JP2014050325A - Method for improving growth of lactic acid bacterium at low temperature - Google Patents

Method for improving growth of lactic acid bacterium at low temperature Download PDF

Info

Publication number
JP2014050325A
JP2014050325A JP2012195095A JP2012195095A JP2014050325A JP 2014050325 A JP2014050325 A JP 2014050325A JP 2012195095 A JP2012195095 A JP 2012195095A JP 2012195095 A JP2012195095 A JP 2012195095A JP 2014050325 A JP2014050325 A JP 2014050325A
Authority
JP
Japan
Prior art keywords
lactic acid
low temperature
peroxiredoxin
acid bacteria
acid bacterium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012195095A
Other languages
Japanese (ja)
Inventor
Seitaro Goto
清太郎 後藤
Kazuyuki Kudo
和幸 工藤
Tatsuo Kurihara
達夫 栗原
Jun Kawamoto
純 川本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
NH Foods Ltd
Original Assignee
Nippon Meat Packers Inc
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Meat Packers Inc, Kyoto University filed Critical Nippon Meat Packers Inc
Priority to JP2012195095A priority Critical patent/JP2014050325A/en
Publication of JP2014050325A publication Critical patent/JP2014050325A/en
Pending legal-status Critical Current

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lactic acid bacterium of which growth at low temperature is improved by transformation.SOLUTION: Provided is a method for improving growth ability of lactic acid bacterium under a low temperature culture condition, i.e., 10°C or lower, by transforming a lactic acid bacterium with a plasmid enabling high expression of peroxiredoxin so that the bacterium can proliferate and produce peroxiredoxin at low temperature, where the plasmid is constructed by introducing a highly expressible peroxiredoxin gene of a specified base sequence. Also provided is a low temperature proliferating lactic acid bacterium that amply expresses peroxiredoxin as a result of the transformation.

Description

この発明は、乳酸菌の低温増殖性改善方法およびそれに用いるペルオキシレドキシン高発現性遺伝子、ペルオキシレドキシン高発現性のプラスミド並びに、このプラスミドを導入した低温増殖性乳酸菌に関する。   The present invention relates to a method for improving the low temperature growth of lactic acid bacteria, a peroxiredoxin high expression gene used therein, a peroxyredoxin high expression plasmid, and a low temperature growth lactic acid bacterium introduced with this plasmid.

一般に、食品に有効活用される乳酸菌のうち、いくつかの乳酸菌種については食肉加工品に付着した場合に、適正な低温管理状況下においても急速に増殖し、製品の品質を劣化させることが以前から知られている。   In general, among lactic acid bacteria that are effectively used in foods, some lactic acid bacteria species have been proliferated rapidly even under appropriate low-temperature control conditions when attached to processed meat products, which deteriorated the quality of the product. Known from.

そのため、食肉加工品メーカーにおいて、健康危害はないものの品質を著しく劣化させるこの乳酸菌種の性状を知ることは、品質管理の観点から非常に重要である。   Therefore, it is very important from the viewpoint of quality control to know the properties of this lactic acid bacterium species that significantly deteriorates the quality of the processed meat manufacturer, although there is no health hazard.

また、海洋に生息する低温細菌の低温増殖機能や低温性酵素などの生産物の利用を目的とし、組換えプラスミドが構築されている(特許文献1)。   In addition, recombinant plasmids have been constructed for the purpose of using products such as the low-temperature growth function of psychrophilic bacteria living in the ocean and psychrophilic enzymes (Patent Document 1).

また、乳酸菌の一種であるラクトバチルス属のLactobacillus debrueckiiに、薬剤耐性遺伝子などの結合した組換えプラスミドDNAをエレクトロポレーション法などによって導入し、形質転換体を得る方法が知られている(特許文献2)。   In addition, a method for obtaining a transformant by introducing a recombinant plasmid DNA linked with a drug resistance gene or the like into Lactobacillus debrueckii belonging to the genus Lactobacillus, which is a kind of lactic acid bacteria, by electroporation or the like is known (Patent Literature). 2).

特開2001−238675号公報JP 2001-238675 A 特開平5−176777号公報JP-A-5-176777

しかし、上記した従来の技術のうち、特許文献1に記載された発明では、低温細菌の遺伝子組換え技術によって、熱に対して不安定な蛋白質や低温条件下で活性を示す酵素などを効率よく生産することを目的としており、宿主である細菌自体の耐寒性を向上させる技術を示すものではない。   However, among the above-described conventional techniques, the invention described in Patent Document 1 efficiently uses heat-labile proteins, enzymes that exhibit activity under low-temperature conditions, and the like by genetic recombination techniques for low-temperature bacteria. It is intended for production, and does not indicate a technique for improving the cold resistance of the host bacterium itself.

また、特許文献2に記載された発明は、ラクトバチルス属の乳酸菌に対し、薬剤耐性に関わる遺伝子(同文献の段落0011参照)を導入して形質転換する技術が開示されているが、乳酸菌の耐寒性を向上させる技術ではなかった。   In addition, the invention described in Patent Document 2 discloses a technology for transforming a lactic acid bacterium belonging to the genus Lactobacillus by introducing a gene related to drug resistance (see paragraph 0011 of the same document). It was not a technique for improving cold resistance.

そこで、この発明の課題は、上記した問題点を解決して、乳酸菌の低温増殖性に関わる生体内機構の作用を高めるため、乳酸菌が低温で高い増殖性を示す性質に関わる耐冷性に関与する所定の遺伝子を見出し、この遺伝子を用いて形質転換することによって、低温での増殖性の改善された乳酸菌を得ることである。   Therefore, the object of the present invention is to solve the above-mentioned problems and to enhance the action of the in vivo mechanism related to the low temperature growth property of lactic acid bacteria, so that the lactic acid bacteria are related to the cold resistance related to the property of high growth ability at low temperature. By finding a predetermined gene and transforming with this gene, a lactic acid bacterium with improved low-temperature growth is obtained.

