定めた図である。It is the figure which defined an example of the relationship between the charge amount of the battery in the vehicle drive mechanism which concerns on embodiment of this invention, and the charging power required in that case. この発明の実施の形態に係る車両駆動機構におけるバッテリの充電量とその際に必要な充電電力との関係の別の例を定めた図である。It is the figure which defined another example of the relationship between the charge amount of the battery in the vehicle drive mechanism which concerns on embodiment of this invention, and the charging power required in that case. この発明の実施の形態に係る車両駆動機構の第1の変形例における2重ロータ型モータの各種構造を示す図である。It is a figure which shows the various structures of the double rotor type motor in the 1st modification of the vehicle drive mechanism which concerns on embodiment of this invention. この発明の実施の形態に係る車両駆動機構の第2の変形例における2重ロータ型モータの各種構造を示す図である。It is a figure which shows the various structures of the double rotor type | mold motor in the 2nd modification of the vehicle drive mechanism which concerns on embodiment of this invention. この発明の実施の形態に係る車両駆動機構の第3の変形例における2重ロータ型モータの各種構造を示す図である。It is a figure which shows the various structures of the double rotor type | mold motor in the 3rd modification of the vehicle drive mechanism which concerns on embodiment of this invention.

以下、この発明の実施の形態について添付図面に基づいて説明する。
実施の形態.
この発明の実施の形態に係るハイブリッド自動車の車両駆動機構100の構成を図1に示す。
車両駆動機構100は、ガソリン燃料を内部で燃焼させて動力を発生させるエンジン10と、三相交流電力によって動作する2重ロータ型モータ20とを動力源として備えている。2重ロータ型モータ20は、エンジン10の駆動軸11に機械的に連結されて当該駆動軸11と一体的に同一速度で回転する第1ロータ21と、第1ロータ21の径方向外側に配設されてアーム12およびディファレンシャル13を介して車軸14に機械的に連結されて当該車軸14と同一速度で回転する第2ロータ22と、第2ロータ22の径方向外側に配設されてモータケーシング24に固定されるステータ23とを有している。なお、第1ロータ21は円柱状の形状、第2ロータ22およびステータ23は円環状の形状を有しており、図1にはそれらの断面が模式的に示されている。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
Embodiment.
FIG. 1 shows the configuration of a vehicle drive mechanism 100 for a hybrid vehicle according to an embodiment of the present invention.
The vehicle drive mechanism 100 includes an engine 10 that generates gasoline by burning gasoline fuel therein, and a double rotor motor 20 that operates by three-phase AC power as power sources. The double rotor type motor 20 is mechanically connected to the drive shaft 11 of the engine 10, and is arranged on the radially outer side of the first rotor 21 and a first rotor 21 that rotates integrally with the drive shaft 11 at the same speed. A second rotor 22 that is mechanically coupled to the axle 14 via the arm 12 and the differential 13 and rotates at the same speed as the axle 14; and a motor casing disposed radially outside the second rotor 22 And a stator 23 fixed to 24. The first rotor 21 has a cylindrical shape, the second rotor 22 and the stator 23 have an annular shape, and FIG. 1 schematically shows a cross section thereof.

第1ロータ21には第1コイル25が設けられており、ステータ23には第2コイル26が設けられている。また、第2ロータ22の内周側には、第1ロータ21の第1コイル25と対向するように第1磁石27が設けられており、第2ロータ22の外周側には、ステータ23の第2コイル26と対向するように第2磁石28が設けられている。なお、第1磁石27と第2磁石28とは一体的に設けられてもよい。   The first rotor 21 is provided with a first coil 25, and the stator 23 is provided with a second coil 26. A first magnet 27 is provided on the inner peripheral side of the second rotor 22 so as to face the first coil 25 of the first rotor 21, and the stator 23 is provided on the outer peripheral side of the second rotor 22. A second magnet 28 is provided so as to face the second coil 26. The first magnet 27 and the second magnet 28 may be provided integrally.

また、車両駆動機構100は、バッテリ30と、電力変換ユニット31,32とを備えている。バッテリ30は、直流電力を充放電可能であり、電力変換ユニット31,32を介して2重ロータ型モータ20との間で電力の授受を行う。電力変換ユニット31,32は、バッテリ30から出力される直流電力を三相交流電力に変換して2重ロータ型モータ20に出力すると共に、2重ロータ型モータ20から三相交流電力が回生される場合には、それを直流電力に変換してバッテリ30に出力する。   The vehicle drive mechanism 100 includes a battery 30 and power conversion units 31 and 32. The battery 30 is capable of charging / discharging direct current power, and exchanges power with the double rotor motor 20 via the power conversion units 31 and 32. The power conversion units 31 and 32 convert the DC power output from the battery 30 into three-phase AC power and output it to the double rotor type motor 20, and the three phase AC power is regenerated from the double rotor type motor 20. If it is, it is converted to DC power and output to the battery 30.

