JP2014047748A - Impeller for water pump - Google Patents

Impeller for water pump Download PDF

Info

Publication number
JP2014047748A
JP2014047748A JP2012193054A JP2012193054A JP2014047748A JP 2014047748 A JP2014047748 A JP 2014047748A JP 2012193054 A JP2012193054 A JP 2012193054A JP 2012193054 A JP2012193054 A JP 2012193054A JP 2014047748 A JP2014047748 A JP 2014047748A
Authority
JP
Japan
Prior art keywords
impeller
reaction force
water
recess
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012193054A
Other languages
Japanese (ja)
Other versions
JP5984588B2 (en
Inventor
Hiroyuki Tanaka
裕之 田中
Shingo Yoshida
慎吾 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsurumi Manufacturing Co Ltd
Original Assignee
Tsurumi Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsurumi Manufacturing Co Ltd filed Critical Tsurumi Manufacturing Co Ltd
Priority to JP2012193054A priority Critical patent/JP5984588B2/en
Publication of JP2014047748A publication Critical patent/JP2014047748A/en
Application granted granted Critical
Publication of JP5984588B2 publication Critical patent/JP5984588B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an impeller for a water pump capable of reducing vibration by suppressing generation of axial thrust, adjusting both of mechanical balance in air and water power balance in water, and reducing failure due to clogging and entangling of foreign matters and the like without degrading pump efficiency, and not causing cost up of a product due to increase in size of the pump, with respect to the impeller having one blade or one flow channel.SOLUTION: A reaction force generation plate 9 is disposed in a recessed portion 4b of an impeller 4 having one blade or one flow channel in a pump casing 7 at a lower end of a submersible motor 1, a boss portion 4e is disposed to be mounted on an end of a submersible motor shaft 2, a cover 5 is mounted on an upper end of the recessed portion 4b by a fastening tool 12 in a state of not projecting from an upper end face 4d of a main plate, a hole 5a larger than a boss portion outer side wall 4h is formed on the cover, the water is introduced into the recessed portion 4b by communicating between the inside and outside of the recessed portion 4b, and a joining portion of the cover 5 and an annular groove 4g is sealed by a seal material 11.

Description

本発明は、水ポンプ用羽根車に関するものである。   The present invention relates to an impeller for a water pump.

従来、水ポンプ用羽根車には様々な種類があり、汚水などを送水する羽根車においては、汚水に含まれる固形物を羽根車の通水路に詰ることなく通過排出させなければならないことから、JISB0131の用語の番号1323に定義され付図25に示されるような「ノンクロッグポンプ」や、前記用語の番号1325に定義される「ブレードレスポンプ」、または該用語の番号1324に定義され付図12に示されるような「スクリューインペラ渦巻ポンプ」に用いられる汚水や汚物の排出に適している遠心ポンプ用の一枚羽根や一つの流路を持つ羽根車が知られている。   Conventionally, there are various types of impellers for water pumps, and in impellers that send sewage, etc., solid matter contained in sewage must be discharged without clogging the water passage of the impeller. A “non-clog pump” as defined in JIS B 0131 term number 1323 and shown in FIG. 25, a “bladeless pump” as defined in term number 1325, or a term 1324 as defined in FIG. There is known an impeller having a single blade or a single passage for a centrifugal pump suitable for discharging sewage and filth used in a “screw impeller centrifugal pump” as shown.

そして、前記のような羽根車は回転中心について非軸対称な形状をしているので、空気中で静的または動的な機械的バランスを調整してからポンプに組み込まれて運転されることから、空気中での前記機械的バランスは、ポンプ設置時の試運転確認の際や、水位センサや制御回路の故障などにより無負荷運転となってしまった際においてポンプが損傷することを防止する上で必要であり、例えば、機械的バランスの不釣合い質量の存在する部分を除肉して主板や側板に凹部を設けたり、不釣合い質量の存在する軸対称位置に不釣合い質量に釣合うバランスウエートを取付けるなどして調整される。   And since the impeller as described above has a non-axisymmetric shape with respect to the center of rotation, the static or dynamic mechanical balance is adjusted in the air before being installed in the pump and operated. The mechanical balance in the air is to prevent the pump from being damaged when the test operation is confirmed when the pump is installed or when the pump becomes no-load operation due to a failure of the water level sensor or control circuit. For example, by removing the portion where the unbalanced mass of the mechanical balance exists, the main plate or the side plate is provided with a recess, or a balance weight that balances the unbalanced mass at the axially symmetric position where the unbalanced mass exists. It is adjusted by mounting.