上述のように、この発明は、乳酸菌の低温増殖性に関わる生体内機構として、細胞内抗酸化機構に関与するタンパク質(ペルオキシレドキシン)の産生能を高めることにより、乳酸菌が低温で高い増殖性を示すことを発見したことに基づいている。   As described above, the present invention improves the ability of lactic acid bacteria to proliferate at low temperatures by increasing the ability to produce a protein (peroxiredoxin) involved in the intracellular antioxidant mechanism as an in vivo mechanism related to the low temperature growth ability of lactic acid bacteria. Is based on having found that.

そして、本願の発明者らは実際に変敗した食肉加工品から分離したLeuconostoc mesenteroides 野生株(NH04株)の性状を調べ、低温環境では細胞膜の脂肪酸組成は分岐脂肪酸や飽和脂肪酸が多く存在し、また細胞内には抗酸化に働くタンパク質(ペルオキシレドキシン)が、他の株に比べて高発現し、また低温増殖性の高いNH04株は酸化ストレス耐性機構を発達させている可能性があることから、食肉製品を変敗させる乳酸菌の低温増殖能力は、所定の抗酸化機構の改善に相関するものと考え、この発明を完成させたのである。   And the inventors of the present application investigated the properties of Leuconostoc mesenteroides wild strain (NH04 strain) isolated from actually processed meat products that were actually degraded, and in low temperature environments, the fatty acid composition of the cell membrane is rich in branched and saturated fatty acids, In addition, the protein (peroxiredoxin) that acts as an antioxidant in cells is highly expressed compared to other strains, and the NH04 strain, which has a high temperature growth potential, may have developed an oxidative stress tolerance mechanism. Therefore, the low-temperature growth ability of lactic acid bacteria that deteriorate meat products is considered to correlate with the improvement of a predetermined antioxidant mechanism, and the present invention has been completed.

すなわち、上記した課題を解決するために採用する手段は、乳酸菌が好ましくは10℃以下の低温培養条件でペルオキシレドキシンの生産性を有すると共に増殖可能になるように、前記乳酸菌にペルオキシレドキシン高発現性遺伝子を導入して形質転換することからなる乳酸菌の低温増殖性改善方法とすることである。   That is, the means adopted to solve the above-mentioned problems is that the lactic acid bacteria preferably have a high peroxiredoxin concentration so that the lactic acid bacteria can have peroxiredoxin productivity and grow under low temperature culture conditions of 10 ° C. or less. It is to provide a method for improving the low-temperature growth of lactic acid bacteria, which comprises introducing and transforming an expression gene.

上記した低温増殖性改善方法であれば、乳酸菌には、所定のペルオキシレドキシン高発現性遺伝子が導入されているので、乳酸菌は、好ましくは10℃以下の低温培養条件でもペルオキシレドキシンを多く生産する。
このとき、生産されたペルオキシレドキシンは、グルタチオン代謝酵素として細胞内の抗酸化機構に働くので、これによって多くの活性酸素種に対する抗酸化性が高められる。
In the above-described method for improving low-temperature growth, since a predetermined peroxiredoxin high-expressing gene has been introduced into lactic acid bacteria, lactic acid bacteria preferably produce a large amount of peroxiredoxin even under low-temperature culture conditions of 10 ° C. or lower. To do.
At this time, the produced peroxiredoxin acts as a glutathione-metabolizing enzyme in the intracellular antioxidant mechanism, so that the antioxidant property against many reactive oxygen species is enhanced.

ここで、低温環境での乳酸菌は、代謝によって酸化ストレスが生じ、それによって細胞毒性のある活性酸素種が多く生じ、そのために低温での増殖能力が阻害されていると推定され、その場合、ペルオキシレドキシンの多量の供給は低温での増殖能力を高めることになる。後述する実験結果からも、形質転換された乳酸菌には10℃以下の低温培養条件において、予想されたとおりの優れた低温増殖性が得られている。   Here, it is presumed that lactic acid bacteria in a low-temperature environment cause oxidative stress due to metabolism, thereby generating a lot of cytotoxic reactive oxygen species, thereby inhibiting the ability to grow at low temperature. A large supply of redoxin increases the ability to grow at low temperatures. From the experimental results to be described later, the transformed lactic acid bacteria have excellent low-temperature growth properties as expected under low-temperature culture conditions of 10 ° C. or lower.

このように優れた乳酸菌の低温増殖性改善方法には、配列番号1に記載の塩基配列を有する乳酸菌のペルオキシレドキシン高発現性遺伝子を採用することができる。
具体的には、上記の乳酸菌のペルオキシレドキシン高発現性遺伝子を組み込んで構築されたペルオキシレドキシン高発現性のプラスミドを用いて乳酸菌を形質転換することが好ましく、またこのようにして得られたペルオキシレドキシン高発現性のプラスミドを導入して形質転換された低温増殖性の乳酸菌を利用し、低温増殖性の高い乳酸菌を得ることができる。
As such an excellent method for improving the low-temperature growth of lactic acid bacteria, a peroxiredoxin highly expressing gene of lactic acid bacteria having the base sequence described in SEQ ID NO: 1 can be employed.
Specifically, it is preferable to transform lactic acid bacteria using a peroxiredoxin highly expressing plasmid constructed by incorporating the above-mentioned peroxiredoxin highly expressing gene of lactic acid bacteria, and thus obtained. A lactic acid bacterium with high cryogenic growth ability can be obtained by using a psychrotrophic lactic acid bacterium transformed by introducing a plasmid expressing high peroxiredoxin.

