JP2014051035A - Method of producing fiber-reinforced thermoplastic resin molding - Google Patents

Method of producing fiber-reinforced thermoplastic resin molding Download PDF

Info

Publication number
JP2014051035A
JP2014051035A JP2012197360A JP2012197360A JP2014051035A JP 2014051035 A JP2014051035 A JP 2014051035A JP 2012197360 A JP2012197360 A JP 2012197360A JP 2012197360 A JP2012197360 A JP 2012197360A JP 2014051035 A JP2014051035 A JP 2014051035A
Authority
JP
Japan
Prior art keywords
base material
fiber
fibers
reinforcing
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012197360A
Other languages
Japanese (ja)
Inventor
Masanao Yamaguchi
正直 山口
Motoomi Arakawa
源臣 荒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2012197360A priority Critical patent/JP2014051035A/en
Publication of JP2014051035A publication Critical patent/JP2014051035A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method of producing a molding which enables producing a molding having excellent dimensional stability with an increased yield.SOLUTION: A method of producing a molding comprises molding a random mat containing a reinforcing fiber of an average fiber length of 5-100 mm and a weight of 25-10000 g/m2 and a thermoplastic resin by a step 3 through steps 1 and 2, and in the carrying stage of the step 2, a substrate is deformed to the shape of a mold. The step 1 comprises heating the substrate to a temperature equal to or higher than the softening temperature of the thermoplastic resin; the step 2 comprises carrying the heated substrate into the mold; and the step 3 comprises adjusting the temperature of the mold to a temperature below the softening temperature of the thermoplastic temperature and molding the substrate.

Description

本発明は、寸法安定性、成形性に優れた繊維強化熱可塑性樹脂成形体の製造方法に関するものである。さらに詳しくは、本発明は歩留まりが高く繊維強化熱可塑性樹脂成形体を製造する方法に関するものである。   The present invention relates to a method for producing a fiber-reinforced thermoplastic resin molded article having excellent dimensional stability and moldability. More specifically, the present invention relates to a method for producing a fiber-reinforced thermoplastic resin molded body having a high yield.

近年、電気・電子機器、医療機器、航空機、建材、一般産業用部品などの様々な分野で軽量化に関する要望が高まっており、それらに用いられる筐体や部材などについても軽量・高剛性化が求められるようになってきた。繊維強化複合材料は比強度、比剛性に優れ、かつ耐食性にも優れることから、前述の用途に広範囲に用いられている。例えば、強化繊維が一方向に配置された一方向材や、強化繊維が織物形態で配置された複合材料は、特に比強度、比剛性に優れることから、高い強度や剛性が要求される用途を中心に用いられてきた。   In recent years, there has been an increasing demand for weight reduction in various fields such as electrical and electronic equipment, medical equipment, aircraft, building materials, and general industrial parts. The weight and rigidity of casings and members used in these fields are also increasing. It has come to be required. Fiber reinforced composite materials are excellent in specific strength, specific rigidity, and excellent in corrosion resistance, and thus are widely used in the aforementioned applications. For example, unidirectional materials in which reinforcing fibers are arranged in one direction and composite materials in which reinforcing fibers are arranged in a woven form are particularly excellent in specific strength and specific rigidity. Has been used in the center.

特許文献1には、強化繊維、特に連続繊維を含むシートから構成された板状部材の外縁に樹脂部材を接合した複合成形品が提案されている。これにより、複雑な形状を有する成形品を実現することが可能となった。しかしながら、当該技術は織物形態にした強化繊維を複数枚数積層するなどして製造するため、生産性が低いのも問題であった。   Patent Document 1 proposes a composite molded product in which a resin member is bonded to the outer edge of a plate-like member made of a sheet containing reinforcing fibers, particularly continuous fibers. Thereby, it has become possible to realize a molded product having a complicated shape. However, since the technique is manufactured by laminating a plurality of reinforced fibers in the form of a woven fabric, the productivity is also low.

一方、特許文献2には、熱可塑性樹脂をマトリクスとした繊維強化複合材料に関する複合材料が記載されている。当該技術は、2次元ランダムに配向した強化繊維を含むプリプレグをプレス成形する事により、成形時間が大幅に短縮された繊維強化複合材料を提供するものである。今後は、成形時間の短縮に加えて、製造工程での歩留まりの向上が望まれている。   On the other hand, Patent Document 2 describes a composite material related to a fiber-reinforced composite material using a thermoplastic resin as a matrix. This technique provides a fiber-reinforced composite material in which the molding time is significantly shortened by press-molding a prepreg containing reinforcing fibers that are two-dimensionally randomly oriented. In the future, in addition to shortening the molding time, it is desired to improve the yield in the manufacturing process.

特開2010−131804号公報JP 2010-131804 A 特開2011−178891号公報JP 2011-178891 A

強化繊維が一方向に配置された一方向材や、強化繊維が織物形状で配置された複合材料は、強化繊維が配向しているため、搬送中に変形する事は難しい。したがって、一方向材や織物形状で強化された複合材料からなる基材を成形する場合、基材を金型形状に合わせて切り出した後に、金型キャビティへ配置する必要があり、切り出した部分以外の基材部分は有効利用できずに、歩留まりが低くなる。
本発明は、寸法安定性に優れた成形体を、歩留まりを高くして製造できる成形体の製造方法を提供する事を目的とする。
A unidirectional material in which reinforcing fibers are arranged in one direction and a composite material in which reinforcing fibers are arranged in a woven shape are difficult to be deformed during conveyance because the reinforcing fibers are oriented. Therefore, when molding a base material made of a unidirectional material or a composite material reinforced with a woven shape, it is necessary to place the base material in the mold cavity after cutting it out according to the mold shape. The base material portion cannot be effectively used, and the yield is lowered.
An object of this invention is to provide the manufacturing method of the molded object which can manufacture the molded object excellent in dimensional stability by making a yield high.

本発明者らは鋭意検討した結果、以下に示す手段により、上記課題を解決できることを見出し、本発明に到達した。   As a result of intensive studies, the present inventors have found that the above problems can be solved by the following means, and have reached the present invention.

1.平均繊維長1〜100mm、目付25〜10000g/mの強化繊維と、熱可塑性樹脂とを含むランダムマットを、以下の工程1および工程2を含んで、工程3により成形する成形体の製造方法であって、工程2の搬送工程において、基材を金型形状に合わせて変形させる製造方法。
工程1.基材を、熱可塑性樹脂樹の軟化温度以上に加熱する工程
工程2.加熱した基材を金型内に搬送する工程
工程3.金型温度を熱可塑性樹脂の軟化温度未満に調節し、基材を成形する工程
2.工程2における変形が、矩形形状から湾曲形状及び/又は屈曲形状への変形である前記1に記載の成形体の製造方法。
3.工程2における変形の湾曲の度合いが、曲率半径30mm以上である前記2に記載の成形体の製造方法。
4.工程2において搬送する基材の面積が、10,000mm以上である前記1〜3いずれかに記載の成形体の製造方法。
5.工程2における搬送方式が、ニードルによる突き刺し方式である前記1〜4いずれかに記載の成形体の製造方法。
6.工程2における基材の取り外し方法が、治具による押し出し方法である前記5に記載の成形体の製造方法。
7.工程2における基材の搬送方式が、グリップによる挟み込み方式である、前記1〜4いずれかに記載の成形体の製造方法。
8.工程2における基材の搬送方式が、吸引による引上げ方式である、前記1〜4いずれかに記載の成形体の製造方法。
9.下記(1)で定義される臨界単糸数以上で構成される強化繊維束(A)の強化繊維全量に対する割合が20Vol%以上99Vol%以下である前記1〜8いずれかに記載の成形体の製造方法。
臨界単糸数=600/D (1)
(ここでDは強化繊維の平均繊維径(μm)である)
1. A method for producing a molded article, comprising a random mat containing reinforcing fibers having an average fiber length of 1 to 100 mm and a basis weight of 25 to 10,000 g / m 2 and a thermoplastic resin, comprising the following step 1 and step 2 in step 3 And the manufacturing method which deform | transforms a base material according to a metal mold | die shape in the conveyance process of the process 2. FIG.
Step 1. Step of heating the base material to a temperature higher than the softening temperature of the thermoplastic resin tree Step 2. Step of transporting heated substrate into mold Step 3. 1. Adjusting the mold temperature below the softening temperature of the thermoplastic resin and molding the substrate. 2. The method for producing a molded body according to 1 above, wherein the deformation in step 2 is deformation from a rectangular shape to a curved shape and / or a bent shape.
3. 3. The method for producing a molded article according to 2, wherein the degree of curvature of deformation in step 2 is a curvature radius of 30 mm or more.
4). The manufacturing method of the molded object in any one of said 1-3 whose area of the base material conveyed in the process 2 is 10,000 mm < 2 > or more.
5. The manufacturing method of the molded object in any one of said 1-4 whose conveyance system in the process 2 is a piercing system with a needle.
6). 6. The method for producing a molded body according to 5 above, wherein the substrate removal method in step 2 is an extrusion method using a jig.
7). The manufacturing method of the molded object in any one of said 1-4 whose conveyance method of the base material in the process 2 is the pinching method by a grip.
8). The manufacturing method of the molded object in any one of said 1-4 whose conveyance system of the base material in the process 2 is a pulling-up system by suction.
9. Manufacture of the molded product according to any one of 1 to 8 above, wherein the proportion of the reinforcing fiber bundle (A) composed of the number of critical single yarns defined in (1) below is 20 Vol% or more and 99 Vol% or less. Method.
Critical number of single yarns = 600 / D (1)
(Here, D is the average fiber diameter (μm) of the reinforcing fibers)

本発明の製造方法によると、強化繊維は、適当な長さと目付を持ち、ランダムな方向に配置されているため、搬送中に基材を変形した場合であっても、樹脂の粉落ち、樹脂中の強化繊維の偏在、および基材のちぎれを防ぐ事ができる。したがって、成形体の形状が複雑な形状であっても、金型形状に応じて基材を変形させて搬送できるため、基材を単純な形状で切出すことが可能となり、材料の歩留まりを向上することができる。   According to the production method of the present invention, the reinforcing fiber has an appropriate length and basis weight, and is arranged in a random direction. It is possible to prevent uneven distribution of the reinforcing fibers and tearing of the base material. Therefore, even if the shape of the molded body is complex, the base material can be deformed and conveyed according to the shape of the mold, making it possible to cut out the base material in a simple shape and improving the material yield. can do.

本発明における、装置全体を示した正面図。The front view which showed the whole apparatus in this invention. ランダムマットプリプレグの切断方法と、湾曲方法を示した上面図。The top view which showed the cutting method of the random mat prepreg, and the bending method. ランダムマットプリプレグを搬送するための掴み具。A gripping tool for transporting random mat prepregs. 従来法におけるランダムマットプリプレグの裁断パターン。Cutting pattern of random mat prepreg in the conventional method. 両側湾曲形状のイメージ図。(X軸方向が幅、Y軸方向が長さ、Z軸方向が厚み)An image diagram of a curved shape on both sides. (X-axis direction is width, Y-axis direction is length, Z-axis direction is thickness) 半円形状のイメージ図。(X軸方向が幅、Y軸方向が長さ、Z軸方向が厚み)Semicircular image. (X-axis direction is width, Y-axis direction is length, Z-axis direction is thickness) 湾曲と屈曲形状のイメージ図。(X軸方向が幅、Y軸方向が長さ、Z軸方向が厚み)Image of curved and bent shapes. (X-axis direction is width, Y-axis direction is length, Z-axis direction is thickness) 大型両端湾曲形状のイメージ図。(X軸方向が幅、Y軸方向が長さ、Z軸方向が厚み)An image of a large curved shape at both ends. (X-axis direction is width, Y-axis direction is length, Z-axis direction is thickness) 大型緩やかに湾曲形状のイメージ図。(X軸方向が幅、Y軸方向が長さ、Z軸方向が厚み)An image of a large, gently curved shape. (X-axis direction is width, Y-axis direction is length, Z-axis direction is thickness) 曲率半径を求める際のイメージ図。The image figure at the time of calculating | requiring a curvature radius.

以下に、本発明の実施の形態について順次説明するが、本発明はこれらに制限されるものではない。   Hereinafter, embodiments of the present invention will be described in order, but the present invention is not limited thereto.

[強化繊維]
本発明に用いられる強化繊維の平均繊維長は、1〜100mmである。強化繊維の平均繊維長は、好ましくは5〜100mmであり、より好ましくは10〜100mmであり、更に好ましくは15〜100mmであり、特に好ましくは15〜80mmである。強化繊維の長さが5mm未満であると、基材の搬送工程において基材を変形すると、樹脂の粉落ちや、樹脂中の強化繊維の偏在が生じる。また、強化繊維の長さが100mmを超えると強化繊維の取扱い性が悪くなり、好ましくない。強化繊維のカット方法において、強化繊維を固定長にカットしてランダムマットを製造した場合、平均繊維長はカットした繊維長とほぼ等しくなる。
[Reinforcing fiber]
The average fiber length of the reinforcing fibers used in the present invention is 1 to 100 mm. The average fiber length of the reinforcing fibers is preferably 5 to 100 mm, more preferably 10 to 100 mm, still more preferably 15 to 100 mm, and particularly preferably 15 to 80 mm. If the length of the reinforcing fiber is less than 5 mm, the base material is deformed in the transporting process of the base material, resulting in resin powder falling or uneven distribution of the reinforcing fiber in the resin. Moreover, when the length of the reinforcing fiber exceeds 100 mm, the handling property of the reinforcing fiber is deteriorated, which is not preferable. In the reinforcing fiber cutting method, when a random mat is manufactured by cutting reinforcing fibers into a fixed length, the average fiber length is substantially equal to the cut fiber length.