駆動軸11の途中には、第1ロータ21と一体的に回転するスリップリング33と当該スリップリング33に接触するブラシ34とが設けられており、電力変換ユニット31は、ブラシ34、スリップリング33、および駆動軸11に沿って配線される図示しない導電線を経由して、第1ロータ21の第1コイル25に電気的に接続されている。一方、電力変換ユニット32は、ステータ23の第2コイル26に電気的に接続されている。   A slip ring 33 that rotates integrally with the first rotor 21 and a brush 34 that contacts the slip ring 33 are provided in the middle of the drive shaft 11. The power conversion unit 31 includes a brush 34, a slip ring 33. , And a conductive wire (not shown) wired along the drive shaft 11, and is electrically connected to the first coil 25 of the first rotor 21. On the other hand, the power conversion unit 32 is electrically connected to the second coil 26 of the stator 23.

コントロールユニット40は、エンジン10の動作を制御すると共に、電力変換ユニット31,32を制御することによってバッテリ30と2重ロータ型モータ20との間の電力の授受を制御する。また、コントロールユニット40は、車両に設けられている図示しない各種センサからの情報に基づいて、エンジン10の出力トルクTおよび回転速度ω、車軸14の要求トルクTおよび回転速度ω、並びにバッテリ30の充電量(SOC)を取得することができる。 The control unit 40 controls the operation of the engine 10 and also controls the power conversion units 31 and 32 to control the power transfer between the battery 30 and the double rotor type motor 20. Further, the control unit 40, based on information from various sensors (not shown) provided in the vehicle, outputs torque T E and rotational speed ω E of the engine 10, required torque T W and rotational speed ω W of the axle 14, In addition, the charge amount (SOC) of the battery 30 can be acquired.

次に、この実施の形態に係るハイブリッド自動車の車両駆動機構100における高速巡航状態の動作について説明する。なお、先にも述べたように、本明細書において「高速巡航状態」とは、車軸14の回転速度ωがエンジン10の回転速度ωを上回り、かつエンジン10の出力トルクTが車軸14の要求トルクTよりも大きい状態を言う。 Next, the operation in the high-speed cruise state in the vehicle drive mechanism 100 of the hybrid vehicle according to this embodiment will be described. Incidentally, as described above, in the present specification, "high-speed cruising state", the rotational speed omega W axle 14 exceeds the rotation speed omega E of the engine 10, and axle output torque T E of the engine 10 It refers to a larger state than the required torque T W of 14.

この高速巡航状態においては、エンジン10から供給される動力によって第1ロータ21が回転すると、第2ロータ22の第1磁石27が発生させる磁界の作用によって第1コイル25中に誘導電圧が発生し誘導電流が流れる。この誘導電流と磁界との相互作用によって第1ロータ21と第2ロータ22との間にトルクが発生して第2ロータ22が回転し、第2ロータ22に連結されている車軸14が駆動されて車両の走行が行われる。   In this high-speed cruise state, when the first rotor 21 is rotated by the power supplied from the engine 10, an induced voltage is generated in the first coil 25 by the action of the magnetic field generated by the first magnet 27 of the second rotor 22. An induced current flows. Due to the interaction between the induced current and the magnetic field, torque is generated between the first rotor 21 and the second rotor 22, the second rotor 22 rotates, and the axle 14 connected to the second rotor 22 is driven. The vehicle travels.

また、第2ロータ22が回転すると、第2磁石28が発生させる磁界がステータ23の第2コイル26に作用することによって第2コイル26中に誘起電圧が発生し、発電が行われる。この際に発電される交流電力は、電力変換ユニット32によって直流電力に変換され、その一部は電力変換ユニット31によって再び交流電力に変換されて第1ロータ21の第1コイル25に供給され、残りはバッテリ30に充電される。   When the second rotor 22 rotates, the magnetic field generated by the second magnet 28 acts on the second coil 26 of the stator 23 to generate an induced voltage in the second coil 26 to generate power. The AC power generated at this time is converted into DC power by the power conversion unit 32, a part of which is converted back to AC power by the power conversion unit 31 and supplied to the first coil 25 of the first rotor 21, The remaining battery 30 is charged.

このような走行状態における車両駆動機構100の動力収支は、エンジン10から供給される動力をP、第1コイル25に供給される電力をP、車軸14が要求する動力をP、第2コイル26で発電される電力をPとすると、以下のように表される。 The power balance of the vehicle drive mechanism 100 in such a traveling state is that the power supplied from the engine 10 is P E , the power supplied to the first coil 25 is P I , the power required by the axle 14 is P W , If the electric power generated by the two coils 26 is PO , it is expressed as follows.