この発明は、乳酸菌が低温培養条件でペルオキシレドキシンの生産性を有すると共に増殖可能になるように、前記乳酸菌にペルオキシレドキシン高発現性遺伝子を導入して形質転換したので、乳酸菌の低温増殖性に関わる生体内機構を改善できる利点がある。
また、この発明は、低温増殖性に関わる所定の遺伝子を組み込んだプラスミドを利用した乳酸菌の形質転換によって、低温で効率よく増殖させることができる低温増殖性の改善された乳酸菌になるという利点がある。
In this invention, since the lactic acid bacterium is transformed by introducing a peroxiredoxin high expression gene into the lactic acid bacterium so that the lactic acid bacterium has peroxiredoxin productivity and can be grown under low temperature culture conditions, There is an advantage that the in vivo mechanism related to the can be improved.
In addition, the present invention has an advantage that a lactic acid bacterium having an improved low temperature growth ability capable of efficiently growing at a low temperature can be obtained by transformation of a lactic acid bacterium using a plasmid incorporating a predetermined gene related to low temperature growth ability. .

耐冷性株(NH04)と標準株(NBRC3832)の低温培養による可溶性タンパク質の発現パターンを示す二次元電気泳動図Two-dimensional electrophoretic diagram showing the expression pattern of soluble protein by low temperature culture of cold tolerant strain (NH04) and standard strain (NBRC3832) ベクターに使用したプラスミドと制限酵素の作用域を示す説明図Explanatory drawing showing the range of action of plasmids and restriction enzymes used in vectors 実施例1(形質転換体:NBRC3832pGKahpC)と比較例1(標準株:NBRC3832pGK)の増殖量と培養時間の関係を示す図表Chart showing the relationship between the amount of growth and culture time in Example 1 (transformant: NBRC3832pGKahpC) and Comparative Example 1 (standard strain: NBRC3832pGK) 実施例1のAhpCの発現を示すSDS-PAGE電気泳動図SDS-PAGE electrophoretic diagram showing the expression of AhpC in Example 1

この発明の実施形態の乳酸菌の低温増殖性の改善方法は、乳酸菌が低温培養条件でペルオキシレドキシンの生産性を有すると共に増殖可能となるように、前記乳酸菌に対して配列番号1に示されるペルオキシレドキシン高発現性遺伝子を導入して形質転換する。   The method for improving the low-temperature growth property of lactic acid bacteria according to an embodiment of the present invention is such that the peroxyl represented by SEQ ID NO: 1 with respect to the lactic acid bacteria so that the lactic acid bacteria have peroxiredoxin productivity and can grow under low-temperature culture conditions. A redoxin highly expressing gene is introduced and transformed.

この発明によって低温増殖性を改善できる宿主細胞である乳酸菌は、特定の種に限定されるものではなく、適宜に一種以上を採用でき、例えばラクトバチルス属(Lactobacillus)、ビフィドバクテリウム属(Bifidobacterium)、エンテロコッカス属(Enterococcus)、ラクトコッカス属(Lactococcus)、ペディオコッカス属(Pediococcus)、ロイコノストック属(Leuconostoc)に属する産業上利用価値のある各種の乳酸菌が挙げられる。   Lactic acid bacteria that are host cells capable of improving the low-temperature growth ability according to the present invention are not limited to specific species, and one or more types can be appropriately employed.For example, Lactobacillus, Bifidobacterium ), Enterococcus genus, Lactococcus genus, Pediococcus genus, and Leuconostoc genus industrially useful lactic acid bacteria.

配列番号1の塩基配列を有する乳酸菌のペルオキシレドキシン(AhpC)高発現性遺伝子は、例えば、以下のような手法により入手することができ、AhpCの過剰発現用プラスミドを構築して、それを乳酸菌の市販の標準株などに導入し、低温での増殖速度を確認することができる。   The peroxiredoxin (AhpC) high-expression gene of lactic acid bacteria having the base sequence of SEQ ID NO: 1 can be obtained, for example, by the following method, and a plasmid for overexpression of AhpC is constructed, The growth rate at low temperatures can be confirmed.

例えば、低温環境での増殖速度が異なる2種類の乳酸菌として、L.mesenteroides(増殖性が優れているNH04株)と標準株(増殖性が標準的であるNH01株)を10℃で培養し、ジヒドロエチジウム(DHE)を用いて、菌体内のスーパーオキシドアニオンの蓄積量を解析する。
その結果からみて、低温増殖性の高いNH04株には、NH01株に比べて、例えば1.7倍の多量のスーパーオキシドアニオンが蓄積していることが判明した。
For example, as two types of lactic acid bacteria having different growth rates in a low temperature environment, L. mesenteroides (NH04 strain with excellent growth properties) and a standard strain (NH01 strain with standard growth properties) are cultured at 10 ° C., Dihydroethidium (DHE) is used to analyze the amount of superoxide anion accumulated in the microbial cells.
From the result, it was found that the NH04 strain having a high low temperature growth property accumulates a large amount of superoxide anion, for example, 1.7 times as much as the NH01 strain.

因みにスーパーオキシドアニオンは、呼吸代謝の副生成物として生じ、より反応性の高いヒドロキシラジカルへと変換される可能性があるフリーラジカルである。
NH04株の細胞内には、細胞毒性を示す活性酸素種が多く存在するにもかかわらず、他の株に比べて高い増殖性を示すことから、本株には活性酸素種による細胞毒性に対する防御機構が存在していると考えられる。
By the way, superoxide anion is a free radical that is generated as a by-product of respiratory metabolism and can be converted to a more reactive hydroxy radical.
In the cells of NH04 strain, despite the presence of many reactive oxygen species exhibiting cytotoxicity, it exhibits higher growth than other strains, so this strain protects against cytotoxicity by reactive oxygen species. A mechanism is considered to exist.

