JP2014050274A - Rotor for surface magnet affixed rotary electric machine - Google Patents

Rotor for surface magnet affixed rotary electric machine Download PDF

Info

Publication number
JP2014050274A
JP2014050274A JP2012193094A JP2012193094A JP2014050274A JP 2014050274 A JP2014050274 A JP 2014050274A JP 2012193094 A JP2012193094 A JP 2012193094A JP 2012193094 A JP2012193094 A JP 2012193094A JP 2014050274 A JP2014050274 A JP 2014050274A
Authority
JP
Japan
Prior art keywords
rotor
permanent magnet
magnet
electric machine
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012193094A
Other languages
Japanese (ja)
Inventor
Hisaaki Shimozu
久明 下津
Toyonobu Yamada
豊信 山田
Hiroshi Horai
浩 宝来
Takeo Kakiuchi
健男 垣内
Yoshiro Shinoda
芳郎 篠田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Industrial Products and Systems Corp
Original Assignee
Toshiba Industrial Products Manufacturing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Industrial Products Manufacturing Corp filed Critical Toshiba Industrial Products Manufacturing Corp
Priority to JP2012193094A priority Critical patent/JP2014050274A/en
Publication of JP2014050274A publication Critical patent/JP2014050274A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rotor for a surface magnet affixed rotary electric machine in which reliability can be ensured sufficiently by stably fixing a plate permanent magnet in an outer circumference of a primary part of the rotor for a long period of time.SOLUTION: In a rotor for a surface magnet affixed rotary electric machine, a primary part of the rotor which is formed cylindrical and fixed to a rotary shaft, and a plurality of plate permanent magnets are provided in a rotor block for each block. On a cylindrical surface of the primary part of the rotor, the plurality of plate permanent magnets are provided as many as poles in a shaft circumferential direction of the rotary shaft, and rear sides of the plurality of plate permanent magnets are affixed to the cylindrical surface of the primary part of the rotor. A multi-step skew type rotor body is provided which is configured by fixing a plurality of rotor blocks to the rotary shaft in the state where arrangement centers of the plate permanent magnets are formed while being deviated step by step for each block in the shaft circumferential direction of the rotary shaft. A non-magnetic annular pressing plate is provided which includes a surface pressing part mounted while facing the plurality of rotor blocks from both sides in an axial direction of the rotary shaft, respectively, and pressing surfaces of the plurality of plate permanent magnets in a shaft central direction of the rotary shaft.

Description

本発明の実施形態は、表面磁石貼付型回転電機の回転子に関する。   Embodiments described herein relate generally to a rotor of a surface magnet-attached rotary electric machine.

例えばエレベータの巻上機に用いられる回転電機は、従来IPM(Interior Permanent Magnet)方式が主に用いられている。このIPM方式の回転電機は、内部磁石埋込型回転電機と称され、ロータ(回転子)の内部に永久磁石を埋め込んだ回転電機である。しかしながら、近年の希土類元素の高騰の影響を受けて永久磁石の使用量を削減することが望まれている。そこで、SPM(Surface Permanent Magnet)方式を採用することが検討されている。SPM方式の回転電機は、表面磁石貼付型回転電機と称され、回転子の表面に永久磁石を貼り付けた回転電機を示す。   For example, conventionally, an IPM (Interior Permanent Magnet) system is mainly used for a rotating electrical machine used for an elevator hoist. This IPM type rotating electrical machine is called an internal magnet embedded type rotating electrical machine, and is a rotating electrical machine in which a permanent magnet is embedded in a rotor (rotor). However, it is desired to reduce the amount of permanent magnets used under the influence of the recent rise in rare earth elements. Therefore, it has been studied to adopt an SPM (Surface Permanent Magnet) method. The SPM type rotating electrical machine is referred to as a surface magnet-attached rotating electrical machine, and indicates a rotating electrical machine in which a permanent magnet is attached to the surface of a rotor.

例えば、停電などの緊急時等には、エレベータ巻上機の固定子巻線を短絡することで回転子の回転に応じた制動力を発生させダイナミックブレーキを動作させる。回転子に配設される永久磁石はIPM方式に比較するとSPM方式の方が固定子の内端に近接して配設されるため、ダイナミックブレーキトルクをより大きく生じさせ易くなるという利点がある。   For example, in the event of an emergency such as a power failure, the stator winding of the elevator hoisting machine is short-circuited to generate a braking force according to the rotation of the rotor and operate the dynamic brake. As compared with the IPM system, the permanent magnets disposed on the rotor have the advantage that the SPM system is disposed closer to the inner end of the stator, so that the dynamic brake torque is more easily generated.

従来、SPM方式においてはロータ外形に沿う永久磁石を必要とするが例えば円弧形状、所謂かまぼこ形状に成型された永久磁石を用いた技術が供されている(例えば、特許文献1参照)。この場合、IPM方式に用いられる平板状磁石に比較して型が複雑になり使用する磁石粉量も多くなってしまうため平板永久磁石を用いると良い。   Conventionally, in the SPM system, a permanent magnet along the outer shape of the rotor is required. For example, a technique using a permanent magnet molded into an arc shape, a so-called kamaboko shape has been provided (see, for example, Patent Document 1). In this case, it is preferable to use a flat plate permanent magnet because the mold becomes complicated and the amount of magnet powder to be used increases as compared with the flat plate magnet used in the IPM system.

永久磁石貼付型の回転電機では、回転子は回転子主部の外周面に永久磁石を貼付して製造される。しかし、高速回転時の遠心力、接着剤の劣化等によって吸着力を保証できない場合には、永久磁石の一部が離脱してしまう虞もある。   In a rotating machine with a permanent magnet attachment type, the rotor is manufactured by attaching a permanent magnet to the outer peripheral surface of the main part of the rotor. However, if the attractive force cannot be guaranteed due to centrifugal force during high-speed rotation, deterioration of the adhesive, etc., there is a possibility that a part of the permanent magnet will be detached.

このような技術課題を解消するため、永久磁石を回転子鉄心の周表面に安定して固定する方法が種々提案されている。例えば、プリプレグテープ、熱収縮チューブを外周に巻回する技術が提供されている。また、平板磁石を溝内に接着する技術も提供されている。しかしながら、プリプレグテープ、熱収縮チューブにより被覆する手法を採用すると、年数経過に伴い信頼性を十分に確保できないという問題がある。   In order to solve such technical problems, various methods for stably fixing the permanent magnet to the peripheral surface of the rotor core have been proposed. For example, a technique for winding a prepreg tape and a heat-shrinkable tube around the outer periphery is provided. A technique for bonding a flat magnet into a groove is also provided. However, when a method of covering with a prepreg tape or a heat shrinkable tube is employed, there is a problem in that sufficient reliability cannot be secured with the passage of years.

特開2002−78257号公報JP 2002-78257 A 特開2012−125076号公報JP 2012-125076 A

回転子主部の外周に平板永久磁石を長期間安定して固定できるようにして信頼性を十分に確保できるようにした表面磁石貼付型回転電機の回転子を提供する。   Provided is a rotor for a surface magnet-attached type rotating electrical machine in which a flat permanent magnet can be stably fixed to the outer periphery of a rotor main part for a long period of time so that sufficient reliability can be secured.