ηP+P = P+P (1) ηP E + P I = P W + P O (1)

ただし、上式において、ηはエンジン10から供給される動力Pの変換効率であり、0〜1の範囲の値をとる。 However, in the above equation, eta is the efficiency of power conversion P E supplied from the engine 10, it takes a value in the range of 0-1.

また、バッテリ30に充電される電力をPBATとすると、充電電力PBATは、第2コイル26で発電される電力Pと第1コイル25に供給される電力Pとの差として、以下のように表される。 Also, assuming that the power charged in the battery 30 is P BAT , the charge power P BAT is the difference between the power P O generated by the second coil 26 and the power P I supplied to the first coil 25 as follows: It is expressed as

BAT = P−P (2) P BAT = P O -P I ( 2)

ここで、式(2)を用いて式(1)を書き直すと、以下のようになる。   Here, when Expression (1) is rewritten using Expression (2), it becomes as follows.

ηP = P+PBAT (3) ηP E = P W + P BAT (3)

また、エンジン10から供給される動力P、および車軸14が要求する動力Pは、それぞれ以下のように表される。 Further, the power P E supplied from the engine 10 and the power P W required by the axle 14 are expressed as follows, respectively.

= T・ω (4)
= T・ω (5)
P E = T E · ω E (4)
P W = T W · ω W (5)

ただし、上式において、Tはエンジン10の出力トルク、ωはエンジン10の回転速度、Tは車軸14の要求トルク、ωは車軸14の回転速度である。 However, in the above equation, T E the output torque of the engine 10, omega E is the rotational speed, T W of the engine 10 is required torque, omega W axle 14 is the rotational speed of the axle 14.

また、第2コイル26で発電される電力P、および第1コイル25に供給される電力Pは、それぞれ以下のように表される。 The power P I to be supplied to the power P O, and the first coil 25 is generated by the second coil 26 are respectively expressed as follows.

= (T−T)・ω (6)
= T・(ω−ω) (7)
P O = (T E −T W ) · ω W (6)
P I = T E · (ω W -ω E) (7)

上記の事項を踏まえて図1を再度参照すると、高速巡航状態における車両駆動機構100では、第2ロータ22の回転によって第2コイル26で発電される電力Pの一部が電力Pとして第1ロータ21の第1コイル25に供給される動力循環が起こっている。この際に循環する電力は、電力変換ユニット32,31を経由する際に一部が失われるため、第2コイル26から第1コイル25への動力循環に伴って損失が発生する。 Referring again to FIG. 1 in light of the above matters, the in the vehicle drive mechanism 100 in a high-speed cruise condition, part of the power P O is generated by the second coil 26 by the rotation of the second rotor 22 as power P I Power circulation supplied to the first coil 25 of one rotor 21 occurs. A part of the electric power circulated at this time is lost when passing through the power conversion units 32 and 31, and thus a loss occurs with the power circulation from the second coil 26 to the first coil 25.

式(7)から見て取れるように、エンジン10の出力トルクTを減少させれば、第1コイル25に供給される電力Pを減少させることができ、第2コイル26から電力変換ユニット32,31を経由して第1コイル25へ循環する電力を減少させることができる。その結果、動力循環に伴って発生する損失を低減させることができる。しかしながら、式(2)に式(6)(7)を代入すると、以下の関係が得られる。 As can be seen from equation (7), if reducing the output torque T E of the engine 10, the power P I supplied to the first coil 25 can be reduced, the power conversion unit 32 from the second coil 26, The electric power circulated to the first coil 25 via 31 can be reduced. As a result, it is possible to reduce the loss that occurs with the power circulation. However, if the expressions (6) and (7) are substituted into the expression (2), the following relationship is obtained.

BAT = T・(ω−ω) (8) P BAT = T E · (ω W -ω E) (8)

すなわち、エンジン10の出力トルクTが減少すると、バッテリ30に充電される電力PBATも減少する。そのため、バッテリ30の充電量が少ない状態においては、動力循環に伴う損失を低減させるためにエンジン10の出力トルクTを減少させることは避けることが好ましい。 That is, when the output torque T E of the engine 10 decreases, also decreases power P BAT of the battery is recharged 30. Therefore, in the state of charge is small in the battery 30, to reduce the output torque T E of the engine 10 in order to reduce the losses associated with power circulation is preferably avoided.

