JP4196545B2 - Power output apparatus and electric vehicle equipped with the same - Google Patents

Power output apparatus and electric vehicle equipped with the same Download PDF

Info

Publication number
JP4196545B2
JP4196545B2 JP2001110111A JP2001110111A JP4196545B2 JP 4196545 B2 JP4196545 B2 JP 4196545B2 JP 2001110111 A JP2001110111 A JP 2001110111A JP 2001110111 A JP2001110111 A JP 2001110111A JP 4196545 B2 JP4196545 B2 JP 4196545B2
Authority
JP
Japan
Prior art keywords
motor
region
loss
power
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001110111A
Other languages
Japanese (ja)
Other versions
JP2002315108A (en
Inventor
宜史 野沢
宗宏 神谷
和高 立松
秀哉 粟田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2001110111A priority Critical patent/JP4196545B2/en
Publication of JP2002315108A publication Critical patent/JP2002315108A/en
Application granted granted Critical
Publication of JP4196545B2 publication Critical patent/JP4196545B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、動力出力装置およびこれを搭載する電動車両に関し、詳しくは、互いに異なる所定の出力特性領域を各々主動作領域として駆動制御される複数の電動機を有し該複数の電動機の駆動により出力軸に要求される動力を出力可能な動力出力装置およびこれを搭載する電動車両に関する。
【0002】
【従来の技術】
従来の動力出力装置としては、定格出力が異なる2つの電動機と、動力出力装置の出力軸に要求される出力に応じて2つの電動機の電力供給の配分を制御する制御装置とを備えたものが提案されている(特開平6−189415号公報など)。この動力出力装置では、出力軸に要求される出力が小さいときには小さい定格出力の電動機に電力を供給し、出力軸に要求される出力が大きいときには大きい定格出力の電動機に電力を供給することにより、高出力性能と省電力化とを両立することができるとされている。
【0003】
【発明が解決しようとする課題】
しかしながら、こうした動力出力装置では、装置のエネルギ効率が十分に向上しない場合がある。電動機は、その出力が同じであっても運転ポイント(トルクと回転数からなる出力特性ポイント)によっては回転に伴う電動機の損失、例えば、鉄損や銅損に基づく損失が大きく異なる。前述の動力出力装置では、装置の出力軸に要求される出力のみに基づいて定格出力の異なる2つの電動機から使用する電動機を選択するから、電動機が主に駆動制御される運転ポイントの領域によっては電動機の損失が大きくなり、装置のエネルギ効率が十分に向上しない場合がある。
【0004】
本発明の動力出力装置は、装置のエネルギ効率をより向上させることを目的の一つとする。また、本発明の動力出力装置を搭載する電動車両は、車両のエネルギ効率をより向上させることを目的の一つとする。
【0005】
【課題を解決するための手段およびその作用・効果】
本発明の動力出力装置およびこれを搭載する電動車両は、上述の目的の少なくとも一部を達成するために以下の手段を採った。
【0006】
本発明の第1の動力出力装置は、
互いに異なる所定の出力特性領域内を各々主動作領域として駆動制御される複数の電動機を有し、該複数の電動機の駆動により出力軸に要求される動力を出力可能な動力出力装置であって、
前記複数の電動機は、各々の主動作領域に対応する出力特性領域内で駆動制御されるときの動作損失が、他の出力特性領域内で駆動制御されるときの動作損失よりも少なくなるように、各々の主動作領域に対応する出力特性領域に応じて異なる方式により巻回されたコイルにより形成された電動機であることを要旨とする。
【0007】
この本発明の第1の動力出力装置では、複数の電動機は、各々の主動作領域に対応する出力特性領域内で駆動制御されるときの動作損失が、他の出力特性領域内で駆動制御されるときの動作損失よりも少なくなるように、各々の主動作領域に対応する出力特性領域に応じて異なる方式により巻回されたコイルにより形成するから、装置全体のエネルギ効率をより向上させることができる。
【0008】
本発明の第2の動力出力装置は、
互いに異なる所定の出力特性領域内を各々主動作領域として駆動制御される複数の電動機を有し、該複数の電動機の駆動により出力軸に要求される動力を出力可能な動力出力装置であって、
前記複数の電動機は、各々の主動作領域に対応する出力特性領域が、電動機の動作可能な領域のうちで動作損失が少ない低損失領域となるようにそれぞれ選定され、各々の主動作領域に対応する出力特性領域に応じて異なる方式により巻回されたコイルにより形成された電動機であることを要旨とする。
【0009】
この本発明の第2の動力出力装置では、複数の電動機は、各々の主動作領域に対応する出力特性領域が電動機の動作可能な領域のうちで動作損失が少ない低損失領域となるようにそれぞれ選定され、各々の主動作領域に対応する出力特性領域に応じて異なる方式により巻回されたコイルにより形成されるから、装置全体のエネルギ効率を向上させることができる。
【0010】
こうした本発明の第1または第2の動力出力装置において、前記複数の電動機のうち、前記所定の出力特性領域として高トルク低回転数の領域内を主動作領域として駆動制御される電動機は、集中巻コイルにより形成された電動機とし、低トルク高回転数の領域を主動作領域として駆動制御される電動機は、分布巻コイルにより形成された電動機としたものとすることもできる。
【0011】
また、本発明の第1または第2の動力出力装置において、前記動作損失は、銅損および鉄損に基づく損失であるものとすることもできる。この態様の本発明の第1または第2の動力出力装置において、前記複数の電動機のうち、前記所定の出力特性領域として高トルク低回転数の領域内を主動作領域として駆動制御される電動機は、低銅損および高鉄損の電動機とし、低トルク高回転数の領域内を主動作領域として駆動制御される電動機は、高銅損および低鉄損の電動機としたものとすることもできる。
【0012】
本発明の電動車両は、
本発明の第1または第2の動力出力装置が搭載された電動車両であって
内燃機関を備え、
前記複数の電動機は、前記内燃機関からの動力の少なくとも一部を受けて発電可能な発電電動機と、該発電電動機からの発電電力を用いて前記内燃機関と共に前記電動車両の車軸に要求される動力を出力可能な電動機とを含むことを要旨とする。
【0013】
この本発明の電動車両では、内燃機関を備え、複数の電動機は、内燃機関からの動力の少なくとも一部を受けて発電可能な発電電動機と、発電電動機からの発電電力を用いて内燃機関と共に電動車両の車軸に要求される動力を出力可能な電動機とを含む。この発電電動機と電動機とを各主動作領域に対応する出力特性領域に応じて構成することにより、車両のエネルギ効率をより向上させることができる。
【0014】
【発明の実施の形態】
次に、本発明の実施の形態を実施例を用いて説明する。図1は、本発明の一実施例である動力出力装置を搭載したハイブリッド自動車20の構成の概略を示す構成図である。実施例のハイブリッド自動車20は、図示するように主にガソリンで駆動する内燃機関としてのエンジン22と、エンジン22からの動力を所定のトルク比でサンギア軸33とリングギア軸37とに分配可能なギアユニット30と、ギアユニット30のサンギア軸33に連結された発電可能なモータMG1と、ギアユニット30のリングギア軸37に連結されると共に車輪54,56の車軸50に連結された発電可能なモータMG2と、モータMG1,MG2との間でインバータ62,64を介して電力のやり取りを行なうバッテリ60とを備える。
【0015】
ギアユニット30は、サンギア32とリングギア36とその間に設けられた複数のプラネタリピニオンギア34とを備えるプラネタリギアユニットとして構成されている。ギアユニット30の複数のプラネタリピニオンギア34を連結するプラネタリキャリア35には、エンジン22のクランクシャフト24がダンパ26を介して接続されている。ギアユニット30のサンギア軸33には、モータMG1の回転軸が接続されている。ギアユニット30のリングギア軸37には、モータMG2の回転軸40がリングギア軸37に設けられたギア38と回転軸40に設けられたギア42とを連結するベルト44を介して接続されている。モータMG2の回転軸40に設けられたギア46には、動力出力装置の出力軸としての車輪54,56の車軸50がデファレンシャルギア52を介して接続されている。したがって、ギアユニット30のリングギア軸37は、モータMG2の回転軸40に接続されると共に車輪54,56の車軸50に接続されている。
【0016】