なお、本株を10℃で培養した時に、グルタチオン代謝酵素の1つとして知られるペルオキシレドキシン(AhpC)が高生産され、NH04AhpC高発現株は、野生型NH01株に比べて低温での増殖速度が大きかった。   In addition, when this strain is cultured at 10 ° C., peroxiredoxin (AhpC), which is known as one of glutathione metabolizing enzymes, is produced at high temperature, and the NH04AhpC high-expressing strain has a lower growth rate at a lower temperature than the wild-type NH01 strain. Was big.

したがって、NH04株由来のAhpCによる細胞内抗酸化機構が、食品変敗性乳酸菌の低温での増殖性に関与する可能性が高いと考えられ、NH04株のAhpCが乳酸菌の低温増殖性におよぼす影響を解析するために、NH04AhpCの過剰発現用プラスミドを構築し、NH01にエレクトロポレーションによって細胞内に導入する。
この発明の実施形態の乳酸菌の低温増殖性の改善方法について、さらに具体的に説明する。
Therefore, it is considered that the intracellular antioxidant mechanism by NHp strain-derived AhpC is likely to be involved in the low temperature growth of food-degrading lactic acid bacteria, and the effect of NHp strain AhpC on the low temperature growth of lactic acid bacteria Is constructed, an NH04AhpC overexpression plasmid is constructed and introduced into cells by electroporation into NH01.
The method for improving the low temperature proliferation property of lactic acid bacteria according to the embodiment of the present invention will be described more specifically.

[AhpC遺伝子]
この発明に用いるAhpC遺伝子は、例えば、乳酸菌が使用される食品製造環境から採取された耐冷性の高い乳酸菌であるLeuconostoc mesenteroides(NH04株)に由来する。このような環境内で採取したNH04株は、標準株として市販のLeuconostoc mesenteroides NBRC3832に比べて低温での増殖性が高いものであり、その理由を調べるために10℃における両菌株のタンパク質発現パターンを調べたところ、AhpCタンパク質が顕著に多く発現されていた(図1参照)。
[AhpC gene]
The AhpC gene used in the present invention is derived from, for example, Leuconostoc mesenteroides (NH04 strain), which is a chilled lactic acid bacterium collected from a food production environment where lactic acid bacteria are used. The NH04 strain collected in such an environment is highly proliferative at low temperatures as compared to the commercially available Leuconostoc mesenteroides NBRC3832, and the protein expression patterns of both strains at 10 ° C. were examined in order to investigate the reason. When examined, AhpC protein was remarkably abundantly expressed (see FIG. 1).

このタンパク質の発現に関与する遺伝子領域を特定する方法は、以下の通りである。
既に遺伝子配列が解読され既知のものとなっているLeuconostoc mesenteroides(ATCC8293株)を含め、数種類の乳酸菌株のAhpC遺伝子の配列を比較検討して、共通性の高い配列部分を用いて、NH04株のAhpC配列においても増幅すると想定されるプライマーを作成し、NH04株のゲノムを鋳型としてAhpC遺伝子と想定される配列を増幅し、その増幅産物の配列をシークエンサーにて解析する。AhpC配列の5’及び3’末端部分の配列を正確に決定付けるため、先に解析した配列を元にインバースPCR法を行い、最終的にNH04株のAhpC配列全長を決定する。
A method for identifying a gene region involved in the expression of this protein is as follows.
The sequence of the AhpC gene of several types of lactic acid strains, including Leuconostoc mesenteroides (ATCC 8293 strain), whose gene sequence has already been deciphered and known, is compared, and using the highly common sequence portion, Primers assumed to be amplified also in the AhpC sequence are prepared, the sequence assumed to be the AhpC gene is amplified using the NH04 strain genome as a template, and the sequence of the amplified product is analyzed by a sequencer. In order to accurately determine the sequences of the 5 ′ and 3 ′ terminal portions of the AhpC sequence, an inverse PCR method is performed based on the previously analyzed sequence, and finally the total length of the AhpC sequence of the NH04 strain is determined.

[組換えプラスミドの構築]
図2に示すように、上記のAhpC遺伝子の能力判定のために、この遺伝子配列をプラスミドに挿入し、菌体内に導入してAhpCタンパク質を合成させる。そのためのプラスミドには、市販のpGK::nucMCS(ATCC)などを用いることができる。
[Construction of recombinant plasmid]
As shown in FIG. 2, in order to determine the ability of the above AhpC gene, this gene sequence is inserted into a plasmid and introduced into cells to synthesize AhpC protein. Commercially available pGK :: nucMCS (ATCC) or the like can be used as the plasmid for that purpose.

このようなAhpC遺伝子をベクター(pGK::nucMCS)に組み込んで、その遺伝子を発現させるには、定法に従ってプロモーターと共に組み入れる。
すなわち、pGK::nucMCSベクターにAhpC遺伝子とプロモーター配列を導入する。作製手順は、まずNH04株のAhpC遺伝子配列とプロモーター配列をそれぞれ別々に増幅するためのプライマーセットを一組ずつ用意する。
In order to incorporate such an AhpC gene into a vector (pGK :: nucMCS) and express the gene, it is incorporated with a promoter according to a standard method.
That is, an AhpC gene and a promoter sequence are introduced into the pGK :: nucMCS vector. First, a primer set for separately amplifying the AhpC gene sequence and the promoter sequence of the NH04 strain is prepared.