しかし、空気に比べて密度が約800倍と大きな水中における運転状態では、非軸対称に羽根車から流出する水の反作用力として半径方向の内向きに受ける流体反力が大きいために水力的バランスが崩れて羽根車の回転に伴って激しい振動を生じる。   However, in an underwater operation state having a density about 800 times larger than that of air, the fluid reaction force received inward in the radial direction as the reaction force of water flowing out of the impeller non-axisymmetrically is large. Collapses and generates intense vibrations as the impeller rotates.

従って、前述のような問題を解決するため、ブレードレスポンプ用羽根車の主通路の吐出口の略軸対称位置において、羽根車の主板と側板の外側に、背面および前面補助羽根を取付け、その補助羽根の流体反力の合計と主通路の吐水作用の反動による流体反力とを釣合わせるようにした構造のものは公知である(例えば、特許文献1参照)。   Therefore, in order to solve the above-described problems, the rear and front auxiliary blades are attached to the outside of the main plate and the side plate of the impeller at a substantially axially symmetrical position of the discharge port of the main passage of the bladeless pump impeller. A structure having a structure in which the sum of the fluid reaction forces of the auxiliary blades and the fluid reaction force due to the reaction of water discharge in the main passage is balanced is known (see, for example, Patent Document 1).

そして、主通路の吐水作用の反動による流体反力と釣合う遠心力を発生する不釣合い質量を前記流体反力が発生する円周方向位置に設けた羽根車も公知である(例えば、特許文献2参照)。   An impeller in which an unbalanced mass that generates a centrifugal force that balances a fluid reaction force due to a reaction of water discharge in the main passage is provided at a circumferential position where the fluid reaction force is generated is also known (for example, Patent Documents). 2).

また、機械的バランスを調整するため不釣合い質量の存在する部分を除肉して主板または側板に凹部を設ける場合、羽根車の軽量化や材料費の低減、鋳造時の各部の冷却速度差を小さくして鋳造精度を向上させるため肉厚を等しくしようとすれば、必然的に該凹部の形状は羽根または流路の形状を写し取ることになるため、該凹部も回転中心について非軸対称な形状となると共に、該凹部の所定の角度位置における体積も決定されることになり、該凹部の非軸対称な形状を開放したまま水中で羽根車を回転させると流体の乱れによる動力損失が発生するため、例えば特開2006−291937公報に示されるように、該凹部は蓋で覆われているが、蓋を設けたことで該凹部内に侵入した水が該凹部内に閉じ込められることになり、該羽根車の水中での回転に伴って該凹部内の水に作用する非軸対称な遠心力によって振動が大きくなることから、該遠心力を有効に活用するべく、前記流体反力が発生する円周方向位置の羽根車内部に流体が充填される充填空間を形成し、前記充填空間が所定の角度範囲となるように区画壁で区画することで、羽根車が水中で駆動回転しているときには、前記充填空間内に充填されている流体に作用する遠心力によって、該流体反力が打ち消されるように構成された羽根車も公知である(例えば、特許文献3参照)。   In addition, in order to adjust the mechanical balance, when the thickness of the unbalanced mass is removed and the main plate or side plate is provided with a recess, the impeller is lighter, the material cost is reduced, and the cooling rate difference of each part during casting is reduced. If the wall thickness is made equal in order to reduce the size and improve the casting accuracy, the shape of the recess inevitably reflects the shape of the blade or the flow path, so the recess is also non-axisymmetric about the rotation center. At the same time, the volume of the concave portion at a predetermined angular position is also determined. When the impeller is rotated underwater with the non-axisymmetric shape of the concave portion opened, power loss due to fluid disturbance occurs. Therefore, for example, as shown in JP-A-2006-291937, the recess is covered with a lid, but by providing the lid, water that has entered the recess is confined in the recess, Impeller Since the vibration increases due to the non-axisymmetric centrifugal force acting on the water in the recess as the water rotates, the circumferential position at which the fluid reaction force is generated in order to effectively use the centrifugal force When the impeller is driven and rotated in water by forming a filling space filled with fluid inside the impeller and partitioning with a partition wall so that the filling space has a predetermined angle range, An impeller configured to cancel the fluid reaction force by a centrifugal force acting on a fluid filled in the space is also known (for example, see Patent Document 3).