一実施形態の表面磁石貼付型回転電機の回転子は、円筒状に形成され回転軸に固定される回転子主部、及び、回転子主部の筒表面において回転軸の軸周方向に極数分設けられると共に当該回転子主部の筒表面に裏面が貼付された複数の平板永久磁石、をブロック毎の回転子ブロックに備える。また、平板永久磁石の配設中心を回転軸の軸周方向にブロック毎に段階的にずらして形成された状態で回転子ブロックが回転軸に複数固定して構成される複数段スキュー型の回転子本体を備える。また、複数の回転子ブロックをそれぞれ回転軸の軸方向両側から対向して装着されると共に複数の平板永久磁石の表面を回転軸の軸中心方向に押える表面押え部を具備する非磁性円環状の押え板を設けている。   The rotor of the surface magnet-attached rotary electric machine according to one embodiment includes a rotor main portion formed in a cylindrical shape and fixed to a rotation shaft, and the number of poles in the axial direction of the rotation shaft on the cylindrical surface of the rotor main portion. The rotor block for each block is provided with a plurality of flat plate permanent magnets that are provided separately and whose back surface is attached to the cylinder surface of the main part of the rotor. In addition, a multi-stage skew type rotation in which a plurality of rotor blocks are fixed to the rotation shaft in a state where the arrangement center of the plate permanent magnet is shifted stepwise in the axial direction of the rotation shaft for each block. A child body is provided. In addition, a plurality of rotor blocks are mounted facing each other from both sides in the axial direction of the rotating shaft, and a non-magnetic annular shape having a surface pressing portion that presses the surface of the plurality of flat plate permanent magnets in the axial center direction of the rotating shaft. A presser plate is provided.

第1実施形態について回転子の構造を示す斜視図The perspective view which shows the structure of the rotor about 1st Embodiment 第1実施形態についてエレベータ用巻上機の構成を概略的に示す断面図Sectional drawing which shows schematically the structure of the hoist for elevators about 1st Embodiment 第1実施形態について回転子本体の全体構成を示す斜視図The perspective view which shows the whole rotor main body structure about 1st Embodiment. 第1実施形態について1つの回転子ブロックを示す斜視図The perspective view which shows one rotor block about 1st Embodiment 第1実施形態について1ブロック分の押え板を示す斜視図The perspective view which shows the press plate for 1 block about 1st Embodiment 第1実施形態について押え板の要部を示す拡大斜視図The expanded perspective view which shows the principal part of a press plate about 1st Embodiment 第1実施形態について回転子の一製造段階を示す斜視図(その1)The perspective view which shows one manufacturing step of the rotor about 1st Embodiment (the 1) 第1実施形態について回転子の一製造段階を示す斜視図(その2)The perspective view which shows one manufacturing step of the rotor about 1st Embodiment (the 2) 第2実施形態について、(a)1つの回転子ブロックの要部構造を示す軸径方向断面図(その1)、(b)永久磁石の構造を模式的に示す斜視図About 2nd Embodiment, (a) Axial direction sectional view (the 1) which shows the principal part structure of one rotor block, (b) The perspective view which shows typically the structure of a permanent magnet 第3実施形態について1つの回転子ブロックの要部構造を示す軸径方向断面図(その2)Sectional view in the axial radial direction showing the main structure of one rotor block in the third embodiment (No. 2) 第3実施形態について1つの回転子ブロックの要部構造を示す斜視図(その1)The perspective view which shows the principal part structure of one rotor block about 3rd Embodiment (the 1) 第4実施形態について、(a)1つの回転子ブロックの要部構造を示す軸径方向断面図(その3)、(b)図9(b)相当図Regarding the fourth embodiment, (a) axial radial cross-sectional view showing the main structure of one rotor block (part 3), (b) equivalent view of FIG. 9 (b) 第5実施形態について1つの回転子ブロックの要部構造を示す斜視図(その2)The perspective view which shows the principal part structure of one rotor block about 5th Embodiment (the 2) 第5実施形態について示す図6相当図FIG. 6 equivalent view showing the fifth embodiment 第6実施形態について1つの回転子ブロックの要部構造を示す斜視図(その3)The perspective view which shows the principal part structure of one rotor block about 6th Embodiment (the 3) 第6実施形態について示す図6相当図FIG. 6 equivalent view showing the sixth embodiment

以下、表面磁石貼付型の回転子を具備する回転電機について、エレベータ巻上機に用いられる電動機に適用した複数の実施形態について図面を参照しながら説明する。なお、以下に説明する複数の実施形態間では同一又は類似の構成部分には同一又は類似の符号を付して、特に重複する部分の説明を必要に応じて省略し、互いに異なる部分を中心に説明する。   Hereinafter, a plurality of embodiments applied to an electric motor used for an elevator hoisting machine will be described with reference to the drawings for a rotating electric machine including a surface magnet-attached rotor. Note that the same or similar components are denoted by the same or similar reference numerals among a plurality of embodiments described below, and description of overlapping parts is omitted as necessary, with different parts as the center. explain.

(第1実施形態)
図1乃至図8は第1実施形態を示す。図2に示すように、エレベータ用巻上機1は、エレベータのかご(図示せず)の昇降に使用され、電動機(回転電機)2、巻上機用負荷3などを備える。電動機2は永久磁石形同期電動機により構成されインバータ制御される。この電動機2は固定子4と回転子5とを備える。固定子4は、多数の鋼板を積層して構成された固定子鉄心6と、この固定子鉄心6に巻回された巻線7と、を備える。
(First embodiment)
1 to 8 show a first embodiment. As shown in FIG. 2, the elevator hoist 1 is used for raising and lowering an elevator car (not shown), and includes an electric motor (rotating electric machine) 2, a hoisting machine load 3, and the like. The electric motor 2 is composed of a permanent magnet type synchronous motor and is inverter-controlled. The electric motor 2 includes a stator 4 and a rotor 5. The stator 4 includes a stator core 6 configured by laminating a large number of steel plates, and a winding 7 wound around the stator core 6.

回転子5は、固定子4の内周側に隙間を介して配置された多数の鋼板を備える回転子鉄心(回転子主部に相当)8と、この回転子鉄心8の外周面に併設されその裏面が貼付された永久磁石(平板永久磁石に相当)9と、この回転子鉄心8の中心孔に挿入固定された回転軸10とを主に備える。   The rotor 5 is provided side by side on a rotor core (corresponding to the main part of the rotor) 8 having a large number of steel plates arranged on the inner peripheral side of the stator 4 via gaps, and on the outer peripheral surface of the rotor core 8. It mainly includes a permanent magnet (corresponding to a flat plate permanent magnet) 9 with its back surface attached, and a rotating shaft 10 inserted and fixed in the center hole of the rotor core 8.

固定子4は、円筒状の胴部11の内周面に嵌め込み固定され、当該胴部11の両端に軸受ブラケット12、13が配設されている。軸受ブラケット13は胴部11の巻上機用負荷側に位置し、軸受ブラケット12は胴部11を挟んで軸受ブラケット13の反対側に位置するよう配設されている。   The stator 4 is fitted and fixed to the inner peripheral surface of the cylindrical body 11, and bearing brackets 12 and 13 are disposed at both ends of the body 11. The bearing bracket 13 is located on the hoisting machine load side of the body portion 11, and the bearing bracket 12 is disposed on the opposite side of the bearing bracket 13 across the body portion 11.

軸受ブラケット12、13にはそれぞれ軸受14、15が固定され、これらの軸受14、15に回転子5の回転軸10が支承されている。軸受14、15にはそれぞれベアリングが用いられる。回転軸10の端部10aには巻上機用負荷3としてのシーブが連結されている。   Bearings 14 and 15 are respectively fixed to the bearing brackets 12 and 13, and the rotating shaft 10 of the rotor 5 is supported on these bearings 14 and 15. A bearing is used for each of the bearings 14 and 15. A sheave as the hoisting machine load 3 is connected to the end 10 a of the rotating shaft 10.