因みに、プロモーター配列とAhpC遺伝子が直接連結(プロモーター配列はAhpC遺伝子の5’上流に連結)できるように、プロモーター配列増幅用リバースプライマーの末端に10塩基程度、AhpC遺伝子と同じ配列を付加させる。また、プロモーター配列とAhpC遺伝子を連結した後に、それらはpGK::nucMCSの例えばXhoI、SalI部位間に挿入する場合は、プロモーター配列増幅用フォワードプライマーの末端及びリポーター配列増幅用リバースプライマーの末端にはそれぞれXhoI、SalI制限酵素認識部位配列を付加させる。
なお、特に制限酵素切断部位、XhoI, SalIに限ることなく、このプラスミドに含まれている制限酵素認識部位であればどれでも使用可能である。
Incidentally, the same sequence as the AhpC gene is added at about 10 bases to the end of the reverse primer for amplifying the promoter sequence so that the promoter sequence and the AhpC gene can be directly linked (the promoter sequence is linked 5 ′ upstream of the AhpC gene). In addition, after linking the promoter sequence and the AhpC gene, when they are inserted between, for example, XhoI and SalI sites of pGK :: nucMCS, the end of the forward primer for amplifying the promoter sequence and the end of the reverse primer for amplifying the reporter sequence XhoI and SalI restriction enzyme recognition site sequences are added, respectively.
It should be noted that any restriction enzyme recognition site contained in this plasmid can be used, not limited to the restriction enzyme cleavage sites, XhoI and SalI.

以上のことに留意して、プロモーター配列とリポーター配列をそれぞれ別々にPCR増幅し、その後、それぞれのPCR増幅断片を混合し、プロモーター配列増幅用フォワードプライマーとリポーター配列増幅用リバースプライマーを用いて再度PCRを行ない、プロモーターとリポーター配列が連結した断片を得ることができる。   In consideration of the above, PCR amplification of the promoter sequence and the reporter sequence is performed separately, and then the respective PCR amplification fragments are mixed, and PCR is performed again using the forward primer for amplification of the promoter sequence and the reverse primer for amplification of the reporter sequence. To obtain a fragment in which a promoter and a reporter sequence are linked.

この断片は1%アガロースゲルにて電気泳動して規定のサイズのバンドを切り出し、抽出・精製すればよい。
そして、得られた精製断片及びpGK::nucMCSはそれぞれ制限酵素にて切断処理を行ない、精製する。
This fragment may be electrophoresed on a 1% agarose gel to cut out a band of a prescribed size, and then extracted and purified.
The resulting purified fragment and pGK :: nucMCS are each purified by digestion with a restriction enzyme.

処理して得た組換えプラスミドは、大腸菌に導入し、培養し、増幅させた大腸菌からプラスミドの抽出により、大量の組換えプラスミドを得ることができる。   The recombinant plasmid obtained by the treatment can be introduced into E. coli, cultured, and extracted from the amplified E. coli to obtain a large amount of recombinant plasmid.

組換えプラスミドを乳酸菌に導入するには、定法に従って適切に行なえばよく、例えば公知文献のJ Dairy Sci. 74: 1454-1460, 1991に記載の周知技術に従って行なうことができる。   In order to introduce the recombinant plasmid into the lactic acid bacterium, it may be appropriately performed according to a conventional method, for example, according to the well-known technique described in J Dairy Sci. 74: 1454-1460, 1991.

[過剰発現用プラスミドの構築]
配列番号1のAhpC遺伝子を市販のベクター(pGK::nucMCS)にプロモーター配列とともに導入した。
先ず、NH04株のAhpC遺伝子配列とプロモーター配列をそれぞれ別々に増幅するためのプライマーセットを一組ずつ用意し、プロモーター配列増幅用フォワードプライマーの末端及びリポーター配列増幅用リバースプライマーの末端にはそれぞれXhoI、SalI制限酵素認識部位配列を付加させた。
[Construction of overexpression plasmid]
The AhpC gene of SEQ ID NO: 1 was introduced into a commercially available vector (pGK :: nucMCS) together with a promoter sequence.
First, one set of primer sets for separately amplifying the NHp strain AhpC gene sequence and the promoter sequence is prepared, respectively, and the end of the forward primer for promoter sequence amplification and the end of the reverse primer for reporter sequence amplification are respectively XhoI, A SalI restriction enzyme recognition site sequence was added.

プロモーター配列とリポーター配列をそれぞれ別々にPCR増幅し、その後、それぞれのPCR増幅断片を混合し、プロモーター配列増幅用フォワードプライマーとリポーター配列増幅用リバースプライマーを用いて再度PCRを行ない、プロモーターとリポーター配列が連結した断片を得た。   Each of the promoter sequence and the reporter sequence is PCR amplified separately, and then each PCR amplified fragment is mixed, and PCR is performed again using the forward primer for amplifying the promoter sequence and the reverse primer for amplifying the reporter sequence. Ligated fragments were obtained.

この断片は1%アガロースゲルにて電気泳動して規定のサイズのバンドを切り出し、抽出・精製した。得られた精製断片及びpGK::nucMCSはそれぞれ制限酵素XhoI、SalIにて37℃で切断処理を行なった。   This fragment was electrophoresed on a 1% agarose gel to cut out a band of a prescribed size, and extracted and purified. The obtained purified fragment and pGK :: nucMCS were cleaved at 37 ° C. with restriction enzymes XhoI and SalI, respectively.

pGK::nucMCSにおいては、引き続きアルカリフォスファターゼ処理を行ない、処理した断片及びpGK::nucMCSはタンパク質を除去するためにフェノール・クロロホルム処理を行なった。その後、エタノール沈殿を行ない、精製した。
精製した断片及びpGK::nucMCSの規定の量を混合し、タカラ社製の「DNA Ligation Kit Ver. 2.1」にてライゲーション処理を行なった。
pGK :: nucMCS was subsequently treated with alkaline phosphatase, and the treated fragment and pGK :: nucMCS were treated with phenol / chloroform to remove the protein. Then, ethanol precipitation was performed and purified.
The purified fragment and a specified amount of pGK :: nucMCS were mixed, and ligated with “DNA Ligation Kit Ver. 2.1” manufactured by Takara.