実公昭44−3708号公報Japanese Utility Model Publication No. 44-3708 特開昭57−86599号公報JP-A-57-86599 特開2010−31807号公報JP 2010-31807 A

しかしながら、前記特許文献1ないし3の構成を用いて検証実験を行った結果、次の問題点があることが判明した。   However, as a result of conducting a verification experiment using the configurations of Patent Documents 1 to 3, it has been found that there are the following problems.

先ず、前記特許文献1の構成においては、羽根車の主板と側板の外側にポンプの揚水機能としては作用しない、前記背面および前面補助羽根が凸設されていることで軸動力が増大されることにより、ポンプ効率を著しく低下させると共に、振動の低減効果も該背面および前面補助羽根の水中モータ軸導出方向の幅が大きくないと効果がほとんど無いため、該背面および前面補助羽根を大きくすることで結局ポンプ自体が大きなものとなってしまい余分な製造コストが生じてしまうことに加えて、異物等が混入し得る汚水の排出に上記発明を適用した場合、水中モータ軸を取付けるボス部と該背面補助羽根および該前面補助羽根と羽根車吸込口外側壁の間に異物が詰ったり、該背面および前面補助羽根に髪の毛などの軟弱異物が絡まったりして、羽根車の拘束(ロック)による過負荷やポンプ破損、性能低下、磨耗などによりポンプを引き上げてのメンテナンス作業が必要になるという問題を有している。   First, in the configuration of Patent Document 1, shaft power is increased by projecting the back and front auxiliary blades that do not act as a pumping function of the pump outside the main plate and side plate of the impeller. As a result, the pump efficiency is significantly reduced, and the effect of reducing vibrations is almost ineffective unless the width of the rear and front auxiliary blades in the direction of the underwater motor shaft is large. In the end, the pump itself becomes large and extra manufacturing costs occur. In addition, when the above invention is applied to the discharge of sewage that can contain foreign substances, the boss portion for mounting the submersible motor shaft and the rear surface Foreign matter is clogged between the auxiliary vane and the front auxiliary vane and the outer wall of the impeller inlet, or soft foreign matter such as hair is entangled with the rear and front auxiliary vanes. Overload and pump damage due to restraint of the impeller (locked), has the problem of performance degradation, wear maintenance of pulling the pump due needed.

また、前記特許文献2の構成においては、主通路の吐水作用の反動による流体反力と釣合う遠心力を発生させる不釣合い質量を設けたため、今度は空気中における前記機械的バランスが崩れることになり、空気中の機械的バランスと水中の水力的バランスの両方を調整することが出来なくなり、前記不釣合い質量に作用する遠心力は、遠心力であるため半径方向の外方に向かう方向にしか作用しないため、前記流体反力を打ち消すためには該流体反力が作用する角度近傍にしか取付けることはできないので設計自由度が低くなり、該不釣合い質量の取付位置が前記機械的バランスを調整するためのバランスウエートと同じ位置となったときに取付けが出来ないと共に、異物の通過粒径がポンプ口径比の100%である一枚羽根のノンクロッグポンプまたは一つの流路を持つブレードレスポンプでは、流量が少なくて揚程の高い運転範囲である部分流量域において、流路内の水の逆流によるポンプ性能の低下を最小限に抑えようとして羽根車内部の流路形状も異物の通過粒径とほぼ同じ形状となっているため、羽根車内部の流路に前記不釣合い質量を設けると異物の通過粒径が減少するという問題を有している。   Moreover, in the structure of the said patent document 2, since the unbalance mass which generate | occur | produces the centrifugal force which balances the fluid reaction force by the reaction of the water discharge action of a main channel | path was provided, this mechanical balance in air | atmosphere will be destroyed this time. Therefore, it is impossible to adjust both the mechanical balance in the air and the hydraulic balance in the water, and the centrifugal force acting on the unbalanced mass is a centrifugal force, so it is only in the direction toward the radially outward direction. Therefore, in order to cancel the fluid reaction force, it can be mounted only in the vicinity of the angle where the fluid reaction force acts, so the degree of freedom in design is reduced, and the mounting position of the unbalanced mass adjusts the mechanical balance. A single blade non-clog that cannot be mounted when the balance weight is in the same position as the balance weight, and the particle size of the foreign material is 100% of the pump aperture ratio. In a partial flow rate range where the flow rate is low and the head is high, the impeller is designed to minimize the deterioration of pump performance due to the back flow of water in the flow channel. Since the shape of the internal flow path is almost the same as the particle size of the foreign substance, there is a problem that the particle size of the foreign substance decreases if the unbalanced mass is provided in the flow channel inside the impeller. .