回転軸10の負荷側の端部10aに連結された巻上機用負荷3の外周には溝16が形成されており、この溝16にはエレベータのかごを吊るすためのロープ17が掛けられる。また、巻上機用負荷3から胴部11を挟んで反対側に配置された軸受ブラケット12には、回転子5に摩擦力によって制動を加えるディスクブレーキ18が取付けられている。このディスクブレーキ18は、内部構成は図示しないが、アマチャが回転軸の反負荷側の端部に固定されたディスクに当接して制動力を加え、電磁石装置が通電されると、アマチャが電磁石装置に吸引されてディスクから離間し、回転軸10が回転可能な状態(制動解除状態)になる。   A groove 16 is formed on the outer periphery of the hoisting machine load 3 connected to the load-side end portion 10a of the rotary shaft 10, and a rope 17 for hanging an elevator car is hung on the groove 16. Also, a disc brake 18 that applies braking to the rotor 5 by frictional force is attached to the bearing bracket 12 disposed on the opposite side of the hoisting machine load 3 with the body portion 11 interposed therebetween. Although the internal structure of the disc brake 18 is not shown, when the armature abuts against a disc fixed to the end of the rotating shaft on the side opposite to the load and applies a braking force, and the electromagnet device is energized, the armature is electromagnet device. So that the rotary shaft 10 can be rotated (braking release state).

本実施形態のエレベータ用巻上機1は、所謂ギアレス巻上機用であり、例えば回転速度は300[rpm]程度であり、電動機2はその固定子6が36スロットであり、回転子5は28極となっている。   The elevator hoisting machine 1 of the present embodiment is for a so-called gearless hoisting machine. For example, the rotational speed is about 300 [rpm], the electric motor 2 has a stator 6 having 36 slots, and the rotor 5 has There are 28 poles.

さて、図3は回転子5の基本構成となる回転子本体19を示す。回転軸10は、回転子鉄心8の軸孔8a(図4参照)に対し回転軸10が圧入、嵌合、又は挿入され回転子鉄心8に固定されている。なお、回転軸10は軸方向に沿って軸中心部を中空に形成しても良い。回転子本体19は回転子ブロック20を複数ブロック分、回転軸10の軸方向に積層した構造を基本構成としている。   Now, FIG. 3 shows a rotor body 19 which is a basic configuration of the rotor 5. The rotary shaft 10 is fixed to the rotor core 8 by press-fitting, fitting, or inserted into the shaft hole 8 a (see FIG. 4) of the rotor core 8. The rotary shaft 10 may be formed with a hollow center portion along the axial direction. The rotor body 19 has a basic structure in which a plurality of blocks of rotor blocks 20 are stacked in the axial direction of the rotary shaft 10.

図4に1つの回転子ブロック20を斜視図で示す。前述したように回転子鉄心8には軸孔8aが設けられている。この軸孔8aは回転子鉄心8の内周面に形成されている。この軸孔8aは回転軸10が回転したときに回転子ブロック20を当該回転方向に規制するための軸溝8bを含む。この軸溝8bは回転軸10の軸方向に沿って形成され、回転軸10の外周を嵌合するものであり、この軸溝8bが回転軸10に係合することで回転軸10が回転したときに回転子ブロック20も一体に回転する。また、回転子鉄心8は、その外周面にガイド8cが軸周方向に所定間隔で形成され、永久磁石9の設置スペースが確保されている。   FIG. 4 is a perspective view showing one rotor block 20. As described above, the rotor core 8 is provided with the shaft hole 8a. The shaft hole 8 a is formed on the inner peripheral surface of the rotor core 8. The shaft hole 8a includes a shaft groove 8b for restricting the rotor block 20 in the rotation direction when the rotating shaft 10 rotates. The shaft groove 8b is formed along the axial direction of the rotary shaft 10, and fits the outer periphery of the rotary shaft 10. When the shaft groove 8b is engaged with the rotary shaft 10, the rotary shaft 10 is rotated. Sometimes the rotor block 20 also rotates together. In addition, the rotor core 8 has guides 8c formed on the outer peripheral surface thereof at predetermined intervals in the axial circumferential direction, and an installation space for the permanent magnet 9 is secured.

これらのガイド8cは回転軸10の軸方向に沿って形成されている。各ガイド8c間の間隔は永久磁石9の幅と同等の間隔であり、ガイド8cの個数は永久磁石9の数と同数であり、そして各ガイド8c間における回転子鉄心8の外表面に永久磁石9が貼付される。これにより、永久磁石9の両脇下側端にガイド8cを設けることができ、回転軸10の軸周方向に永久磁石9を摺動規制できる。   These guides 8 c are formed along the axial direction of the rotary shaft 10. The distance between the guides 8c is equal to the width of the permanent magnet 9, the number of guides 8c is the same as the number of permanent magnets 9, and the permanent magnets are formed on the outer surface of the rotor core 8 between the guides 8c. 9 is affixed. As a result, the guides 8 c can be provided at the lower side ends of the permanent magnet 9, and the permanent magnet 9 can be regulated to slide in the axial direction of the rotating shaft 10.

永久磁石9として極力強力な磁石を用いるときには、例えばネオジム、鉄、ホウ素などを主成分としネオジムの一部をディスプロシウムで置き換えた耐熱型ネオジム磁石を用いる。また、この種の永久磁石9は、通常、磁石粉を圧縮成形後に焼結するため成型時には型を必要とする。本実施形態では、型の製造上の容易さを優先し、永久磁石9は3次元的に平板に形成されている。   When a magnet that is as powerful as possible is used as the permanent magnet 9, for example, a heat-resistant neodymium magnet having neodymium, iron, boron or the like as a main component and a portion of neodymium replaced with dysprosium is used. Moreover, since this kind of permanent magnet 9 usually sinters magnet powder after compression molding, a mold is required at the time of molding. In the present embodiment, the permanent magnet 9 is three-dimensionally formed on a flat plate, giving priority to the ease of manufacturing the mold.

永久磁石9は回転子鉄心8に磁力により吸着する。吸着力を高めることを目的とすれば例えば接着剤を用いて回転子鉄心8に固着する方法もあるが、接着剤を用いても用いなくても良い。本実施形態ではガイド8cを設けることで永久磁石9の位置ずれを極力防止できる。本実施形態では、永久磁石9は、回転子鉄心8の外周面に28個併設されており、隣接する永久磁石9の磁極が異なるように配置され、これにより28極を構成する。なお永久磁石9の数すなわち磁極の数は一例であり、これに限定されるものではない。これによりSPM型の回転電機の回転子ブロック20が構成される。   The permanent magnet 9 is attracted to the rotor core 8 by magnetic force. For the purpose of increasing the attractive force, for example, there is a method of fixing to the rotor core 8 using an adhesive, but an adhesive may or may not be used. In the present embodiment, the positional deviation of the permanent magnet 9 can be prevented as much as possible by providing the guide 8c. In the present embodiment, 28 permanent magnets 9 are provided on the outer peripheral surface of the rotor core 8 and are arranged so that the magnetic poles of the adjacent permanent magnets 9 are different, thereby constituting 28 poles. The number of permanent magnets 9, that is, the number of magnetic poles is an example, and the present invention is not limited to this. Thus, the rotor block 20 of the SPM type rotating electric machine is configured.

図1に示すように、それぞれの回転子ブロック20の軸方向両端には押え板21、22が対向して設けられる。これらの押え板21、22は例えばステンレス鋼などを用いた非磁性材料で成形されるもので、永久磁石9の離脱を防止するための係止具となる。また、全ブロック分の回転子ブロック20の軸方向両端には端板30が設けられる。この端板30は、その中央に回転軸10の外径に合わせた孔が成形されている。端板30は、この中央孔に回転軸10が挿通されることにより全ブロックの回転子ブロック20を軸方向両端から挟持できる。   As shown in FIG. 1, presser plates 21 and 22 are provided opposite to each other in the axial direction of each rotor block 20. These presser plates 21 and 22 are formed of a non-magnetic material using, for example, stainless steel, and serve as a locking tool for preventing the permanent magnet 9 from being detached. Further, end plates 30 are provided at both axial ends of the rotor block 20 for all blocks. The end plate 30 has a hole formed in the center thereof that matches the outer diameter of the rotary shaft 10. The end plate 30 can hold the rotor blocks 20 of all the blocks from both ends in the axial direction by inserting the rotary shaft 10 into the central hole.