処理して得た組換えプラスミドは引き続き、TaKaRa社製の「E.coli DH5α Competent Cells」を用いて、大腸菌に導入し、500μg/mlエリスロマイシン添加LBプレートにて37℃で培養し、組換えプラスミドが正しく導入された大腸菌を得た。
この大腸菌を釣菌し、500μg/mlエリスロマイシン添加LBブロスにて37℃にて振とう培養し、増幅させた大腸菌からプラスミドを抽出して、大量の組換えプラスミドを得た。
The recombinant plasmid obtained by the treatment was subsequently introduced into Escherichia coli using “E. coli DH5α Competent Cells” manufactured by TaKaRa, and cultured at 37 ° C. on an LB plate supplemented with 500 μg / ml erythromycin. E. coli successfully introduced was obtained.
The Escherichia coli was fished, cultured with shaking in LB broth supplemented with 500 μg / ml erythromycin at 37 ° C., and the plasmid was extracted from the amplified Escherichia coli to obtain a large amount of recombinant plasmid.

[組換えプラスミドのLeuconostoc属、Lactobacillus属乳酸菌への導入]
組換えプラスミドを導入するための乳酸菌は、文献J Dairy Sci. 74: 1454-1460, 1991に従って、50mlの1%グルコース添加GAMブイヨン(ニッスイ)に対象菌を接種し、OD600=0.6になるまで25℃にて振とう培養した。遠心集菌後、75mlの氷冷した滅菌水にて2回洗浄遠心し、5mlの氷冷したEPB(1mM リン酸バッファー(pH7.4),1mM MgCl,0.5Mスクロース)液にて懸濁し、使用時まで氷冷した。これを導入用菌体とした。
[Introduction of recombinant plasmids into genus Leuconostoc and Lactobacillus]
Lactic acid bacteria for introducing the recombinant plasmid are inoculated with 50 ml of 1% glucose-added GAM bouillon (Nissui) according to the document J Dairy Sci. 74: 1454-1460, 1991, resulting in OD600 = 0.6 Cultured with shaking at 25 ° C. After centrifugation, the cells were washed twice with 75 ml of ice-cold sterilized water and suspended in 5 ml of ice-cold EPB (1 mM phosphate buffer (pH 7.4), 1 mM MgCl 2 , 0.5 M sucrose). It became turbid and cooled on ice until use. This was used as a cell for introduction.

この調整した菌液40μlに対して、組換えプラスミド1μg/1〜4μlを混合して0.2cmのエレクトロポレーション用キュベットに入れ、5分氷冷した。その後、ジーンパルサー Xcell PC システムを用いて400Ω、25μF、8kV/cmにてエレクトロポレーションを行なった。その後すぐに全量が1mlとなるように氷冷した1%グルコース添加GAMブイヨンを添加し、25℃にて2時間、静置培養した。培養後、5μg/mlエリスロマイシンを加えた1%グルコース添加GAMプレートに塗抹し25℃72時間培養後、得られたコロニーを組換えプラスミドが導入された乳酸菌株とし、以下の低温増殖試験に供した。   Recombinant plasmid (1 μg / 1 to 4 μl) was mixed with 40 μl of the prepared bacterial solution, placed in a 0.2 cm electroporation cuvette, and cooled on ice for 5 minutes. Thereafter, electroporation was performed at 400Ω, 25 μF, and 8 kV / cm using a Gene Pulser Xcell PC system. Immediately thereafter, 1% glucose-added GAM broth with ice-cooling was added so that the total amount was 1 ml, and the mixture was statically cultured at 25 ° C for 2 hours. After culturing, the cells were smeared on a 1% glucose-added GAM plate supplemented with 5 μg / ml erythromycin and cultured at 25 ° C. for 72 hours. The obtained colonies were used as lactic acid strains into which the recombinant plasmid had been introduced, and were subjected to the following low-temperature growth test. .

[形質転換された乳酸菌の低温増殖試験]
Leuconostoc mesenteroides NH04株、NBRC3832株、その他形質転換株を低温で培養する際の試験方法は、フリーズストック及びプレートに形成されたコロニーを1%グルコース添加GAMブイヨン(形質転換株の場合は5μg/mlエリスロマイシンを添加する)5mlに50μlもしくは1コロニー接種し、25℃にて2代継代培養後、バイオフォトレコーダー(バイオラッド社製)専用L字型試験管(培地は同じ)に菌体濃度がOD600=0.01となるように希釈接種し、10℃、70rpmにて培養し、菌体増加による濁度の上昇をモニタリングすることで計測し、その結果を図3に示した。
[Low temperature growth test of transformed lactic acid bacteria]
The test method for culturing Leuconostoc mesenteroides NH04 strain, NBRC3832 strain, and other transformed strains at low temperature was as follows. GAM bouillon with 1% glucose added to freeze stock and colonies formed on plates (5 μg / ml erythromycin in the case of transformed strains) 50 μl or 1 colony is inoculated into 5 ml, and after subculture for 2 passages at 25 ° C., the cell concentration is OD600 in a dedicated L-shaped test tube (the same medium) for Biophoto Recorder (Biorad) = 0.01, diluted and inoculated, cultured at 10 ° C. and 70 rpm, and measured by monitoring an increase in turbidity due to an increase in bacterial cells, and the results are shown in FIG.