モータMG1,MG2は、例えば、外表面に永久磁石が貼り付けられたロータと、三相コイルが巻回された発電可能なPM型の同期式発電電動機として構成されている。モータMG1,MG2の三相コイルはそれぞれインバータ62,64に接続されており、モータMG1、MG2はインバータ62,64による力行制御や回生制御により電動機や発電機として動作する。モータMG1は、集中巻きコイルにより、モータMG2は、分布巻きコイルによりそれぞれ形成されている。集中巻きのモータMG1は、分布巻きのモータMG2に比して鉄損が大きく高回転数領域におけるモータ損失は大きくなるものの、巻線を一つのティース(歯)に集中して巻くから、巻線として断面積の大きい平角線を用いて整列巻きすることにより、モータのスロットにおけるコイルの占積率を高くすることができると共にコイルエンドを小さくすることができる。これは、図2に例示する集中巻きモータと分布巻きモータとの巻線抵抗の比較結果のように、集中巻きの巻線抵抗が分布巻きの巻線抵抗よりも小さくなることを意味する。したがって、集中巻きのモータMG1は、分布巻きのモータMG2に比して、鉄損は大きいが銅損は小さいことがわかる。即ち、モータMG1は低銅損高鉄損のモータであり、モータMG2は高銅損低鉄損のモータであることがわかる。
【0017】
こうして構成された実施例のハイブリッド自動車20では、図示しない電子制御ユニットにより種々の運転モードが設定されてエンジン22と共にモータMG1およびモータMG2が駆動制御される。この運転モードとしては、車軸50への出力要求に見合った動力が出力されるようエンジン22を運転すると共にエンジン22からの動力をモータMG1とモータMG2とによりトルク変換して車軸50に要求出力を出力するトルク変換駆動モードや、車軸50への要求出力を上回る動力が出力されるようエンジン22を運転すると共にエンジン22からの動力をモータMG1とモータMG2とによりトルク変換して車軸50に要求出力を出力すると共に余剰の電力をバッテリ60を充電する充電駆動モード、車軸50への要求出力を下回る動力が出力されるようエンジン22を運転すると共にエンジン22からの動力とバッテリ60からの電力とを用いてモータMG1とモータMG2とにより車軸50に要求出力を出力する放電駆動モードなどがある。
【0018】
こうしたハイブリッド自動車20における定常走行時では、トルク変換駆動モードが設定される。トルク変換駆動モードでは、エンジン22は要求される出力に基づいてできる限り効率の高い運転ポイント(トルクと回転数により定まるポイント)で運転しつつ、車軸50に指令トルクが出力されるようにエンジン22からの動力をモータMG1およびモータMG2によりトルク変換する。トルク変換は、主にモータMG1を高トルク低回転数の領域で駆動制御すると共にモータMG2を低トルク高回転数の領域で駆動制御することにより行なわれる。即ち、図3に示すようにモータMG1は高トルク低回転数の領域A内を主動作領域a(他の出力特性領域よりも高頻度に設定される運転範囲)で駆動制御され、モータMG2は低トルク高回転数の領域B内を主動作領域bとして駆動制御される。
【0019】
図4はモータが駆動制御される出力特性領域に応じた銅損および鉄損の分布の一例を示す図である。モータMG1,MG2は、その駆動に基づいて銅損や鉄損、機械損などの損失が発生する。このうち銅損は、発生するトルクが大きいほど大きく現われ、鉄損は、回転数が大きくなるほど大きく現われる。即ち、図4に示すように、高トルク低回転数の出力特性領域Aでは、銅損は大きく現われると共に鉄損は小さく現われ、低トルク高回転数の出力特性領域Bでは、逆に銅損は小さく現われると共に鉄損は大きく現われる。したがって、高トルク低回転数の出力特性領域A内で主に駆動制御されるモータMG1として、モータが動作可能な領域のうちで高トルク低回転数域の動作損失が少ない低銅損高鉄損のモータを採用し、低トルク高回転数の出力特性領域B内で主に駆動制御されるモータMG2として、低トルク高回転数域の動作損失が少ない高銅損低鉄損のモータを採用すれば、全体の損失を少なくできることがわかる。前述したように高トルク低回転数の出力特性領域Aを主動作領域aとするモータMG1は低銅損高鉄損の集中巻きにより形成し、低トルク高回転数の領域Bを主動作領域bとするモータMG2は高銅損低鉄損の分布巻きにより形成したから、モータMG1の高トルクの駆動に伴う銅損の影響をより少なくすると共にモータMG2の高回転数の駆動に伴う鉄損の影響をより少なくすることができる。また、高鉄損のモータMG1は低回転数で駆動され、高銅損のモータMG2は低トルクで駆動されるから、それぞれ鉄損や銅損の影響により損失が増加することもない。
【0020】
以上説明した実施例のハイブリッド自動車20によれば、モータの回転に伴う損失のうち、銅損は大きく現われ鉄損は小さく現われる高トルク低回転数の領域内を主動作領域として駆動制御されるモータMG1は、高トルク低回転数の領域を低損失領域とする低銅損高鉄損の集中巻きモータを採用し、銅損は小さく現われ鉄損は大きく現われる低トルク高回転数の領域内を主動作領域として駆動制御されるモータMG2は、低トルク高回転数の領域を低損失領域とする高銅損低鉄損の分布巻きモータを採用するから、モータMG1およびモータMG2の駆動に伴う銅損および鉄損の影響をより少なくすることができ、車両全体のエネルギ効率をより向上させることができる。
【0021】
実施例のハイブリッド自動車20では、モータの出力可能な領域を高トルク低回転数の領域と低トルク高回転数の領域との2つの出力特性領域に分け、高トルク低回転数の領域内を主動作領域として駆動制御されるモータとして、高トルク低回転数の領域を低損失領域とする集中巻きモータを採用すると共に低トルク高回転数の領域内を主動作領域として駆動制御されるモータとして、低トルク高回転数の領域を低損失領域とする分布巻きモータを採用したが、モータの出力可能な領域を3つ以上の領域に分け、分割した各々の出力特性領域内を主動作領域として駆動制御される各モータとして、各出力特性領域を低損失領域とするモータ(各出力特性領域に応じてコイルの巻回方式の異なるモータ)をそれぞれ採用するものとしてもよい。例えば、分割された複数の出力特性領域のうち主動作領域に対応する出力特性領域で駆動するモータの損失が他の出力特性領域で駆動する場合の損失よりも少なくなるように毎極毎相のコイルのスロット数やコイルの断面積の大きさなどを適宜調節してモータを構成するのである。
【0022】
以上、本発明の実施の形態について実施例を用いて説明したが、本発明のこうした実施例に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。
【図面の簡単な説明】
【図1】 本発明の一実施例である動力出力装置が搭載されたハイブリッド車両20の構成の概略を示す構成図である。
【図2】 分布巻きモータと集中巻きモータとの巻線抵抗の比較結果を説明する説明図である。
【図3】 モータMG1の主動作領域とモータMG2の主動作領域との関係を示す図である。
【図4】 モータが駆動制御される出力特性領域に応じた鉄損と銅損の分布を説明する説明図である。
【符号の説明】
20 ハイブリッド自動車、22 エンジン、24 クランクシャフト、26ダンパ、30 ギアユニット、32 サンギア、33 サンギア軸、34 プラネタリピニオンギア、35 プラネタリキャリア、36 リングギア、37 リングギア軸、38 ギア、40 回転軸、42 ギア、44 ベルト、46 ギア、50 車軸、52 ディファレンシャルギア、54,56 車輪、60 バッテリ、62,64 インバータ、MG1,MG2 モータ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a power output apparatus and an electric vehicle equipped with the same, and more specifically, has a plurality of electric motors that are driven and controlled with respective predetermined output characteristic areas different from each other as main operation areas, and outputs by driving the plurality of electric motors. The present invention relates to a power output device capable of outputting power required for a shaft and an electric vehicle equipped with the power output device.
[0002]
[Prior art]
A conventional power output device includes two motors having different rated outputs and a control device that controls distribution of power supply of the two motors according to the output required for the output shaft of the power output device. It has been proposed (JP-A-6-189415, etc.). In this power output device, when the output required for the output shaft is small, power is supplied to a motor with a small rated output, and when the output required for the output shaft is large, power is supplied to a motor with a large rated output, It is said that both high output performance and power saving can be achieved.
[0003]
[Problems to be solved by the invention]