図5に1ブロック分の回転子ブロック20と押え板21、22とを分解斜視図で示すように、押え板21、22は、それぞれ、中央に回転軸10を挿通するための孔を備え、概ね円環状に構成されている。これらの押え板21、22は、その外周縁に位置して、永久磁石9の側面を対向して押える側面押え部21a、22aと、円環の径方向端部に設けられ、永久磁石9の表面を押える表面押え部21b、22bと、を備える。   As shown in the exploded perspective view of the rotor block 20 and the press plates 21 and 22 for one block in FIG. 5, each of the press plates 21 and 22 has a hole for inserting the rotary shaft 10 in the center, It has a generally annular shape. These presser plates 21 and 22 are located at the outer peripheral edge, are provided at side presser portions 21a and 22a that oppose the side surfaces of the permanent magnet 9 and press against the radial end of the ring. Surface pressing portions 21b and 22b for pressing the surface.

これらの押え板21、22が回転子ブロック20に装着されると、押え板21、22の表面押え部21b、22bは各永久磁石9の表面中央方向に向けて突設され軸方向両脇から永久磁石9の表面両端が覆われるようになる。   When these presser plates 21 and 22 are attached to the rotor block 20, the surface presser portions 21 b and 22 b of the presser plates 21 and 22 are projected toward the center of the surface of each permanent magnet 9 and from both sides in the axial direction. Both ends of the surface of the permanent magnet 9 are covered.

図6に押え板21の装着時の一部拡大図を示すように、表面押え部21bは、各永久磁石9の表面に接触する領域が平板に成形され、隣接する永久磁石9間の中央付近で屈曲し(屈曲部21c参照)、さらに隣接する永久磁石9の表面では平板に成形されている。この表面押え部21bは、回転子鉄心8の外周面に併設された各永久磁石9の表面に渡って連接している。すなわち、本実施形態では、押え板21、22は、この表面押え部21bの横断面において多角形(本実施形態では28角形)に成形されている。   As shown in a partially enlarged view when the presser plate 21 is mounted in FIG. 6, the surface presser portion 21 b is formed in a flat plate in a region that contacts the surface of each permanent magnet 9, and is near the center between adjacent permanent magnets 9. (See the bent portion 21c), and the surface of the adjacent permanent magnet 9 is formed into a flat plate. The surface pressing portion 21 b is connected over the surface of each permanent magnet 9 provided on the outer peripheral surface of the rotor core 8. That is, in the present embodiment, the presser plates 21 and 22 are formed in a polygonal shape (a 28-gonal shape in the present embodiment) in the cross section of the surface pressing portion 21b.

回転軸10の軸周方向に併設される永久磁石9は、回転軸10の軸方向には各押え板21、22の側面押え部21a、22aに押圧されると共に、遠心力がかかる回転軸10の径外方には押え板21、22の表面押え部21b、22bによって押圧される。前述したように、各永久磁石9の軸周方向両脇の下側端にはガイド8cが設けられるため、これにより、永久磁石9の表面、回転軸10の軸方向側面、回転軸10の軸周方向側面の何れの面にも移動規制でき、各永久磁石9をそれぞれ固定できる。   The permanent magnet 9 provided in the axial direction of the rotary shaft 10 is pressed by the side surface holding portions 21a and 22a of the press plates 21 and 22 in the axial direction of the rotary shaft 10 and is subjected to centrifugal force. Is pressed by the surface pressing portions 21b, 22b of the pressing plates 21, 22. As described above, the guides 8c are provided at the lower ends on both sides in the axial direction of each permanent magnet 9, so that the surface of the permanent magnet 9, the axial side surface of the rotary shaft 10, and the axial direction of the rotary shaft 10 are thereby obtained. Movement can be restricted to any one of the side surfaces, and each permanent magnet 9 can be fixed.

図1に示すように、これらの回転子ブロック20、押え板21及び22は、回転軸10の軸方向に複数ブロック分積層されている。全ての回転子ブロック20には、それぞれ永久磁石9がそれぞれの回転子鉄心8の外周面に極数分だけ並べられているが、これらの全ての回転子ブロック20に搭載される永久磁石9の相対的な固定位置は、回転軸10の軸周方向に段階的にずれている。これにより段階的なスキューが形成されている。   As shown in FIG. 1, the rotor block 20 and the pressing plates 21 and 22 are stacked in a plurality of blocks in the axial direction of the rotating shaft 10. In each of the rotor blocks 20, the permanent magnets 9 are arranged on the outer peripheral surface of each of the rotor cores 8 by the number of poles. The relative fixing position is shifted stepwise in the axial direction of the rotating shaft 10. Thereby, a stepped skew is formed.

回転子5の製造方法を説明する。まず、図7に示すように、回転子鉄心8を各ブロック毎に鋼板により成形する。このとき、回転子鉄心8の中央に軸孔8aを軸溝8bと共に設ける。さらに回転子鉄心8の外周面に極数分だけガイド8cを設けそれらのガイド8c間を平坦面8dに成形する。これにより平坦面8dの周方向両脇にガイド8cを形成できる。次に、隣接するガイド8c間に永久磁石9を貼付する。すると図4に示す回転子ブロック20を製造できる。   A method for manufacturing the rotor 5 will be described. First, as shown in FIG. 7, the rotor core 8 is formed of a steel plate for each block. At this time, the shaft hole 8a is provided in the center of the rotor core 8 together with the shaft groove 8b. Further, guides 8c are provided on the outer peripheral surface of the rotor core 8 by the number of poles, and a space between these guides 8c is formed into a flat surface 8d. Thereby, the guides 8c can be formed on both sides in the circumferential direction of the flat surface 8d. Next, the permanent magnet 9 is stuck between the adjacent guides 8c. Then, the rotor block 20 shown in FIG. 4 can be manufactured.

次に、図5に示すように、回転子ブロック20の側面の両側から押え板21、22を対向して嵌合させる。このとき、永久磁石9の軸方向側面を押え板21、22の側面押え部21a、22aで押圧できると共に、永久磁石9の表面を押え板21、22の表面押え部21b、22bで押圧できる。   Next, as shown in FIG. 5, the presser plates 21 and 22 are fitted to face each other from both sides of the side surface of the rotor block 20. At this time, the axial side surface of the permanent magnet 9 can be pressed by the side surface pressing portions 21 a and 22 a of the pressing plates 21 and 22, and the surface of the permanent magnet 9 can be pressed by the surface pressing portions 21 b and 22 b of the pressing plates 21 and 22.

次に、片側の端板30を回転軸10に挿通した後(図示せず)、次に回転子鉄心8の軸孔8aを回転軸10に嵌合し、回転軸10の周方向に位置ずれしないよう固定する。すると、図8に示すように、1ブロック分の回転子ブロック20及び押え板21、22を回転軸10に固定できる。これらの工程を全ブロック分繰り返す。そして、他方の側の端板30を全ブロック分の回転子ブロック20を挟持するように回転軸10に挿通する。   Next, after the end plate 30 on one side is inserted into the rotating shaft 10 (not shown), the shaft hole 8a of the rotor core 8 is fitted into the rotating shaft 10 and is displaced in the circumferential direction of the rotating shaft 10. Do not fix. Then, as shown in FIG. 8, the rotor block 20 and the pressing plates 21 and 22 for one block can be fixed to the rotating shaft 10. These steps are repeated for all blocks. Then, the end plate 30 on the other side is inserted through the rotary shaft 10 so as to sandwich the rotor blocks 20 for all blocks.

これにより、全ての回転子ブロック20及び押え板21、22を回転軸10の軸方向に動じないように固定できる。このようにして回転子5は製造される。なお、エレベータ用巻上機1を構成する他の構成(例えば固定子4等)は従来構成と同様であるためその説明を省略する。   Thereby, it is possible to fix all the rotor blocks 20 and the presser plates 21 and 22 so as not to move in the axial direction of the rotary shaft 10. In this way, the rotor 5 is manufactured. In addition, since the other structure (for example, stator 4 etc.) which comprises the elevator hoist 1 is the same as that of a conventional structure, the description is abbreviate | omitted.

