JP2014051195A - Road condition determination device and tire-side device for road condition determination device - Google Patents

Road condition determination device and tire-side device for road condition determination device Download PDF

Info

Publication number
JP2014051195A
JP2014051195A JP2012197221A JP2012197221A JP2014051195A JP 2014051195 A JP2014051195 A JP 2014051195A JP 2012197221 A JP2012197221 A JP 2012197221A JP 2012197221 A JP2012197221 A JP 2012197221A JP 2014051195 A JP2014051195 A JP 2014051195A
Authority
JP
Japan
Prior art keywords
road surface
air pressure
interval
tire
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012197221A
Other languages
Japanese (ja)
Inventor
Goshi Sakai
郷史 酒井
Takashi Sato
隆史 佐藤
Shigeki Kitada
茂貴 北田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Engineering Co Ltd
Morioka Seiko Instruments Inc
Original Assignee
Aisin Engineering Co Ltd
Morioka Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Engineering Co Ltd, Morioka Seiko Instruments Inc filed Critical Aisin Engineering Co Ltd
Priority to JP2012197221A priority Critical patent/JP2014051195A/en
Publication of JP2014051195A publication Critical patent/JP2014051195A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Regulating Braking Force (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a road condition determination device that highly precisely determines a road condition such as a wavy road surface, achieves low power consumption of a tire-side device and has a low device cost, and to provide a tire-side device for road condition determination device.SOLUTION: The road condition determination device includes: air pressure detection means that is disposed on a tire and detects (S2, S6, and S12) the air pressure of the tire at a set detection interval; road condition determination means that calculates (S7) an amplitude Pw and cycle T of a varying air pressure on the basis of the detected air pressure detection value P1, and determines (S10) a road condition; a wireless transmission part that is disposed on the tire and transmits a radio signal at a set wireless communication interval; a wireless receiving part that is disposed in a vehicle and receives the radio signal; and interval setting means that changes (S5) the detection interval and wireless communication interval to settings corresponding to the vehicle velocity V of the vehicle when the air pressure detection value P1 has changed to exceed a threshold ΔP.

Description

本発明は、車両に搭載される路面状態判定装置及び路面状態判定装置用のタイヤ側装置に関し、より詳細には、タイヤの空気圧の変化から路面状態を判定する装置に関する。   The present invention relates to a road surface state determination device and a tire side device for a road surface state determination device mounted on a vehicle, and more particularly to an apparatus for determining a road surface state from a change in tire air pressure.

近年、走行している車両側で路面の状態を判定する技術が提案されており、特許文献1及び2に技術例が開示されている。特許文献1に開示された路面状況検出装置は、タイヤに固定されてタイヤの振動を電気信号に変換する圧電素子と、電気信号を車両側装置に無線送信する通信部とを備えている。この構成によれば、路面状況に応じてタイヤが振動し、車両側装置で路面状況情報を取得して路面状況を監視できる、とされている。また、道路側に路面状況検出装置を設ける構成と比較して導入コストを低減できる、とされている。さらに、第5の実施形態には、空気圧センサを用いた既存のタイヤ空気圧監視システム(TPMS)に圧電素子を追加することで路面状況監視システムを構成できる、と記載されている。   In recent years, a technique for determining a road surface state on the side of a traveling vehicle has been proposed, and Patent Examples 1 and 2 disclose technical examples. The road surface condition detection device disclosed in Patent Literature 1 includes a piezoelectric element that is fixed to a tire and converts vibrations of the tire into an electric signal, and a communication unit that wirelessly transmits the electric signal to the vehicle side device. According to this configuration, the tire vibrates according to the road surface condition, and the road surface condition can be monitored by acquiring the road surface condition information by the vehicle side device. Moreover, it is said that introduction cost can be reduced compared with the structure which provides a road surface condition detection apparatus on the road side. Furthermore, it is described in the fifth embodiment that a road surface condition monitoring system can be configured by adding a piezoelectric element to an existing tire pressure monitoring system (TPMS) using a pressure sensor.

特許文献2に開示されたタイヤ空気圧監視装置は、車輪ごとに車輪振動検出手段を設け、車体速及び車輪径を演算する第1タイヤ空気圧監視手段と、振動周波数スペクトルデータを基準スペクトルデータと比較する第2タイヤ空気圧監視手段とを備え、両手段で同時にタイヤ空気圧を監視している。これにより、タイヤ空気圧の低下を精度よく検知できる、と記載されている。第1タイヤ空気圧監視手段では、前輪側及び後輪側の振動検出値の変化のパターンを抽出しており、路面状態を判定することも可能になっている。空気圧センサを備える直接式TPMSに対して、特許文献2の技術は空気圧センサを備えていない間接式TPMSである。   The tire pressure monitoring device disclosed in Patent Document 2 is provided with wheel vibration detection means for each wheel, and the first tire pressure monitoring means for calculating the vehicle body speed and the wheel diameter is compared with vibration frequency spectrum data with reference spectrum data. Second tire pressure monitoring means, and the tire pressure is simultaneously monitored by both means. Thus, it is described that a decrease in tire air pressure can be accurately detected. The first tire pressure monitoring means extracts the change pattern of the vibration detection value on the front wheel side and the rear wheel side, and can determine the road surface condition. In contrast to the direct TPMS provided with the air pressure sensor, the technique of Patent Document 2 is an indirect TPMS not provided with the air pressure sensor.

特開2010−125984号公報JP 2010-125984 A 特開2006−162479号公報JP 2006-162479 A

ところで、特許文献1には、電気信号の周波数に基づいて路面状況情報を取得する旨が記載されている。また、特許文献2には、前輪側及び後輪側の振動検出値の変化のパターンに基づいて路面状態情報を取得する旨が記載されており、路面バンプ(突起)の検出などが例示されている。この種の路面状態の一例として、起伏形状の繰り返す波状路面がある。波状路面は、非舗装道路を多数の車両が往来することで自然発生する場合が多い。波状路面では、タイヤのバウンドや浮きが発生してブレーキの効き具合が変動するため、走行速度を低めに制御することが好ましい。したがって、路面状態を判定し、判定結果をブレーキ制御やクルーズ制御に適用することで、車両の走行安定性及び安全性を高めることができると考えられる。   Incidentally, Patent Document 1 describes that road surface condition information is acquired based on the frequency of an electric signal. Further, Patent Document 2 describes that road surface state information is acquired based on a change pattern of vibration detection values on the front wheel side and the rear wheel side, and examples include detection of road surface bumps (projections). Yes. An example of this type of road surface condition is a wavy road surface with repeated undulations. The wavy road surface often occurs naturally when a large number of vehicles come and go on the unpaved road. On wavy road surfaces, tire bounces and floats occur and the braking effectiveness varies, so it is preferable to control the traveling speed to be low. Therefore, it is considered that the running stability and safety of the vehicle can be improved by determining the road surface condition and applying the determination result to the brake control and the cruise control.

また、タイヤ側装置として振動センサや空気圧センサを設けるときに、タイヤ側装置の電源は、車両側から電源が供給される給電ケーブルや信号ケーブルをタイヤ側装置に接続できないため、電源用の電池と検出信号を送信する無線通信部とが必要になる。タイヤ空気圧監視システムにおいては、空気圧の検出及び無線通信は秒オーダの長い間隔でも、十分にタイヤの異常を検出することができる。一方、路面状態判定の用途では、より一層短い検出間隔及び無線通信間隔が必要になる。さらに、検出間隔を一定に設定すると、車速が増加したときに路面上の位置に置き換えた測定点のピッチが拡がるため、路面状態判定の精度が低下する。したがって、車速の増加に対応して、検出間隔及び無線通信間隔を短く変更することが好ましい。しかしながら、検出間隔及び無線通信間隔が短いほどセンサ及び無線通信部の消費電力が増加し、電池が速く消耗して、電池交換が頻繁になってしまう。   In addition, when a vibration sensor or a pneumatic sensor is provided as a tire side device, the power source of the tire side device cannot connect a power supply cable or a signal cable supplied with power from the vehicle side to the tire side device. A wireless communication unit that transmits the detection signal is required. In the tire pressure monitoring system, the air pressure detection and the wireless communication can sufficiently detect a tire abnormality even at long intervals of the order of seconds. On the other hand, in the application of road surface condition determination, even shorter detection intervals and wireless communication intervals are required. Furthermore, if the detection interval is set to be constant, the pitch of the measurement points replaced with the position on the road surface increases when the vehicle speed increases, so the accuracy of road surface condition determination decreases. Therefore, it is preferable to shorten the detection interval and the wireless communication interval in response to an increase in the vehicle speed. However, as the detection interval and the wireless communication interval are shorter, the power consumption of the sensor and the wireless communication unit is increased, the battery is quickly consumed, and the battery is frequently replaced.

さらに、特許文献1の第5の実施形態では、空気圧センサとともに圧電素子を備えることになって消費電力が一層増加し、装置コストも上昇する。したがって、TPMSに用いる空気圧センサを道路状態判定の用途に共用できれば、消費電力及び装置コストの両面でメリットが大きい。   Furthermore, in 5th Embodiment of patent document 1, since a piezoelectric element is provided with a pneumatic sensor, power consumption increases further and apparatus cost also rises. Therefore, if an air pressure sensor used for TPMS can be shared for road condition determination, there are significant advantages in both power consumption and device cost.