上記の知見に基づいて、コントロールユニット40は、バッテリ30の現在の充電量(SOC)が所定の閾値Thを上回っている場合には、動力循環に伴う損失を低減させるために、エンジン10の出力トルクTを減少させる。一方、充電量が所定の閾値Thを下回っている場合には、動力循環に伴う損失の低減よりもバッテリ30への充電を優先させるために、エンジン10の出力トルクTを増加させる。より詳細には、コントロールユニット40は、図2のフローチャートに示される制御を所定の時間間隔で実行する。 Based on the above knowledge, when the current charge amount (SOC) of the battery 30 exceeds the predetermined threshold Th, the control unit 40 outputs the output of the engine 10 in order to reduce the loss due to power circulation. reduce the torque T E. On the other hand, when the amount of charge is below a predetermined threshold value Th, in order to prioritize charging of the battery 30 than the reduction in losses associated with the power circulation, to increase the output torque T E of the engine 10. More specifically, the control unit 40 executes the control shown in the flowchart of FIG. 2 at predetermined time intervals.

図2の制御フローにおいて、コントロールユニット40は、まずステップS1において、車軸14の回転速度ωがエンジン10の回転速度ωを上回るか否かを判定し、またステップS2において、エンジン10の出力トルクTが車軸14の要求トルクTよりも大きいか否かを判定する。これらの判定処理は、車両が高速巡航状態にあるか否かを判定するためのものであり、ステップS1、S2がともにYESである場合には、車両が高速巡航状態であると判断し、ステップS3以降の処理を行う。一方、ステップS1、S2のいずれかがNOである場合には、車両は高速巡航状態ではないと判断し、制御フローを抜ける。 In the control flow of FIG. 2, the control unit 40 first determines in step S1 whether or not the rotational speed ω W of the axle 14 exceeds the rotational speed ω E of the engine 10, and in step S2, the output of the engine 10 is determined. the torque T E is determined whether greater than the required torque T W of the axle 14. These determination processes are for determining whether or not the vehicle is in a high-speed cruise state. If both steps S1 and S2 are YES, it is determined that the vehicle is in a high-speed cruise state. The process after S3 is performed. On the other hand, if either of steps S1 and S2 is NO, it is determined that the vehicle is not in a high-speed cruise state, and the control flow is exited.

ステップS1,S2でともにYESと判定された場合、コントロールユニット40は、ステップS3において、バッテリ30の現在の充電量が所定の閾値Thを上回っているか否かを判定する。そして、バッテリ30の充電量が所定の閾値Thを上回っている場合には、ステップS4において、第2コイル26から第1コイル25への動力循環に伴う損失を低減させるために、エンジン10の出力トルクTを、以下の式(9)に従って算出される値まで減少させる。 When it is determined YES in both steps S1 and S2, the control unit 40 determines whether or not the current charge amount of the battery 30 exceeds a predetermined threshold Th in step S3. If the charge amount of the battery 30 exceeds a predetermined threshold Th, the output of the engine 10 is reduced in step S4 in order to reduce the loss associated with power circulation from the second coil 26 to the first coil 25. the torque T E, is reduced to a value which is calculated according to the following equation (9).

= (T・ω)/(η・ω) (9) T E = (T W · ω W ) / (η · ω E ) (9)

なお、上式(9)は、式(3)においてバッテリ30への充電電力PBAT=0と置き、式(4)(5)を代入することによって得られるものである。 The above equation (9) is obtained by substituting the equations (4) and (5) with the charging power P BAT = 0 for the battery 30 in the equation (3).

一方、バッテリ30の充電量が所定の閾値Thを下回っている場合には、コントロールユニット40は、ステップS5において、バッテリ30の充電量を増加させるためにエンジン10の出力トルクTを増加させる。詳細には、図3に示されるように、バッテリ30の充電量とその際に必要な充電電力との関係を予め定めておき、バッテリ30の現在の充電量に基づいて必要な充電電力PBAT’を求め、当該必要な充電電力PBAT’に対応する出力トルクTを以下の式(10)に従って算出し、エンジン10の出力トルクTを算出された値まで増加させる。 On the other hand, when the charge amount of the battery 30 is below a predetermined threshold value Th, the control unit 40, in step S5, to increase the output torque T E of the engine 10 to increase the charge amount of the battery 30. Specifically, as shown in FIG. 3, the relationship between the charge amount of the battery 30 and the charge power required at that time is determined in advance, and the required charge power P BAT is determined based on the current charge amount of the battery 30. 'seek, the required charging power P BAT' the output torque T E corresponding to calculated according to the following equation (10), is increased to a value which is calculated the output torque T E of the engine 10.