このような固定子4および回転子5を備えたエレベータ用巻上機1は、図示しない駆動回路から駆動信号が各相の巻線7に供給される。すると、回転子5に回転力が働くことで回転子5が回転軸10と共に回転し、回転軸10に連結された巻上機用負荷3(シーブ)に動力が伝達される。すると、ロープ17を動作させることでエレベータのかごを上下動させることができる。このとき、図2に示すように、固定子4と回転子5の永久磁石9とを近接させることができるため、例えば、停電などの緊急時等には、ダイナミックブレーキトルクを大きく生じさせ易くなる。   In the elevator hoisting machine 1 including the stator 4 and the rotor 5, a driving signal is supplied to a winding 7 of each phase from a driving circuit (not shown). Then, a rotational force acts on the rotor 5 so that the rotor 5 rotates together with the rotary shaft 10, and power is transmitted to the hoisting machine load 3 (sheave) connected to the rotary shaft 10. Then, the elevator car can be moved up and down by operating the rope 17. At this time, as shown in FIG. 2, the stator 4 and the permanent magnet 9 of the rotor 5 can be brought close to each other. For example, in an emergency such as a power failure, a dynamic brake torque is likely to be generated greatly. .

本実施形態によれば、回転子ブロック20に押え板21、22を設けているため、回転子5に遠心力が加わったとしても永久磁石9の離脱を防止できる。また、1ブロックの回転子ブロック20にそれぞれ軸方向両側から押え板21、22を設けているため、個々のブロックの永久磁石9の離脱を防止でき、信頼性を向上できる。   According to the present embodiment, since the presser plates 21 and 22 are provided on the rotor block 20, even if centrifugal force is applied to the rotor 5, the permanent magnet 9 can be prevented from being detached. Further, since the pressing plates 21 and 22 are provided on the rotor block 20 of one block from both sides in the axial direction, the permanent magnets 9 of the individual blocks can be prevented from being detached, and the reliability can be improved.

また、永久磁石9として耐熱型ネオジム磁石を採用するときにはレアアースの希少価値を考慮すれば永久磁石9の再利用や分別回収を行うことが望ましく、当該永久磁石9を回転子鉄心8との間で容易に着脱可能にする構成が望まれる。本実施形態では、押え板21、22により永久磁石9を押えているため、永久磁石9を信頼性良く保持でき、特に再利用、分別回収を極力容易に行うことができる。   Further, when a heat-resistant neodymium magnet is employed as the permanent magnet 9, it is desirable to reuse or separate and collect the permanent magnet 9 in consideration of the rare earth rare value. A configuration that can be easily attached and detached is desired. In the present embodiment, since the permanent magnet 9 is pressed by the pressing plates 21 and 22, the permanent magnet 9 can be held with high reliability, and in particular, reuse and separation / recovery can be performed as easily as possible.

尚、より吸着力を高めるため、永久磁石9を回転子鉄心8に例えば接着剤を用いて接着しても良いが、この場合、接着材のはみ出し等に細心の注意を図る必要がある。本実施形態では、必要に応じて接着剤などを用いることなく永久磁石9を信頼性良く保持できる。   In order to further increase the attractive force, the permanent magnet 9 may be bonded to the rotor core 8 by using, for example, an adhesive, but in this case, it is necessary to pay close attention to the protrusion of the adhesive. In the present embodiment, the permanent magnet 9 can be reliably held without using an adhesive or the like as necessary.

例えば、回転軸10の軸方向の回転子鉄心8の積層厚を薄くすると、磁石、鉄心材の量、及びコイル長も削減でき経済性を向上できるが性能的にはトルクリップルが増加する。すると、固定子4のスロット数と回転子5の磁極数を増加したり回転子5に多段スキューをかけたりすることでトルクリップルを抑制することが望まれる。回転子5の極数とスキュー段数を増加すると永久磁石9の個数も増加する。本実施形態によれば、個々のブロック毎に押え板21、22を設けているため、磁極数を増加したりスキューを多段にしたりして永久磁石9の個数が増したとしても、これらの全ての永久磁石9の離脱を防止できる。   For example, if the lamination thickness of the rotor core 8 in the axial direction of the rotary shaft 10 is reduced, the amount of magnets, iron core material, and coil length can be reduced and the economy can be improved, but the torque ripple increases in terms of performance. Then, it is desired to suppress torque ripple by increasing the number of slots of the stator 4 and the number of magnetic poles of the rotor 5 or applying multi-stage skew to the rotor 5. Increasing the number of poles and the number of skew stages of the rotor 5 increases the number of permanent magnets 9. According to the present embodiment, since the pressing plates 21 and 22 are provided for each block, even if the number of permanent magnets 9 is increased by increasing the number of magnetic poles or by increasing the number of skews, all of these are provided. Detachment of the permanent magnet 9 can be prevented.

エレベータ用巻上機1に表面磁石貼付型の回転子5を用いることができるためダイナミックブレーキトルクを増加できる。本実施形態におけるギアレスタイプのエレベータの巻上機1は、36スロット、28極、6段スキュー、回転速度を300[rpm]のものを用いているが、従来のIPM方式(埋込磁石内蔵型)の回転電機を適用した場合と比較すると、軸方向長さ及び磁石量を30%以上削減できることが確認されている。設置スペース、特に軸方向の長さを短縮でき、小型化の要望を満たすことができる。   Since the surface magnet-attached rotor 5 can be used for the elevator hoist 1, dynamic brake torque can be increased. The gearless type elevator hoisting machine 1 in this embodiment uses a 36-slot, 28-pole, 6-stage skew, and a rotational speed of 300 [rpm], but the conventional IPM system (embedded magnet built-in type) It is confirmed that the axial length and the amount of magnets can be reduced by 30% or more compared to the case where the rotating electrical machine is applied. The installation space, particularly the axial length can be shortened, and the demand for miniaturization can be satisfied.

(第2実施形態)
図9は第2実施形態を示すもので、前述実施形態と異なるところは、永久磁石の表側端が面取りされ、押え板の内面部が永久磁石の面取り領域に沿って当接しているところにある。
(Second Embodiment)
FIG. 9 shows the second embodiment. The difference from the previous embodiment is that the front end of the permanent magnet is chamfered and the inner surface of the presser plate is in contact with the chamfered area of the permanent magnet. .

永久磁石9の表側端は押え板21、22の内面(表面押え部21b、22b)に接触するが、特に永久磁石9の表側端が断面90度に成形されていると、押え板21,22にも永久磁石9にも部分的に応力が集中しやすい。そこで本実施形態では、図9(a)に押え板21の当接部分の一部断面を示すように、永久磁石9の表側端が所定の面取り角度θで面取りされている。なお、図9(b)は面取りされた永久磁石9を斜視図で示す。   The front side ends of the permanent magnet 9 are in contact with the inner surfaces (surface holding portions 21b and 22b) of the holding plates 21 and 22, but when the front side ends of the permanent magnet 9 are formed to have a cross section of 90 degrees, the holding plates 21 and 22 are provided. In addition, the stress tends to partially concentrate on the permanent magnet 9 as well. Therefore, in the present embodiment, the front side end of the permanent magnet 9 is chamfered at a predetermined chamfering angle θ as shown in FIG. FIG. 9B shows the chamfered permanent magnet 9 in a perspective view.