本発明は、上記背景技術の問題点に鑑みてなされたものであり、波状路面などの路面状態を精度よく判定するとともに、タイヤ側装置の消費電力が小さくかつ装置コストが低廉な路面状態判定装置及び路面状態判定装置用のタイヤ側装置を提供することを解決すべき課題とする。   The present invention has been made in view of the problems of the background art described above, and accurately determines a road surface state such as a wavy road surface, and the road surface state determination device has low power consumption and low device cost of the tire side device. It is another object of the present invention to provide a tire-side device for a road surface condition determination device.

本発明の路面状態判定装置は、車両に装備されたタイヤに配設され、設定された検出間隔で前記タイヤの空気圧を検出する空気圧検出手段と、検出した空気圧検出値に基づいて変動する前記空気圧の振幅及び周期を演算し、演算した振幅及び周期に基づいて前記車両が走行している路面の路面状態を判定する路面状態判定手段と、前記タイヤに配設され、前記空気圧検出値、前記空気圧の振幅及び周期、ならびに前記路面状態からなるデータ群のうち一種以上を無線信号に変換して設定された無線通信間隔で送信する無線送信部と、前記車両に配設され、前記無線送信部から送信された前記無線信号を受信する無線受信部と、前記空気圧検出値が閾値を越えて変化したときに、前記検出間隔及び前記無線通信間隔を前記車両の車速に対応した設定に変更する間隔設定手段と、を備えた。   The road surface condition judging device of the present invention is provided on a tire equipped in a vehicle, and detects air pressure of the tire at a set detection interval, and the air pressure that fluctuates based on the detected air pressure detection value. The road surface state determining means for determining the road surface state of the road surface on which the vehicle is traveling based on the calculated amplitude and period, and the air pressure detection value and the air pressure are disposed on the tire. Of the data group consisting of the amplitude and the period of the road surface, and the road surface state, a radio transmission unit that converts the radio signal into a radio signal and transmits the radio signal at a set radio communication interval; A wireless receiver for receiving the transmitted wireless signal, and when the air pressure detection value changes beyond a threshold, the detection interval and the wireless communication interval correspond to the vehicle speed of the vehicle; And interval setting means for changing a constant, with a.

さらに、前記間隔設定手段は、前記空気圧検出値が前記閾値を越えて変化したときに、装置始動時に設定された初期検出間隔及び初期無線通信間隔よりも短い検出間隔及び無線通信間隔に設定を変更することが好ましい。   Further, the interval setting means changes the setting to a detection interval and a wireless communication interval shorter than the initial detection interval and the initial wireless communication interval set at the time of starting the apparatus when the air pressure detection value changes beyond the threshold value. It is preferable to do.

さらに、前記路面状態判定手段は、前記空気圧が変動する周期の1周期が経過した時点で、前記空気圧の振幅及び周期が以前の周期から変化した振幅変化量及び周期変化量の少なくとも一方を演算し、演算した前記振幅変化量及び前記周期変化量が所定量以下であるときに定常状態と判定し、前記間隔設定手段は、前記定常状態において、前記車両の車速に対応して設定を変更した無線通信間隔よりも長い無線通信間隔に設定を変更し、あるいは前記初期無線通信周期に設定を戻すことが好ましい。   Further, the road surface condition determination means calculates at least one of an amplitude change amount and a period change amount in which the amplitude and the period of the air pressure have changed from the previous period when one cycle of the period in which the air pressure fluctuates has elapsed. When the calculated amplitude change amount and the periodic change amount are equal to or less than a predetermined amount, it is determined as a steady state, and in the steady state, the interval setting unit changes the setting in accordance with the vehicle speed of the vehicle. It is preferable to change the setting to a wireless communication interval longer than the communication interval or return the setting to the initial wireless communication cycle.

さらに、前記路面状態判定手段は、前記空気圧が変動する単一の振幅及び単一の周期を演算し、前記空気圧の単一の振幅及び単一の周期に基づいて、起伏形状が繰り返す波状路面の路面状態として起伏高さ及び起伏ピッチ長を判定するようにしてもよい。   Further, the road surface condition determining means calculates a single amplitude and a single cycle at which the air pressure varies, and based on the single amplitude and the single cycle of the air pressure, The undulation height and the undulation pitch length may be determined as the road surface state.

また、本発明のタイヤ側装置は、本発明の路面状態判定装置に適用され、前記タイヤに搭載されて、前記空気圧検出手段と前記無線送信部と前記間隔設定手段とからなる。   Moreover, the tire side apparatus of this invention is applied to the road surface state determination apparatus of this invention, is mounted in the said tire, and consists of the said air pressure detection means, the said wireless transmission part, and the said space | interval setting means.

さらに、タイヤ側装置は、車両の複数のタイヤにそれぞれ搭載され、交代で路面状態判定に使用されることが好ましい。   Furthermore, it is preferable that the tire-side device is mounted on each of a plurality of tires of the vehicle, and is used alternately for road surface condition determination.

本発明の路面状態判定装置は、空気圧検出手段、路面状態判定手段、無線送信部、無線受信部、及び間隔設定手段を備え、空気圧検出値が閾値を越えて変化したときに、検出間隔及び無線通信間隔を車両の車速に対応した設定に変更する。したがって、空気圧検出値の変化が閾値以下(すなわち路面状態が良好な状態)であるときに、検出間隔及び無線通信間隔の設定を車速に対応した時間間隔よりも長くして、タイヤ側の空気圧検出手段及び無線送信部の消費電力を小さくできる。また空気圧検出値が閾値を越えて変化すると、検出間隔及び無線通信間隔の設定を車速に対応した時間間隔に変更するので、路面状態の判定に関わるデータを適切に取得でき、路面状態の判定を精度よく行うことができる。   The road surface state determination device of the present invention includes an air pressure detection unit, a road surface state determination unit, a wireless transmission unit, a wireless reception unit, and an interval setting unit. When the detected air pressure value changes beyond a threshold value, the detection interval and wireless Change the communication interval to a setting corresponding to the vehicle speed. Therefore, when the change in the air pressure detection value is less than the threshold value (that is, the road surface condition is good), the detection interval and the wireless communication interval are set longer than the time interval corresponding to the vehicle speed, and the tire side air pressure detection is performed. The power consumption of the means and the wireless transmitter can be reduced. Also, if the air pressure detection value changes beyond the threshold, the detection interval and wireless communication interval settings are changed to a time interval corresponding to the vehicle speed, so that data related to the determination of the road surface state can be acquired appropriately, and the determination of the road surface state can be performed. It can be performed with high accuracy.

さらに、間隔設定手段が装置始動時に初期検出間隔及び初期無線通信間隔を設定する態様では、空気圧検出値が閾値を越えて変化するまでの間、タイヤ側の消費電力を顕著に小さくできる。   Further, in the aspect in which the interval setting means sets the initial detection interval and the initial wireless communication interval when the apparatus is started, the power consumption on the tire side can be significantly reduced until the air pressure detection value changes beyond the threshold value.

さらに、路面状態判定手段が定常状態を判定し、間隔設定手段が定常状態において車両の車速に対応して設定を変更した無線通信間隔よりも長い無線通信間隔に設定を変更する態様では、定常状態で検出間隔を車速に対応させつつ無線通信間隔を長くする。ここで、空気圧の変動する振幅及び周期が概ね安定した定常状態は、車両が同一な起伏形状を繰り返す波状路面を走行することで発生する。したがって、波状路面を走行している間であっても、車速に対応した検出間隔で路面状態の判定を精度よく行いつつ、タイヤ側の無線通信に要する消費電力を小さくできる。また、波状路面が不規則な起伏形状に変化した場合、無線通信間隔を車速に対応した設定にして、路面状態の判定を遅滞なくかつ精度よく行うことができる。   Further, in the aspect in which the road surface state determining means determines the steady state, and the interval setting means changes the setting to a wireless communication interval longer than the wireless communication interval in which the setting is changed in accordance with the vehicle speed of the vehicle in the steady state, the steady state The wireless communication interval is lengthened while the detection interval corresponds to the vehicle speed. Here, the steady state in which the amplitude and the period of fluctuation of the air pressure are generally stable occurs when the vehicle travels on a wavy road surface that repeats the same undulating shape. Therefore, even while traveling on a wavy road surface, the power consumption required for the wireless communication on the tire side can be reduced while accurately determining the road surface state at the detection interval corresponding to the vehicle speed. In addition, when the wavy road surface changes to an irregular undulation shape, the wireless communication interval can be set to correspond to the vehicle speed, and the road surface state can be determined accurately without delay.

さらに、路面状態判定手段が波状路面の起伏高さ及び起伏ピッチ長を判定する態様では、波状路面の判定を精度よく行うことができる。加えて、波状路面の判定結果をクルーズ制御やブレーキ制御などに適用して、車両の走行安定性及び安全性を高めることができる。   Furthermore, in the aspect in which the road surface state determining means determines the undulation height and the undulation pitch length of the wavy road surface, the wavy road surface can be accurately determined. In addition, it is possible to improve the running stability and safety of the vehicle by applying the determination result of the wavy road surface to cruise control or brake control.