更に、前記特許文献3の構成においては、前記充填空間内に充填されている流体に作用する遠心力は、遠心力であるため半径方向の外方に向かう方向にしか作用しないため、前記流体反力を打ち消すためには該流体反力が作用する角度近傍にしか取付けることはできないので設計自由度が低くなり、また前記充填空間内に充填されている流体に作用する遠心力を利用するため、主に金属である固体に作用する遠心力を利用している特許文献2と比べて大きな空間を必要とし、例えば、流体の比重を1(水)、固体の比重を7.8(ステンレス鋼鋳鋼)とすると特許文献3の形状は特許文献2の形状に対して約7.8倍の空間を必要とすると共に、回転中心について非軸対称な形状をしている羽根車において、機械的バランスを調整するため不釣合い質量の存在する部分を除肉して凹部を設ける場合、羽根の形状を写し取って非軸対称な形状の該充填空間となるため、前述の大きな空間を必要とすることと相まって、必要な角度に必要な空間を確保できないことに加えて、機械的バランスを調整するため不釣合い質量の存在する軸対称位置に不釣合い質量に釣合うバランスウエートを取付ける必要がある場合は、前記バランスウエートで該充填空間が圧迫されて該充填空間がより狭くなることから該流体反力の作用する角度に必要な遠心力を発生し得るだけの流体を充填させる空間を確保することは非常に困難であり、且つ充填空間の流体に作用する遠心力を利用するためには、充填空間として機能しない該凹部には流体が流入しないようにすることが必須であるが、充填空間として機能しない該凹部に空気が残留していると空気に比べて比重の大きな水との比重差によって該羽根車に浮力が作用してアンバランスを生じ、また他の方法として充填空間として機能しない該凹部を羽根車材質等の固体で埋め尽くすとそれが不釣合い質量となってアンバランスを生じて、結局、振動が大きくなるという問題を有している。   Further, in the configuration of Patent Document 3, since the centrifugal force acting on the fluid filled in the filling space is a centrifugal force, it acts only in the outward direction in the radial direction. In order to cancel the force, it can be attached only in the vicinity of the angle at which the fluid reaction force acts, so the degree of design freedom is low, and in order to utilize the centrifugal force acting on the fluid filled in the filling space, Compared with Patent Document 2 that uses centrifugal force acting on a solid that is mainly a metal, a larger space is required. For example, the specific gravity of the fluid is 1 (water) and the specific gravity of the solid is 7.8 (stainless steel cast steel ), The shape of Patent Document 3 requires about 7.8 times the space of the shape of Patent Document 2, and the impeller having a non-axisymmetric shape about the center of rotation has a mechanical balance. Not to adjust When removing the portion where the mating mass exists and providing the concave portion, the shape of the blade is copied to become the non-axisymmetric shape of the filling space, so that the required angle is coupled with the need for the large space described above. If the balance weight that balances the unbalanced mass needs to be installed at the axisymmetric position where the unbalanced mass exists in order to adjust the mechanical balance, the balance weight Since the filling space is compressed and the filling space becomes narrower, it is very difficult to secure a space for filling the fluid enough to generate the centrifugal force necessary for the angle at which the fluid reaction force acts, In order to use the centrifugal force acting on the fluid in the filling space, it is essential that the fluid does not flow into the concave portion that does not function as the filling space. If air remains in the concave portion that does not function, buoyancy acts on the impeller due to the difference in specific gravity with water, which has a larger specific gravity than air, resulting in imbalance, and as another method the function does not function as a filling space. When the concave portion is filled with a solid material such as an impeller material, it becomes an unbalanced mass, resulting in an unbalance, resulting in a problem of increased vibration.