押え板21の表面押え部21bが、永久磁石9の表側端の面取り領域9aに沿うように形成されていると互いに面接触することになる。なお、面取り角度θは適宜設定すれば良いが、図9(a)に示すように、隣接する永久磁石9間において互いに近接した永久磁石9の表側端の面取り領域9aが面一になるように面取り角度θを設定すると良い。すると、押え板21、22の周縁の表面押え部21b、22bを前述実施形態の2倍の多角形(前述実施形態では28角形の場合、倍の56角形)に成形することで押え板21、22を構成できる。このような実施形態によっても、前述実施形態と同様の作用効果が得られると共に、押え板21、22と永久磁石9との間の応力集中を緩和できる。   If the surface pressing portion 21b of the pressing plate 21 is formed along the chamfering region 9a at the front side end of the permanent magnet 9, the surface pressing portion 21b comes into surface contact with each other. The chamfering angle θ may be set as appropriate. However, as shown in FIG. 9A, the chamfered areas 9a at the front side ends of the permanent magnets 9 adjacent to each other between the adjacent permanent magnets 9 are flush with each other. The chamfer angle θ should be set. Then, the presser plates 21, 22 are formed by forming the surface pressers 21 b, 22 b at the peripheral edges of the presser plates 21, 22 into a polygon twice as large as that in the above embodiment (in the above embodiment, in the case of a 28-sided shape, a double 56-fold shape) 22 can be configured. According to such an embodiment, the same effect as that of the above-described embodiment can be obtained, and the stress concentration between the presser plates 21 and 22 and the permanent magnet 9 can be reduced.

(第3実施形態)
図10及び図11は第3実施形態を示すもので、前述実施形態と異なるところは、押え板について回転軸の軸中心方向に突出した構造を備え、永久磁石の表面を押えているところにある。
(Third embodiment)
10 and 11 show the third embodiment. The difference from the previous embodiment is that the presser plate has a structure protruding in the axial center direction of the rotating shaft and presses the surface of the permanent magnet. .

本実施形態では前述実施形態の押え板21、22に代わる押え板23を備える。この押え板23は、図10に断面図、図11に斜視図を示すように、回転軸10の軸中心方向に突出した構造(突出部23a)を極数分備える。これらの図10、図11に示す例では、押え板23はその周縁部において永久磁石9の表面中央に位置して軸中心方向に湾曲する湾曲面による突出部23aを備えており、この突出部23aが永久磁石9の表面の一部(主に表面中心)を押えている。   In the present embodiment, a presser plate 23 is provided in place of the presser plates 21 and 22 of the previous embodiment. As shown in a cross-sectional view in FIG. 10 and a perspective view in FIG. 11, the pressing plate 23 includes a structure (protruding portion 23 a) that protrudes in the axial center direction of the rotating shaft 10 by the number of poles. In the example shown in FIGS. 10 and 11, the presser plate 23 is provided with a protruding portion 23 a having a curved surface located in the center of the surface of the permanent magnet 9 and curved in the axial center direction at the peripheral edge thereof. 23a presses a part of the surface of the permanent magnet 9 (mainly the center of the surface).

なお、図10及び図11において、押え板23は回転子鉄心8の片側にのみ設けた図を示しているが、これは接触領域を理解し易く示した図面を示すもので、実際には回転子鉄心8の両側に設けられる。前述実施形態に示したように、回転軸10の軸方向両側に対向するように設置される。突出部23aは、各永久磁石9の表面のほぼ中央部に点接触又は線接触して形成され、これにより径外方から内方に向かう圧力を永久磁石9に加えることができ、当該永久磁石9の拘束力を高めることができる。   10 and 11, the holding plate 23 is shown only on one side of the rotor core 8, but this is a drawing showing the contact area in an easy-to-understand manner. Provided on both sides of the core 6. As shown in the above-described embodiment, the rotary shaft 10 is installed so as to face both sides in the axial direction. The projecting portion 23a is formed in a point contact or a line contact with a substantially central portion of the surface of each permanent magnet 9, whereby a pressure directed from the outside to the inside can be applied to the permanent magnet 9. The restraining force of 9 can be increased.

(第4実施形態)
図12は第4実施形態を示すもので、前述実施形態と異なるところは、平板永久磁石の表側端が面取りされ、押え板の表面押え部が平板永久磁石の表側端の面取り領域に回転軸の軸中心方向に押圧する押圧部を備えるところにある。
(Fourth embodiment)
FIG. 12 shows the fourth embodiment. The difference from the previous embodiment is that the front end of the flat plate permanent magnet is chamfered, and the surface pressing portion of the press plate is placed in the chamfered area of the front side end of the flat plate permanent magnet. It exists in the place provided with the press part pressed in an axial center direction.

本実施形態では、図12(a)に要部の一部断面を示すように押え板24を備える。永久磁石9の表側両端には面取りされた面取り領域9bを備え、永久磁石9はその表側両端が傾斜面に成形されている。なお、図12(b)は永久磁石9を斜視図により示す。   In the present embodiment, the presser plate 24 is provided as shown in FIG. Both ends of the permanent magnet 9 are provided with chamfered chamfered regions 9b, and both ends of the permanent magnet 9 are formed into inclined surfaces. In addition, FIG.12 (b) shows the permanent magnet 9 with a perspective view.

押え板24は、前述実施形態の押え板23と同様に永久磁石9の表面の一部を押圧する突出部24aを備えているがこの突出部24aに加えて、永久磁石9の表側両端の面取り領域9bの傾斜面に当接する押圧部24bをさらに備えている。この図12(a)に示す構造では、個々の永久磁石9の表面及び表側両端と押え板24の内面との接触領域は軸径方向断面において断面3点支持となり、断面1点又は2点支持する構成に比較して安定支持できると共に応力集中を緩和できる。
このような実施形態によっても前述実施形態と同様の作用効果が得られると共に、当該押え板24と永久磁石9との間の応力集中を緩和できる。
The presser plate 24 includes a projecting portion 24a that presses a part of the surface of the permanent magnet 9 in the same manner as the presser plate 23 of the above-described embodiment. In addition to the projecting portion 24a, the chamfers at both ends on the front side of the permanent magnet 9 are provided. A pressing portion 24b that abuts against the inclined surface of the region 9b is further provided. In the structure shown in FIG. 12A, the contact area between the surface and both ends of each permanent magnet 9 and the inner surface of the presser plate 24 is supported at a three-point cross section in the axial radial section, and is supported at one or two points in cross section. Compared with the structure which carries out, it can support stably and can relieve stress concentration.
Even in such an embodiment, the same effects as those of the above-described embodiment can be obtained, and stress concentration between the presser plate 24 and the permanent magnet 9 can be reduced.

(第5実施形態)
図13及び図14は第5実施形態を示すもので、前述実施形態と異なるところは、押え板が回転軸の軸周方向に隣接する永久磁石の側面間に位置して回転軸の軸中心方向に向けて嵌合する嵌合部を備えるところにある。
(Fifth embodiment)
FIG. 13 and FIG. 14 show the fifth embodiment. The difference from the previous embodiment is that the presser plate is located between the side surfaces of the permanent magnets adjacent to each other in the axial direction of the rotating shaft, and is in the axial center direction of the rotating shaft. It is in the place provided with the fitting part fitted toward.

本実施形態では前述実施形態の押え板21に代わる押え板25を備える。なお、図13及び図14において、押え板25は回転子鉄心8の片側にのみ設けた図を示しているが実質的に回転軸10の軸方向両側に対向するように設置される。   In the present embodiment, a presser plate 25 is provided in place of the presser plate 21 of the previous embodiment. 13 and 14, the pressing plate 25 is shown only on one side of the rotor core 8, but is installed so as to substantially face both axial sides of the rotating shaft 10.

押え板25は、図13及び図14に示すように、第1実施形態の表面押え部21b又は22bの機能を備えた表面押え部25aに加えて、回転軸10の軸周方向に隣接する永久磁石9の側面間に軸径中心方向に向けて嵌合する嵌合部25bを備える。   As shown in FIGS. 13 and 14, the presser plate 25 is a permanent member adjacent to the circumferential direction of the rotary shaft 10 in addition to the surface presser portion 25 a having the function of the surface presser portion 21 b or 22 b of the first embodiment. A fitting portion 25b is provided between the side surfaces of the magnet 9 to be fitted toward the center of the shaft diameter.