本発明に用いられる強化繊維の目付は、25〜10000g/mである。目付が25g/m未満であると、基材が脆弱であるために、基材の搬送中に変形するとちぎれる。一方、強化繊維の目付が10000g/mより大きいと、搬送する基材が重すぎるために、搬送装置から外れて基材が脱落する。強化繊維の目付は、好ましくは500〜7000g/m、より好ましくは1000〜5000g/m、更に好ましくは1500〜3000g/mである。 The basis weight of the reinforcing fiber used in the present invention is 25 to 10,000 g / m 2 . When the basis weight is less than 25 g / m 2 , the base material is fragile, and therefore, when the base material is transported, the base material is broken. On the other hand, if the basis weight of the reinforcing fiber is greater than 10,000 g / m 2 , the substrate to be transported is too heavy, so that the substrate is detached from the transport device. Basis weight of reinforcing fibers, preferably 500~7000g / m 2, more preferably 1000~5000g / m 2, more preferably from 1500~3000g / m 2.

[強化繊維の繊維体積含有率(Vf)]
成形体、後述するランダムマットにおいて、繊維体積含有率(Vf)は5〜80%であり、20〜60%がより好ましい。強化繊維の繊維体積含有率が5%より高くなると、補強効果が向上する。また、80%を超えなければ、成形体中にボイドが発生しにくくなり、成形体の物性が良好になる。
[Fiber volume content of reinforcing fiber (Vf)]
In the molded body and the random mat described later, the fiber volume content (Vf) is 5 to 80%, more preferably 20 to 60%. When the fiber volume content of the reinforcing fibers is higher than 5%, the reinforcing effect is improved. On the other hand, if it does not exceed 80%, voids are hardly generated in the molded body, and the physical properties of the molded body are improved.

[開繊程度]
本発明で用いられるランダムマットには、強化繊維の開繊程度がコントロールされた特定本数以上の強化繊維からなる強化繊維束に加えて、それ以外の開繊された強化繊維を特定の比率で含むことが好ましい。すなわち、本発明における強化繊維は、式(1)で定義される臨界単糸数以上で構成される強化繊維束を、強化繊維全量に対する割合が20Vol%以上99Vol%未満の範囲で含有する事が好ましく、30Vol%以上90Vol%以下の範囲がより好ましい。
臨界単糸数=600/D 式(1)
(ここでDは強化繊維の平均繊維径(μm)である)
[Opening degree]
In the random mat used in the present invention, in addition to a reinforcing fiber bundle composed of reinforcing fibers of a specific number or more in which the degree of opening of the reinforcing fibers is controlled, other opened reinforcing fibers are included at a specific ratio. It is preferable. That is, the reinforcing fiber in the present invention preferably contains a reinforcing fiber bundle composed of the number of critical single yarns defined by the formula (1) in a range of 20 Vol% or more and less than 99 Vol% of the reinforcing fiber. The range of 30 Vol% or more and 90 Vol% or less is more preferable.
Critical number of single yarns = 600 / D Formula (1)
(Here, D is the average fiber diameter (μm) of the reinforcing fibers)

繊維全量に対する強化繊維束(A)の割合が20Vol%以上であると、成形する際に型内で繊維を流動しやすくなる。その結果、金型キャビティ端部まで繊維を充填しやすくなり、設計寸法通りの成形体を得ることが容易になる。一方で、強化繊維束(A)の割合が99Vol%以下であると、繊維の交絡部が局部的に厚くならず、薄肉のものが得られやすい。繊維全量に対する強化繊維束(A)の割合は、好ましくは30Vol%以上90Vol%未満である。   When the proportion of the reinforcing fiber bundle (A) with respect to the total amount of fibers is 20 Vol% or more, the fibers easily flow in the mold during molding. As a result, it becomes easy to fill the fiber up to the end of the mold cavity, and it becomes easy to obtain a molded body as designed. On the other hand, when the proportion of the reinforcing fiber bundle (A) is 99 Vol% or less, the entangled portion of the fibers is not locally thick, and a thin product is easily obtained. The ratio of the reinforcing fiber bundle (A) to the total amount of fibers is preferably 30 Vol% or more and less than 90 Vol%.

なお、強化繊維束(A)の割合は、例えば、後述する製造方法において、拡幅処理、スリット処理、カット工程、開繊工程等の条件を組み合わせることにより制御することができる。
さらに強化繊維束(A)における平均繊維数(N)が、下記式(2)を満たす事が好ましい。
0.7×10/D<N<1×10/D 式(2)
(式(2)中、Dは強化繊維の平均繊維径(μm)である)
In addition, the ratio of a reinforcing fiber bundle (A) can be controlled by combining conditions, such as a widening process, a slit process, a cutting process, and a fiber opening process, in the manufacturing method mentioned later, for example.
Furthermore, it is preferable that the average number of fibers (N) in the reinforcing fiber bundle (A) satisfy the following formula (2).
0.7 × 10 4 / D 2 <N <1 × 10 5 / D 2 formula (2)
(In formula (2), D is the average fiber diameter (μm) of the reinforcing fibers)

ランダムマットを構成する炭素繊維の平均繊維径が5〜9μmの場合には、臨界単糸数は67〜120本となり、炭素繊維の平均繊維径が5μmの場合には、強化繊維束(A)における平均繊維数(N)は280〜4000本の範囲となるが、炭素繊維の平均繊維径が5μmの場合には、強化繊維束(A)における平均繊維数(N)は280〜2000本であることが好ましく、なかでも600〜1600本であることが好ましい。また、炭素繊維の平均繊維径が7μmの場合には、強化繊維束(A)における平均繊維数(N)は142〜2040本の範囲となるが、炭素繊維の平均繊維径が7μmの場合には、142〜1020本であることが好ましく、300〜800本であることがさらに好ましい。   When the average fiber diameter of the carbon fibers constituting the random mat is 5 to 9 μm, the number of critical single yarns is 67 to 120. When the average fiber diameter of the carbon fibers is 5 μm, the reinforcing fiber bundle (A) The average number of fibers (N) is in the range of 280 to 4000, but when the average fiber diameter of the carbon fibers is 5 μm, the average number of fibers (N) in the reinforcing fiber bundle (A) is 280 to 2000. It is preferable that it is 600-1600 especially. When the average fiber diameter of the carbon fibers is 7 μm, the average number of fibers (N) in the reinforcing fiber bundle (A) is in the range of 142 to 2040, but when the average fiber diameter of the carbon fibers is 7 μm Is preferably 142 to 1020, and more preferably 300 to 800.

強化繊維束(A)中の平均繊維数(N)が0.7×10/D以上の場合には、高い繊維体積含有率(Vf)を得ることが容易となる。一方で、強化繊維束(A)中の平均繊維数(N)が1×10/D以下の場合には、成形した際、局部的に厚い部分が生じにくく、ボイドが発生しにくい。 When the average number of fibers (N) in the reinforcing fiber bundle (A) is 0.7 × 10 4 / D 2 or more, it is easy to obtain a high fiber volume content (Vf). On the other hand, when the average number of fibers (N) in the reinforcing fiber bundle (A) is 1 × 10 5 / D 2 or less, locally thick portions are hardly formed and voids are hardly generated.

後述するランダムマットに、前述した式(1)で定義される臨界単糸以上で構成される強化繊維束(A)と、単糸の状態または臨界単糸数未満の強化繊維(B)が同時に存在することにより、薄肉であり、かつ得られる物性の高いランダムマットを得ることが容易となる。   In the random mat described later, the reinforcing fiber bundle (A) composed of the critical single yarn or more defined by the above-described formula (1) and the reinforcing fiber (B) in the single yarn state or less than the critical single yarn number are simultaneously present. By doing so, it becomes easy to obtain a random mat that is thin and has high physical properties.

[強化繊維の種類]
ランダムマットを構成する強化繊維には特に制限はなく、炭素繊維、ガラス繊維、ステンレス繊維、アルミナ繊維、鉱物繊維などの無機繊維、ポリエーテルエーテルケトン繊維、ポリフェニレンサルファイド繊維、ポリエーテルスルホン繊維、アラミド繊維、ポリベンゾオキサゾール繊維、ポリアリレート繊維、ポリケトン繊維、ポリエステル繊維、ポリアミド繊維、ポリビニルアルコール繊維などの有機繊維が例示される。なかでも成形体に強度や剛性が求められる用途において炭素繊維、アラミド繊維、およびガラス繊維からなる群から選ばれる少なくとも一種であることが好ましい。導電性が必要な用途においては、炭素繊維が好ましく、ニッケルなどの金属を被覆した炭素繊維がより好ましい。電磁波透過性が必要な用途においては、ガラス繊維や有機繊維が好ましく、電磁波透過性と強度のバランスからアラミド繊維とガラス繊維がより好ましい。耐衝撃性が必要な用途においては有機繊維が好ましく、コスト面を考慮するとポリアミド繊維とポリエステル繊維がより好ましい。なかでも炭素繊維が、軽量でありながら強度に優れた成形体が提供できる点で好ましい。
[Types of reinforcing fibers]
There are no particular restrictions on the reinforcing fibers that make up the random mat, carbon fibers, glass fibers, stainless fibers, alumina fibers, mineral fibers and other inorganic fibers, polyether ether ketone fibers, polyphenylene sulfide fibers, polyether sulfone fibers, aramid fibers And organic fibers such as polybenzoxazole fiber, polyarylate fiber, polyketone fiber, polyester fiber, polyamide fiber, and polyvinyl alcohol fiber. Among these, in applications where the molded body is required to have strength and rigidity, it is preferably at least one selected from the group consisting of carbon fibers, aramid fibers, and glass fibers. For applications that require electrical conductivity, carbon fibers are preferred, and carbon fibers coated with a metal such as nickel are more preferred. In applications that require electromagnetic wave transparency, glass fibers and organic fibers are preferred, and aramid fibers and glass fibers are more preferred from the balance of electromagnetic wave permeability and strength. In applications where impact resistance is required, organic fibers are preferable, and polyamide fibers and polyester fibers are more preferable in consideration of cost. Among these, carbon fiber is preferable in that it can provide a molded body that is lightweight and excellent in strength.

[強化繊維の平均繊維径]
強化繊維の平均繊維径には特に限定はないが、例えば、炭素繊維の場合、好ましい平均繊維径は3〜12μmであり、より好ましくは5〜9μmであり、更に好ましくは5〜7μである。ポリエステル繊維の場合は、好ましい平均繊維径は10〜50μmであり、より好ましくは15〜35μmである。
これらは併用することもでき、成形体の部位によって強化繊維の種類を使い分けることも可能であり、異なる強化繊維を用いたランダムマットを全体または部分的に積層させた状態で成形体を作製することも可能である。
[Average fiber diameter of reinforcing fibers]
The average fiber diameter of the reinforcing fibers is not particularly limited. For example, in the case of carbon fibers, the preferable average fiber diameter is 3 to 12 μm, more preferably 5 to 9 μm, and further preferably 5 to 7 μm. In the case of polyester fibers, the preferred average fiber diameter is 10 to 50 μm, more preferably 15 to 35 μm.
These can also be used in combination, and the type of reinforcing fiber can be used properly depending on the part of the molded body, and a molded body is produced in a state where random mats using different reinforcing fibers are laminated in whole or in part. Is also possible.

[熱可塑性樹脂]
本発明に用いられる熱可塑性樹脂の種類としては例えば塩化ビニル樹脂、塩化ビニリデン樹脂、酢酸ビニル樹脂、ポリビニルアルコール樹脂、ポリスチレン樹脂、アクリロニトリル−スチレン樹脂(AS樹脂)、アクリロニトリル−ブタジエンースチレン樹脂(ABS樹脂)、アクリル樹脂、メタクリル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリアミド6樹脂、ポリアミド11樹脂、ポリアミド12樹脂、ポリアミド46樹脂、ポリアミド66樹脂、ポリアミド610樹脂、ポリアセタール樹脂、ポリカーボネート樹脂、ポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ボリブチレンテレフタレート樹脂、ポリアリレート樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンスルフィド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリエーテルエーテルケトン樹脂、ポリ乳酸樹脂などが挙げられる。
[Thermoplastic resin]
Examples of the thermoplastic resin used in the present invention include vinyl chloride resin, vinylidene chloride resin, vinyl acetate resin, polyvinyl alcohol resin, polystyrene resin, acrylonitrile-styrene resin (AS resin), acrylonitrile-butadiene-styrene resin (ABS resin). ), Acrylic resin, methacrylic resin, polyethylene resin, polypropylene resin, polyamide 6 resin, polyamide 11 resin, polyamide 12 resin, polyamide 46 resin, polyamide 66 resin, polyamide 610 resin, polyacetal resin, polycarbonate resin, polyethylene terephthalate resin, polyethylene naphthalate Phthalate resin, boribylene terephthalate resin, polyarylate resin, polyphenylene ether resin, polyphenylene sulfide resin, polysulfone resin Polyether sulfone resins, polyether ether ketone resins, such as polylactic acid resins.

熱可塑性樹脂の形状としては、特に限定されるものではなく、例えば、繊維状、粒子状、溶融状態、さらにはこれらの混合物として供給することができる。
繊維状の場合、繊度100〜5000dtexのもの、より好ましくは繊度1000〜2000dtexものがより好ましく、平均繊維長としては0.5〜50mmが好ましく、より好ましくは平均繊維長1〜10mmである。
The shape of the thermoplastic resin is not particularly limited, and for example, it can be supplied as a fiber, a particle, a molten state, or a mixture thereof.
In the case of a fiber, a fineness of 100 to 5000 dtex, more preferably 1000 to 2000 dtex is more preferred, and an average fiber length of 0.5 to 50 mm is preferred, and an average fiber length of 1 to 10 mm is more preferred.