= (PBAT’+T・ω)/ω (10) T E = (P BAT '+ T W · ω W ) / ω E (10)

なお、上式(10)は、式(2)においてバッテリ30への充電電力PBAT=PBAT’と置き、式(6)(7)を代入することによって得られるものである。また、バッテリ30の充電量と必要な充電電力PBAT’との関係の定め方は、図3に示される関係に限定されるものではなく、例えば図4に示されるように定めてもよい。 The above equation (10) is obtained by substituting the equations (6) and (7) by substituting the charging power P BAT = P BAT 'into the battery 30 in the equation (2). Further, the method of determining the relationship between the charge amount of the battery 30 and the necessary charging power P BAT ′ is not limited to the relationship illustrated in FIG. 3, and may be determined, for example, as illustrated in FIG. 4.

以上説明したように、この実施の形態に係るハイブリッド自動車の車両駆動機構100では、高速巡航状態において、バッテリ30の充電量が所定の閾値Thを上回っている場合には、エンジン10の出力トルクTを式(9)に従って算出される値まで減少させ、バッテリ30の充電量が所定の閾値Thを下回っている場合には、エンジン10の出力トルクTを式(10)に従って算出されるまで増加させる。これにより、高速巡航状態において、バッテリ30の充電量を維持しながら動力循環に伴って発生する損失を低減させることができる。 As described above, in the vehicle drive mechanism 100 of the hybrid vehicle according to this embodiment, the output torque T of the engine 10 when the charge amount of the battery 30 exceeds the predetermined threshold Th in the high-speed cruise state. E was reduced to the value calculated according to equation (9), when the charge amount of the battery 30 is below a predetermined threshold value Th, the output torque T E of the engine 10 until it is calculated according to equation (10) increase. Thereby, in the high-speed cruise state, it is possible to reduce the loss caused by the power circulation while maintaining the charge amount of the battery 30.

その他の実施の形態.
(第1の変形例)
上記の実施の形態における2重ロータ型モータ20では、図1に示されているように、径方向内側から第1コイル25、第1磁石27、第2磁石28、第2コイル26の順に設けられる構造であったが、第1ロータ21および第2ロータ22において、一方が第1コイル25を有すると共に他方が第1磁石27を有し、第2ロータ22およびステータ23において、一方が第2コイル26を有すると共に他方が第2磁石28を有する構造であればよい。そのため、例えば図5の(a)〜(c)に示されるような構造とすることもできる。図5(a)では、径方向内側から第1磁石27a、第1コイル25a、第2磁石28a、第2コイル26aの順に設けられている。図5(b)では、径方向内側から第1磁石27b、第1コイル25b、第2コイル26b、第2磁石28bの順に設けられている。図5(c)では、径方向内側から第1コイル25c、第1磁石27c、第2コイル26c、第2磁石28cの順に設けられている。
Other embodiments.
(First modification)
In the double rotor type motor 20 in the above embodiment, as shown in FIG. 1, the first coil 25, the first magnet 27, the second magnet 28, and the second coil 26 are provided in this order from the radially inner side. In the first rotor 21 and the second rotor 22, one has the first coil 25 and the other has the first magnet 27, and in the second rotor 22 and the stator 23, one is the second. Any structure having the coil 26 and the other having the second magnet 28 may be used. Therefore, for example, a structure as shown in FIGS. In FIG. 5A, the first magnet 27a, the first coil 25a, the second magnet 28a, and the second coil 26a are provided in this order from the radially inner side. In FIG. 5B, the first magnet 27b, the first coil 25b, the second coil 26b, and the second magnet 28b are provided in this order from the radially inner side. In FIG. 5C, the first coil 25c, the first magnet 27c, the second coil 26c, and the second magnet 28c are provided in this order from the radially inner side.

(第2の変形例)
また、上記の実施の形態の2重ロータ型モータ20において、第2ロータの本体を電磁鋼板で作成して磁気的な突極部を形成することによって、周知の同期リラクタンスモータ(SynRM)を構成してもよい。
(Second modification)
Further, in the double rotor type motor 20 of the above-described embodiment, a known synchronous reluctance motor (SynRM) is configured by forming the second rotor body from a magnetic steel sheet and forming a magnetic salient pole portion. May be.

図6(a)では、第2ロータ222aの径方向外側に第2磁石228aが設けられると共にステータ223aに第2コイル226aが設けられる構造は上記の実施の形態と同様であるが、第2ロータ222aの径方向内側に多層スリット構造のフラックスバリア部229aが4箇所形成され、各フラックスバリア部229a,229aの間に4つの第1磁気突極部231aが形成されている。また、第1ロータ221aの第1コイル225aは分布巻線型であり、第1ロータ221aと第2ロータ222aによってSynRMが構成されている。   In FIG. 6A, the structure in which the second magnet 228a is provided on the radially outer side of the second rotor 222a and the second coil 226a is provided on the stator 223a is the same as that of the above-described embodiment. Four flux barrier portions 229a having a multilayer slit structure are formed on the radially inner side of 222a, and four first magnetic salient pole portions 231a are formed between the respective flux barrier portions 229a and 229a. The first coil 225a of the first rotor 221a is a distributed winding type, and the first rotor 221a and the second rotor 222a constitute a SynRM.