なお、図13及び図14では、押え板25を回転子鉄心8の片側にのみ設けた図を示しているが、この押え板25は永久磁石9の離脱を防止するため回転軸10の軸方向両側に対向するよう設置される。回転軸10の軸周方向に隣接する永久磁石9を図14に第1永久磁石26、第2永久磁石27と符号を付し、これらの第1永久磁石26及び第2永久磁石27が回転軸10の軸周方向に対向する対向側面を、第1永久磁石26の第1側面26a、第2永久磁石27の第2側面27aと定義する。   13 and 14 show a view in which the presser plate 25 is provided only on one side of the rotor core 8, the presser plate 25 is arranged in the axial direction of the rotary shaft 10 to prevent the permanent magnet 9 from being detached. Installed to face both sides. The permanent magnets 9 that are adjacent to each other in the axial direction of the rotating shaft 10 are denoted by reference numerals as the first permanent magnet 26 and the second permanent magnet 27 in FIG. 14, and the first permanent magnet 26 and the second permanent magnet 27 are rotated. The opposite side surfaces facing each other in the axial direction are defined as a first side surface 26 a of the first permanent magnet 26 and a second side surface 27 a of the second permanent magnet 27.

押え板25の周縁部は永久磁石9の表面に沿って表面押え部25aとして設けられており、隣接する表面押え部25a間に嵌合部25bが設けられている。嵌合部25bは押え板25のステンレス鋼の板材を加工して表面押え部25aと共に一体成形されている。   A peripheral edge portion of the pressing plate 25 is provided as a surface pressing portion 25a along the surface of the permanent magnet 9, and a fitting portion 25b is provided between the adjacent surface pressing portions 25a. The fitting portion 25b is formed integrally with the surface pressing portion 25a by processing a stainless steel plate material of the pressing plate 25.

嵌合部25bは永久磁石9の表面押え部25aから連続した板材が屈曲して構成されている。この嵌合部25bは、第1永久磁石26の第1側面26aのうち、回転子鉄心8のガイド8cの表面より突出した側面、ガイド8cの表面、第2永久磁石27の第2側面27aのうちガイド8cの表面より突出した側面、に沿って順に屈曲する。これにより、嵌合部25bは隣接する第1及び第2永久磁石26及び27間に嵌合する。これにより、嵌合部25bがガイド8cと共に永久磁石26及び27の両側面に沿って嵌合ため、回転軸10の軸周方向に永久磁石9を移動規制できる。   The fitting portion 25b is formed by bending a plate material continuous from the surface pressing portion 25a of the permanent magnet 9. The fitting portion 25 b includes a side surface protruding from the surface of the guide 8 c of the rotor core 8, a surface of the guide 8 c, and a second side surface 27 a of the second permanent magnet 27 among the first side surface 26 a of the first permanent magnet 26. Among them, the guide 8c is bent in order along the side surface protruding from the surface. Thereby, the fitting part 25b is fitted between the adjacent first and second permanent magnets 26 and 27. Thereby, since the fitting part 25b is fitted along the both side surfaces of the permanent magnets 26 and 27 together with the guide 8c, the movement of the permanent magnet 9 in the axial direction of the rotary shaft 10 can be restricted.

(第6実施形態)
図15及び図16は第6実施形態を示すもので、前述実施形態と異なるところは、押え板が隣接する永久磁石の側面間に位置して回転軸の軸中心方向に向けて嵌合する嵌合部を備え、回転子鉄心8の軸径方向の外周面が面一に構成されているところにある。
(Sixth embodiment)
15 and 16 show the sixth embodiment. The difference from the previous embodiment is that the presser plate is located between the side surfaces of adjacent permanent magnets and is fitted toward the axial center of the rotating shaft. The outer peripheral surface in the axial radial direction of the rotor core 8 is provided so as to be flush with each other.

なお、図15及び図16において、押え板25は回転子鉄心8の片側にのみ設けた図を示しているが実質的に回転軸10の軸方向両側に対向するように設置される。
本実施形態においても、押え板25は回転軸10の軸周方向に隣接する永久磁石9の側面間に嵌合する嵌合部25cを備える。このため、回転軸10の軸周方向に永久磁石9を移動規制できる。
15 and 16, the pressing plate 25 is shown only on one side of the rotor core 8, but is installed so as to substantially face both axial sides of the rotating shaft 10.
Also in the present embodiment, the presser plate 25 includes a fitting portion 25 c that fits between the side surfaces of the permanent magnets 9 that are adjacent to each other in the axial direction of the rotary shaft 10. For this reason, movement of the permanent magnet 9 can be restricted in the axial direction of the rotating shaft 10.

回転子鉄心8の軸径方向の外周面が面一に形成されていると、前述のガイド8cによる回転軸10の軸周方向に対する永久磁石9の移動規制力が少なくなるものの、押え板25の嵌合部25bが隣接する永久磁石9の側面間に嵌合するため、回転軸10の軸周方向に永久磁石9を移動規制できる。また、回転子鉄心8は外周面を面一に構成され前述実施形態のガイド8cを設けていないため成形し易い。   If the outer circumferential surface of the rotor core 8 in the axial radial direction is formed flush, the movement restricting force of the permanent magnet 9 in the axial circumferential direction of the rotary shaft 10 by the guide 8c is reduced, but the holding plate 25 Since the fitting portion 25 b is fitted between the side surfaces of the adjacent permanent magnets 9, the movement of the permanent magnet 9 can be restricted in the axial direction of the rotating shaft 10. Further, the rotor core 8 is easily formed since the outer peripheral surface is flush with the guide 8c of the above-described embodiment.

(他の実施形態)
エレベータの巻上機1に適用した例を示したが、その他の数百回転の回転数程度の産業機器に適用できる。面取り領域9a、9bの面取り角度は前述実施形態に示したように適宜設定すると良い。したがって面取り角度は45度であっても何度でも良い。なお永久磁石9のC面取りとは表側端を傾斜面で面取りした形態を表し45度に限られるものではない。また永久磁石9の表側端を丸く面取り(R面取り)しても良い。
(Other embodiments)
Although the example applied to the elevator hoisting machine 1 is shown, the present invention can be applied to other industrial equipment having several hundreds of revolutions. The chamfer angles of the chamfer regions 9a and 9b may be set as appropriate as shown in the above-described embodiment. Therefore, the chamfering angle may be 45 degrees or any number of times. The C chamfering of the permanent magnet 9 represents a form in which the front end is chamfered with an inclined surface, and is not limited to 45 degrees. Further, the front end of the permanent magnet 9 may be rounded (R chamfered).

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although several embodiments of the present invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

図面中、1はエレベータ用巻上機、2は電動機(表面磁石貼付型回転電機)、5は回転子(表面磁石貼付型回転電機の回転子)、8は回転子鉄心(回転子主部)、8cはガイド、9は永久磁石(平板永久磁石)、10は回転軸、19は回転子本体、20は回転子ブロック、21〜25は押え板、21b、22b、25aは表面押え部、21a、22aは側面押え部、23a、24aは突出部、24bは押圧部、25bは嵌合部を示す。
In the drawings, 1 is an elevator hoisting machine, 2 is an electric motor (surface magnet-attached rotating electrical machine), 5 is a rotor (rotor of a surface magnet-attached rotating electrical machine), and 8 is a rotor core (rotor main part). , 8c is a guide, 9 is a permanent magnet (flat plate permanent magnet), 10 is a rotating shaft, 19 is a rotor body, 20 is a rotor block, 21 to 25 are pressing plates, 21b, 22b and 25a are surface pressing portions, 21a , 22a are side pressing parts, 23a and 24a are protruding parts, 24b is a pressing part, and 25b is a fitting part.