また、空気圧検出手段と無線送信部と間隔設定手段とからなるタイヤ側装置の態様では、タイヤ側装置で検出間隔及び無線通信間隔の少なくとも一方の設定を変更して消費電力を小さくできる。   Further, in the aspect of the tire-side device including the air pressure detection unit, the wireless transmission unit, and the interval setting unit, power consumption can be reduced by changing at least one of the detection interval and the wireless communication interval in the tire-side device.

さらに、タイヤ側装置が複数のタイヤにそれぞれ搭載されて交代で路面状態判定に使用される態様では、既存のタイヤ空気圧監視システムに若干の変更を加えるだけでタイヤ側装置を共用できるので、総合的な装置コストが低廉になる。また、複数のタイヤ側装置が交代で使用されるので、それぞれに内蔵された電池の消耗度合いが揃い、電池交換のメンテナンスが容易になる。   Further, in the aspect where the tire side device is mounted on each of the plurality of tires and is used for road surface condition determination in turn, the tire side device can be shared by making a slight change to the existing tire pressure monitoring system. Equipment cost is low. In addition, since a plurality of tire side devices are used alternately, the degree of consumption of the batteries contained in each of them is uniform, and maintenance for battery replacement is facilitated.

第1実施形態の路面状態判定装置を説明する構成図である。It is a block diagram explaining the road surface state determination apparatus of 1st Embodiment. 第1実施形態の路面状態判定装置の動作を説明するフローチャートの図である。It is a figure of the flowchart explaining operation | movement of the road surface state determination apparatus of 1st Embodiment. 良好な路面の一例である乾燥したアスファルト路面を車両が走行しているときのタイヤの空気圧検出値の変化の波形図である。It is a wave form diagram of change of the air pressure detection value of a tire when vehicles are running on a dry asphalt road surface which is an example of a good road surface. 波状路面を車両が走行しているときのタイヤの空気圧検出値の変化の波形図である。It is a wave form diagram of a change of a tire air pressure detection value when a vehicle is traveling on a wavy road surface. 第2実施形態の路面状態判定装置を説明する構成図である。It is a block diagram explaining the road surface state determination apparatus of 2nd Embodiment.

本発明の第1実施形態の路面状態判定装置1について、図1〜図4を参考にして説明する。図1は、第1実施形態の路面状態判定装置1を説明する構成図である。路面状態判定装置1は、車両のいずれかのタイヤ2に搭載されたタイヤ側装置3と、車両に搭載された車両側装置4とで構成されている。   A road surface condition determination apparatus 1 according to a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a configuration diagram illustrating a road surface state determination device 1 according to the first embodiment. The road surface state determination device 1 includes a tire-side device 3 mounted on any tire 2 of the vehicle and a vehicle-side device 4 mounted on the vehicle.

タイヤ側装置3は、タイヤ2の内部に搭載されており、タイヤ2とともに回転する。図示されるように、タイヤ側装置3は、空気圧センサ31、温度センサ32、無線通信部33、及び制御演算部34などで構成されている。タイヤ側装置3は、既存のタイヤ空気圧監視システムに用いられるタイヤ側装置に若干の変更を加えて実現できる。変更を加える箇所としては、制御演算部34のソフトウェアの機能変更や、空気圧センサ31の検出間隔及び無線通信部33の無線通信間隔の変更などを例示でき、これらに限定されない。   The tire side device 3 is mounted inside the tire 2 and rotates together with the tire 2. As illustrated, the tire-side device 3 includes an air pressure sensor 31, a temperature sensor 32, a wireless communication unit 33, a control calculation unit 34, and the like. The tire side device 3 can be realized by adding some changes to the tire side device used in the existing tire pressure monitoring system. Examples of the location to be changed include, but are not limited to, a software function change of the control calculation unit 34, a detection interval of the air pressure sensor 31 and a change of the wireless communication interval of the wireless communication unit 33, and the like.

空気圧センサ31は空気圧検出手段の一部に相当し、制御演算部34からの検出指令にしたがって、タイヤ2内部の空気圧を検出し、A/D変換後の空気圧P0の検出信号を制御演算部34に送出する。温度センサ32は、制御演算部34からの検出指令にしたがって、タイヤ2内部の空気温度を検出し、A/D変換後の空気温度T0の検出信号を制御演算部34に送出する。   The air pressure sensor 31 corresponds to a part of the air pressure detecting means, detects the air pressure inside the tire 2 in accordance with a detection command from the control calculation unit 34, and outputs a detection signal of the air pressure P0 after A / D conversion to the control calculation unit 34. To send. The temperature sensor 32 detects the air temperature inside the tire 2 in accordance with a detection command from the control calculation unit 34 and sends a detection signal of the air temperature T0 after A / D conversion to the control calculation unit 34.

無線通信部33は、本発明の無線送信部に相当し、制御演算部34からの通信制御指令にしたがって、車両側装置4の無線通信部41との間で無線通信によるデータ伝送を行う。無線通信部33は、温度補正後の空気圧検出値P1を無線信号に変換して無線送信する。これに加えて、無線通信部33は、路面状態判定ECU42から出力され車両側装置4の無線通信部4を介して送信される通信制御指令を受信し、制御演算部34へとデータ伝送する。つまり、無線通信部33は、双方向通信機能を有している。2つの無線通信部33、41の間の無線通信方式は、特に限定されない。   The wireless communication unit 33 corresponds to a wireless transmission unit of the present invention, and performs data transmission by wireless communication with the wireless communication unit 41 of the vehicle side device 4 in accordance with a communication control command from the control calculation unit 34. The wireless communication unit 33 converts the air pressure detection value P1 after temperature correction into a wireless signal and wirelessly transmits it. In addition, the wireless communication unit 33 receives a communication control command output from the road surface state determination ECU 42 and transmitted via the wireless communication unit 4 of the vehicle side device 4, and transmits data to the control calculation unit 34. That is, the wireless communication unit 33 has a bidirectional communication function. The wireless communication method between the two wireless communication units 33 and 41 is not particularly limited.

制御演算部34は、マイコン及び記憶部を内蔵してソフトウェアで動作する電子制御装置(ECU)である。制御演算部34は、空気圧センサ31及び温度センサ32に検出指令を送出した後に、空気圧P0及び空気温度T0の検出信号を受け取り、記憶部に記憶する。そして、空気圧P0を空気温度T0で補正して、基準温度における空気圧検出値P1を取得する。したがって、空気圧センサ31、温度センサ32、及び制御演算部34の温度補正演算機能の組合せにより、本発明の空気圧検出手段が構成されている。   The control calculation unit 34 is an electronic control unit (ECU) that incorporates a microcomputer and a storage unit and operates by software. The control calculation unit 34 receives detection signals of the air pressure P0 and the air temperature T0 after sending detection commands to the air pressure sensor 31 and the temperature sensor 32, and stores them in the storage unit. Then, the air pressure P0 is corrected by the air temperature T0, and the air pressure detection value P1 at the reference temperature is acquired. Therefore, the air pressure detection means of the present invention is configured by the combination of the air pressure sensor 31, the temperature sensor 32, and the temperature correction calculation function of the control calculation unit 34.

制御演算部34は、さらに、本発明の間隔設定手段を含んでいる。つまり、制御演算部34は、空気圧センサ31及び温度センサ32に検出指令を送出する検出間隔の設定を路面状態判定ECU42の通信制御指令に基づいて可変する。かつ、制御演算部34は、路面状態判定ECU42からの通信制御指令に基づいて無線通信部33の無線通信間隔の設定を可変する。制御演算部34は、無線通信部33、41を介して車両側装置4の路面状態判定ECU42と協業し、これによって検出間隔及び無線通信間隔を可変に制御する。制御演算部34の間隔設定手段としての詳細な設定機能は、後で図2のフローチャートを参照しながら説明する。   The control calculation unit 34 further includes interval setting means of the present invention. That is, the control calculation unit 34 varies the setting of the detection interval for sending the detection command to the air pressure sensor 31 and the temperature sensor 32 based on the communication control command of the road surface state determination ECU 42. And the control calculating part 34 varies the setting of the radio | wireless communication interval of the radio | wireless communication part 33 based on the communication control command from road surface state determination ECU42. The control calculation unit 34 cooperates with the road surface state determination ECU 42 of the vehicle-side device 4 through the wireless communication units 33 and 41, thereby variably controlling the detection interval and the wireless communication interval. The detailed setting function as the interval setting means of the control calculation unit 34 will be described later with reference to the flowchart of FIG.