However, in such a power output device, the energy efficiency of the device may not be sufficiently improved. Even if the output of the electric motor is the same, the loss of the electric motor due to rotation, for example, loss due to iron loss or copper loss, varies greatly depending on the operating point (output characteristic point consisting of torque and rotational speed). In the above-described power output device, the motor to be used is selected from two motors having different rated outputs based only on the output required for the output shaft of the device, so depending on the region of the operating point where the motor is mainly driven and controlled. The loss of the electric motor increases, and the energy efficiency of the device may not be sufficiently improved.
[0004]
The power output device of the present invention is one of the objects to further improve the energy efficiency of the device. Another object of the electric vehicle equipped with the power output apparatus of the present invention is to further improve the energy efficiency of the vehicle.
[0005]
[Means for solving the problems and their functions and effects]
The power output apparatus of the present invention and the electric vehicle equipped with the power output apparatus employ the following means in order to achieve at least a part of the above-described object.
[0006]
The first power output device of the present invention comprises:
A power output device that has a plurality of electric motors that are driven and controlled as main operation areas in predetermined output characteristic areas different from each other, and that is capable of outputting the power required for the output shaft by driving the plurality of electric motors,
The plurality of electric motors are configured such that an operation loss when the drive control is performed in the output characteristic region corresponding to each main operation region is smaller than an operation loss when the drive control is performed in another output property region. The gist of the invention is that the electric motor is formed by coils wound in a different manner depending on the output characteristic region corresponding to each main operation region .
[0007]
In the first power output apparatus of the present invention, the operation loss of the plurality of electric motors when the drive control is performed in the output characteristic region corresponding to each main operation region is controlled in the other output characteristic regions. Since the coil is wound by a different method according to the output characteristic region corresponding to each main operation region so as to reduce the operation loss at the time of operation, the energy efficiency of the entire device can be further improved. it can.
[0008]
The second power output device of the present invention is:
A power output device that has a plurality of electric motors that are driven and controlled as main operation areas in predetermined output characteristic areas different from each other, and that is capable of outputting the power required for the output shaft by driving the plurality of electric motors,
Each of the plurality of electric motors is selected so that the output characteristic region corresponding to each main operation region is a low loss region with low operation loss among the regions in which the motor can operate, and corresponds to each main operation region. The gist of the invention is that the motor is formed by a coil wound by a different method depending on the output characteristic region to be performed.
[0009]
In the second power output device of the present invention, each of the plurality of electric motors has an output characteristic region corresponding to each main operation region so that the operation loss of the electric motor is a low loss region with less operation loss. is selected, because in accordance with the output characteristic region corresponding to each of the main operating area Ru is formed by a coil which is wound around a different manner, it is possible to improve the energy efficiency of the whole device.
[0010]
In the first or second power output apparatus of the invention, among the pre-Symbol plurality of motors, motor driven control as a main operation region of high torque low rotational speed of the region as the predetermined output characteristic region, The electric motor that is driven by the concentrated winding coil and that is driven and controlled with the low torque and high rotation speed region as the main operation region may be an electric motor that is formed by the distributed winding coil.