上記評価試験の結果、10℃という低温条件で培養した際に、一定濃度まで増殖するのに要する時間が、NBRC3832株について短くなることが確認された。   As a result of the evaluation test, it was confirmed that the time required for growth to a constant concentration was shortened for the NBRC3832 strain when cultured under a low temperature condition of 10 ° C.

[AhpC発現量の解析試験]
組換えプラスミドを導入したNBRC3832株、及びコントロールとしてpGK::nucMCSを導入したNBRC3832株について、上記と同様にバイオフォトレコーダーにて増菌し、集菌、洗浄、超音波破砕、可溶性タンパク質の回収、濃度測定を行い、10μgのタンパク質をAhpC発現量の違いを確認するためのSDS−PAGEに用いた。SDS−PAGEはATTO社製のePAGEL(12.5%アクリルアミド濃度)を用いて15mA、90分実施した。染色及び検出は二次元電気泳動と同様に行ない、タンパク質の発現パターンを示す電気泳動図を図4に示した。
[AhpC expression level analysis test]
For the NBRC3832 strain into which the recombinant plasmid was introduced and the NBRC3832 strain into which pGK :: nucMCS was introduced as a control, the number was increased with a biophoto recorder in the same manner as described above, and the cells were collected, washed, sonicated, and soluble protein recovered. Concentration measurement was performed, and 10 μg of protein was used for SDS-PAGE for confirming the difference in the expression level of AhpC. SDS-PAGE was carried out at 15 mA for 90 minutes using ePAGE (12.5% acrylamide concentration) manufactured by ATTO. Staining and detection were performed in the same manner as in two-dimensional electrophoresis, and an electrophoretogram showing the protein expression pattern is shown in FIG.

上記の方法で10℃にて静止期まで増殖させた菌体を5ml遠心集菌し、100mMTris-HCl Buffer (pH 7.0)にて2回洗浄後、再度このバッファーに懸濁して、菌体を超音波破砕した。   Bacteria grown up to the stationary phase at 10 ° C by the above method are collected by centrifugation in 5 ml, washed twice with 100 mM Tris-HCl Buffer (pH 7.0), suspended in this buffer again, and the cells. Was sonicated.

破砕後、15,000rpmで10分遠心し、上清の可溶性タンパク質画分を得た。このタンパク質溶液をブラッドフォード法にて濃度を測定し、150μgのタンパク質を二次元電気泳動, Ready Strip IPG strips 17cm pH4-7 (BioRad)に用いた。一次元目の泳動はPROTEAN IEF Cell (Bio-Rad)にて行い、2次元目はストリップサイズに見合うSDS-PAGEを行なった。泳動終了後、SYPRO Ruby (Invitrogen) にて染色し、Typhoon 9400 (GE Healthcare) にて検出した。   After crushing, the mixture was centrifuged at 15,000 rpm for 10 minutes to obtain a soluble protein fraction in the supernatant. The concentration of this protein solution was measured by the Bradford method, and 150 μg of the protein was used for two-dimensional electrophoresis, Ready Strip IPG strips 17 cm pH 4-7 (BioRad). The first dimension electrophoresis was performed with PROTEAN IEF Cell (Bio-Rad), and the second dimension was subjected to SDS-PAGE corresponding to the strip size. After the electrophoresis, the cells were stained with SYPRO Ruby (Invitrogen) and detected with Typhoon 9400 (GE Healthcare).

図3、4の結果からも明らかなように、形質転されたNBRC3832株(図中には、NBRC3832_pGKahpCと記す。)、及びコントロールとしてpGK::nucMCSを導入したNBRC3832株(図中には、NBRC3832_pGKと記す。)のうち、形質転されたNBRC3832株は、10℃という低温条件で培養した際に、AhpCタンパク質を発現させて増殖能力が向上した。   3 and 4, the transformed NBRC3832 strain (referred to as NBRC3832_pGKahpC in the figure) and the NBRC3832 strain into which pGK :: nucMCS was introduced as a control (NBRC3832_pGK in the figure). The transformed NBRC3832 strain expressed the AhpC protein and improved its growth ability when cultured under a low temperature condition of 10 ° C.

Claims (5)

乳酸菌がペルオキシレドキシン生産性を有すると共に低温で増殖可能であるように、前記乳酸菌にペルオキシレドキシン高発現性遺伝子を導入して形質転換することからなる乳酸菌の低温増殖性改善方法。   A method for improving the low-temperature growth ability of lactic acid bacteria, comprising transforming the lactic acid bacteria by introducing a peroxiredoxin high-expressing gene so that the lactic acid bacteria have peroxiredoxin productivity and can grow at low temperatures. 上記低温が、10℃以下の低温である請求項1に記載の乳酸菌の低温増殖性改善方法。   The method for improving low-temperature growth of lactic acid bacteria according to claim 1, wherein the low temperature is a low temperature of 10 ° C or lower. 請求項1または2に記載の乳酸菌の低温増殖性改善方法に用いられ、配列番号1に記載の塩基配列を有する乳酸菌のペルオキシレドキシン高発現性遺伝子。   A peroxiredoxin highly expressing gene of a lactic acid bacterium having the base sequence of SEQ ID NO: 1, which is used in the method for improving the low temperature proliferation property of lactic acid bacterium according to claim 1 or 2. 請求項3に記載の遺伝子を組み込んで構築されたペルオキシレドキシン高発現性のプラスミド。   A peroxiredoxin highly expressing plasmid constructed by incorporating the gene according to claim 3. 請求項4に記載のペルオキシレドキシン高発現性のプラスミドを導入して形質転換された低温増殖性乳酸菌。   A psychrotrophic lactic acid bacterium transformed by introducing the peroxiredoxin highly expressing plasmid according to claim 4.
JP2012195095A 2012-09-05 2012-09-05 Method for improving growth of lactic acid bacterium at low temperature Pending JP2014050325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012195095A JP2014050325A (en) 2012-09-05 2012-09-05 Method for improving growth of lactic acid bacterium at low temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012195095A JP2014050325A (en) 2012-09-05 2012-09-05 Method for improving growth of lactic acid bacterium at low temperature