図6(b)では、第1ロータ221bに第1コイル225bが設けられると共に第2ロータ222bの径方向内側に第1磁石227aが設けられる構造は上記の実施の形態と同様であるが、第2ロータ222bの径方向外側に4つの第2磁気突極部232bが形成されると共に、ステータ223bの第2コイル226bは分布巻線型であり、第2ロータ222bとステータ223bによってSynRMが構成されている。   In FIG. 6B, the structure in which the first coil 225b is provided in the first rotor 221b and the first magnet 227a is provided radially inward of the second rotor 222b is the same as in the above embodiment. Four second magnetic salient pole portions 232b are formed on the outer side in the radial direction of the two rotor 222b, and the second coil 226b of the stator 223b is a distributed winding type, and a SynRM is configured by the second rotor 222b and the stator 223b. Yes.

図6(c)では、第2ロータ222cの径方向内側に4つの第1磁気突極部231cが形成されると共に径方向外側に4つの第2磁気突極部232cが形成されており、また第1、第2コイル225c,226cはともに分布巻線型であり、第1ロータ221cと第2ロータ222cによって内側SynRMが構成されると共に、第2ロータ222cとステータ223cによって外側SynRMが構成されている。   In FIG. 6C, four first magnetic salient pole portions 231c are formed on the radially inner side of the second rotor 222c, and four second magnetic salient pole portions 232c are formed on the radially outer side. The first and second coils 225c and 226c are both distributed winding type, and the inner rotor 221c and the second rotor 222c constitute an inner SynRM, and the second rotor 222c and the stator 223c constitute an outer SynRM. .

(第3の変形例)
また、上記の実施の形態の2重ロータ型モータ20において、第2ロータの本体を電磁鋼板で作成して磁気的な突極部を形成すると共に、当該磁気的な突極部に対向するコイルを集中巻線型にして同じく突極構造を形成することによって、周知のスイッチドリラクタンスモータ(SRM)を構成してもよい。
(Third Modification)
Further, in the double rotor type motor 20 of the above-described embodiment, the main body of the second rotor is made of an electromagnetic steel plate to form a magnetic salient pole part, and a coil facing the magnetic salient pole part A well-known switched reluctance motor (SRM) may be formed by forming a salient pole structure in a concentrated winding type.

図7(a)では、第2ロータ322aの径方向内側に6つの第1磁気突極部332aが形成されると共に、第1ロータ321aの第1コイル325aが集中巻線型となって突極構造が形成されており、第1ロータ321aと第2ロータ322aによってSRMが構成されている。   In FIG. 7A, six first magnetic salient pole portions 332a are formed on the radially inner side of the second rotor 322a, and the first coil 325a of the first rotor 321a is a concentrated winding type and has a salient pole structure. Is formed, and the first rotor 321a and the second rotor 322a constitute an SRM.

図7(b)では、第2ロータ322bの径方向外側に6つの第2磁気突極部333bが形成されると共に、ステータ323bの第2コイル326bが集中巻線型となって突極構造が形成されており、第2ロータ322bとステータ323bによってSRMが構成されている。   In FIG. 7B, six second magnetic salient pole portions 333b are formed on the radially outer side of the second rotor 322b, and the second coil 326b of the stator 323b is a concentrated winding type to form a salient pole structure. The SRM is configured by the second rotor 322b and the stator 323b.

図7(c)では、第2ロータ322cの径方向内側と外側にそれぞれ第1、第2磁気突極部332c,333cが形成されると共に、第1、第2コイル325c,326cが集中巻線型となってそれぞれ突極構造が形成されており、第1ロータ321cと第2ロータ322cによって内側SRMが構成されると共に、第2ロータ322cとステータ323cによって外側SRMが構成されている。   In FIG. 7C, first and second magnetic salient pole portions 332c and 333c are formed on the inner side and the outer side of the second rotor 322c in the radial direction, respectively, and the first and second coils 325c and 326c are concentrated winding type. Thus, a salient pole structure is formed, and an inner SRM is constituted by the first rotor 321c and the second rotor 322c, and an outer SRM is constituted by the second rotor 322c and the stator 323c.