[0011]
In the first or second power output device of the present invention, the operation loss may be a loss based on a copper loss and an iron loss. In the first or second power output apparatus of the present invention according to this aspect, the electric motor that is driven and controlled with a high torque low rotation speed region as the main operation region as the predetermined output characteristic region among the plurality of electric motors. An electric motor that has a low copper loss and a high iron loss, and that is driven and controlled in a low torque and high rotation speed region as a main operation region, may be a high copper loss and low iron loss motor.
[0012]
The electric vehicle of the present invention is
An electric vehicle equipped with the first or second power output device of the present invention, comprising an internal combustion engine,
The plurality of electric motors include a generator motor that can generate power by receiving at least a part of the power from the internal combustion engine, and the power required for the axle of the electric vehicle together with the internal combustion engine using the generated power from the generator motor. And an electric motor capable of outputting.
[0013]
The electric vehicle of the present invention includes an internal combustion engine, and the plurality of electric motors are electrically driven together with the internal combustion engine using a generator motor that can generate power by receiving at least a part of the power from the internal combustion engine, and using the generated power from the generator motor. And an electric motor that can output the power required for the axle of the vehicle. By configuring the generator motor and the motor according to the output characteristic regions corresponding to the respective main operation regions, the energy efficiency of the vehicle can be further improved.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described using examples. FIG. 1 is a configuration diagram showing an outline of a configuration of a hybrid vehicle 20 equipped with a power output apparatus according to an embodiment of the present invention. The hybrid vehicle 20 of the embodiment can distribute an engine 22 as an internal combustion engine driven mainly by gasoline as shown in the figure, and power from the engine 22 to a sun gear shaft 33 and a ring gear shaft 37 at a predetermined torque ratio. The gear unit 30, the motor MG1 capable of generating electricity connected to the sun gear shaft 33 of the gear unit 30, and the ring gear shaft 37 of the gear unit 30 and also connected to the axle 50 of the wheels 54, 56 are capable of generating electricity. Motor MG2 and battery 60 for exchanging electric power between motors MG1 and MG2 via inverters 62 and 64 are provided.
[0015]
The gear unit 30 is configured as a planetary gear unit including a sun gear 32, a ring gear 36, and a plurality of planetary pinion gears 34 provided therebetween. A crankshaft 24 of the engine 22 is connected via a damper 26 to a planetary carrier 35 that connects a plurality of planetary pinion gears 34 of the gear unit 30. The sun gear shaft 33 of the gear unit 30 is connected to the rotation shaft of the motor MG1. A rotation shaft 40 of the motor MG2 is connected to the ring gear shaft 37 of the gear unit 30 via a belt 44 that connects a gear 38 provided on the ring gear shaft 37 and a gear 42 provided on the rotation shaft 40. Yes. An axle 50 of wheels 54 and 56 as an output shaft of a power output device is connected to a gear 46 provided on the rotation shaft 40 of the motor MG2 via a differential gear 52. Therefore, the ring gear shaft 37 of the gear unit 30 is connected to the rotating shaft 40 of the motor MG2 and to the axle 50 of the wheels 54 and 56.
[0016]