粒子状の場合、球状、細片状、あるいはペレットのような円柱状が好ましく挙げられる。球状の場合は、真円または楕円形状、あるいは卵状のような形状が好ましく挙げられる。球とした場合の好ましい平均粒子径は0.01〜1000μmである。より好ましくは平均粒子径0.1〜900μmものがより好ましく、更に好ましくは平均粒子径1〜800μmものがより好ましい。粒子径分布についてはとくに制限はないが、分布シャープなものがより薄い成形体を得る目的としてはより好ましいが、分級等の操作により所望の粒度分布として用いる事が出来る。
細片状の場合、ペレットのような円柱状や、角柱状、リン片状が好ましい形状として挙げられる。この場合ある程度のアスペクト比を有しても良いが、好ましい長さは上記の繊維状の場合と同程度とする。
In the case of particles, a spherical shape, a strip shape, or a columnar shape such as a pellet is preferable. In the case of a spherical shape, a perfect circle or ellipse shape, or an egg shape is preferable. A preferable average particle diameter in the case of a sphere is 0.01 to 1000 μm. More preferably, the average particle size is 0.1 to 900 μm, and still more preferably the average particle size is 1 to 800 μm. The particle size distribution is not particularly limited, but a sharp distribution is more preferable for the purpose of obtaining a thinner molded product, but can be used as a desired particle size distribution by an operation such as classification.
In the case of a strip shape, a columnar shape such as a pellet, a prismatic shape, or a flake shape is mentioned as a preferable shape. In this case, it may have a certain aspect ratio, but the preferred length is about the same as that of the above fibrous form.

熱可塑性樹脂の存在量は、好ましくは強化繊維100重量部に対し、50〜1000重量部、より好ましくは50〜500重量部である。更に好ましくは、強化繊維100重量部に対し、熱可塑性樹脂60〜300重量部である。強化繊維100重量部に対する熱可塑性樹脂の割合が50重量部より多いとプリプレグ中にボイドが発生しにくくなり、強度や剛性が高くなる傾向にある。反対に、熱可塑性樹脂の割合が1000重量部より少ない方が、強化繊維の補強効果が発現しやすい。相溶可能なものであれば、使用する熱可塑性樹脂の種類を2種以上としてもよい。   The abundance of the thermoplastic resin is preferably 50 to 1000 parts by weight, more preferably 50 to 500 parts by weight with respect to 100 parts by weight of the reinforcing fibers. More preferably, it is 60 to 300 parts by weight of the thermoplastic resin with respect to 100 parts by weight of the reinforcing fiber. When the ratio of the thermoplastic resin to 100 parts by weight of the reinforcing fiber is more than 50 parts by weight, voids are hardly generated in the prepreg, and the strength and rigidity tend to increase. On the contrary, when the proportion of the thermoplastic resin is less than 1000 parts by weight, the reinforcing effect of the reinforcing fibers is likely to appear. Two or more types of thermoplastic resins may be used as long as they are compatible.

[他の剤]
なお、本発明の目的を損なわない範囲で、ランダムマットに機能性の充填材や添加剤を含有させても良い。例えば、有機/無機フィラー、難燃剤、耐UV剤、顔料、離型剤、軟化剤、可塑剤、界面活性剤などが挙げられるが、この限りではない。特に電子・電気機器用途や自動車用途においては、高い難燃性が要求されることがあるため、難燃剤を含有させることが好ましい。難燃剤の例としては、公知のものが使用でき、本発明の熱可塑性組成物に難燃性を付与できる物であれば特に限定はされない。具体的には、リン系難燃剤、窒素系難燃剤、シリコーン化合物、有機アルカリ金属塩、有機アルカリ土類金属塩、臭素系難燃剤等を挙げることができ、これらの難燃剤は単独で使用しても良いし、複数を併用して用いても良い。難燃剤の含有量は、物性、成形性、難燃性のバランスから樹脂100質量部に対して1〜40質量部とすることが好ましく、1〜20質量部とすることがさらに好ましい。
[Other agents]
It should be noted that a functional filler or additive may be included in the random mat as long as the object of the present invention is not impaired. Examples include organic / inorganic fillers, flame retardants, UV-resistant agents, pigments, mold release agents, softeners, plasticizers, surfactants, and the like, but are not limited thereto. Particularly in electronic / electric equipment applications and automotive applications, high flame retardancy may be required, so it is preferable to contain a flame retardant. As an example of a flame retardant, a well-known thing can be used, and if it can give a flame retardance to the thermoplastic composition of this invention, it will not specifically limit. Specific examples include phosphorus flame retardants, nitrogen flame retardants, silicone compounds, organic alkali metal salts, organic alkaline earth metal salts, bromine flame retardants, etc. These flame retardants can be used alone. Alternatively, a plurality of them may be used in combination. The content of the flame retardant is preferably 1 to 40 parts by mass and more preferably 1 to 20 parts by mass with respect to 100 parts by mass of the resin from the balance of physical properties, moldability, and flame retardancy.

[ランダムマット]
本発明の製造方法で用いるランダムマットは、強化繊維が二次元ランダムに配向している(二次元等方性)。ランダムマットより成形体を得た場合には、ランダムマット中の強化繊維の等方性は、成形体においても維持される。したがって、二次元等方性の定量性は、ランダムマットより成形体を得て、互いに直交する二方向の引張弾性率の比を求めることで評価する。成形体の任意の方向、及びこれと直交する方向について、それぞれ測定した引張弾性率の値のうち大きいものを小さいもので割った(Eδ)比が2以下、より好ましくは1.3以下であることをいう。
ランダムマットの厚さにとくに制限はなく、1〜150mm厚みのものを得ることができ、2〜100mm厚みとすることがより好ましい。
[Random mat]
In the random mat used in the production method of the present invention, the reinforcing fibers are oriented two-dimensionally randomly (two-dimensional isotropic). When a molded body is obtained from the random mat, the isotropy of the reinforcing fibers in the random mat is maintained in the molded body. Therefore, the two-dimensional isotropic quantitativeness is evaluated by obtaining a molded body from a random mat and determining the ratio of tensile modulus in two directions orthogonal to each other. The ratio (Eδ) obtained by dividing the measured value of the tensile modulus of elasticity by the smaller one for an arbitrary direction of the molded body and a direction orthogonal thereto is 2 or less, more preferably 1.3 or less. That means.
There is no restriction | limiting in particular in the thickness of a random mat, The thing of 1-150 mm thickness can be obtained, and it is more preferable to set it as 2-100 mm thickness.

[ランダムマットの製造方法]
ランダムマットの製造方法は、特に限定されるものではなく、例えば、繊維状および/または粒子状の熱可塑性樹脂を強化繊維と混合して存在させるように製造してもよく、強化繊維に溶融状態の熱可塑性樹脂を供給して製造してもよい。
[Random mat manufacturing method]
The production method of the random mat is not particularly limited. For example, the random mat may be produced so that a fibrous and / or particulate thermoplastic resin is mixed with the reinforcing fiber, and the reinforcing fiber is melted. It may be produced by supplying a thermoplastic resin.

以下に、ランダムマットの好ましい製造方法を例示する。ランダムマットの製造方法としては、好ましくは、以下の(I)、(III)、(IV)、(V)または(V’)の各工程を実施する方法が挙げられ、好ましくは(I)と(III)の工程の間に(II)の工程を実施する方法が挙げられる。   Below, the preferable manufacturing method of a random mat is illustrated. The method for producing a random mat preferably includes a method of performing the following steps (I), (III), (IV), (V) or (V ′), preferably (I) The method of performing the process of (II) between the processes of (III) is mentioned.

(I)強化繊維ストランド供給工程
強化繊維ストランド供給工程では、クリール部に配置された複数の強化繊維巻糸体から、強化繊維それぞれの糸条を引出し、単独の糸条からなるかまたは単糸を複数本引き揃えてなる強化繊維ストランドとして供給する。供給される強化繊維のストランド幅が小さい場合には、必要に応じて、当ストランド供給工程にて所定幅まで拡幅して、薄い広幅のストランドとして供給してもよい。
(I) Reinforcing fiber strand supply step In the reinforcing fiber strand supply step, each reinforcing fiber is drawn out from a plurality of reinforcing fiber wound bodies arranged in the creel portion, and consists of a single yarn or a single yarn. Supplied as reinforcing fiber strands that are drawn together. When the strand width of the reinforcing fiber to be supplied is small, the strand may be widened to a predetermined width in this strand supply step and supplied as a thin wide strand as necessary.

(II)ストランドスリット工程
ストランドスリット工程では、供給された強化繊維ストランドを、好ましくはストランド長手方向と平行に(すなわち繊維軸方向に沿って)連続的にスリットし、ストランド幅が0.05〜5mm、好ましくは0.1〜1.0mmの複数本の細幅ストランドとする。具体的には、前工程から連続的に移送されてくる広幅のストランドを、繊維軸方向と平行な刃を有する縦スリット装置(スリッター)を用いて縦方向に連続的にカットするか、広幅ストランドの走行路に1個または複数個の分割ガイドを設け、それによりストランドを複数本に分割すること等により実施することができる。
(II) Strand slit process In the strand slit process, the supplied reinforcing fiber strand is preferably slit continuously in parallel with the longitudinal direction of the strand (that is, along the fiber axis direction), and the strand width is 0.05 to 5 mm. Preferably, a plurality of narrow strands of 0.1 to 1.0 mm are used. Specifically, the wide strand continuously transferred from the previous step is continuously cut in the longitudinal direction using a slitting device (slitter) having a blade parallel to the fiber axis direction, or the wide strand One or a plurality of division guides are provided on the travel path, and the strands are divided into a plurality of pieces, for example.

(III)強化繊維カット工程
次に、強化繊維カット工程にて、平均繊維長5〜100mmにカット(切断)する。強化繊維のカット方法において、強化繊維を固定長にカットして製造した場合、平均繊維長はカットした繊維長とほぼ等しくなる。強化繊維を平均繊維長5〜100mmにカットする際に使用する装置としては、ロータリーカッターが好ましい。
(III) Reinforcing Fiber Cutting Step Next, in the reinforcing fiber cutting step, the fiber is cut (cut) into an average fiber length of 5 to 100 mm. In the reinforcing fiber cutting method, when the reinforcing fiber is manufactured by cutting it into a fixed length, the average fiber length is almost equal to the cut fiber length. As an apparatus used when cutting reinforcing fibers into an average fiber length of 5 to 100 mm, a rotary cutter is preferable.

(IV)強化繊維開繊工程
強化繊維開繊工程では、所定の繊維長にカットされた強化繊維のストランド(以下「ストランド片」ということがある)に気体を吹付け、該ストランド片を所望のサイズ(集束本数)の繊維束に分割するように開繊する。
具体的には、強化繊維開繊工程(IV)では、ストランド片を経路内に導入し、該経路を通過するストランド片に空気等の気体を吹き付けることにより、該ストランド片を所望の集束サイズに分離させるとともに気体中に分散させる。開繊の度合いについては、吹き付ける気体の圧力等により適宜コントロールすることができる。
この強化繊維開繊工程では、ストランド片を構成する全繊維をバラバラに分離させて完全に単糸状になるまで分離するように開繊するよりは、一部は単糸状またはそれに近い状態まで開繊し、多くの部分は単糸の一定の本数以上が集束した繊維束となるように調整するのが好ましい。すなわち、開繊の程度を、上記式(1)で定義される臨界単糸数以上からなる強化繊維束(A)の割合、さらに、強化繊維束(A)における平均繊維数(N)を満たすようにするのが好ましい。
(IV) Reinforcing Fiber Opening Step In the reinforcing fiber opening step, gas is blown onto a strand of reinforcing fibers cut to a predetermined fiber length (hereinafter sometimes referred to as “strand piece”), and the strand piece is formed in a desired shape. The fiber is opened so as to be divided into fiber bundles of size (number of bundles).
Specifically, in the reinforcing fiber opening step (IV), the strand pieces are introduced into the path, and a gas such as air is blown onto the strand pieces that pass through the path, so that the strand pieces have a desired converging size. Separate and disperse in gas. The degree of opening can be appropriately controlled by the pressure of the gas to be blown.
In this reinforcing fiber opening process, rather than separating all the fibers that make up the strand pieces apart and separating them until they become completely single yarns, some of them are opened to a single yarn shape or a state close thereto. However, it is preferable to adjust so that many portions become a bundle of fibers in which a certain number or more of single yarns are converged. That is, the degree of opening is such that the ratio of the reinforcing fiber bundle (A) consisting of the number of critical single yarns or more defined by the above formula (1) and the average number of fibers (N) in the reinforcing fiber bundle (A) are satisfied. Is preferable.

(V)ランダムマットの形成工程
ランダムマットの形成工程においては、カットし開繊させた強化繊維を空気中に拡散させると同時に、粉粒体状または短繊維状の熱可塑性樹脂(以下、これらを「熱可塑性樹脂粒子等」と総称する)を供給し、強化繊維を熱可塑性樹脂粒子等とともに開繊装置下方に設けた通気性支持体上に散布して、該支持体上で強化繊維と熱可塑性樹脂粒子等が混在する状態を形成し、所定の厚さとなるよう堆積・定着させてランダムマットを形成させる。
(V) Random mat forming step In the random mat forming step, the reinforcing fibers that have been cut and spread are diffused into the air, and at the same time, a granular or short fiber thermoplastic resin (hereinafter referred to as "therein mat"). (Collectively referred to as “thermoplastic resin particles, etc.”), and the reinforcing fibers and the thermoplastic resin particles, etc. are sprinkled on a breathable support provided below the opening device, and the reinforcing fibers and heat are spread on the support. A state in which plastic resin particles and the like are mixed is formed, and deposited and fixed to have a predetermined thickness, thereby forming a random mat.