空気圧の検出間隔に対して無線通信間隔を同程度の長さに設定した場合、無線通信部33は空気圧検出値P1を取得するたびに無線送信する。この場合、車両側装置4への無線通信によるデータ伝送の遅れを小さくできる。また、空気圧検出手段に検出ロスが少なくなるため効率よく路面状態を検出することが出来る。一方、空気圧の検出間隔に対して無線通信間隔を長く設定した場合、無線通信部33は制御演算部34の記憶部で記憶した複数の空気圧検出値P1をまとめて無線送信することができる。この場合、無線通信に必要な消費電力を小さくできる。   When the wireless communication interval is set to the same length with respect to the air pressure detection interval, the wireless communication unit 33 wirelessly transmits each time the air pressure detection value P1 is acquired. In this case, a delay in data transmission due to wireless communication to the vehicle side device 4 can be reduced. Further, since the detection loss is reduced in the air pressure detecting means, the road surface condition can be detected efficiently. On the other hand, when the wireless communication interval is set longer than the air pressure detection interval, the wireless communication unit 33 can wirelessly transmit a plurality of air pressure detection values P1 stored in the storage unit of the control calculation unit 34 together. In this case, the power consumption required for wireless communication can be reduced.

また、タイヤ側装置3には、電源用電池が交換可能に内蔵されている。電源用電池には、一般的なボタン電池を用いることができる。電源用電池は、空気圧センサ31、温度センサ32、無線通信部33、及び制御演算部34に共通な電源である。   Further, the tire side device 3 incorporates a battery for power supply in a replaceable manner. A general button battery can be used as the power supply battery. The power source battery is a power source common to the air pressure sensor 31, the temperature sensor 32, the wireless communication unit 33, and the control calculation unit 34.

車両側装置4は、車両に搭載されており、無線通信部41及び路面状態判定ECU42などで構成されている。車両側装置4は、繰り返し充電の可能な車載バッテリを電源としており、タイヤ側装置3と異なって電池交換を考慮する必要がない。車両側装置4は、既存のタイヤ空気圧監視システムに用いられる車両側装置に若干の変更を加えて実現できる。変更を加える箇所としては、空気圧監視ECUに路面状態判定ECU42の機能を付加することを例示でき、これに限定されない。   The vehicle side device 4 is mounted on a vehicle and includes a wireless communication unit 41, a road surface state determination ECU 42, and the like. The vehicle side device 4 uses an in-vehicle battery that can be repeatedly charged as a power source, and unlike the tire side device 3, it is not necessary to consider battery replacement. The vehicle side device 4 can be realized by adding some changes to the vehicle side device used in the existing tire pressure monitoring system. The location to be changed can be exemplified by adding the function of the road surface condition determination ECU 42 to the air pressure monitoring ECU, and is not limited to this.

無線通信部41は、本発明の無線受信部に相当し、路面状態判定ECU42からの通信制御指令にしたがって、タイヤ側装置3の無線通信部33との間で無線通信によるデータ伝送を行う。無線通信部41は、温度補正後の空気圧検出値P1に相当する無線信号を受信する。これに加えて、無線通信部41は、路面状態判定ECU42から通信制御信号をタイヤ側装置3の制御演算部34へとデータ伝送する役割も担っている。つまり、無線通信部41は、双方向通信機能を有している。   The wireless communication unit 41 corresponds to a wireless reception unit of the present invention, and performs data transmission by wireless communication with the wireless communication unit 33 of the tire side device 3 in accordance with a communication control command from the road surface state determination ECU 42. The wireless communication unit 41 receives a wireless signal corresponding to the detected air pressure value P1 after temperature correction. In addition to this, the radio communication unit 41 also plays a role of transmitting a communication control signal from the road surface state determination ECU 42 to the control calculation unit 34 of the tire side device 3. That is, the wireless communication unit 41 has a bidirectional communication function.

路面状態判定ECU42は、マイコン及び記憶部を内蔵してソフトウェアで動作する電子制御装置であり、本発明の路面状態判定手段を含んでいる。図示されるように、路面状態判定ECU42は、車内ネットワーク5(例えば、CAN)に接続されており、車載の他の電子制御装置(ECU)に連携している。路面状態判定ECU42は、車内ネットワーク5を介して、車速Vの情報を取得する。車速Vの情報は、2つの無線通信部41、33を介して制御演算部34へ無線通信伝送されて共有される。   The road surface state determination ECU 42 is an electronic control device that incorporates a microcomputer and a storage unit and operates by software, and includes the road surface state determination unit of the present invention. As illustrated, the road surface condition determination ECU 42 is connected to the in-vehicle network 5 (for example, CAN) and cooperates with another on-vehicle electronic control unit (ECU). The road surface condition determination ECU 42 acquires information on the vehicle speed V via the in-vehicle network 5. Information on the vehicle speed V is wirelessly transmitted to the control calculation unit 34 via the two wireless communication units 41 and 33 and shared.

路面状態判定ECU42は、まず、無線通信部33で受け取った空気圧検出値P1に基づいて、時間的に変動する空気圧P(t)の振幅Pw及び周期Tを演算する。振幅Pwは空気圧P(t)の最大値及び最小値から演算される。周期Tは空気圧P(t)の最大値及び最小値の検出間隔を基に演算される。   First, the road surface condition determination ECU 42 calculates the amplitude Pw and the period T of the air pressure P (t) that varies with time based on the air pressure detection value P1 received by the wireless communication unit 33. The amplitude Pw is calculated from the maximum value and the minimum value of the air pressure P (t). The period T is calculated based on the detection interval of the maximum value and the minimum value of the air pressure P (t).

本実施形態は、路面状態が波状路面であると判定した場合は路面状態判定装置1の消費電力を抑えることができる。ここでの波状路面とは、起伏形状が600〜800mm程度のピッチで繰り返される路面状態を想定している。路面状態判定ECU42は、この繰り返しピッチを走行する時間以内に検出される空気圧P(t)の最大値及び最小値から振幅Pw及び周期Tを演算する。したがって、本発明の間隔設定手段が車速に応じて検出間隔及び無線通信間隔を変更するときは、車速が増減しても繰り返しピッチ内で得られる空気圧検出値P1の検出数を変動させないように、空気圧の検出間隔及び無線通信間隔を変更する。なお、空気圧P(t)の最大値及び最小値の算出範囲はこの限りではない。   In this embodiment, when it is determined that the road surface state is a wavy road surface, the power consumption of the road surface state determination device 1 can be suppressed. The wavy road surface here assumes a road surface state in which the undulating shape is repeated at a pitch of about 600 to 800 mm. The road surface condition determination ECU 42 calculates the amplitude Pw and the period T from the maximum value and the minimum value of the air pressure P (t) detected within the time of traveling on this repeated pitch. Therefore, when the interval setting means of the present invention changes the detection interval and the wireless communication interval according to the vehicle speed, even if the vehicle speed increases or decreases, the detection number of the air pressure detection value P1 obtained within the repeated pitch is not changed. Change the air pressure detection interval and wireless communication interval. The calculation range of the maximum value and the minimum value of the air pressure P (t) is not limited to this.

路面状態判定ECU42は、次に、振幅Pw及び周期Tに基づいて車両が走行している路面の路面状態を判定する。複数の振幅Pw及び周期Tを演算することで、車両が走行している路面の状態が起伏形状を繰り返す波状路面になっているか否かを判定できる。   Next, the road surface state determination ECU 42 determines the road surface state of the road surface on which the vehicle is traveling based on the amplitude Pw and the period T. By calculating the plurality of amplitudes Pw and the period T, it can be determined whether or not the road surface on which the vehicle is traveling is a wavy road surface that repeats the undulating shape.

ところで、波状路面の起伏高さと空気圧P(t)の振幅Pwとの間には因果関係がある。この因果関係を予め実験やシミュレーションなどによって求めておけば、本第1実施形態の路面状態判定ECU42は、空気圧P(t)から演算された振幅Pwに予め設定された係数を乗算することで波状路面の起伏高さを判定できる。また、空気圧P(t)から演算された周期Tに車速を乗算することで波状路面の起伏ピッチ長を判定できる。   Incidentally, there is a causal relationship between the undulating height of the wavy road surface and the amplitude Pw of the air pressure P (t). If this causal relationship is obtained in advance through experiments, simulations, or the like, the road surface condition determination ECU 42 according to the first embodiment multiplies the amplitude Pw calculated from the air pressure P (t) by a preset coefficient to create a wave shape. The road undulation height can be determined. Further, the undulating pitch length of the wavy road surface can be determined by multiplying the cycle T calculated from the air pressure P (t) by the vehicle speed.

波状路面の起伏高さ及び起伏ピッチ長の判定方法はこの限りではなく、例えば一覧表形式のマップとして路面状態判定ECU42の内部に記憶しておくことができる。路面状態判定ECU42は、このマップを用いて起伏高さ及び起伏ピッチ長を判定してもよい。   The method for determining the undulation height and the undulation pitch length of the wavy road surface is not limited to this, and can be stored in the road surface state determination ECU 42 as a map in a list form, for example. The road surface condition determination ECU 42 may determine the undulation height and the undulation pitch length using this map.