The motors MG1 and MG2 are configured as, for example, a PM-type synchronous generator motor capable of generating power, in which a rotor having a permanent magnet attached to an outer surface and a three-phase coil are wound. The three-phase coils of motors MG1 and MG2 are connected to inverters 62 and 64, respectively, and motors MG1 and MG2 operate as electric motors and generators by power running control and regenerative control by inverters 62 and 64, respectively. The motor MG1 is formed by concentrated winding coils, and the motor MG2 is formed by distributed winding coils. The concentrated winding motor MG1 has a larger iron loss than the distributed winding motor MG2, and the motor loss in the high rotation speed region is larger, but the winding is concentrated on one tooth (tooth). As described above, by using a rectangular wire having a large cross-sectional area, the coil space factor can be increased in the motor slot and the coil end can be reduced. This means that the winding resistance of the concentrated winding is smaller than the winding resistance of the distributed winding as in the comparison result of the winding resistance of the concentrated winding motor and the distributed winding motor illustrated in FIG. Therefore, it can be seen that the concentrated winding motor MG1 has a larger iron loss but smaller copper loss than the distributed winding motor MG2. That is, it can be seen that the motor MG1 is a motor with low copper loss and high iron loss, and the motor MG2 is a motor with high copper loss and low iron loss.
[0017]
In the hybrid vehicle 20 of the embodiment thus configured, various operation modes are set by an electronic control unit (not shown), and the motor MG1 and the motor MG2 are driven and controlled together with the engine 22. In this operation mode, the engine 22 is operated so that power corresponding to the output request to the axle 50 is output, and the power from the engine 22 is torque-converted by the motor MG1 and the motor MG2 to output the requested output to the axle 50. The engine 22 is operated so that power exceeding the torque conversion drive mode to be output and the required output to the axle 50 is output, and the power from the engine 22 is torque-converted by the motor MG1 and the motor MG2 to output the required output to the axle 50. In the charging drive mode in which the battery 60 is charged with surplus power, and the engine 22 is operated so that the power below the required output to the axle 50 is output, and the power from the engine 22 and the power from the battery 60 are Discharge drive mode that uses motor MG1 and motor MG2 to output a required output to axle 50 Etc. there is.
[0018]
During steady running in such a hybrid vehicle 20, a torque conversion drive mode is set. In the torque conversion drive mode, the engine 22 is operated at an operating point that is as efficient as possible (a point determined by the torque and the number of revolutions) based on the required output, so that the command torque is output to the axle 50. Is converted into torque by the motor MG1 and the motor MG2. Torque conversion is performed mainly by driving and controlling the motor MG1 in the high torque and low rotation speed region and driving and controlling the motor MG2 in the low torque and high rotation speed region. That is, as shown in FIG. 3, the motor MG1 is driven and controlled in the high torque low rotation speed region A in the main operation region a (the operation range set more frequently than the other output characteristic regions). Drive control is performed with the region B of the low torque and high rotation speed as the main operation region b.
[0019]
FIG. 4 is a diagram illustrating an example of the distribution of copper loss and iron loss according to the output characteristic region in which the motor is driven and controlled. Motors MG1 and MG2 generate losses such as copper loss, iron loss, and mechanical loss based on their driving. Of these, the copper loss appears as the generated torque increases, and the iron loss appears as the rotational speed increases. That is, as shown in FIG. 4, in the output characteristic region A with high torque and low rotational speed, the copper loss appears large and the iron loss appears small, whereas in the output characteristic region B with low torque and high rotational speed, the copper loss is conversely Iron loss appears greatly as it appears smaller. Therefore, as the motor MG1 that is mainly driven and controlled in the output characteristic area A of the high torque and low rotational speed, the low copper loss and the high iron loss with low operation loss in the high torque and low rotational speed area in the motor operable area. As a motor MG2 that is mainly driven and controlled within the output characteristics region B of low torque and high rotation speed, use a motor with high copper loss and low iron loss with low operating loss in the low torque and high rotation speed range. It can be seen that the overall loss can be reduced. As described above, the motor MG1 having the output characteristic region A of high torque and