(V’)ランダムマットの形成工程(その2)
また別のランダムマットの形成工程としては、マトリクス樹脂を含まない以外は上記(V)の形成工程と同様に強化繊維を散布した後、これに溶融状態の熱可塑性樹脂を供給し、強化繊維と熱可塑性樹脂とを含むランダムマットを得る方法が挙げられる。このような方法としては、例えば、強化繊維開繊工程で得られる開繊された強化繊維ストランドをマット状に堆積させるとともに、上方に設けたダイから溶融状態の熱可塑性樹脂を膜状溶融体として吐出し、堆積したマット上に該熱可塑性樹脂を供給して、マットのほぼ全面に含浸させることができる。
含浸における圧力は0.1〜30MPaが好ましく、0.5〜20MPaがより好ましい。時間は0.1〜60分が好ましく、0.5〜30分がより好ましい。圧力が低いと含浸に時間を要し、生産性に影響を及ぼしやすい。また、圧力が高すぎると大型の成形機やユーティリティー設備が必要となり、設備投資が高額となる。
(V ′) Random mat forming process (2)
As another random mat forming step, except that the matrix resin is not included, the reinforcing fibers are dispersed in the same manner as in the forming step (V), and then a molten thermoplastic resin is supplied to the reinforcing fibers. The method of obtaining the random mat containing a thermoplastic resin is mentioned. As such a method, for example, the opened reinforcing fiber strands obtained in the reinforcing fiber opening process are deposited in a mat shape, and a molten thermoplastic resin is formed from a die provided above as a film-like melt. The thermoplastic resin can be supplied onto the mat that has been discharged and deposited, so that the substantially entire surface of the mat can be impregnated.
The pressure in the impregnation is preferably from 0.1 to 30 MPa, more preferably from 0.5 to 20 MPa. The time is preferably from 0.1 to 60 minutes, more preferably from 0.5 to 30 minutes. If the pressure is low, it takes time to impregnate and tends to affect productivity. On the other hand, if the pressure is too high, a large molding machine and utility equipment will be required, resulting in high capital investment.

[プリプレグ作製工程]
本発明において、ランダムマットにおける強化繊維束内および強化繊維の単糸間に熱可塑性樹脂を含浸させたものを、プリプレグと呼ぶ。ランダムマットの性能をより発揮するためには、強化繊維束内にマトリックス樹脂を含浸し、強化繊維とマトリックス樹脂が一体化していることが好ましく、成形体の製造工程のどこかで含浸処理を行うと好ましい。含浸処理は、後述する成形体の製造方法における工程1の前でも良いし、工程1で行っても良い。含浸処理は工程3の成形と同時に実施することも出来るが、含浸と成形を分けて行うと成形体の寸法安定性、物性などに良い影響が出ることから、工程1の前か、工程1において行うと好ましい。また、工程1で含浸処理して得られたプリプレグは高温状態で工程2に進めても良いし、いったん室温まで降温して所望の加工を施した後に再度加温して工程2に進めても良い。
[Prepreg production process]
In the present invention, a material in which a thermoplastic resin is impregnated in a reinforcing fiber bundle and a reinforcing fiber in a random mat is called a prepreg. In order to further exhibit the performance of the random mat, it is preferable that the reinforcing fiber bundle is impregnated with a matrix resin, and the reinforcing fiber and the matrix resin are preferably integrated, and the impregnation treatment is performed somewhere in the manufacturing process of the molded body. And preferred. The impregnation treatment may be performed before step 1 or in step 1 in the method for manufacturing a molded body described later. The impregnation treatment can be performed at the same time as the molding in the step 3. However, if the impregnation and the molding are performed separately, the dimensional stability, physical properties, etc. of the molded product are adversely affected. Preferably it is done. In addition, the prepreg obtained by the impregnation treatment in step 1 may proceed to step 2 in a high temperature state, or may be cooled to room temperature once and subjected to desired processing, and then heated again to proceed to step 2. good.

プリプレグ作製においては、ランダムマットに含まれる熱可塑性樹脂が結晶性の場合は融点以上熱分解温度未満の温度まで、非晶性の場合はガラス転移温度以上熱分解温度未満の温度まで加熱して、熱可塑性樹脂を含浸させる。ランダムマットおよびプリプレグの加熱方法に特に限定はなく、いかなる方法の利用も可能である。
プリプレグの厚みは、得ようとする成形体の厚みの1〜10倍、好ましくは1〜5倍とすることが好ましい。厚みの限定はないが、好ましくは0.1mm以上であり、上限は金型に配置して成形可能な範囲までであり、実質的には30mm程度である。
含浸における圧力は0.1〜30MPaが好ましく、0.5〜20MPaがより好ましい。時間は0.1〜60分が好ましく、0.5〜30分がより好ましい。圧力が低いと含浸に時間を要する。また、圧力が高すぎると大型の成形機やユーティリティー設備が必要となる。
In prepreg production, when the thermoplastic resin contained in the random mat is crystalline, it is heated to a temperature not lower than the melting point and lower than the thermal decomposition temperature, and if amorphous, it is heated to a temperature not lower than the glass transition temperature and lower than the thermal decomposition temperature, Impregnated with thermoplastic resin. There is no particular limitation on the heating method of the random mat and the prepreg, and any method can be used.
The thickness of the prepreg is preferably 1 to 10 times, preferably 1 to 5 times the thickness of the molded product to be obtained. Although there is no limitation on the thickness, it is preferably 0.1 mm or more, and the upper limit is a range that can be placed in a mold and molded, and is substantially about 30 mm.
The pressure in the impregnation is preferably from 0.1 to 30 MPa, more preferably from 0.5 to 20 MPa. The time is preferably from 0.1 to 60 minutes, more preferably from 0.5 to 30 minutes. If the pressure is low, the impregnation takes time. If the pressure is too high, a large molding machine and utility equipment are required.

ランダムマットおよびプリプレグの加熱方法に特に限定はなく、いかなる方法の利用も可能である。具体的には、熱風乾燥機や電気加熱型乾燥機を用いる方法、飽和蒸気や過熱蒸気を用いる方法、金型・ベルトコンベアー・熱ローラーなどにおいて熱板に挟む方法、赤外線・遠赤外線・マイクロ波・高周波などによる誘電加熱や、誘導加熱(IH)が例示される。この中でも、熱板に挟む方法、誘電加熱、誘導加熱が、熱効率が高いので、より好ましい。   There is no particular limitation on the heating method of the random mat and the prepreg, and any method can be used. Specifically, a method using a hot air dryer or an electric heating dryer, a method using saturated steam or superheated steam, a method of sandwiching between hot plates in a mold, a belt conveyor, a heat roller, etc., infrared, far infrared, microwave -Dielectric heating by high frequency etc. and induction heating (IH) are illustrated. Among these, the method of sandwiching between hot plates, dielectric heating, and induction heating are more preferable because of high thermal efficiency.

[強化繊維と熱可塑性樹脂の含有量測定方法]
ランダムマットおよび成形体における強化繊維と熱可塑性樹脂の割合は、溶解性の違いを利用して評価することが出来る。この場合、面積が1cmから10cmの板状試料の重量を秤量し、繊維または樹脂のいずれか一方を溶解、または分解する薬品を使用して溶解成分を抽出すればよい。その後、残渣を洗浄および乾燥後に秤量し、残渣と溶解成分の重量、および繊維と樹脂の比重から、繊維と樹脂の体積分率を算出する。例えば、熱可塑性樹脂がポリプロピレンの場合、加熱したトルエンまたはキシレンを用いることにより、ポリプロピレンのみを溶解することができる。熱可塑性樹脂がポリアミドの場合は、加熱したギ酸によりポリアミドを分解することができる。樹脂がポリカーボネートの場合には加熱した塩素化炭化水素を用いることにより、ポリカーボネートを溶解することができる。また、強化繊維が炭素繊維やガラス繊維などの無機繊維の場合には、樹脂を燃焼除去することによってもそれぞれの重量および体積分率を算出できる。この場合、よく乾燥させた試料の重量を秤量後、電気炉等を用いて500〜700℃で5〜60分処理して樹脂成分を燃焼する。乾燥雰囲気で残留した繊維を放冷後、秤量することにより各成分の重量を算出することが出来る。
[Method for measuring content of reinforcing fiber and thermoplastic resin]
The ratio of the reinforcing fiber and the thermoplastic resin in the random mat and the molded body can be evaluated using the difference in solubility. In this case, the weight of the plate-like sample having an area of 1 cm 2 to 10 cm 2 may be weighed, and the dissolved component may be extracted using a chemical that dissolves or decomposes one of the fibers and the resin. Thereafter, the residue is weighed after washing and drying, and the volume fraction of the fiber and the resin is calculated from the weight of the residue and the dissolved component and the specific gravity of the fiber and the resin. For example, when the thermoplastic resin is polypropylene, only the polypropylene can be dissolved by using heated toluene or xylene. When the thermoplastic resin is polyamide, the polyamide can be decomposed by heated formic acid. When the resin is polycarbonate, the polycarbonate can be dissolved by using heated chlorinated hydrocarbon. When the reinforcing fiber is an inorganic fiber such as carbon fiber or glass fiber, the weight and volume fraction can be calculated by burning and removing the resin. In this case, after weighing the well-dried sample, the resin component is burned by treatment at 500 to 700 ° C. for 5 to 60 minutes using an electric furnace or the like. The weight of each component can be calculated by weighing the fibers remaining in a dry atmosphere after cooling.

[基材]
本発明に用いる基材は、ランダムマットをそのまま用いても良いし、ランダムマットにおける強化繊維束内および強化繊維の単糸間に熱可塑性樹脂を含浸させたプリプレグを用いても良い。
[Base material]
As the base material used in the present invention, a random mat may be used as it is, or a prepreg impregnated with a thermoplastic resin in the reinforcing fiber bundles and between the reinforcing fibers in the random mat may be used.

[基材の切出し]
本発明で搬送して変形する基材は、図2に示すように矩形形状で切出した基材を用いる事ができるが、切出す工程は、後述する成形体の製造方法の、工程1の前であっても、工程1と工程2の間であっても良い。切出した際に残った部分は端材となる。
従来、工程3で用いる金型が湾曲形状の場合、前記基材を金型形状に合わせた湾曲形状に切り出し、湾曲形状の基材を金型キャビティへ配置していた。この場合、湾曲形状部分以外の基材部分(端材、図4の斜線部分)は有効利用できない。
これに対して、本発明において基材は搬送工程で変形する。このため、金型の形状が湾曲形状であった場合、基材を直線状に切出したのちに搬送中に湾曲させることが可能となり、端材が発生せず、基材はほぼ100%有効利用できる。
[Cut out substrate]
As shown in FIG. 2, the base material that is transferred and deformed in the present invention can be a base material that is cut out in a rectangular shape, but the cutting step is performed before Step 1 of the method for manufacturing a molded body described later. Alternatively, it may be between step 1 and step 2. The portion that remains when cut out becomes scrap.
Conventionally, when the mold used in step 3 has a curved shape, the base material is cut into a curved shape that matches the mold shape, and the curved base material is placed in the mold cavity. In this case, the base material portion (end material, shaded portion in FIG. 4) other than the curved shape portion cannot be effectively used.
On the other hand, in this invention, a base material deform | transforms at a conveyance process. For this reason, when the shape of the mold is a curved shape, the base material can be curved during conveyance after being cut out in a straight line, no scrap material is generated, and the base material is effectively used almost 100%. it can.

[成形体の製造方法]
本発明の成形体は、以下の工程1および工程2を含んで、工程3により成形する成形体の製造方法において、工程2の搬送工程において、基材を金型形状に合わせて変形させる。
工程1.基材を、熱可塑性樹脂樹の軟化温度以上に加熱する工程
工程2.加熱した基材を金型内に搬送する工程
工程3.金型温度を熱可塑性樹脂の軟化温度未満に調節し、基材を成形する工程
[Method for producing molded article]
The molded body of the present invention includes the following steps 1 and 2, and in the method for manufacturing a molded body molded in step 3, the substrate is deformed in accordance with the mold shape in the transporting step of step 2.
Step 1. Step of heating the base material to a temperature higher than the softening temperature of the thermoplastic resin tree Step 2. Step of transporting heated substrate into mold Step 3. The process of molding the substrate by adjusting the mold temperature below the softening temperature of the thermoplastic resin

[工程1]
工程1は成形の準備段階である。基材のマトリックスである熱可塑性樹脂は室温に近い状態では硬いため、樹脂が結晶性の場合は融点〜熱分解温度に、非晶性の場合はガラス転移温度〜熱分解温度まで加熱して、基材に柔軟性を付与する。
[Step 1]
Step 1 is a preparation stage for molding. Since the thermoplastic resin that is the matrix of the substrate is hard in a state close to room temperature, when the resin is crystalline, it is heated to the melting point to the pyrolysis temperature, and when it is amorphous, it is heated to the glass transition temperature to the pyrolysis temperature. Gives flexibility to the substrate.

[工程2]
本発明における成形体の成形方法では、工程2の搬送工程において、基材を金型形状に合わせて変形させる。搬送される基材は、幅が300mm〜2000mm(図2X軸方向)、長さ5〜2000mm(図2Y軸方向)、厚さ0.5mm〜10mm(図2Z軸方向)、であれば好ましい。
工程2における搬送方法に特に限定はないが、複雑形状の成形体をロスなく容易に成形するためには、基材の温度が下がらないことが好ましい。そのため、搬送・供給速度は速いほど好ましく、保温機構が備わっていればより好ましい。
[Step 2]
In the molding method of the molded body in the present invention, the base material is deformed in accordance with the mold shape in the transporting step of Step 2. It is preferable that the substrate to be conveyed has a width of 300 mm to 2000 mm (X axis direction in FIG. 2), a length of 5 to 2000 mm (Y axis direction in FIG. 2), and a thickness of 0.5 mm to 10 mm (Z axis direction in FIG. 2).
Although there is no limitation in particular in the conveyance method in process 2, it is preferable that the temperature of a base material does not fall in order to shape | mold a complex-shaped molded object easily without loss. For this reason, it is preferable that the conveyance / supply speed is as high as possible, and it is more preferable if a heat retaining mechanism is provided.

このような搬送装置としては、基材を掴み上げるためのロボットハンドを有する設備などが例示される。フォーク等のロボットハンドを有する設備は、短時間搬送が可能であり、コンパクト化しやすいこと、自動車分野や産業機械分野などで様々な機種が使用されており、工夫や応用が施しやすいことから好ましい。また、吸引パッド、ニードル、グリップなどのロボットハンドを有する設備も短時間での搬送が可能であり、好ましい。
搬送に要する時間は15秒以下が好ましく、より好ましくは10秒以下、さらに好ましくは5秒以下である。搬送時間が15秒を下回れば、その間に基材が冷えてないので、所望の形状を成形できる。また、搬送装置には基材の保温機能が備わっていればより好ましい。
Examples of such a transport device include equipment having a robot hand for picking up a base material. Equipment having a robot hand such as a fork is preferable because it can be transported in a short time, is easy to make compact, and various models are used in the fields of automobiles, industrial machinery, etc., and can be easily devised and applied. In addition, equipment having a robot hand such as a suction pad, a needle, and a grip is preferable because it can be transported in a short time.
The time required for conveyance is preferably 15 seconds or less, more preferably 10 seconds or less, and even more preferably 5 seconds or less. If the conveyance time is less than 15 seconds, the substrate is not cooled during that time, so that a desired shape can be formed. Further, it is more preferable that the transport device has a base material heat retaining function.