100 車両駆動機構、10 エンジン(内燃機関)、11 駆動軸、14 車軸、20 2重ロータ型モータ(回転電機)、21 第1ロータ(第1回転子)、22 第2ロータ(第2回転子)、23 ステータ(固定子)、25 第1コイル、26 第2コイル、27 第1磁石、28 第2磁石、30 バッテリ(蓄電手段)、40 コントロールユニット(制御手段)、T エンジンの出力トルク(内燃機関の出力トルク)、ω エンジンの回転速度(内燃機関の回転速度)、T 車軸の要求トルク、ω 車軸の回転速度、η エンジンから供給される動力の変換効率(内燃機関から供給される動力の変換効率)、PBAT’ バッテリに必要な充電電力(蓄電手段に必要な充電電力)、Vt 所定の閾値。 DESCRIPTION OF SYMBOLS 100 Vehicle drive mechanism, 10 engine (internal combustion engine), 11 drive shaft, 14 axle, 20 double rotor type motor (rotary electric machine), 21 1st rotor (1st rotor), 22 2nd rotor (2nd rotor) ), 23 Stator (stator), 25 1st coil, 26 2nd coil, 27 1st magnet, 28 2nd magnet, 30 battery (power storage means), 40 control unit (control means), output torque of TE engine rotational speed (output torque of the internal combustion engine), omega E engine (rotational speed of the internal combustion engine), the required torque of T W axle, the rotation speed of the omega W axles, the conversion efficiency (internal combustion engine of the power supplied from η engine (Conversion efficiency of power to be supplied), P BAT ′ charge power required for the battery (charge power required for the power storage means), Vt predetermined threshold.

Claims (3)

燃料を燃焼させて動力を発生させる内燃機関と、
前記内燃機関に駆動軸を介して機械的に連結される第1回転子、該第1回転子の径方向外側に配設されると共に車軸に機械的に連結される第2回転子、および該第2回転子の径方向外側に配設される固定子を含み、前記第1回転子および前記第2回転子は、一方が第1コイルを有すると共に他方が第1磁石または第1磁気突極部を有し、前記第2回転子および前記固定子は、一方が第2コイルを有すると共に他方が第2磁石または第2磁気突極部を有する、回転電機と、
前記回転電機の前記第1、第2コイルと電気的に接続される蓄電手段と、
前記第2回転子の回転速度が前記第1回転子の回転速度を上回り、かつ前記内燃機関の出力トルクが前記車軸の要求トルクよりも大きい場合に、前記蓄電手段の充電量に基づいて前記内燃機関の出力トルクを制御する制御手段と
を備えることを特徴とする、車両駆動機構。
An internal combustion engine that generates power by burning fuel;
A first rotor mechanically coupled to the internal combustion engine via a drive shaft; a second rotor disposed radially outside the first rotor and mechanically coupled to an axle; and A stator disposed radially outward of the second rotor, wherein one of the first rotor and the second rotor has a first coil and the other is a first magnet or a first magnetic salient pole. A rotating electrical machine, wherein one of the second rotor and the stator has a second coil and the other has a second magnet or a second magnetic salient pole,
Power storage means electrically connected to the first and second coils of the rotating electrical machine;
When the rotational speed of the second rotor exceeds the rotational speed of the first rotor and the output torque of the internal combustion engine is larger than the required torque of the axle, the internal combustion engine is based on the charge amount of the power storage means. A vehicle drive mechanism comprising control means for controlling the output torque of the engine.
前記制御手段は、前記蓄電手段の充電量が所定の閾値を上回っている場合には、前記内燃機関の出力トルクを減少させ、前記蓄電手段の充電量が前記所定の閾値を下回っている場合には、前記内燃機関の出力トルクを増加させることを特徴とする、請求項1に記載の車両駆動機構。   The control means reduces the output torque of the internal combustion engine when the charge amount of the power storage means exceeds a predetermined threshold, and when the charge amount of the power storage means falls below the predetermined threshold. The vehicle drive mechanism according to claim 1, wherein an output torque of the internal combustion engine is increased. 前記制御手段は、前記内燃機関の出力トルクをT、前記内燃機関の回転速度をω、前記車軸の要求トルクをT、前記車軸の回転速度をω、前記内燃機関から供給される動力の変換効率をη、前記蓄電手段に必要な充電電力をPBAT’として、
前記蓄電手段の充電量が前記所定の閾値を上回っている場合には、前記内燃機関の出力トルクを、
= (T・ω)/(η・ω
に従って算出される値まで減少させ、
前記蓄電手段の充電量が前記所定の閾値を下回っている場合には、前記内燃機関の出力トルクを、
= (PBAT’+T・ω)/ω
に従って算出される値まで増加させることを特徴とする、請求項2に記載の車両駆動機構。
The control means is supplied from the internal combustion engine with the output torque of the internal combustion engine being T E , the rotational speed of the internal combustion engine being ω E , the required torque of the axle being T W , and the rotational speed of the axle being ω W. Assuming that the power conversion efficiency is η and the charging power required for the power storage means is P BAT ′,
When the amount of charge of the power storage means exceeds the predetermined threshold, the output torque of the internal combustion engine is
T E = (T W · ω W ) / (η · ω E )
To the value calculated according to
When the amount of charge of the power storage means is below the predetermined threshold, the output torque of the internal combustion engine is
T E = (P BAT '+ T W · ω W ) / ω E
The vehicle drive mechanism according to claim 2, wherein the vehicle drive mechanism is increased to a value calculated according to
JP2012198639A 2012-09-10 2012-09-10 Vehicle driving mechanism Withdrawn JP2014051247A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012198639A JP2014051247A (en) 2012-09-10 2012-09-10 Vehicle driving mechanism
PCT/JP2013/066080 WO2014038262A1 (en) 2012-09-10 2013-06-11 Vehicle drive mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012198639A JP2014051247A (en) 2012-09-10 2012-09-10 Vehicle driving mechanism