次に、第1実施形態の路面状態判定装置1の動作について説明する。図2は、第1実施形態の路面状態判定装置1の動作を説明するフローチャートである。まず、イグニッションスイッチがオン操作されると、車両側装置4は電源が投入されて始動する。ステップS1で、車両側装置4は始動した旨をタイヤ側装置3へ無線通信によりデータ伝送する。これに応じて、タイヤ側装置3の間隔設定手段は、空気圧を検出する初期検出間隔、及び無線通信を行う初期無線通信間隔を設定する。初期検出間隔及び初期無線通信間隔は、互いに同程度の長さで秒オーダ程度に定められており、タイヤ側装置3が動作するときの最も長い時間間隔である。   Next, operation | movement of the road surface state determination apparatus 1 of 1st Embodiment is demonstrated. FIG. 2 is a flowchart for explaining the operation of the road surface state determination apparatus 1 according to the first embodiment. First, when the ignition switch is turned on, the vehicle side device 4 is turned on and started. In step S <b> 1, the vehicle side device 4 transmits data to the tire side device 3 by wireless communication to the effect that it has started. In response to this, the interval setting means of the tire side device 3 sets an initial detection interval for detecting air pressure and an initial wireless communication interval for performing wireless communication. The initial detection interval and the initial wireless communication interval are determined to be on the order of seconds with the same length, and are the longest time intervals when the tire side device 3 operates.

ステップS2〜S3の間は、車両が起伏高さの変化が小さい良好な路面を走行しているときの動作である。ステップS2で、空気圧検出手段は、設定された検出間隔で空気圧検出値P1を取得する。車両側装置4が始動した直後のステップS2では、最も長い時間間隔で初期検出間隔が設定されている。また、ステップS13から戻った後のステップS2では、ステップS13で設定された時間間隔で検出間隔及び無線通信間隔が設定されている。空気圧検出手段が取得した空気圧検出値P1は、無線通信部33の無線送信ごとに1データずつ車両側装置4に無線通信伝送される。   Steps S2 to S3 are operations when the vehicle is traveling on a good road surface with a small change in undulation height. In step S2, the air pressure detection means acquires the air pressure detection value P1 at the set detection interval. In step S2 immediately after the vehicle side device 4 is started, the initial detection interval is set at the longest time interval. In step S2 after returning from step S13, the detection interval and the wireless communication interval are set at the time interval set in step S13. The air pressure detection value P <b> 1 acquired by the air pressure detection means is wirelessly transmitted to the vehicle side device 4 by one data every time the wireless communication unit 33 performs wireless transmission.

ステップS3で、車両側装置4の路面状態判定ECU42は、空気圧検出値P1が閾値ΔPを越えて変化したか否かを判定する。本実施形態の閾値ΔPは、路面状態の判定に必要となる値であり、いわゆる絶対値である。検出した空気圧検出値P1が閾値ΔPを超えたときに路面状態の変化ありと判断してステップS4に進む。また、検出した空気圧検出値P1が閾値ΔP以内であれば、路面状態の変化なしと判断してステップS2に戻る。なお、閾値ΔPを絶対値とする態様に限定されるものではなく例えば、所定変化量を用いることができる。所定変化量を用いた場合は、前回までの所定期間における空気圧検出値の平均値と今回の空気圧検出値との差が閾値ΔPを越えているか否か判定することができる。   In step S3, the road surface state determination ECU 42 of the vehicle side device 4 determines whether or not the air pressure detection value P1 has changed beyond the threshold value ΔP. The threshold value ΔP of the present embodiment is a value that is necessary for determining the road surface condition, and is a so-called absolute value. When the detected air pressure detection value P1 exceeds the threshold value ΔP, it is determined that the road surface state has changed, and the process proceeds to step S4. If the detected air pressure detection value P1 is within the threshold value ΔP, it is determined that there is no change in the road surface condition, and the process returns to step S2. In addition, it is not limited to the aspect which makes threshold-value (DELTA) P an absolute value, For example, a predetermined variation | change_quantity can be used. When the predetermined change amount is used, it can be determined whether or not the difference between the average value of the air pressure detection values in the predetermined period until the previous time and the current air pressure detection value exceeds the threshold value ΔP.

ステップS4〜S9の間は、空気圧検出値P1が変動して、車両が走行している路面の路面状態が変化しているときの動作である。ステップS4で、路面状態判定ECU42は車速Vの情報を取得し、間隔設定手段と車速Vの情報を共有する。次のステップS5で、間隔設定手段は、車速Vに対応した検出間隔及び無線通信間隔の設定に変更する。定性的には、車速Vの増加に対応して検出間隔及び無線通信間隔を短く設定する。さらに、定量的には、車速Vに概ね反比例した検出間隔及び無線通信間隔の設定に変更することが好ましい。これにより、路面上の測定点のピッチを概ね一定に保ち、路面状態判定の精度を確保できる。   Steps S4 to S9 are operations performed when the air pressure detection value P1 fluctuates and the road surface state of the road surface on which the vehicle is traveling changes. In step S4, the road surface condition determination ECU 42 acquires information on the vehicle speed V, and shares the information on the vehicle speed V with the interval setting means. In the next step S5, the interval setting means changes the setting to the detection interval and radio communication interval corresponding to the vehicle speed V. Qualitatively, the detection interval and the wireless communication interval are set to be short as the vehicle speed V increases. Furthermore, quantitatively, it is preferable to change the setting to a detection interval and a wireless communication interval that are approximately inversely proportional to the vehicle speed V. Thereby, the pitch of the measurement points on the road surface can be kept substantially constant, and the accuracy of the road surface condition determination can be ensured.

ステップS6で、空気圧検出手段は、車速Vに対応して設定された検出間隔で空気圧検出値P1を取得する。取得した空気圧検出値P1は、車両側装置4へ無線通信によりデータ伝送される。次のステップS7で、路面状態判定ECU42は、取得した空気圧検出値P1から振幅Pw及び周期Tを演算する。より具体的には、振幅Pwは空気圧検出値P1の最大値及び最小値から演算され、周期Tは空気圧検出値P1の最大値及び最小値の検出間隔を基に演算される。ステップS8で、路面状態判定ECU42は、今回演算した周期Tを前回演算した周期と比較する。具体的には、今回演算した周期Tから前回演算した周期を減算して周期変化量を演算し、ステップS9に進む。   In step S6, the air pressure detection means acquires the air pressure detection value P1 at a detection interval set corresponding to the vehicle speed V. The acquired air pressure detection value P1 is transmitted to the vehicle side device 4 by wireless communication. In the next step S7, the road surface condition determination ECU 42 calculates the amplitude Pw and the period T from the acquired air pressure detection value P1. More specifically, the amplitude Pw is calculated from the maximum value and the minimum value of the air pressure detection value P1, and the period T is calculated based on the detection interval of the maximum value and the minimum value of the air pressure detection value P1. In step S8, the road surface condition determination ECU 42 compares the cycle T calculated this time with the cycle calculated last time. Specifically, the period change amount is calculated by subtracting the previously calculated period from the currently calculated period T, and the process proceeds to step S9.

ステップS9で、路面状態判定ECU42は、周期変化量が所定量以下であるか否かを判定する。周期変化量が所定量以下のとき、路面の起伏形状が周期的に変化する波状路面と判定でき、ステップS10に進む。周期変化量が所定量を越えているとき、起伏形状が不規則に変化している路面または起伏の少ない良好な路面と判定し、ステップS4に戻る。初回のステップS9では、空気圧P(t)の変動の今回演算した周期Tと前回演算した周期とが揃っていないので、無条件でステップS4に戻ることになる。   In step S9, the road surface condition determination ECU 42 determines whether or not the period change amount is equal to or less than a predetermined amount. When the periodic change amount is equal to or less than the predetermined amount, it can be determined that the road surface has a undulating shape that periodically changes, and the process proceeds to step S10. When the period change amount exceeds the predetermined amount, it is determined that the undulation shape is irregularly changed or a good road surface with less undulations, and the process returns to step S4. In the first step S9, since the cycle T calculated this time of the fluctuation of the air pressure P (t) and the cycle calculated last time are not aligned, the process returns to step S4 unconditionally.

なお、前回演算した周期とは本発明の以前の周期に相当する。ステップS8では今回演算した周期と前回演算した周期とを比較しているがこれに限定されない。例えば、空気圧P(t)の変動が繰り返して継続しているときに、前回以前の周期は複数個あり、それぞれの周期で演算した周期の平均値を「以前の周期」として用いるようにしてもよい。また、周期Tだけでなく、振幅Pwが変化した振幅変化量を併用してもよい。この場合、路面状態判定ECU42は、ステップS8で今回演算した振幅Pwから前回演算した振幅を減算して振幅変化量を演算し、ステップS9で周期変化量及び振幅変化量の少なくとも一方が所定量を越えているとき、ステップS4に戻る。   Note that the previously calculated cycle corresponds to the previous cycle of the present invention. In step S8, the cycle calculated this time is compared with the cycle calculated last time, but the present invention is not limited to this. For example, when the fluctuation of the air pressure P (t) continues repeatedly, there are a plurality of periods before the previous time, and the average value of the periods calculated in each period may be used as the “previous period”. Good. Further, not only the period T but also an amplitude change amount in which the amplitude Pw is changed may be used in combination. In this case, the road surface condition determination ECU 42 calculates the amplitude change amount by subtracting the previously calculated amplitude from the amplitude Pw calculated this time in step S8, and in step S9, at least one of the periodic change amount and the amplitude change amount has a predetermined amount. If so, the process returns to step S4.