脆弱な基材の場合、加温状態の基材は柔らかいため、搬送中に基材を変形させると、基材の型崩れ、樹脂落ち、基材のちぎれ、強化繊維と樹脂の分離、又は搬送具より全体的または部分的に脱落が生じる。一方、本発明におけるランダムマットを用いると、搬送中に基材を金型に合せて変形させても、前述の型崩れや樹脂落ち、基材のちぎれや、基材に含まれる繊維の偏在化等を抑制できる。これは、ランダムマットに含まれる強化繊維が適当な長さを持ち、無作為な方向に分散して配置されているため、搬送時に多少の揺れがあっても、強化繊維が基材の形を保つ事が出来るからである。   In the case of a fragile base material, the heated base material is soft, so if the base material is deformed during transportation, the base material will lose its shape, the resin will fall off, the base material will tear, or the reinforcing fiber and resin will be separated or transported. Dropout occurs in whole or in part from the tool. On the other hand, if the random mat in the present invention is used, even if the base material is deformed according to the mold during transportation, the above-mentioned loss of shape, resin drop, base tearing, and uneven distribution of fibers contained in the base material Etc. can be suppressed. This is because the reinforcing fibers contained in the random mat have an appropriate length and are distributed in a random direction, so even if there is some shaking during transportation, the reinforcing fibers have the shape of the base material. Because it can be kept.

[工程2における変形]
基材の搬送工程において、変形させる形状に特に限定は無いが、矩形形状の基材を湾曲および/または屈曲させて、両側湾曲形状(図5)、半円形状(図6)、湾曲と屈曲の組合せ形状(図7)、大型両端湾曲(図8)、大型緩やかに湾曲形状(図9)にする事が出来る。
強化繊維が一方向に配置された一方向材や、繊維が織物形状で強化されたプリプレグは、強化繊維を変形しにくいため、基材を搬送中に変形する事は難しい。本発明では、平均繊維長が100mm以下の強化繊維で構成されたランダムアット基材を湾曲および/または屈曲させているため、変形抵抗が小さく目的の形状まで変形させることができる。
一方、強化繊維が含まれていない基材(熱可塑性樹脂単体)を搬送中に変形しようとしても、搬送時の基材は融点を超えた熱可塑性樹脂であるため、溶融樹脂が搬送機具等に付着しやすく、目的の場所に良好に搬送すること自体が難しい。
[Deformation in step 2]
There is no particular limitation on the shape to be deformed in the substrate transporting process, but a rectangular shaped substrate is curved and / or bent to be curved on both sides (FIG. 5), semicircular (FIG. 6), curved and bent. The combination shape (FIG. 7), large-end bending (FIG. 8), and large-scale bending shape (FIG. 9) can be obtained.
A unidirectional material in which reinforcing fibers are arranged in one direction and a prepreg in which the fibers are reinforced in a woven shape are difficult to deform the reinforcing fibers, so that it is difficult to deform the base material during conveyance. In the present invention, since the random at base material composed of reinforcing fibers having an average fiber length of 100 mm or less is curved and / or bent, the deformation resistance is small and the material can be deformed to a target shape.
On the other hand, even if a base material (thermoplastic resin alone) that does not contain reinforcing fibers is deformed during transportation, the base material during transportation is a thermoplastic resin that has exceeded its melting point, so that the molten resin is transferred to transportation equipment, etc. It is easy to adhere and it is difficult to carry it well to the target location.

変形させる基材の大きさに特に限定は無いが、本発明における製造方法を用いると、比較的大きな基材を搬送工程において変形しても、基材中の強化繊維の偏在、基材のちぎれ、基材の剥れを防止できる。通常、搬送する基材のサイズが大きくなると、基材の重量も増加し、搬送ロボットのハンド部位の取り回しで基材に対して大きな負荷がかかる。搬送時により大きな応力が基材にかかると基材の脱落や崩落が生じやすい。本発明における製造方法を用いれば、基材の面積が10,000mm以上、より大きい基材の場合は40,000mm以上、更に大きい基材の場合は100,000mm以上の基材であっても、金型形状に合わせて変形させる事が出来る。ここでいう「基材の面積」とは図2のX軸方向の幅と、Y軸方向の長さを掛け合わせたものをいう。搬送できる上限に特に制限は無いが、5,000,000mm以下であれば好ましい。 Although there is no particular limitation on the size of the base material to be deformed, if the manufacturing method of the present invention is used, even if a relatively large base material is deformed in the transporting process, uneven distribution of reinforcing fibers in the base material, tearing of the base material The base material can be prevented from peeling off. Usually, when the size of the substrate to be transported increases, the weight of the substrate also increases, and a large load is applied to the substrate by handling the hand part of the transport robot. If a greater stress is applied to the substrate during transportation, the substrate is likely to fall off or collapse. With the manufacturing method of the present invention, the area of the substrate 10,000 mm 2 or more, in the case of a larger substrate 40,000Mm 2 or more, in the case of larger substrate was at 100,000 mm 2 or more substrates However, it can be deformed according to the mold shape. The “base material area” here means a product of the width in the X-axis direction of FIG. 2 and the length in the Y-axis direction. Although there is no restriction | limiting in particular in the upper limit which can be conveyed, If it is 5,000,000 mm < 2 > or less, it is preferable.

[工程3]
搬送した基材は熱可塑性樹脂の軟化温度未満に温度調整された金型、具体的には、熱可塑性樹脂が結晶性の場合には融点未満の温度の金型に、熱可塑性樹脂が非晶性の場合にはガラス転移温度未満の温度の金型にセットされる。
基材は、下記式(3)で表されるチャージ率5〜100%で金型に配置することが好ましい。より好ましくは20〜95%のチャージ率であり、更に好ましい基材のチャージ率は50〜90%である。チャージ率が100%を超えると成形時にロスになる材料が生じることになる。また、チャージ率が5%を下回ると成形における流動時に基材が冷めやすく、所望の形状が得られない虞がある。
チャージ率(%)=100×基材面積(mm)/金型キャビティ投影面積(mm) 式(3)
(ここで基材面積とは配置した基材の抜き方向への投影面積であり、金型キャビティ投影面積とは抜き方向への金型キャビティの投影面積である)
[Step 3]
The transported base material is a mold whose temperature is adjusted to below the softening temperature of the thermoplastic resin. Specifically, when the thermoplastic resin is crystalline, the thermoplastic resin is amorphous. In the case of property, it is set in a mold having a temperature lower than the glass transition temperature.
The base material is preferably arranged in the mold at a charge rate of 5 to 100% represented by the following formula (3). The charge rate is more preferably 20 to 95%, and the charge rate of the base material is further preferably 50 to 90%. When the charge rate exceeds 100%, a material that is lost during molding is generated. On the other hand, if the charge rate is less than 5%, the substrate is likely to be cooled during the flow of molding, and the desired shape may not be obtained.
Charge rate (%) = 100 × base material area (mm 2 ) / mold cavity projected area (mm 2 ) Formula (3)
(Here, the substrate area is the projected area of the arranged substrate in the drawing direction, and the mold cavity projected area is the projected area of the mold cavity in the drawing direction.)

工程3では、金型に搬送した基材を成形した後、または成形しながら降温して成形を終了させる。成形方法はホットプレスでもコールドプレスでも良いが、生産性を考慮すれば成形時間が短いコールドプレスが好ましい。ホットプレスの場合、金型温度は基材の熱可塑性樹脂が結晶性であれば融点から熱分解温度、非晶性であればガラス転移温度から熱分解温度となり、成形後に金型温度を結晶性樹脂の場合は融点未満、非晶性樹脂の場合はガラス転移温度未満に降温し、成形品を冷却して離型し、成形を終了させる。コールドプレスの場合は、金型温度は基材の熱可塑性樹脂が結晶性であれば融点未満、非晶性であればガラス転移温度未満となり、成形と同時に冷却し、成形を終了させる。
成形圧力は0.1〜50MPaが好ましく、0.5〜30MPaがより好ましい。成形時間は0.1〜60分が好ましく、0.5〜30分がより好ましい。圧力が低いと成形に時間を要し、生産性に影響を及ぼしやすい。また、圧力が高すぎると大型の成形機やユーティリティー設備が必要となる。
In step 3, after forming the base material conveyed to the mold, or while forming, the temperature is lowered to finish the forming. The molding method may be a hot press or a cold press, but in view of productivity, a cold press with a short molding time is preferable. In the case of hot pressing, the mold temperature is from the melting point to the thermal decomposition temperature if the base thermoplastic resin is crystalline, and from the glass transition temperature to the thermal decomposition temperature if amorphous, and the mold temperature is changed to crystalline after molding. In the case of a resin, the temperature is lowered to below the melting point, and in the case of an amorphous resin, the temperature is lowered to below the glass transition temperature, the molded product is cooled and released, and the molding is terminated. In the case of a cold press, the mold temperature is less than the melting point if the thermoplastic resin of the substrate is crystalline, and less than the glass transition temperature if the thermoplastic resin is amorphous.
The molding pressure is preferably 0.1 to 50 MPa, more preferably 0.5 to 30 MPa. The molding time is preferably from 0.1 to 60 minutes, more preferably from 0.5 to 30 minutes. If the pressure is low, it takes time to form and tends to affect productivity. If the pressure is too high, a large molding machine and utility equipment are required.

本発明においては、金型形状に対し低チャージで配置し、加圧することで基材を流動させると良い。これにより、基材が複雑な形状に充填されやすくなる。通常、強化繊維を含有した熱可塑性樹脂材料を流動させると流動方向に強化繊維が配向する傾向があり、物性に異方性が生じる可能性があるが、本発明では、前述したランダムマットを用いることにより、強化繊維の等方性を保持したまま複雑な形状が得られる。   In this invention, it is good to arrange | position with a low charge with respect to a metal mold | die shape, and to make a base material flow by pressurizing. Thereby, it becomes easy to fill the base material into a complicated shape. Usually, when a thermoplastic resin material containing reinforcing fibers is flowed, the reinforcing fibers tend to be oriented in the flow direction, and anisotropy may occur in physical properties. In the present invention, the random mat described above is used. Thus, a complicated shape can be obtained while maintaining the isotropy of the reinforcing fiber.

[曲率半径]
工程2における変形が湾曲である場合、湾曲の度合いは、曲率半径(図10の9の長さ)で示すことができる。工程2における変形において、曲率半径を小さくすると基材に皺がよるが、この皺は工程3における成形時に熱可塑性樹脂が流動するため、容易に消滅する。曲率半径は30mm以上であれば、基材が裂けにくく好ましい。曲率半径は、好ましくは50mm以上であり、より好ましくは100mm以上であり、更に好ましくは200mm以上である。
[curvature radius]
When the deformation in the step 2 is a curve, the degree of the curve can be indicated by a radius of curvature (the length of 9 in FIG. 10). In the deformation in step 2, if the radius of curvature is reduced, wrinkles will occur on the base material, but the wrinkles disappear easily because the thermoplastic resin flows during molding in step 3. If the curvature radius is 30 mm or more, it is preferable that the substrate is difficult to tear. A curvature radius becomes like this. Preferably it is 50 mm or more, More preferably, it is 100 mm or more, More preferably, it is 200 mm or more.

[成形体]
作製された成形体は、強化繊維の繊維束内および単糸間に熱可塑性樹脂が含浸していることが好ましく、その含浸度は90%以上であることがより好ましい。強化繊維への樹脂の含浸度は95%以上であることが更に好ましい。含浸度が高いと、成形体の物性がより高いレベルに到達する事が出来る。樹脂を含浸させた成形体において、強化繊維の繊維長、および束と単糸の割合はランダムマット中における状態を保っている。本発明の成形体は、各種の厚みとすることが可能であるが、厚みが0.2〜1mm程度の薄肉品も好適に得ることができる。
[Molded body]
The produced molded body is preferably impregnated with a thermoplastic resin in a fiber bundle of reinforcing fibers and between single yarns, and the degree of impregnation is more preferably 90% or more. More preferably, the degree of impregnation of the resin into the reinforcing fibers is 95% or more. When the degree of impregnation is high, the physical properties of the molded body can reach a higher level. In the molded body impregnated with the resin, the fiber length of the reinforcing fiber and the ratio of the bundle to the single yarn are kept in the random mat. The molded body of the present invention can have various thicknesses, but a thin product having a thickness of about 0.2 to 1 mm can also be suitably obtained.

以下、本発明を実施例に用いて具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated concretely using an Example, this invention is not limited to these.