Publications (1)

Publication Number Publication Date
JP2014051247A true JP2014051247A (en) 2014-03-20

Family

ID=50236885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012198639A Withdrawn JP2014051247A (en) 2012-09-10 2012-09-10 Vehicle driving mechanism

Country Status (2)

Country Link
JP (1) JP2014051247A (en)
WO (1) WO2014038262A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101713734B1 (en) * 2015-10-06 2017-03-08 현대자동차 주식회사 Method and apparatus of controlling hybrid electric vehicle

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001169406A (en) * 1999-12-07 2001-06-22 Denso Corp Brake for car
JP3610961B2 (en) * 2002-04-01 2005-01-19 日産自動車株式会社 Rotating electric machine and hybrid vehicle using the rotating electric machine
JP2008236962A (en) * 2007-03-23 2008-10-02 Toyota Central R&D Labs Inc Electric rotating machine and hybrid drive device therewith
JP5390120B2 (en) * 2008-05-13 2014-01-15 株式会社豊田中央研究所 Power transmission device
JP5145139B2 (en) * 2008-07-03 2013-02-13 株式会社豊田中央研究所 Power transmission device
JP5109904B2 (en) * 2008-09-26 2012-12-26 株式会社デンソー Rotating electric machine
JP5412143B2 (en) * 2009-03-04 2014-02-12 株式会社豊田中央研究所 Power transmission device and power conversion device
JP5392064B2 (en) * 2009-12-25 2014-01-22 株式会社豊田中央研究所 Power transmission device
JP5381839B2 (en) * 2010-03-18 2014-01-08 株式会社豊田中央研究所 Power transmission device
JP5396317B2 (en) * 2010-03-18 2014-01-22 株式会社豊田中央研究所 Power transmission device

Also Published As

Publication number Publication date
WO2014038262A1 (en) 2014-03-13

Similar Documents

Publication Publication Date Title
JP5558176B2 (en) Electric motor drive device and vehicle equipped with the same
US9425666B2 (en) Stator and rotating electric machine
JP4740273B2 (en) Rotating electric machine and hybrid vehicle using the same
JP6585826B2 (en) Rotating electric machine stator and rotating electric machine using the same
US9887656B2 (en) Information processing device, information storage device, and control device of rotary electric machine
JP5745379B2 (en) Rotating electric machine and electric vehicle
JP6162062B2 (en) Rotating electrical machine control device and rotating electrical machine control system
CN103501098B (en) Stator core coil axial adjustable brushless permanent magnet motor and its control system
Mohammad et al. Comparison of electric motors used in electric vehicle propulsion system
JP2019080438A (en) Two-shaft output induction machine
CN105659472B (en) Motor
WO2014038262A1 (en) Vehicle drive mechanism
EP3489069B1 (en) Electric drive system of a hybrid or electric vehicle
WO2015045924A1 (en) Rotary electric machine
CN110212840B (en) Control device of switch reluctance motor
Tanujaya et al. Design a novel switched reluctance motor for neighborhoods electric vehicle
EP3490137B1 (en) Controller for switched reluctance motor
CN114678975A (en) Motor stator and vehicle motor comprising same
JP4196545B2 (en) Power output apparatus and electric vehicle equipped with the same
Petrov Two permanent magnet rotors controlled independently using single stator
JP2014051248A (en) Vehicle driving mechanism
JP7206722B2 (en) motor generator controller
Husain Automotive Electric Motor Drives and Power Electronics
Nelson et al. Electric vehicles and axial flux permanent magnet motor propulsion systems
JP2023145910A (en) electric vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141211

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20150219