ステップS10〜S12の間は、車両が波状路面を走行しているときの動作である。ステップS10で、ステップS7にて演算された振幅Pw及び周期Tから波状路面の起伏高さ及び起伏ピッチ長を判定する。次のステップS11で、間隔設定手段は、検出間隔と比べて無線通信間隔を長く設定する。このときの無線通信間隔は、初期無線通信間隔と同じでもよく、異なっていてもよい。また、無線通信間隔を波状路面の起伏高さを判定できる時間間隔に設定してもよい。検出間隔に対して無線通信間隔が長くなるが、本実施形態では無線通信される空気圧検出値は1データなので、最新の空気圧検出値が路面状態判定ECU42へ無線通信によりデータ伝送される。なお、制御演算部34で空気圧検出値を記憶し、1回の無線通信で複数の空気圧検出値を無線通信によりデータ伝送することもできる。   Steps S10 to S12 are operations when the vehicle is traveling on a wavy road surface. In step S10, the undulation height and the undulation pitch length of the wavy road surface are determined from the amplitude Pw and the period T calculated in step S7. In the next step S11, the interval setting means sets the wireless communication interval longer than the detection interval. The wireless communication interval at this time may be the same as or different from the initial wireless communication interval. Moreover, you may set a radio | wireless communication space | interval to the time interval which can determine the undulation height of a wavy road surface. Although the wireless communication interval becomes longer than the detection interval, in the present embodiment, since the air pressure detection value wirelessly communicated is one data, the latest air pressure detection value is transmitted to the road surface state determination ECU 42 by wireless communication. In addition, the air pressure detection value can be stored in the control calculation unit 34, and a plurality of air pressure detection values can be transmitted by wireless communication in one wireless communication.

次のステップS12で、路面状態判定ECU42は、空気圧検出値P1が閾値ΔPを越えて変化しているか否かを判定する。変化がある場合、波状路面が続く定常状態であると判断し、もしくは波状路面が終了して空気圧検出値P1が閾値ΔPを超えている路面であると判断して、ステップS7に戻る。変化が無い場合、波状路面が終了して起伏高さの変化が小さい良好な路面に進入したと判断できる。波状路面が終了したと判断した後、ステップS13へ進む。ステップS13では、ステップS5で変更した検出間隔よりも長い時間間隔に検出間隔を設定して、ステップS2に戻る。このときの長い検出間隔は、初期検出間隔と同じでもよく、異なっていてもよい。   In the next step S12, the road surface condition determination ECU 42 determines whether or not the air pressure detection value P1 has changed beyond the threshold value ΔP. If there is a change, it is determined that the wavy road surface is in a steady state, or it is determined that the wavy road surface is finished and the air pressure detection value P1 exceeds the threshold value ΔP, and the process returns to step S7. When there is no change, it can be determined that the wavy road surface has ended and the vehicle has entered a good road surface with a small change in undulation height. After determining that the wavy road surface has ended, the process proceeds to step S13. In step S13, the detection interval is set to a time interval longer than the detection interval changed in step S5, and the process returns to step S2. The long detection interval at this time may be the same as or different from the initial detection interval.

以上の動作を要約すると次のようになる。すなわち、車両が起伏高さの変化が小さい良好な路面を走行している間は、ステップS2〜S3を長い時間間隔で空気圧の検出及び無線送信を繰り返し、路面に起伏が生じて空気圧検出値P1が閾値ΔPを越えるとステップS4に進む。車両が不規則な起伏形状の路面を走行している間は、ステップS4〜S9を車速に対応した短い時間間隔で空気圧検出及び無線通信を繰り返す。そして、同一な起伏形状が繰り返される波状路面であることが判明するとステップS10に進む。波状路面を走行している間は、ステップS7〜S12を車速に対応した検出間隔とステップS5で設定される無線通信間隔よりも長い無線通信間隔で空気圧検出及び無線通信を繰り返す。波状路面が終わって車両が不規則な起伏形状の路面に進入すると、ステップS9からステップS4に戻る。また、波状路面が終わって車両が起伏高さの変化が小さい良好な路面に進入すると、ステップS12からステップS13を経由してステップS2に戻る。   The above operation is summarized as follows. That is, while the vehicle is traveling on a good road surface with a small change in undulation height, steps S2 to S3 are repeatedly detected and wirelessly transmitted at long time intervals, and the road surface is undulated to generate a detected air pressure value P1. Proceeds to step S4. While the vehicle is traveling on an irregular undulating road surface, steps S4 to S9 are repeated for air pressure detection and wireless communication at short time intervals corresponding to the vehicle speed. And if it turns out that it is a wavy road surface where the same undulation shape is repeated, it will progress to Step S10. While traveling on a wavy road surface, steps S7 to S12 are repeated for air pressure detection and wireless communication at a detection interval corresponding to the vehicle speed and at a wireless communication interval longer than the wireless communication interval set at step S5. When the wavy road surface ends and the vehicle enters an irregular road surface, the process returns from step S9 to step S4. When the wavy road surface is over and the vehicle enters a good road surface with a small change in undulation height, the process returns from step S12 to step S2 via step S13.

次に、第1実施形態の路面状態判定装置1における実際の波形について例示説明する。図3は、良好な路面の一例である乾燥したアスファルト路面を車両が走行しているときのタイヤの空気圧検出値P1の変化の波形図である。また、図4は、波状路面を車両が走行しているときのタイヤの空気圧検出値P1の変化の波形図である。図3及び図4で、横軸は時間、縦軸は空気圧検出値P1である。   Next, an actual waveform in the road surface state determination device 1 of the first embodiment will be described as an example. FIG. 3 is a waveform diagram of changes in the tire air pressure detection value P1 when the vehicle is traveling on a dry asphalt road surface which is an example of a good road surface. FIG. 4 is a waveform diagram of changes in the tire air pressure detection value P1 when the vehicle is traveling on a wavy road surface. 3 and 4, the horizontal axis represents time, and the vertical axis represents the detected air pressure value P1.

図3の良好な路面では、空気圧検出値P1は、時折わずかに変化する程度で概ね一定となっている。したがって、図2のフローチャートのステップS2〜S3は、長い時間間隔で空気圧検出及び無線通信が繰り返される。   On the good road surface in FIG. 3, the air pressure detection value P <b> 1 is substantially constant with a slight change from time to time. Therefore, in steps S2 to S3 in the flowchart of FIG. 2, air pressure detection and wireless communication are repeated at long time intervals.

一方、図4では、時刻t1に車両が波状路面に進入し、以降は空気圧検出値P1が正弦波状に変化している。また、空気圧検出値P1は、時刻t2に閾値ΔPを越えて増加している。したがって、空気圧検出及び無線通信は、時刻t2まではステップS2〜S3が長い時間間隔で繰り返され、時刻t2以降はステップS4〜S9が車速に対応した時間間隔で繰り返される。さらに、時刻t3までに2つの周期T1、T2が演算され、これらが互いに概ね等しいと(T1≒T2)、波状路面であることが判明する。したがって、時刻t3以降はステップS7〜S12で設定した検出間隔とステップS5で設定した無線通信間隔よりも長い無線通信間隔とで空気圧検出及び無線通信が繰り返される。   On the other hand, in FIG. 4, the vehicle enters the wavy road surface at time t1, and thereafter, the air pressure detection value P1 changes in a sine wave shape. The air pressure detection value P1 increases beyond the threshold ΔP at time t2. Therefore, in the air pressure detection and the wireless communication, steps S2 to S3 are repeated at a long time interval until time t2, and steps S4 to S9 are repeated at a time interval corresponding to the vehicle speed after time t2. Furthermore, two periods T1 and T2 are calculated by time t3, and when they are approximately equal to each other (T1≈T2), it is determined that the road surface is a wavy road. Therefore, after time t3, air pressure detection and wireless communication are repeated at the detection interval set in steps S7 to S12 and the wireless communication interval longer than the wireless communication interval set in step S5.

第1実施形態の路面状態判定装置1によれば、空気圧検出値P1の変化が閾値ΔP未満で路面状態が良好であるときに、検出間隔及び無線通信間隔の設定を長くして、タイヤ側装置3の消費電力を小さくできる。特に、装置始動時に最も長い初期検出間隔及び初期無線通信間隔を設定するので、タイヤ側装置3の消費電力を顕著に小さくできる。また空気圧検出値P1が閾値ΔPを越えて変化すると、検出間隔及び無線通信間隔の設定を車速に対応して変更するので、路面状態の判定に関わるデータを適切に取得でき、路面状態の判定を精度よく行うことができる。   According to the road surface state determination device 1 of the first embodiment, when the change in the air pressure detection value P1 is less than the threshold value ΔP and the road surface state is good, the detection interval and the wireless communication interval are lengthened, and the tire side device 3 power consumption can be reduced. In particular, since the longest initial detection interval and initial wireless communication interval are set when the device is started, the power consumption of the tire side device 3 can be significantly reduced. When the air pressure detection value P1 changes beyond the threshold value ΔP, the setting of the detection interval and the wireless communication interval is changed according to the vehicle speed, so that data relating to the determination of the road surface state can be appropriately acquired, and the determination of the road surface state can be performed. It can be performed with high accuracy.