[評価方法]
(1)ランダムマットにおける強化繊維束の分析
樹脂が未含浸状態のランダムマットを100mm×100mm程度に切り出す。切り出したランダムマットより、繊維束をピンセットで全て取り出し、繊維束の数(I)、及び繊維束の長さ(Li)と重量(Wi)を測定し、記録した。ピンセットにて取り出す事ができない程度に繊維束が小さいものについては、まとめて最後に重量を測定する(Wk)。重量の測定には、1/100mgまで測定可能な天秤を用いた。なお、特に強化繊維を炭素繊維とした場合や、繊維長が短い場合には、繊維束の重量が小さく、測定が困難になる。こういった場合には、分類した繊維束を複数本まとめて重量を測定した。
強化繊維の繊維径(D)より、臨界単糸数を計算し、臨界単糸数以上の強化繊維束(A)と、それ以外に分ける。なお、2種類以上の強化繊維が使用されている場合には、繊維の種類毎に分け、各々について測定及び評価を行う。
[Evaluation method]
(1) Analysis of reinforcing fiber bundle in random mat A random mat that is not impregnated with resin is cut out to about 100 mm × 100 mm. From the cut out random mat, the fiber bundles were all taken out with tweezers, and the number (I) of fiber bundles and the length (Li) and weight (Wi) of the fiber bundles were measured and recorded. When the fiber bundle is so small that it cannot be taken out by tweezers, the weight is finally measured together (Wk). For the weight measurement, a balance capable of measuring up to 1/100 mg was used. In particular, when the reinforcing fiber is a carbon fiber, or when the fiber length is short, the weight of the fiber bundle is small and measurement is difficult. In such a case, a plurality of classified fiber bundles were collectively measured for weight.
The number of critical single yarns is calculated from the fiber diameter (D) of the reinforcing fibers, and the bundle is divided into reinforcing fiber bundles (A) having the number of critical single yarns or more and others. In addition, when two or more types of reinforcing fibers are used, it is divided for each type of fiber, and measurement and evaluation are performed for each.

(2)成形体における強化繊維束分析
成形体については、500℃×1時間、炉内にて樹脂を燃焼除去した後、上記のランダムマットにおける方法と同様にして測定した。
(2) Reinforcing fiber bundle analysis in molded body The molded body was measured in the same manner as in the above random mat after the resin was burned and removed in a furnace at 500 ° C for 1 hour.

(3)ランダムマットに含まれる強化繊維の平均繊維長の分析
ランダムマットより無作為に抽出した強化繊維100本の長さをノギスおよびルーペで1mm単位まで測定して記録し、測定した全ての強化繊維の長さ(Li)から、次式により平均繊維長(La)を求めた。複合材料の場合は500℃×1時間程度、炉内にて樹脂を除去した後、強化繊維を抽出した。
La=ΣLi/100
(3) Analysis of the average fiber length of the reinforcing fibers contained in the random mat The length of 100 reinforcing fibers randomly extracted from the random mat was measured and recorded to the 1 mm unit with calipers and loupes, and all the measured reinforcements were measured. From the fiber length (Li), the average fiber length (La) was determined by the following formula. In the case of the composite material, after removing the resin in the furnace at about 500 ° C. for about 1 hour, the reinforcing fibers were extracted.
La = ΣLi / 100

(4)プリプレグまたは成形体に含まれる強化繊維の平均繊維長と体積分率の分析
プリプレグ又は成形体に含まれる強化繊維平均繊維長は、500℃×1時間程度、炉内にて樹脂を除去した後、上記のランダムマットにおける方法と同様にして測定した。
体積分率は、樹脂を燃焼除去し、処理前後の試料の重量を秤量することによって繊維分と樹脂分の重量を算出した。次に、各成分の比重を用いて、繊維と樹脂の体積分率を算出した。
(4) Analysis of average fiber length and volume fraction of reinforced fibers contained in prepreg or molded body The average fiber length of reinforced fibers contained in prepreg or molded body is about 500 ° C x 1 hour, and the resin is removed in a furnace. Then, the measurement was performed in the same manner as in the above random mat.
For the volume fraction, the weight of the fiber and the resin was calculated by burning and removing the resin and weighing the sample before and after the treatment. Next, the volume fraction of the fiber and the resin was calculated using the specific gravity of each component.

(5)寸法安定性評価
作製した成形体を23℃、55%湿度下で48時間以上放置した後、成形体の寸法(長さ、幅、厚み)を測定して設計寸法と比較し、その差から変位率を算出した。成形体のN数は10とし、最も大きい寸法変位率が5%以下の場合を合格(○)、5%を超える場合を不合格(×)とした。
(5) Dimensional stability evaluation After the produced molded body was allowed to stand at 23 ° C. and 55% humidity for 48 hours or longer, the dimensions (length, width, thickness) of the molded body were measured and compared with the design dimensions. The displacement rate was calculated from the difference. The number of N of the molded body was 10, and the case where the largest dimensional displacement rate was 5% or less was judged as acceptable (◯), and the case where it exceeded 5% was regarded as unacceptable (x).

(6)歩留まりは、以下の計算方法により算出した。
(基材の面積−端材の面積) ÷ 基材の面積
端材とは、搬送する基材を切出した際に、残る部分を指す。
(6) The yield was calculated by the following calculation method.
(Area of the base material−Area of the end material) ÷ Area of the base material The end material refers to a portion remaining when the base material to be conveyed is cut out.

(7)曲率半径の測定法
矩形型の基材を加熱し、平板上で平面を維持したままで湾曲させて、冷却して固化する。冷却後の基材の中心線での曲率半径をスケールで測定し、曲率半径(図10の9)とした。
(7) Method of measuring radius of curvature A rectangular substrate is heated, curved while maintaining a flat surface on a flat plate, and then cooled and solidified. The radius of curvature at the center line of the substrate after cooling was measured with a scale to obtain a radius of curvature (9 in FIG. 10).

[参考例1]
炭素繊維(東邦テナックス社製:テナックスSTS40−24KS(繊維径7μm、繊維幅10mm))を20mm幅に開繊しながら、繊維長10mmにカットし、炭素繊維の供給量を301g/分でテーパー管内に導入し、テーパー管内で空気を炭素繊維に吹き付けて繊維束を部分的に開繊しつつ、テーパー管出口の下部に設置したテーブル上に散布した。またマトリックス樹脂として、2mmにドライカットしたPA66繊維(旭化成せんい製ポリアミド66繊維:T5ナイロン、繊度1400dtex)を430g/分でテーパー管内に供給し、炭素繊維と同時に散布することで、平均繊維長10mmの炭素繊維とPA66が混合された、炭素繊維の目付317g/mのランダムマットを得た。
ランダムマットにおける強化繊維の形態を観察したところ、強化繊維の繊維軸は面とほぼ並行にあり、面内においては無作為に分散されていた。炭素繊維100重量部に対して、PA66の割合は、143重量部であった。得られたランダムマットの平均繊維長(La)及び強化繊維束(A)の割合と、平均繊維数(N)を調べたところ、平均繊維長(La)は10mm、式(1)で定義される臨界単糸数は86であり、強化繊維束(A)について、ランダムマットの繊維全量に対する割合は35%、強化繊維束(A)中の平均繊維数(N)は240であった。
[Reference Example 1]
While opening carbon fiber (manufactured by Toho Tenax Co., Ltd .: Tenax STS40-24KS (fiber diameter 7 μm, fiber width 10 mm)) to a width of 20 mm, the fiber length is cut to 10 mm, and the amount of carbon fiber supplied is 301 g / min. The air was blown onto the carbon fiber in the taper tube, and the fiber bundle was partially opened to spread on the table installed at the lower part of the taper tube outlet. Also, as a matrix resin, PA66 fiber (Asahi Kasei Fibers polyamide 66 fiber: T5 nylon, fineness 1400 dtex) dry-cut to 2 mm is supplied into the tapered tube at 430 g / min and dispersed simultaneously with the carbon fiber, resulting in an average fiber length of 10 mm. A random mat having a carbon fiber weight per unit area of 317 g / m 2 was obtained in which the carbon fiber and PA66 were mixed.
When the form of the reinforcing fiber in the random mat was observed, the fiber axis of the reinforcing fiber was almost parallel to the surface and was randomly distributed in the surface. The ratio of PA66 with respect to 100 parts by weight of carbon fiber was 143 parts by weight. When the average fiber length (La) and the ratio of the reinforcing fiber bundle (A) and the average number of fibers (N) of the obtained random mat were examined, the average fiber length (La) was defined as 10 mm and the formula (1). The number of critical single yarns was 86, and with respect to the reinforcing fiber bundle (A), the ratio of the random mat to the total amount of fibers was 35%, and the average number of fibers (N) in the reinforcing fiber bundle (A) was 240.

[参考例2]
テーパー管内への炭素繊維の共有量を、供給量を451g/分、PA66繊維の供給量を643g/分とした以外は、参考例1と同様の操作を行い、平均繊維長10mmの炭素繊維とPA66が混合された、炭素繊維の目付が2520g/mのランダムマットを得た。ランダムマットにおける強化繊維の形態を観察したところ、強化繊維の繊維軸は面とほぼ並行にあり、面内においては無作為に分散されていた。炭素繊維100重量部に対して、PA66の割合は、143重量部であった。得られたランダムマットの平均繊維長(La)及び強化繊維束(A)の割合と、平均繊維数(N)を調べたところ、平均繊維長(La)は10mm、式(1)で定義される臨界単糸数は86であり、強化繊維束(A)について、マットの繊維全量に対する割合は35%、強化繊維束(A)中の平均繊維数(N)は240であった。
[Reference Example 2]
The same operation as in Reference Example 1 was carried out except that the amount of carbon fiber shared into the tapered tube was 451 g / min for the supply rate and 643 g / min for the PA66 fiber, and the carbon fiber having an average fiber length of 10 mm and A random mat having a carbon fiber basis weight of 2520 g / m 2 mixed with PA66 was obtained. When the form of the reinforcing fiber in the random mat was observed, the fiber axis of the reinforcing fiber was almost parallel to the surface and was randomly distributed in the surface. The ratio of PA66 with respect to 100 parts by weight of carbon fiber was 143 parts by weight. When the average fiber length (La) and the ratio of the reinforcing fiber bundle (A) and the average number of fibers (N) of the obtained random mat were examined, the average fiber length (La) was defined as 10 mm and the formula (1). The number of critical single yarns was 86, and with respect to the reinforcing fiber bundle (A), the ratio of the mat to the total amount of fibers was 35%, and the average number of fibers (N) in the reinforcing fiber bundle (A) was 240.

[参考例3]
炭素繊維のカット長を0.9mmにした以外は参考例1と同様の操作を行い、平均繊維長0.9mmの炭素繊維とPA66が混合された、炭素繊維の目付が317g/mのランダムマットを得た。ランダムマットにおける強化繊維の形態を観察したところ、強化繊維の繊維軸は面とほぼ並行にあり、面内においては無作為に分散されていた。得られたランダムマットの平均繊維長(La)及び強化繊維束(A)の割合と、平均繊維数(N)を調べたところ、平均繊維長(La)は0.9mm、式(1)で定義される臨界単糸数は86であり、強化繊維束(A)について、ランダムマットの繊維全量に対する割合は35%、強化繊維束(A)中の平均繊維数(N)は240であった。
[Reference Example 3]
The same operation as in Reference Example 1 was performed except that the cut length of the carbon fiber was changed to 0.9 mm, and a carbon fiber having an average fiber length of 0.9 mm and PA66 were mixed, and the carbon fiber basis weight was 317 g / m 2 . A mat was obtained. When the form of the reinforcing fiber in the random mat was observed, the fiber axis of the reinforcing fiber was almost parallel to the surface and was randomly distributed in the surface. When the average fiber length (La) and the ratio of the reinforcing fiber bundle (A) of the obtained random mat and the average number of fibers (N) were examined, the average fiber length (La) was 0.9 mm and the formula (1) The number of critical single yarns defined was 86. For the reinforcing fiber bundle (A), the ratio of the random mat to the total amount of fibers was 35%, and the average number of fibers (N) in the reinforcing fiber bundle (A) was 240.

[参考例4]
テーパー管内への炭素繊維の供給量を22g/分、PA66繊維の供給量を31g/分とした以外は参考例1と同様の操作を行い、平均繊維長10mmの炭素繊維とPA66が混合された、炭素繊維の目付が23g/mのランダムマットを得た。ランダムマットにおける強化繊維の形態を観察したところ、強化繊維の繊維軸は面とほぼ並行にあり、面内においては無作為に分散されていた。炭素繊維100重量部に対して、PA66の割合は、143重量部であった。得られたランダムマットの平均繊維長(La)及び強化繊維束(A)の割合と、平均繊維数(N)を調べたところ、平均繊維長(La)は10mm、式(1)で定義される臨界単糸数は86であり、強化繊維束(A)について、マットの繊維全量に対する割合は35%、強化繊維束(A)中の平均繊維数(N)は240であった。このランダムマットは炭素繊維の目付が小さすぎるために脆弱であり、少し乱暴に取り扱うとちぎれる傾向にあった。
[Reference Example 4]
The same operation as in Reference Example 1 was performed except that the supply amount of carbon fiber into the tapered tube was 22 g / min and the supply amount of PA66 fiber was 31 g / min, and carbon fiber having an average fiber length of 10 mm and PA66 were mixed. A random mat having a carbon fiber basis weight of 23 g / m 2 was obtained. When the form of the reinforcing fiber in the random mat was observed, the fiber axis of the reinforcing fiber was almost parallel to the surface and was randomly distributed in the surface. The ratio of PA66 with respect to 100 parts by weight of carbon fiber was 143 parts by weight. When the average fiber length (La) and the ratio of the reinforcing fiber bundle (A) and the average number of fibers (N) of the obtained random mat were examined, the average fiber length (La) was defined as 10 mm and the formula (1). The number of critical single yarns was 86, and with respect to the reinforcing fiber bundle (A), the ratio of the mat to the total amount of fibers was 35%, and the average number of fibers (N) in the reinforcing fiber bundle (A) was 240. This random mat is fragile because the basis weight of the carbon fiber is too small, and tends to be broken when handled a little roughly.