Claims (8)

円筒状に形成され回転軸に固定される回転子主部、及び、回転子主部の筒表面において回転軸の軸周方向に極数分設けられると共に当該回転子主部の筒表面に裏面が貼付された複数の平板永久磁石、をブロック毎の回転子ブロックに備え、平板永久磁石の配設中心を回転軸の軸周方向にブロック毎に段階的にずらして形成された状態で前記回転子ブロックが前記回転軸に複数固定して構成される複数段スキュー型の回転子本体と、
複数の回転子ブロックにそれぞれ回転軸の軸方向両側から対向して装着されると共に複数の平板永久磁石の表面を回転軸の軸中心方向に押える表面押え部を具備した非磁性円環状の押え板と、を備えることを特徴とする表面磁石貼付型回転電機の回転子。
A rotor main portion that is formed in a cylindrical shape and is fixed to a rotating shaft, and the number of poles is provided in the axial direction of the rotating shaft on the cylindrical surface of the rotor main portion, and a back surface is provided on the cylindrical surface of the rotor main portion. A plurality of affixed flat plate permanent magnets are provided in a rotor block for each block, and the rotor is formed in a state where the arrangement center of the flat plate permanent magnets is shifted step by step in the axial direction of the rotation axis for each block. A multi-stage skew type rotor body constituted by fixing a plurality of blocks to the rotation shaft;
A non-magnetic annular retainer plate that is mounted on a plurality of rotor blocks so as to face each other from both sides in the axial direction of the rotating shaft and has a surface pressing portion that presses the surface of the plurality of flat plate permanent magnets toward the axial center of the rotating shaft. And a rotor for a surface magnet affixed rotary electric machine.
押え板は、表面押え部を備える内周面が多角形に成形されることを特徴とする請求項1記載の表面磁石貼付型回転電機の回転子。   2. The rotor of a surface magnet-attached rotary electric machine according to claim 1, wherein the presser plate has an inner peripheral surface including a surface presser portion formed into a polygonal shape. 平板永久磁石の表側端が面取りされ、
押え板は、その内面部が平板永久磁石の面取り領域に沿って当接するように成形されることを特徴とする請求項1または2記載の表面磁石貼付型回転電機の回転子。
The front end of the flat plate permanent magnet is chamfered,
3. The rotor of a surface magnet-attached rotary electric machine according to claim 1, wherein the presser plate is formed such that an inner surface portion thereof abuts along a chamfer region of the flat plate permanent magnet.
押え板は、平板永久磁石の表面を押えると共に回転軸の軸中心方向に突出した突出部を備えることを特徴とする請求項1記載の表面磁石貼付型回転電機の回転子。   2. The rotor of a surface magnet-attached rotary electric machine according to claim 1, wherein the presser plate includes a protrusion that presses the surface of the flat permanent magnet and protrudes in the axial center direction of the rotation shaft. 平板永久磁石の表側端が面取りされ、
押え板は、平板永久磁石の表側端の面取り領域を回転軸の軸中心方向に押圧する押圧部を備えることを特徴とする請求項1又は4記載の表面磁石貼付型回転電機の回転子。
The front end of the flat plate permanent magnet is chamfered,
5. The rotor of a surface magnet-attached rotary electric machine according to claim 1, wherein the presser plate includes a pressing portion that presses the chamfered region of the front side end of the flat plate permanent magnet in the axial center direction of the rotation shaft.
押え板は、回転軸の軸周方向に隣接する複数の平板永久磁石の側面間を、回転軸の軸中心方向に向けて嵌合する嵌合部を備えることを特徴とする請求項1記載の表面磁石貼付型回転電機の回転子。   The presser plate includes a fitting portion that fits between side surfaces of a plurality of flat plate permanent magnets adjacent to each other in the axial circumferential direction of the rotating shaft toward the axial center of the rotating shaft. A rotor for a rotating electric machine with a surface magnet. 回転子主部は、回転軸の軸径方向の外周面が面一に構成され、
押え板は、その嵌合部により平板永久磁石を回転軸の軸周方向に移動規制することを特徴とする請求項6記載の表面磁石貼付型回転電機の回転子。
The rotor main part is configured such that the outer peripheral surface in the axial diameter direction of the rotating shaft is flush with
7. The rotor of a surface magnet-attached rotary electric machine according to claim 6, wherein the presser plate restricts the movement of the plate permanent magnet in the circumferential direction of the rotary shaft by the fitting portion.
回転子主部は、回転軸の軸方向に沿うと共に軸径外方に突設する複数のガイドを備え当該ガイド間に平板永久磁石が貼付されることを特徴とする請求項1乃至6の何れかに記載の表面磁石貼付型回転電機の回転子。
The rotor main portion includes a plurality of guides that extend along the axial direction of the rotation shaft and project outward from the shaft diameter, and a flat plate permanent magnet is attached between the guides. A rotor of a surface magnet-attached rotary electric machine according to claim 1.
JP2012193094A 2012-09-03 2012-09-03 Rotor for surface magnet affixed rotary electric machine Pending JP2014050274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012193094A JP2014050274A (en) 2012-09-03 2012-09-03 Rotor for surface magnet affixed rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012193094A JP2014050274A (en) 2012-09-03 2012-09-03 Rotor for surface magnet affixed rotary electric machine

Publications (1)

Publication Number Publication Date
JP2014050274A true JP2014050274A (en) 2014-03-17

Family

ID=50609411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012193094A Pending JP2014050274A (en) 2012-09-03 2012-09-03 Rotor for surface magnet affixed rotary electric machine

Country Status (1)

Country Link
JP (1) JP2014050274A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107078574A (en) * 2014-10-29 2017-08-18 大众汽车有限公司 The rotor of motor, motor and for the method for the rotor for manufacturing motor
CN107546889A (en) * 2016-06-28 2018-01-05 Em-动力有限责任公司 Motor including rotor and stator
CN112701820A (en) * 2020-12-21 2021-04-23 珠海格力电器股份有限公司 Motor rotor, motor and household appliance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107078574A (en) * 2014-10-29 2017-08-18 大众汽车有限公司 The rotor of motor, motor and for the method for the rotor for manufacturing motor
CN107546889A (en) * 2016-06-28 2018-01-05 Em-动力有限责任公司 Motor including rotor and stator
CN112701820A (en) * 2020-12-21 2021-04-23 珠海格力电器股份有限公司 Motor rotor, motor and household appliance

Similar Documents

Publication Publication Date Title
JP6087584B2 (en) Rotor for surface magnet-attached rotary electric machine and method for manufacturing the same
JP5673640B2 (en) Hybrid excitation type rotating electric machine
JP6200920B2 (en) Permanent magnet motor
WO2013150652A1 (en) Rotor and electric motor having embedded permanent magnet
US20080012434A1 (en) Motor and rotor structure thereof
JP2014072971A (en) Rotor for surface magnet affixed rotary electric machine and manufacturing method thereof
JP2014180094A (en) Permanent magnet rotary electric machine and elevator driving winch
JP2014050274A (en) Rotor for surface magnet affixed rotary electric machine
KR101188073B1 (en) Spindle motor
JP2006027803A (en) Hoisting machine for elevator
JP5319912B2 (en) Electric motor
JP2012182862A (en) Axial gap motor
CN111919361A (en) Rotor, motor, and electric power steering device
JP2020010539A (en) Rotor and brushless motor
JP2007181259A (en) Brushless motor
JP2015061374A (en) Stator
JP6165622B2 (en) Rotating electric machine rotor and rotating electric machine equipped with the same
JP6097233B2 (en) Concentrated winding permanent magnet motor, elevator hoisting machine using the same, and elevator
CN203896058U (en) Permanent magnet type rotating motor and elevator driving hoister
JP6080734B2 (en) Rotating electric machine and elevator hoisting machine
JP2013236425A (en) Rotor of induction machine
JP2013187943A (en) Permanent magnet type motor and rotor thereof
JP2012125111A (en) Rotor of outer rotor type rotary machine
JP5404230B2 (en) Axial gap type motor
JP2010063277A (en) Rotor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20140318