low rotational speed as the main operation region a is formed by concentrated winding with low copper loss and high iron loss, and the region B of low torque and high rotational speed is formed as the main operation region b. Since the motor MG2 is formed by high copper loss and low iron loss distributed winding, the influence of the copper loss due to the high torque driving of the motor MG1 is reduced and the iron loss due to the high rotation speed driving of the motor MG2 is reduced. The influence can be reduced. Further, since the motor MG1 having a high iron loss is driven at a low rotational speed and the motor MG2 having a high copper loss is driven at a low torque, the loss does not increase due to the effects of iron loss and copper loss.
[0020]
According to the hybrid vehicle 20 of the embodiment described above, of the loss associated with the rotation of the motor, the motor is driven and controlled with the high operating torque low rotation speed region in which the copper loss appears large and the iron loss appears small. The MG1 uses a concentrated winding motor with a low copper loss and a high iron loss in which the high torque low rotation speed region is a low loss region. The MG1 is mainly in the low torque high rotation speed region where the copper loss appears small and the iron loss appears large. The motor MG2 that is driven and controlled as an operation region employs a distributed winding motor having a high copper loss and a low iron loss in which the low torque and high rotation speed region is a low loss region. Therefore, the copper loss associated with the driving of the motor MG1 and the motor MG2 In addition, the influence of iron loss can be reduced, and the energy efficiency of the entire vehicle can be further improved.
[0021]
In the hybrid vehicle 20 of the embodiment, the region where the motor can output is divided into two output characteristic regions, a high torque and low rotational speed region and a low torque and high rotational speed region. As a motor that is driven and controlled as an operation area, a concentrated winding motor that uses a high torque and low rotation speed area as a low loss area and a motor that is driven and controlled within a low torque and high rotation speed area as a main operation area, A distributed winding motor with a low torque and high rotation speed region as a low loss region has been adopted. However, the output region of the motor is divided into three or more regions, and each divided output characteristic region is driven as the main operation region. As each motor to be controlled, a motor having each output characteristic region as a low loss region (a motor having a different coil winding method depending on each output characteristic region) may be employed. For example, the loss of the motor driven in the output characteristic region corresponding to the main operation region among the plurality of divided output characteristic regions is less than the loss in the case of driving in the other output characteristic regions. The motor is configured by appropriately adjusting the number of coil slots and the size of the coil cross-sectional area.
[0022]
The embodiments of the present invention have been described using the embodiments. However, the present invention is not limited to these embodiments and can be implemented in various forms without departing from the gist of the present invention. Of course you get.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an outline of a configuration of a hybrid vehicle 20 equipped with a power output apparatus according to an embodiment of the present invention.
FIG. 2 is an explanatory diagram for explaining a comparison result of winding resistance between a distributed winding motor and a concentrated winding motor;
FIG. 3 is a diagram showing a relationship between a main operation area of a motor MG1 and a main operation area of a motor MG2.
FIG. 4 is an explanatory diagram for explaining the distribution of iron loss and copper loss according to an output characteristic region in which a motor is driven and controlled.
[Explanation of symbols]
20 hybrid vehicle, 22 engine, 24 crankshaft, 26 damper, 30 gear unit, 32 sun gear, 33 sun gear shaft, 34 planetary pinion gear, 35 planetary carrier, 36 ring gear, 37 ring gear shaft, 38 gear, 40 rotating shaft, 42 gears, 44 belts, 46 gears, 50 axles, 52 differential gears, 54, 56 wheels, 60 batteries, 62, 64 inverters, MG1, MG2 motors.