さらに、車両が波状路面を走行して空気圧検出値P1が周期的に変化する定常状態では、空気圧の検出間隔を車速に応じた時間間隔に設定し、無線通信間隔の設定をステップS5で設定した無線通信間隔よりも長く変更する。したがって、波状路面を走行している間であっても、車速に対応した検出間隔で路面状態の判定を精度よく行いつつ、タイヤ側装置3の無線通信に要する消費電力を小さくできる。また、不規則な起伏形状に変化した場合、遅滞なく無線通信間隔を車速に対応した設定にして、路面状態の判定を精度よく行うことができる。   Further, in a steady state where the vehicle travels on a wavy road surface and the air pressure detection value P1 changes periodically, the air pressure detection interval is set to a time interval according to the vehicle speed, and the wireless communication interval is set in step S5. Change longer than the wireless communication interval. Therefore, even while traveling on a wavy road surface, the power consumption required for wireless communication of the tire side device 3 can be reduced while accurately determining the road surface state at a detection interval corresponding to the vehicle speed. Further, when the shape changes to an irregular undulation shape, it is possible to accurately determine the road surface condition by setting the wireless communication interval corresponding to the vehicle speed without delay.

さらに、路面状態判定手段が波状路面の起伏高さ及び起伏ピッチ長を判定するので、波状路面の判定を精度よく行うことができる。加えて、車内ネットワーク5を介して、波状路面の判定結果をクルーズ制御ECUやブレーキ制御ECUなどに提供できるので、車両の走行安定性及び安全性を高めることができる。   Furthermore, since the road surface state determining means determines the undulation height and the undulation pitch length of the wavy road surface, the wavy road surface can be accurately determined. In addition, since the determination result of the wavy road surface can be provided to the cruise control ECU, the brake control ECU, and the like via the in-vehicle network 5, the running stability and safety of the vehicle can be improved.

次に、第2実施形態の路面状態判定装置1Aについて、第1実施形態と異なる点を主に説明する。図5は、第2実施形態の路面状態判定装置1Aを説明する構成図である。第2実施形態の路面状態判定装置1Aは、既存のタイヤ空気圧監視システムに一体的に組み込まれている。   Next, the road surface state determination device 1A of the second embodiment will be described mainly with respect to differences from the first embodiment. FIG. 5 is a configuration diagram illustrating a road surface state determination device 1A according to the second embodiment. The road surface condition determination device 1A of the second embodiment is integrated into an existing tire pressure monitoring system.

第2実施形態では、車両の4つのタイヤ2にそれぞれ、タイヤ側装置3A〜3Dが搭載されている。4個のタイヤ側装置3A〜3Dは、第1実施形態のタイヤ側装置3と同一構成であり、各無線送信部33には個体認識用の互いに異なるIDコードが付与されている。各タイヤ側装置3A〜3Dは、空気圧監視及び路面状態判定の用途に共用で使用される。   In the second embodiment, tire-side devices 3A to 3D are mounted on the four tires 2 of the vehicle, respectively. The four tire side devices 3 </ b> A to 3 </ b> D have the same configuration as the tire side device 3 of the first embodiment, and different ID codes for individual recognition are assigned to the wireless transmission units 33. Each of the tire side devices 3A to 3D is used in common for air pressure monitoring and road surface condition determination.

一方、車両側装置4Aは、無線通信部45及び空気圧監視ECU46などで構成されている。無線通信部45は、4個のタイヤ側装置3A〜3Dに対して1:4の一斉無線送信、及びIDコードを指定しての1:1の対向無線通信を行えるようになっている。空気圧監視ECU46には、空気圧を監視する基本機能に加えて、第1実施形態の路面状態判定ECU42の機能が付加されている。さらに、空気圧監視ECU46は、路面状態判定に使用するタイヤ側装置3A〜3Dを交代で指定するようになっている。タイヤ側装置3A〜3Dの交代は、例えば、車両が所定時間だけ走行した時期に行うようにする。   On the other hand, the vehicle-side device 4A includes a wireless communication unit 45, an air pressure monitoring ECU 46, and the like. The wireless communication unit 45 is configured to perform 1: 4 simultaneous wireless transmission to the four tire side devices 3A to 3D and 1: 1 opposing wireless communication by specifying an ID code. In addition to the basic function of monitoring air pressure, the air pressure monitoring ECU 46 is added with the function of the road surface condition determination ECU 42 of the first embodiment. Further, the air pressure monitoring ECU 46 designates the tire side devices 3A to 3D used for road surface condition determination in turn. The replacement of the tire side devices 3A to 3D is performed, for example, at a time when the vehicle travels for a predetermined time.

上述した第2実施形態の路面状態判定装置1Aは、タイヤ空気圧監視システムの一部として動作する。すなわち、イグニッションスイッチがオン操作されて車両側装置4Aが始動すると、空気圧監視ECU46は、4個のタイヤ側装置3A〜3Dから長い時間間隔で空気圧検出値P1を取得して空気圧を監視する。これに並行して、空気圧監視ECU46は、指定した特定のタイヤ側装置から、可変の検出間隔及び無線通信間隔で空気圧検出値P1を受け取り、路面状態判定用に使用する。   The road surface condition determination apparatus 1A of the second embodiment described above operates as part of a tire air pressure monitoring system. That is, when the ignition switch is turned on and the vehicle side device 4A is started, the air pressure monitoring ECU 46 acquires the air pressure detection value P1 from the four tire side devices 3A to 3D at a long time interval and monitors the air pressure. In parallel with this, the air pressure monitoring ECU 46 receives the air pressure detection value P1 from the specified specific tire-side device at variable detection intervals and wireless communication intervals, and uses it for road surface condition determination.

第2実施形態の路面状態判定装置1Aによれば、既存のタイヤ空気圧監視システムに若干の変更を加えるだけでタイヤ側装置3A〜3Dを共用できるので、総合的な装置コストが低廉になる。また、4個のタイヤ側装置3A〜3Dは、空気圧監視用に揃って使用されるとともに、路面状態判定用に交代で使用されるので、それぞれに内蔵された電源用電池の消耗度合いが揃い、電池交換のメンテナンスが容易になる。   According to the road surface condition determination device 1A of the second embodiment, the tire side devices 3A to 3D can be shared by only making a slight change to the existing tire pressure monitoring system, so the overall device cost is reduced. In addition, the four tire side devices 3A to 3D are used together for air pressure monitoring, and are used alternately for road surface condition determination, so that the degree of consumption of the built-in power supply battery is uniform, Maintenance of battery replacement is facilitated.

なお、第1実施形態で、タイヤ側装置3の制御演算部34が間隔設定手段を含み、車両側装置4の路面状態判定ECU42が路面状態判定手段を含むものとしたが、これに限定されない。すなわち、間隔設定手段及び路面状態判定手段はソフトウェアで実現された機能手段であり、タイヤ側及び車両側のどちらに配置されても構わないし、タイヤ側及び車両側で機能分担するようにしてもよい。これに対応して、無線通信により伝送されるデータの種類も変化する。   In the first embodiment, the control calculation unit 34 of the tire side device 3 includes the interval setting unit, and the road surface state determination ECU 42 of the vehicle side device 4 includes the road surface state determination unit. However, the present invention is not limited to this. In other words, the distance setting means and the road surface condition determining means are functional means realized by software, and may be arranged on either the tire side or the vehicle side, or may be assigned functions on the tire side and the vehicle side. . Correspondingly, the type of data transmitted by wireless communication also changes.

また、第1実施形態で、路面状態判定ECU42は、空気圧P(t)が変動する単一の振幅Pw及び単一の周期Tを演算するとしたが、これに限定されない。すなわち、フーリエ解析による周波数スペクトラムの演算やその他の演算手法を用いて、波状路面以外の路面状態を判定するようにしてもよい。本発明は、その他さまざまな変形や応用が可能である。   In the first embodiment, the road surface condition determination ECU 42 calculates the single amplitude Pw and the single period T in which the air pressure P (t) varies, but the present invention is not limited to this. That is, a road surface state other than the wavy road surface may be determined by using a frequency spectrum calculation by Fourier analysis or other calculation methods. Various other modifications and applications of the present invention are possible.