Publications (1)

Publication Number Publication Date
JP2014050325A true JP2014050325A (en) 2014-03-20

Family

ID=50609450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012195095A Pending JP2014050325A (en) 2012-09-05 2012-09-05 Method for improving growth of lactic acid bacterium at low temperature

Country Status (1)

Country Link
JP (1) JP2014050325A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110651035A (en) * 2017-05-12 2020-01-03 龟甲万株式会社 Method for producing lactic acid bacterium having high double-stranded RNA content, and lactic acid bacterium
CN113128904A (en) * 2021-05-06 2021-07-16 国家市场监督管理总局信息中心 Method, system and readable storage medium for assessing risk of chemicals entering and exiting situation

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6015046910; 濱口翔平、外5名: '「酸素ストレス耐性能の付与による乳酸菌低温生残性の向上」' 日本畜産学会大会講演要旨 , 20110826, P.173 *
JPN6015046911; 後藤清太郎、外5名: '「耐冷性乳酸菌の低温増殖性に関わるタンパク質の探索」' 日本農芸化学会大会講演要旨集 , 20100305, P.66 *
JPN6015046912; '"Peroxiredoxin [Leuconostoc mesenteroides subsp. mesenteroides ATCC 8293]."' [online] , 20120719, ACCESSION: ABJ62543, NCBI *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110651035A (en) * 2017-05-12 2020-01-03 龟甲万株式会社 Method for producing lactic acid bacterium having high double-stranded RNA content, and lactic acid bacterium
US11518976B2 (en) 2017-05-12 2022-12-06 Kikkoman Corporation Method for producing double-stranded RNA-rich lactic acid bacterium, and said lactic acid bacterium
CN110651035B (en) * 2017-05-12 2024-03-19 龟甲万株式会社 Method for producing lactic acid bacterium highly containing double-stranded RNA, and lactic acid bacterium
CN113128904A (en) * 2021-05-06 2021-07-16 国家市场监督管理总局信息中心 Method, system and readable storage medium for assessing risk of chemicals entering and exiting situation
CN113128904B (en) * 2021-05-06 2024-03-19 国家市场监督管理总局信息中心 Method, system and readable storage medium for evaluating danger of outbound and inbound chemicals

Similar Documents

Publication Publication Date Title
Peterbauer et al. Food‐grade gene expression in lactic acid bacteria
Wu et al. Physiological and proteomic analysis of Lactobacillus casei in response to acid adaptation
Zhang et al. Enhanced acid tolerance in Lactobacillus casei by adaptive evolution and compared stress response during acid stress
Álvarez-Martín et al. Functional analysis of the pBC1 replicon from Bifidobacterium catenulatum L48
Jørgensen et al. Recombinant protein expression in Lactococcus lactis using the P170 expression system
Zhu et al. Isolation of strong constitutive promoters from Lactococcus lactis subsp. lactis N8
Yang et al. High-level expression and characterization of recombinant acid urease for enzymatic degradation of urea in rice wine
EP3607097B1 (en) Bacillus host cells producing beta-galactosidases and lactases in the absence of p-nitrobenzylesterase side activity
CN108102994B (en) Acid stress resistant component
CN107828712B (en) Acid stress resistant recombinant lactic acid bacteria and application thereof
Wang et al. Metabolic engineering for ethylene production by inserting the ethylene-forming enzyme gene (efe) at the 16S rDNA sites of Pseudomonas putida KT2440
Dolci et al. Cheese surface microbiota complexity: RT-PCR-DGGE, a tool for a detailed picture?
Yang et al. Bile salt hydrolase can improve Lactobacillus plantarum survival in gastrointestinal tract by enhancing their adhesion ability
Promchai et al. A novel salt-inducible vector for efficient expression and secretion of heterologous proteins in Bacillus subtilis
Stentz et al. Controlled release of protein from viable Lactococcus lactis cells
Liu et al. Efficient extracellular production of κ-carrageenase in Escherichia coli: effects of wild-type signal sequence and process conditions on extracellular secretion
Linares et al. An agmatine-inducible system for the expression of recombinant proteins in Enterococcus faecalis
Lin et al. The impact of heterologous catalase expression and superoxide dismutase overexpression on enhancing the oxidative resistance in Lactobacillus casei
CN108102993B (en) acid stress resistant recombinant lactic acid bacteria
Böhmer et al. A novel manganese starvation-inducible expression system for Lactobacillus plantarum
Xiong et al. Comparison of gal–lac operons in wild-type galactose-positive and-negative Streptococcus thermophilus by genomics and transcription analysis
Vukotic et al. Proteinase PrtP impairs lactococcin LcnB activity in Lactococcus lactis BGMN1-501: new insights into bacteriocin regulation
JP2014050325A (en) Method for improving growth of lactic acid bacterium at low temperature
Junjua et al. Development of the recombinase‐based in vivo expression technology in Streptococcus thermophilus and validation using the lactose operon promoter
Chen et al. Metabolism of hydrogen peroxide by Lactobacillus plantarum NJAU-01: A proteomics study

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160322