[参考例5]
テーパー管内への炭素繊維の共有量を、供給量を2408g/分、PA66繊維の供給量を3440g/分とした以外は、参考例1と同様の操作を行い、平均繊維長10mmの炭素繊維とPA66が混合された、炭素繊維の目付が13440g/mのランダムマットを得た。ランダムマットにおける強化繊維の形態を観察したところ、強化繊維の繊維軸は面とほぼ並行にあり、面内においては無作為に分散されていた。炭素繊維100重量部に対して、PA66の割合は、143重量部であった。得られたランダムマットの平均繊維長(La)及び強化繊維束(A)の割合と、平均繊維数(N)を調べたところ、平均繊維長(La)は10mm、式(1)で定義される臨界単糸数は86であり、強化繊維束(A)について、マットの繊維全量に対する割合は35%、強化繊維束(A)中の平均繊維数(N)は240であった。
[Reference Example 5]
The same operation as in Reference Example 1 was performed except that the amount of carbon fiber shared into the taper tube was 2408 g / min and the amount of PA66 fiber supplied was 3440 g / min, and carbon fibers having an average fiber length of 10 mm A random mat having a carbon fiber basis weight of 13440 g / m 2 mixed with PA66 was obtained. When the form of the reinforcing fiber in the random mat was observed, the fiber axis of the reinforcing fiber was almost parallel to the surface and was randomly distributed in the surface. The ratio of PA66 with respect to 100 parts by weight of carbon fiber was 143 parts by weight. When the average fiber length (La) and the ratio of the reinforcing fiber bundle (A) and the average number of fibers (N) of the obtained random mat were examined, the average fiber length (La) was defined as 10 mm and the formula (1). The number of critical single yarns was 86, and with respect to the reinforcing fiber bundle (A), the ratio of the mat to the total amount of fibers was 35%, and the average number of fibers (N) in the reinforcing fiber bundle (A) was 240.

[参考例6]
炭素繊維(東邦テナックス社製:テナックスSTS40−24KS(繊維径7μm、繊維幅10mm))を20mm幅に並べてシート状にし、カットはしないで連続繊維としたまま、熱可塑性樹脂を含浸させ、繊維配向が一方向の基材を準備した。
[Reference Example 6]
Carbon fibers (manufactured by Toho Tenax Co., Ltd .: Tenax STS40-24KS (fiber diameter 7 μm, fiber width 10 mm)) are arranged in a sheet shape of 20 mm width, impregnated with a thermoplastic resin without being cut, and fiber orientation. Prepared a unidirectional substrate.

[実施例1]
参考例1で作製したランダムマットを加熱し、260℃に達した後に5MPaの圧力で7分加圧した後、50℃まで冷却し、炭素繊維の目付が317g/mのプリプレグを得た。炭素繊維100重量部に対して、PA66は、143重量部であった。得られたプリプレグを、図2のように切出し、幅1000mm×長さ50mm×厚み3.2mmのプリプレグを準備した。
次に、図1に示すニードルによる突き刺し機構を持つ搬送ロボットを用いて、加温状態の上記の切出しプリプレグ1枚を突き刺して持ち上げた後、図5に示す形状に湾曲させながら搬送し、温度を120℃に調整した金型に成形品の形状に合せる形でセットした。切出しプリプレグの面積は、金型キャビティー部の投影面積の約80%であった(チャージ率80%)。この金型のキャビティー部の外寸は600mm×600mmであり、円周曲線に近い形状であった。この後、川崎油工製油圧プレス機を用いて、10MPaの圧力で40秒間、コールドプレス成形した。
搬送ロボットが加温されたランダムマットを金型に移す時間は約3秒であった。搬送前のプリプレグの重量は210.0g、搬送後は210.0gであった。基材は、両端合わせて20mmの端部を除いた、全ての面を有効に活用することが出来、基材の歩留まりは98%であった。
得られた成形体は、幅600mm×長さ600mm×厚みは2.5mmである、片側半径400mm、他方の片側半径100mmで湾曲させた、図5に示す両側湾曲形状のものであり、炭素繊維の体積分率は30%であった。また、この時の曲率半径は100mmであった。結果を表2に示す。
[Example 1]
The random mat produced in Reference Example 1 was heated, and after reaching 260 ° C. and pressurized at a pressure of 5 MPa for 7 minutes, it was cooled to 50 ° C. to obtain a prepreg with a carbon fiber basis weight of 317 g / m 2 . PA66 was 143 weight part with respect to 100 weight part of carbon fibers. The obtained prepreg was cut out as shown in FIG. 2 to prepare a prepreg having a width of 1000 mm × a length of 50 mm × a thickness of 3.2 mm.
Next, using a transfer robot having a needle piercing mechanism shown in FIG. 1, one piece of the above-mentioned cut prepreg in a heated state is pierced and lifted, and then conveyed while curving into the shape shown in FIG. A mold adjusted to 120 ° C. was set to fit the shape of the molded product. The area of the cut prepreg was about 80% of the projected area of the mold cavity (charge rate 80%). The outer dimension of the cavity portion of this mold was 600 mm × 600 mm, and was a shape close to a circumferential curve. Thereafter, cold press molding was performed at a pressure of 10 MPa for 40 seconds using a hydraulic press machine manufactured by Kawasaki Oil Works.
The time taken for the transfer robot to transfer the heated random mat to the mold was about 3 seconds. The weight of the prepreg before conveyance was 210.0 g and after conveyance was 210.0 g. The base material was able to effectively utilize all surfaces except for the end part of 20 mm in total, and the yield of the base material was 98%.
The obtained molded body has a width of 600 mm, a length of 600 mm, and a thickness of 2.5 mm, is curved with a radius of 400 mm on one side and a radius of 100 mm on the other side, and has a curved shape on both sides as shown in FIG. The volume fraction of was 30%. The curvature radius at this time was 100 mm. The results are shown in Table 2.

[実施例2]
参考例1で作製したランダムマットを加熱し、260℃に達した後に5MPaの圧力で7分加圧した後、50℃まで冷却し、炭素繊維の目付が317g/mのプリプレグを得た。炭素繊維100重量部に対して、PA66は、143重量部であった。得られたプリプレグを切出し、幅1000mm×切出し長さ50mm×厚み3.2mmのプリプレグを準備した。
次に、グリップ機構を持つ搬送ロボットを用いて、加温状態の上記の切出しプリプレグ1枚を持ち上げた後、図5に示す形状に湾曲させながら搬送し、温度を120℃に調整した金型に成形品の形状に合せる形でセットした。切出しプリプレグの面積は、金型キャビティー部の投影面積の約80%であった(チャージ率80%)。この金型のキャビティー部の外寸は600mm×600mmであり、円周曲線に近い形状であった。この後、川崎油工製油圧プレス機を用いて、20MPaの圧力で40秒間、コールドプレス成形した。
搬送ロボットが加温されたランダムマットを金型に移す時間は約3秒であった。搬送前のプリプレグの重量は210.0g、搬送後は210.0gであった。基材は、両端の20mmの端部を除いて、全ての面を有効に活用することが出来、基材の歩留まりは98%であった。
得られた成形体は、幅600mm×長さ600mm×厚みは2.5mmである、片側半径400mm、他方の片側半径50mmで湾曲させた、図5に示す湾曲形状のものであり、炭素繊維の体積分率は30%であった。また、この時の曲率半径は100mmであった。結果を表2に示す。
[Example 2]
The random mat produced in Reference Example 1 was heated, and after reaching 260 ° C. and pressurized at a pressure of 5 MPa for 7 minutes, it was cooled to 50 ° C. to obtain a prepreg with a carbon fiber basis weight of 317 g / m 2 . PA66 was 143 weight part with respect to 100 weight part of carbon fibers. The obtained prepreg was cut out to prepare a prepreg having a width of 1000 mm, a cut length of 50 mm, and a thickness of 3.2 mm.
Next, using a transfer robot having a grip mechanism, one of the heated cut prepregs is lifted, and then transferred while curving into the shape shown in FIG. 5, and the temperature is adjusted to 120 ° C. It was set to fit the shape of the molded product. The area of the cut prepreg was about 80% of the projected area of the mold cavity (charge rate 80%). The outer dimension of the cavity portion of this mold was 600 mm × 600 mm, and was a shape close to a circumferential curve. Thereafter, cold press molding was performed at a pressure of 20 MPa for 40 seconds using a hydraulic press machine manufactured by Kawasaki Oil Works.
The time taken for the transfer robot to transfer the heated random mat to the mold was about 3 seconds. The weight of the prepreg before conveyance was 210.0 g and after conveyance was 210.0 g. The base material was able to effectively utilize all surfaces except for the 20 mm ends at both ends, and the yield of the base material was 98%.
The obtained molded body is of a curved shape shown in FIG. 5, which is curved with a width of 600 mm × a length of 600 mm × a thickness of 2.5 mm, with a radius on one side of 400 mm and a radius on the other side of 50 mm. The volume fraction was 30%. The curvature radius at this time was 100 mm. The results are shown in Table 2.

[実施例3]
切出しプリプレグの大きさが幅1100mm×長さ10mm×厚み3.2mmである事と、金型キャビティ形状以外は、実施例2で示された条件にて、加温状態のプリプレグ1枚を、図6で示された形状に基材を搬送装置上で湾曲させた。搬送ロボットが加温されたランダムマットを金型に移す時間は約5秒であった。搬送前のプリプレグの重量は47.0g、搬送後は47.0gであった。基材は、両端の20mmの端部を除いた、全ての面を有効に活用することが出来、基材の歩留まりは98%であった。
この後、グリップを開放し、金型キャビティへ基材を配置し川崎油工製プレス機を用いて20MPaの圧力で40秒間コールドプレスした。得られた成形体は、幅700mm×長さ300mm×厚みは2.5mmであった。また、この時の曲率半径は50mmであり、小さな曲率半径でも良好に成形できた。結果を表2に示す。
[Example 3]
Except that the size of the cut prepreg is 1100 mm wide × 10 mm long × 3.2 mm thick and the shape of the mold cavity is the same as that shown in Example 2, one prepreg in a heated state is shown in FIG. The base material was curved on the transport device into the shape indicated by 6. The time taken for the transfer robot to transfer the heated random mat to the mold was about 5 seconds. The weight of the prepreg before conveyance was 47.0 g, and after the conveyance was 47.0 g. The base material was able to effectively utilize all surfaces except for the 20 mm ends at both ends, and the yield of the base material was 98%.
Thereafter, the grip was released, the base material was placed in the mold cavity, and cold pressing was performed for 40 seconds at a pressure of 20 MPa using a Kawasaki Oil Works press. The obtained molded body was 700 mm wide × 300 mm long × 2.5 mm thick. Moreover, the curvature radius at this time was 50 mm, and it was able to be molded well even with a small curvature radius. The results are shown in Table 2.

[実施例4]
切出しプリプレグの大きさが幅2200mm×長さ50mm×厚み3.2mmである事と、金型キャビティ形状以外は、実施例2で示された条件にて、加温状態のプリプレグ1枚を、図8で示された形状に基材を搬送装置上で緩やかに湾曲させた。湾曲が緩やかであったため、搬送装置上で発生する皺は僅かであった。搬送ロボットが加温されたランダムマットを金型に移す時間は約5秒であった。搬送前のプリプレグの重量は466.0g、搬送後は466.0gであった。基材は、両端の20mmの端部を除いた、全ての面を有効に活用することが出来、基材の歩留まりは99%であった。
この後、グリップを開放し、金型キャビティへ基材を配置し川崎油工製プレス機を用いて20MPaの圧力で40秒間コールドプレスした。得られた成形体は、幅1700mm×長さ400mm×厚みは2.5mmであった。また、この時の曲率半径は200mmであった。結果を表2に示す。
[Example 4]
Except that the size of the cut prepreg is 2200 mm wide × 50 mm long × 3.2 mm thick, and the shape of the mold cavity is the same as that shown in Example 2, one prepreg in a heated state is shown in FIG. The base material was gently curved on the transport device into the shape indicated by 8. Since the curve was gradual, the wrinkles generated on the conveying device were small. The time taken for the transfer robot to transfer the heated random mat to the mold was about 5 seconds. The weight of the prepreg before conveyance was 466.0 g, and after conveyance, it was 466.0 g. The base material was able to effectively utilize all surfaces except for the 20 mm ends at both ends, and the yield of the base material was 99%.
Thereafter, the grip was released, the base material was placed in the mold cavity, and cold pressing was performed for 40 seconds at a pressure of 20 MPa using a Kawasaki Oil Works press. The obtained molded body was 1700 mm wide × 400 mm long × 2.5 mm thick. Moreover, the curvature radius at this time was 200 mm. The results are shown in Table 2.

[実施例5]
参考例2の基材を用いた事以外は、実施例3と同様の条件で処理を実施した。搬送ロボットが加温されたプリプレグを金型に移す時間は約5秒であった。搬送前のプリプレグの重量は70.0g、搬送後は70.0gであった。基材は、両端の20mmの端部を除いた、全ての面を有効に活用することが出来、基材の歩留まりは99%であった。この後、グリップを開放し、金型キャビティへ基材を配置しプレス機を用いて20MPaの圧力で40秒間コールドプレスした。得られた成形体は、幅1700mm×長さ400mm×厚みは2.5mmであった。また、この時の曲率半径は30mmであった。結果を表2に示す。目付が大きく、搬送時の変形は大きめであったが、ランダムマット中の繊維により形状の維持ができ、良好な成形品が得られた。
[Example 5]
The treatment was performed under the same conditions as in Example 3 except that the base material of Reference Example 2 was used. The time for transferring the heated prepreg to the mold by the transfer robot was about 5 seconds. The weight of the prepreg before conveyance was 70.0 g, and after the conveyance was 70.0 g. The base material was able to effectively utilize all surfaces except for the 20 mm ends at both ends, and the yield of the base material was 99%. Thereafter, the grip was released, the base material was placed in the mold cavity, and cold pressing was performed for 40 seconds at a pressure of 20 MPa using a press machine. The obtained molded body was 1700 mm wide × 400 mm long × 2.5 mm thick. Further, the radius of curvature at this time was 30 mm. The results are shown in Table 2. Although the basis weight was large and the deformation during transportation was large, the shape could be maintained by the fibers in the random mat, and a good molded product was obtained.

[比較例1]
成形品の形状に合わせ湾曲した形状で切出し(図4)、搬送中に変形する事無く基材を移動した事以外は、実施例2で示された条件にて金型に移動した。基材は、成形体の形状以外の多くの部分が端材となり、材料歩留まりは70%に留まった。
[Comparative Example 1]
The sample was cut in a curved shape according to the shape of the molded product (FIG. 4), and moved to the mold under the conditions shown in Example 2 except that the substrate was moved without being deformed during conveyance. Many portions of the base material other than the shape of the molded body were end materials, and the material yield was only 70%.