1、1A:路面状態判定装置
2:タイヤ
3、3A〜3D:タイヤ側装置 31:空気圧センサ
32:温度センサ 33:無線通信部(無線送信部) 34:制御演算部
4、4A:車両側装置
41:無線通信部(無線受信部) 42:路面状態判定ECU
45:無線通信部(無線受信部) 46:空気圧監視ECU
5:車内ネットワーク
ΔP:閾値 T、T1、T2:周期
DESCRIPTION OF SYMBOLS 1, 1A: Road surface state determination apparatus 2: Tire 3, 3A-3D: Tire side apparatus 31: Air pressure sensor 32: Temperature sensor 33: Wireless communication part (wireless transmission part) 34: Control calculating part 4, 4A: Vehicle side apparatus 41: Radio communication unit (radio reception unit) 42: Road surface state determination ECU
45: Wireless communication unit (wireless reception unit) 46: Air pressure monitoring ECU
5: In-vehicle network ΔP: Threshold T, T1, T2: Period

Claims (6)

車両に装備されたタイヤに配設され、設定された検出間隔で前記タイヤの空気圧を検出する空気圧検出手段と、
検出した空気圧検出値に基づいて変動する前記空気圧の振幅及び周期を演算し、演算した振幅及び周期に基づいて前記車両が走行している路面の路面状態を判定する路面状態判定手段と、
前記タイヤに配設され、前記空気圧検出値、前記空気圧の振幅及び周期、ならびに前記路面状態からなるデータ群のうち一種以上を無線信号に変換して設定された無線通信間隔で送信する無線送信部と、
前記車両に配設され、前記無線送信部から送信された前記無線信号を受信する無線受信部と、
前記空気圧検出値が閾値を越えて変化したときに、前記検出間隔及び前記無線通信間隔を前記車両の車速に対応した設定に変更する間隔設定手段と、を備えた路面状態判定装置。
An air pressure detecting means disposed on a tire mounted on the vehicle and detecting the air pressure of the tire at a set detection interval;
Road surface state determination means for calculating the amplitude and period of the air pressure that varies based on the detected air pressure detection value, and determining the road surface state of the road surface on which the vehicle is traveling based on the calculated amplitude and period;
A wireless transmission unit that is disposed on the tire and transmits at least one wireless communication interval set by converting one or more of the data group consisting of the detected air pressure value, the amplitude and period of the air pressure, and the road surface condition into a wireless signal When,
A radio receiving unit disposed in the vehicle for receiving the radio signal transmitted from the radio transmitting unit;
A road surface condition determination device comprising: interval setting means for changing the detection interval and the wireless communication interval to a setting corresponding to the vehicle speed of the vehicle when the air pressure detection value changes beyond a threshold value.
前記間隔設定手段は、前記空気圧検出値が前記閾値を越えて変化したときに、装置始動時に設定された初期検出間隔及び初期無線通信間隔よりも短い検出間隔及び無線通信間隔に設定を変更する請求項1に記載の路面状態判定装置。   The interval setting means changes the setting to a detection interval and a wireless communication interval shorter than an initial detection interval and an initial wireless communication interval set when the apparatus is started when the air pressure detection value changes beyond the threshold. Item 12. The road surface condition determination device according to Item 1. 前記路面状態判定手段は、前記空気圧が変動する周期の1周期が経過した時点で、前記空気圧の振幅及び周期が以前の周期から変化した振幅変化量及び周期変化量の少なくとも一方を演算し、演算した前記振幅変化量及び前記周期変化量が所定量以下であるときに定常状態と判定し、
前記間隔設定手段は、前記定常状態において、前記車両の車速に対応して設定を変更した無線通信間隔よりも長い無線通信間隔に設定を変更し、あるいは前記初期無線通信周期に設定を戻す請求項1または2に記載の路面状態判定装置。
The road surface condition determining means calculates at least one of an amplitude change amount and a cycle change amount in which the amplitude and cycle of the air pressure have changed from the previous cycle when one cycle of the cycle in which the air pressure fluctuates has passed, When the amplitude change amount and the period change amount are equal to or less than a predetermined amount, the steady state is determined,
The interval setting means, in the steady state, changes the setting to a radio communication interval longer than the radio communication interval whose setting has been changed corresponding to the vehicle speed of the vehicle, or returns the setting to the initial radio communication cycle. The road surface condition determination apparatus according to 1 or 2.
前記路面状態判定手段は、前記空気圧が変動する単一の振幅及び単一の周期を演算し、前記空気圧の単一の振幅及び単一の周期に基づいて、起伏形状が繰り返す波状路面の路面状態として起伏高さ及び起伏ピッチ長を判定する請求項1〜3のいずれか一項に記載の路面状態判定装置。   The road surface state determination means calculates a single amplitude and a single period at which the air pressure varies, and a road surface state of a wavy road surface in which the undulation shape repeats based on the single amplitude and the single period of the air pressure. The road surface condition determination device according to any one of claims 1 to 3, wherein the undulation height and the undulation pitch length are determined as follows. 請求項1〜4のいずれか一項に記載された路面状態判定装置に適用され、
前記タイヤに搭載されて、前記空気圧検出手段と前記無線送信部と前記間隔設定手段とからなる路面状態判定装置用のタイヤ側装置。
Applied to the road surface condition determination device according to any one of claims 1 to 4,
A tire-side device for a road surface condition determination device that is mounted on the tire and includes the air pressure detection unit, the wireless transmission unit, and the interval setting unit.
前記車両の複数のタイヤにそれぞれ搭載され、交代で路面状態判定に使用される請求項5に記載の路面状態判定装置用のタイヤ側装置。   The tire-side device for a road surface state determination device according to claim 5, which is mounted on each of the plurality of tires of the vehicle and used alternately for road surface state determination.
JP2012197221A 2012-09-07 2012-09-07 Road condition determination device and tire-side device for road condition determination device Pending JP2014051195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012197221A JP2014051195A (en) 2012-09-07 2012-09-07 Road condition determination device and tire-side device for road condition determination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012197221A JP2014051195A (en) 2012-09-07 2012-09-07 Road condition determination device and tire-side device for road condition determination device

Publications (1)

Publication Number Publication Date
JP2014051195A true JP2014051195A (en) 2014-03-20

Family

ID=50610096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012197221A Pending JP2014051195A (en) 2012-09-07 2012-09-07 Road condition determination device and tire-side device for road condition determination device

Country Status (1)

Country Link
JP (1) JP2014051195A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016068637A (en) * 2014-09-26 2016-05-09 富士通株式会社 Information collecting program, information collecting method, and information collecting device
JP2017100647A (en) * 2015-12-04 2017-06-08 日立オートモティブシステムズ株式会社 Vehicular electronic control device
CN107150595A (en) * 2016-03-04 2017-09-12 本田技研工业株式会社 Vehicle
WO2019103095A1 (en) * 2017-11-23 2019-05-31 株式会社デンソー Road surface conditions determination device
JP2019151217A (en) * 2018-03-02 2019-09-12 株式会社Soken Road surface state determination device
US20200346655A1 (en) * 2018-01-19 2020-11-05 Denso Corporation Road surface state determination device and tire system including same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016068637A (en) * 2014-09-26 2016-05-09 富士通株式会社 Information collecting program, information collecting method, and information collecting device
JP2017100647A (en) * 2015-12-04 2017-06-08 日立オートモティブシステムズ株式会社 Vehicular electronic control device
CN107150595A (en) * 2016-03-04 2017-09-12 本田技研工业株式会社 Vehicle
WO2019103095A1 (en) * 2017-11-23 2019-05-31 株式会社デンソー Road surface conditions determination device
US20200346655A1 (en) * 2018-01-19 2020-11-05 Denso Corporation Road surface state determination device and tire system including same
JP2019151217A (en) * 2018-03-02 2019-09-12 株式会社Soken Road surface state determination device
JP7047466B2 (en) 2018-03-02 2022-04-05 株式会社Soken Road surface condition determination device
US11376901B2 (en) 2018-03-02 2022-07-05 Denso Corporation Road surface condition determination device performing sensing based on different sensing conditions

Similar Documents

Publication Publication Date Title
JP2014051195A (en) Road condition determination device and tire-side device for road condition determination device
US10773718B2 (en) Vehicle risk avoidance device
JP6515517B2 (en) Vehicle control device
KR20020035568A (en) Method and system for controlling the behaviour of a vehicle by controlling its tyres
JP2012531360A (en) Wheel electronics unit, vehicle wheel and vehicle
US20160082791A1 (en) Method and System for Tire Pressure Monitoring System (TPMS) with Time Encoded Wireless Tire Condition Sensing Device
WO2015141152A1 (en) Tire state detection device
JP2003526560A (en) System, tire and method for determining tire behavior during operation
WO2017159012A1 (en) Hydroplaning determination device
CN1743823A (en) Tire condition detecting system and method
JP2008518836A (en) Tire pressure control system for automobiles
US8109139B2 (en) Method and system for monitoring tire pressure
CN111615479B (en) Tire system
JP5264842B2 (en) Tire sensor and tire condition monitoring device
JP2018009974A (en) Tire-mounted sensor and road surface state estimation device including the same
TWI458947B (en) Wireless tire pressure sensor to avoid overlapping data transfer method
JP2018040631A (en) Road surface state estimation device
CN103619617A (en) Method for operating a tyre pressure-monitoring unit, and tyre pressure-monitoring unit
CN110446619A (en) Method and apparatus for determining the wheel weight on wheel of vehicle
CN201350806Y (en) Tire pressure monitoring system
JP2020172242A (en) Tire air pressure monitoring system and tire air pressure detector setting tool
CN102218978A (en) Method and device for monitoring the tire pressure of motor vehicle tires
WO2013139977A1 (en) System and method for monitoring vehicle load dynamics
WO2019142870A1 (en) Tire system
KR101788187B1 (en) Apparatus and method for advanced tire pressure monitoring system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150331