Claims (6)

互いに異なる所定の出力特性領域内を各々主動作領域として駆動制御される複数の電動機を有し、該複数の電動機の駆動により出力軸に要求される動力を出力可能な動力出力装置であって、
前記複数の電動機は、各々の主動作領域に対応する出力特性領域内で駆動制御されるときの動作損失が、他の出力特性領域内で駆動制御されるときの動作損失よりも少なくなるように、各々の主動作領域に対応する出力特性領域に応じて異なる方式により巻回されたコイルにより形成された電動機である動力出力装置。
A power output device that has a plurality of electric motors that are driven and controlled as main operation areas in predetermined output characteristic areas different from each other, and that is capable of outputting the power required for the output shaft by driving the plurality of electric motors,
The plurality of electric motors are configured such that an operation loss when the drive control is performed in the output characteristic region corresponding to each main operation region is smaller than an operation loss when the drive control is performed in another output property region. A power output device that is an electric motor formed by a coil wound by a different method in accordance with an output characteristic region corresponding to each main operation region .
互いに異なる所定の出力特性領域内を各々主動作領域として駆動制御される複数の電動機を有し、該複数の電動機の駆動により出力軸に要求される動力を出力可能な動力出力装置であって、
前記複数の電動機は、各々の主動作領域に対応する出力特性領域が、電動機の動作可能な領域のうちで動作損失が少ない低損失領域となるようにそれぞれ選定され、各々の主動作領域に対応する出力特性領域に応じて異なる方式により巻回されたコイルにより形成された電動機である動力出力装置。
A power output device that has a plurality of electric motors that are driven and controlled as main operation areas in predetermined output characteristic areas different from each other, and that is capable of outputting the power required for the output shaft by driving the plurality of electric motors,
Each of the plurality of electric motors is selected so that the output characteristic region corresponding to each main operation region is a low loss region with low operation loss among the regions in which the motor can operate, and corresponds to each main operation region. A power output device which is an electric motor formed by a coil wound by a different method according to an output characteristic region to be performed .
請求項1または2記載の動力出力装置であって、
前記複数の電動機のうち、前記所定の出力特性領域として高トルク低回転数の領域内を主動作領域として駆動制御される電動機は、集中巻コイルにより形成された電動機とし、低トルク高回転数の領域内を主動作領域として駆動制御される電動機は、分布巻コイルにより形成された電動機とした動力出力装置。
The power output device according to claim 1 or 2,
Among the plurality of electric motors , the electric motor that is driven and controlled as a main operation area in the high torque and low rotation speed area as the predetermined output characteristic area is an electric motor formed by a concentrated winding coil, and has a low torque and high rotation speed. The motor that is driven and controlled with the region as the main operation region is a power output device that is an electric motor formed by distributed winding coils.
請求項1または2記載の動力出力装置であって、
前記動作損失は、銅損および鉄損に基づく損失である動力出力装置。
The power output device according to claim 1 or 2 ,
The power output device is a loss based on copper loss and iron loss .
請求項記載の動力出力装置であって、
前記複数の電動機のうち、前記所定の出力特性として高トルク低回転数の領域内を主動作領域として駆動制御される電動機は、低銅損および高鉄損の電動機とし、低トルク高回転数の領域内を主動作領域として駆動制御される電動機は、高銅損および低鉄損の電動機とした動力出力装置。
The power output device according to claim 4 ,
Among the plurality of electric motors, the electric motor that is driven and controlled as a main operation region in the region of high torque and low rotational speed as the predetermined output characteristic is an electric motor of low copper loss and high iron loss, and has low torque and high rotational speed. The motor that is driven and controlled with the region as the main operating region is a power output device that has a high copper loss and a low iron loss .
請求項1ないし5記載の動力出力装置が搭載された電動車両であって、
内燃機関を備え、
前記複数の電動機は、前記内燃機関からの動力の少なくとも一部を受けて発電可能な発電電動機と、該発電電動機からの発電電力を用いて前記内燃機関と共に前記電動車両の車軸に要求される動力を出力可能な電動機とを含む電動車両
An electric vehicle equipped with the power output device according to claim 1 ,
An internal combustion engine,
The plurality of electric motors include a generator motor that can generate power by receiving at least a part of the power from the internal combustion engine, and the power required for the axle of the electric vehicle together with the internal combustion engine using the generated power from the generator motor. electric vehicle comprising a motor capable of outputting a.
JP2001110111A 2001-04-09 2001-04-09 Power output apparatus and electric vehicle equipped with the same Expired - Lifetime JP4196545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001110111A JP4196545B2 (en) 2001-04-09 2001-04-09 Power output apparatus and electric vehicle equipped with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001110111A JP4196545B2 (en) 2001-04-09 2001-04-09 Power output apparatus and electric vehicle equipped with the same