[比較例2]
基材に参考例3で作製したランダムマットを用いた事以外は、実施例2と同様の条件で処理して成形体を得た。搬送ロボットが加温されたプリプレグを金型に移す時間は約5秒であった。加温されたプリプレグが軟らかすぎたため工程2の搬送工程における、基材変形で、基材が脱落し、搬送前のプリプレグ重量210.0gに対し、搬送後は170gであった。得られた成形体は、幅600mm×長さ600mm×厚みは2.0mmで、厚み2.5mmの予定に対して寸法安定性に劣った。結果を表2に示す。
[Comparative Example 2]
A molded body was obtained by processing under the same conditions as in Example 2 except that the random mat produced in Reference Example 3 was used as the substrate. The time for transferring the heated prepreg to the mold by the transfer robot was about 5 seconds. Since the heated prepreg was too soft, the base material was dropped due to deformation of the base material in the transport step of Step 2, and the post-transport weight was 170 g against the prepreg weight of 210.0 g before transport. The obtained molded body was 600 mm wide × 600 mm long × 2.0 mm thick, and was inferior in dimensional stability to a planned thickness of 2.5 mm. The results are shown in Table 2.

[比較例3]
参考例4で作製したランダムマットを、実施例1と同様の条件で処理しようとしたが、加温されたプリプレグの搬送途中の脱落が多く、成形には至らなかった。結果を表2に示す。
[Comparative Example 3]
An attempt was made to treat the random mat produced in Reference Example 4 under the same conditions as in Example 1. However, the heated prepreg was often dropped during the conveyance, and molding was not achieved. The results are shown in Table 2.

[比較例4]
参考例5で作成した、炭素繊維の目付が13440g/mのプリプレグを用いた以外は、実施例3と同様の条件で処理しようとしたが、プリプレグが重すぎたために、プリプレグを持ち上げて湾曲させた時に搬送装置のグリップが外れ、プリプレグが脱落した。
[Comparative Example 4]
Except for using a prepreg with a carbon fiber basis weight of 13440 g / m 2 created in Reference Example 5, the treatment was performed under the same conditions as in Example 3. However, because the prepreg was too heavy, the prepreg was lifted and curved. The grip of the conveying device was released when the prepreg was removed.

[比較例5]
参考例6で作製した繊維配向が一方向の基材を、実施例3と同様の条件で処理しようとしたが、基材の繊維が湾曲の外側に集中するため、外側での厚みが増加し、逆に内側の空間が大きくなった。その結果、目的の形状(図6の形状)に湾曲をする事が出来ず、成形を中止した。
[Comparative Example 5]
An attempt was made to treat the base material with the fiber orientation unidirectionally produced in Reference Example 6 under the same conditions as in Example 3. However, since the fibers of the base material are concentrated outside the curve, the thickness on the outside increases. On the contrary, the inner space became larger. As a result, the target shape (the shape shown in FIG. 6) could not be bent, and the molding was stopped.

Figure 2014051035
Figure 2014051035

Figure 2014051035
Figure 2014051035

1 基材(ランダムマット又はプリプレグ)
2 プレス機または型締機
3 掴み部
4 加熱ヒーター
5 基材出口開口部
6 搬送ロボット
7 突刺し式掴み具
8 吸引式掴み具
9 曲率半径
1 Base material (Random mat or prepreg)
2 Press machine or mold clamping machine 3 Gripping part 4 Heating heater 5 Substrate outlet opening 6 Transfer robot 7 Puncture-type gripping tool 8 Suction-type gripping tool 9 Curvature radius

Claims (9)

平均繊維長1〜100mm、目付25〜10000g/mの強化繊維と、熱可塑性樹脂とを含むランダムマットを、以下の工程1および工程2を含んで、工程3により成形する成形体の製造方法であって、工程2の搬送工程において、基材を金型形状に合わせて変形させる製造方法。
工程1.基材を、熱可塑性樹脂樹の軟化温度以上に加熱する工程
工程2.加熱した基材を金型内に搬送する工程
工程3.金型温度を熱可塑性樹脂の軟化温度未満に調節し、基材を成形する工程
A method for producing a molded article, comprising a random mat containing reinforcing fibers having an average fiber length of 1 to 100 mm and a basis weight of 25 to 10000 g / m 2 and a thermoplastic resin, comprising the following step 1 and step 2 in step 3 And the manufacturing method which deform | transforms a base material according to a metal mold | die shape in the conveyance process of the process 2. FIG.
Step 1. Step of heating the base material to a temperature higher than the softening temperature of the thermoplastic resin tree Step 2. Step of transporting heated substrate into mold Step 3. The process of molding the substrate by adjusting the mold temperature below the softening temperature of the thermoplastic resin
工程2における変形が、矩形形状から湾曲形状及び/又は屈曲形状への変形である請求項1に記載の成形体の製造方法。   The method for producing a molded body according to claim 1, wherein the deformation in step 2 is a deformation from a rectangular shape to a curved shape and / or a bent shape. 工程2における変形の湾曲の度合いが、曲率半径30mm以上である請求項2に記載の成形体の製造方法。   The method of manufacturing a molded body according to claim 2, wherein the degree of curvature of deformation in step 2 is a curvature radius of 30 mm or more. 工程2において搬送する基材の面積が、10,000mm以上である請求項1〜3いずれかに記載の成形体の製造方法。 The method for producing a molded body according to any one of claims 1 to 3, wherein an area of the substrate conveyed in step 2 is 10,000 mm 2 or more. 工程2における搬送方式が、ニードルによる突き刺し方式である請求項1〜4いずれかに記載の成形体の製造方法。   The method for producing a molded body according to any one of claims 1 to 4, wherein the conveying method in step 2 is a piercing method using a needle. 工程2における基材の取り外し方法が、治具による押し出し方法である請求項5に記載の成形体の製造方法。   The method for producing a molded body according to claim 5, wherein the removal method of the base material in step 2 is an extrusion method using a jig. 工程2における基材の搬送方式が、グリップによる挟み込み方式である、請求項1〜4いずれかに記載の成形体の製造方法。   The manufacturing method of the molded object in any one of Claims 1-4 whose conveyance system of the base material in the process 2 is the pinching system by a grip. 工程2における基材の搬送方式が、吸引による引上げ方式である、請求項1〜4いずれかに記載の成形体の製造方法。   The manufacturing method of the molded object in any one of Claims 1-4 whose conveyance system of the base material in the process 2 is a pulling-up system by suction. 下記(1)で定義される臨界単糸数以上で構成される強化繊維束(A)の強化繊維全量に対する割合が20Vol%以上99Vol%以下である請求項1〜8いずれかに記載の成形体の製造方法。
臨界単糸数=600/D (1)
(ここでDは強化繊維の平均繊維径(μm)である)
The ratio of the reinforcing fiber bundle (A) constituted by the number of critical single yarns or more defined in (1) below is 20 Vol% or more and 99 Vol% or less of the molded body according to any one of claims 1 to 8. Production method.
Critical number of single yarns = 600 / D (1)
(Here, D is the average fiber diameter (μm) of the reinforcing fibers)
JP2012197360A 2012-09-07 2012-09-07 Method of producing fiber-reinforced thermoplastic resin molding Pending JP2014051035A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012197360A JP2014051035A (en) 2012-09-07 2012-09-07 Method of producing fiber-reinforced thermoplastic resin molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012197360A JP2014051035A (en) 2012-09-07 2012-09-07 Method of producing fiber-reinforced thermoplastic resin molding

Publications (1)

Publication Number Publication Date
JP2014051035A true JP2014051035A (en) 2014-03-20

Family

ID=50609978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012197360A Pending JP2014051035A (en) 2012-09-07 2012-09-07 Method of producing fiber-reinforced thermoplastic resin molding

Country Status (1)

Country Link
JP (1) JP2014051035A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016083838A (en) * 2014-10-27 2016-05-19 トヨタ紡織株式会社 Method and apparatus for producing molded article of thermoplastic base material
JP2017119427A (en) * 2015-12-28 2017-07-06 帝人株式会社 Method for manufacturing molded body
JP2018037165A (en) * 2016-08-29 2018-03-08 富士電機株式会社 Induction heating apparatus and induction heating method
JPWO2017104857A1 (en) * 2015-12-18 2018-10-04 帝人株式会社 Manufacturing method of press-molded body
JP2019104108A (en) * 2017-12-08 2019-06-27 本田技研工業株式会社 Manufacturing apparatus for thermoplastic resin material
US10850431B2 (en) 2016-12-16 2020-12-01 Shibaura Machine Co., Ltd. Conveyance device and conveyance head

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05228952A (en) * 1992-02-25 1993-09-07 Mitsubishi Petrochem Co Ltd Carrying method for hot blank
JP2003260717A (en) * 2002-02-13 2003-09-16 Essef Corp Dba Pentair Water Treatment Method for manufacturing hollow reinforced resin composite material article
WO2005081601A1 (en) * 2004-02-24 2005-09-01 Daisho Denshi Co., Ltd. Mounter device, part cartridge for the device, and method of holding and carrying substrate
JP2008254438A (en) * 2007-03-12 2008-10-23 Nissan Motor Co Ltd Conveying method and manufacturing equipment for preform
JP2009210132A (en) * 1999-05-14 2009-09-17 Nsk Warner Kk Method and apparatus for manufacturing friction plate
JP2010131846A (en) * 2008-12-04 2010-06-17 Toray Ind Inc Method of manufacturing fiber-reinforced plastic
JP2010535650A (en) * 2007-08-09 2010-11-25 エアバス・オペレーションズ・ゲーエムベーハー Part manufacturing method and fiber reinforced thermoplastic part
JP2011241338A (en) * 2010-05-20 2011-12-01 Teijin Ltd Carbon fiber composite material
JP2012007280A (en) * 2010-05-27 2012-01-12 Teijin Ltd Carbon fiber bundle and method for producing the same, and molded article from the same
WO2012008561A1 (en) * 2010-07-13 2012-01-19 帝人株式会社 Carbon fiber bundle, method for producing same, and molded article produced from same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05228952A (en) * 1992-02-25 1993-09-07 Mitsubishi Petrochem Co Ltd Carrying method for hot blank
JP2009210132A (en) * 1999-05-14 2009-09-17 Nsk Warner Kk Method and apparatus for manufacturing friction plate
JP2003260717A (en) * 2002-02-13 2003-09-16 Essef Corp Dba Pentair Water Treatment Method for manufacturing hollow reinforced resin composite material article
WO2005081601A1 (en) * 2004-02-24 2005-09-01 Daisho Denshi Co., Ltd. Mounter device, part cartridge for the device, and method of holding and carrying substrate
JP2008254438A (en) * 2007-03-12 2008-10-23 Nissan Motor Co Ltd Conveying method and manufacturing equipment for preform
JP2010535650A (en) * 2007-08-09 2010-11-25 エアバス・オペレーションズ・ゲーエムベーハー Part manufacturing method and fiber reinforced thermoplastic part
JP2010131846A (en) * 2008-12-04 2010-06-17 Toray Ind Inc Method of manufacturing fiber-reinforced plastic
JP2011241338A (en) * 2010-05-20 2011-12-01 Teijin Ltd Carbon fiber composite material
JP2012007280A (en) * 2010-05-27 2012-01-12 Teijin Ltd Carbon fiber bundle and method for producing the same, and molded article from the same
WO2012008561A1 (en) * 2010-07-13 2012-01-19 帝人株式会社 Carbon fiber bundle, method for producing same, and molded article produced from same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016083838A (en) * 2014-10-27 2016-05-19 トヨタ紡織株式会社 Method and apparatus for producing molded article of thermoplastic base material
JPWO2017104857A1 (en) * 2015-12-18 2018-10-04 帝人株式会社 Manufacturing method of press-molded body
EP3392012A4 (en) * 2015-12-18 2018-12-19 Teijin Limited Method for manufacturing press-molded body
US20180361632A1 (en) * 2015-12-18 2018-12-20 Teijin Limited Method of manufacturing a press molding
US10843387B2 (en) 2015-12-18 2020-11-24 Teijin Limited Method of manufacturing a press molding
JP2017119427A (en) * 2015-12-28 2017-07-06 帝人株式会社 Method for manufacturing molded body
JP2018037165A (en) * 2016-08-29 2018-03-08 富士電機株式会社 Induction heating apparatus and induction heating method
US10850431B2 (en) 2016-12-16 2020-12-01 Shibaura Machine Co., Ltd. Conveyance device and conveyance head
JP2019104108A (en) * 2017-12-08 2019-06-27 本田技研工業株式会社 Manufacturing apparatus for thermoplastic resin material
CN111615444A (en) * 2017-12-08 2020-09-01 本田技研工业株式会社 Apparatus for producing thermoplastic resin material
US11780124B2 (en) 2017-12-08 2023-10-10 Honda Motor Co., Ltd. Apparatus for manufacturing thermoplastic resin material

Similar Documents

Publication Publication Date Title
JP5583277B2 (en) Manufacturing method of molded body by low pressure molding
JP5606622B2 (en) Method for producing molded body maintaining isotropic property
JP6170837B2 (en) Molded product with excellent surface design composed of fiber reinforced composite material
KR101146612B1 (en) Prepreg, preform, molded product, and method for manufacturing prepreg
JP2014051035A (en) Method of producing fiber-reinforced thermoplastic resin molding
US20150152231A1 (en) Composite Base Material
EP3392012B1 (en) Method for manufacturing press-molded body
JP5749343B2 (en) Method for producing composite molded body having undercut portion
WO2019107247A1 (en) Composite material, production method for molded object, and production method for composite material
JP5833385B2 (en) Method for producing molded body made of fiber reinforced composite material
JP5650559B2 (en) Method for producing composite molded body
JP2013049150A (en) Method of manufacturing molding from random mat base material
JP5801658B2 (en) Thin-walled molded product having uniform thickness and method for producing the same
CN116034004A (en) Composite material and method for producing molded article
JP2013052602A (en) Molded article having smooth surface and uniform thickness, and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160413

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161004