Publications (2)

Publication Number Publication Date
JP2002315108A JP2002315108A (en) 2002-10-25
JP4196545B2 true JP4196545B2 (en) 2008-12-17

Family

ID=18961943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001110111A Expired - Lifetime JP4196545B2 (en) 2001-04-09 2001-04-09 Power output apparatus and electric vehicle equipped with the same

Country Status (1)

Country Link
JP (1) JP4196545B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5126630B2 (en) * 2009-06-02 2013-01-23 本田技研工業株式会社 Control device for load drive system
JP2014207727A (en) * 2013-04-10 2014-10-30 株式会社ジェイテクト Vehicle traveling apparatus and electric vehicle equipped with the vehicle traveling apparatus
JP6601141B2 (en) * 2015-10-21 2019-11-06 いすゞ自動車株式会社 Hybrid vehicle and control method thereof
CN116027672B (en) * 2023-03-28 2023-06-09 山东大学 Model prediction control method based on neural network

Also Published As

Publication number Publication date
JP2002315108A (en) 2002-10-25

Similar Documents

Publication Publication Date Title
US6817432B2 (en) Hybrid vehicle
EP1481463B1 (en) Electromechanical converter
CN100386956C (en) Electromagnetic coupling variable-speed drive system
EP0743214B1 (en) Hybrid vehicle power output apparatus and method of controlling same for overdrive operation
CA2659769C (en) Hybrid vehicle
US9441599B2 (en) Induction motor-permanent magnet generator tandem configuration starter-generator for hybrid vehicles
CN102275518B (en) Low content extended-range electric vehicle powertrain
US20170057373A1 (en) Electric machine for hybrid powertrain with dual voltage power system
JP3292688B2 (en) Rotating electric machine, hybrid drive device including the same, and operation method thereof
US20140121867A1 (en) Method of controlling a hybrid powertrain with multiple electric motors to reduce electrical power losses and hybrid powertrain configured for same
JPH0622410A (en) Alternator for electric hybrid automobile
CN102570753B (en) Permanent magnet harmonic motor
WO1982000928A1 (en) Electric drive train for a vehicle
Alamoudi et al. State-of-the art electrical machines for modern electric vehicles
CN103978886B (en) Input synthesis type hybrid power system
JP2013095414A (en) Hybrid car system
CN102837592B (en) Hybrid Vehicle electronic stepless speed regulation system
CN105659472B (en) Motor
CN104742717B (en) Using the hybrid power system and its implementation of double-rotor machine
Li et al. The present status and future trends of in-wheel motors for electric vehicles
JP4196545B2 (en) Power output apparatus and electric vehicle equipped with the same
JP6700164B2 (en) Control device for hybrid vehicle
JP3740801B2 (en) Power output device
CN210469033U (en) Switched reluctance-disc type double-rotor motor
JP3752487B2 (en) Hybrid vehicle and rotating electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080512

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080922

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4196545

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

EXPY Cancellation because of completion of term