また、前述とは別に例えば特公昭28−005840号公報に示されるように、一つの流路で形成されるブレードレスポンプ用の羽根車では、該羽根車の下端面に開口された吸込口から該羽根車の周面に開口された吐出し口まで巻き上がるように流路が形成されるため、前記凹部は該羽根車の回転方向下流に向かって該凹部の深さが連続的に浅くなった後に、前記浅くなる勾配に比べて急激に深くなる形状を有することになり、動力損失を低減するために該凹部を蓋で覆った場合、本発明の図2および図21と図22に示されるように該羽根車の水中での回転に伴って該凹部に導入された水が移動し、前記連続的に浅くなる部位においては流路が楔状となっているため水が下流に向かって水中モータ軸導出方向の上向きに漸次変向されながら押し込まれて昇圧されると共に、前記急激に深くなる部位においては流路が楔状から急拡大されているため水の流れが拡大されて減圧されることに加えて、該図22に示すように流れが拡大凹部の落込側壁面から剥離することで該凹部に低圧が発生する相乗の低圧作用によって、凹部深さの浅い昇圧部と凹部深さの深い低圧部の不均一な圧力分布状態で、該凹部内よりも圧力が高いポンプケーシングの揚水流路と連通する、蓋上端面の空間との圧力差によって、水中モータ軸導出方向の下向きに軸方向スラストが作用して振動が大きくなるという問題を有している。   In addition to the above, as shown in, for example, Japanese Patent Publication No. 28-005840, in an impeller for a bladeless pump formed by a single flow path, a suction port opened at the lower end surface of the impeller is used. Since the flow path is formed so as to wind up to the discharge port opened on the peripheral surface of the impeller, the depth of the concave portion continuously decreases toward the downstream in the rotation direction of the impeller. When the concave portion is covered with a lid in order to reduce power loss, it is shown in FIGS. 2, 21 and 22 of the present invention. As the impeller rotates in the water, the water introduced into the recess moves and the flow path is wedge-shaped in the continuously shallow portion, so that the water flows downstream. While gradually turning upward in the direction of motor shaft lead-out As shown in FIG. 22, in addition to being expanded and depressurized because the flow path is suddenly expanded from the wedge shape in the region where the pressure is deepened by being inserted, the flow is rapidly expanded from the wedge shape. Due to the synergistic low-pressure action in which a low pressure is generated in the recess when the flow is separated from the falling side wall surface of the enlarged recess, in a non-uniform pressure distribution state of the pressurization portion having a shallow recess depth and the low-pressure portion having a deep recess portion, The problem is that the axial thrust acts in the downward direction of the submersible motor shaft and the vibration increases due to the pressure difference with the space on the upper end surface of the lid that communicates with the pumping pump flow path of the pump casing whose pressure is higher than in the recess. have.

そこで、本願発明は前記問題点に鑑み、回転中心について非軸対称な形状をしている一枚羽根または一つの流路を持つ羽根車においても、前記流体反力を減殺して確実に水力的バランスを調整すると共に、機械的バランスをとるために設けられた凹部内に導入された水に作用する遠心力を減殺して振動を低減することができ、更に、該羽根車の回転方向下流に向かって該凹部の深さが連続的に浅くなった後に、前記浅くなる勾配に比べて急激に深くなる形状を有する、例えばブレードレスポンプ用の羽根車においても、前記軸方向スラストの発生を抑制して振動を低減でき、空気中の機械的バランスと水中の水力的バランスの両方を調整でき、ポンプ効率の低下を生じることなく、汚水に混入した異物等による詰りや絡みによるトラブルが発生し難く、ポンプの大型化による余計な製造コストによる製品価格上昇を生じない水ポンプ用羽根車を提供することを目的とする。   Therefore, in view of the above-mentioned problems, the present invention reduces the fluid reaction force even in an impeller having a single blade or a single flow path having a non-axisymmetric shape with respect to the center of rotation, and is surely hydraulic. In addition to adjusting the balance, it is possible to reduce the vibration by reducing the centrifugal force acting on the water introduced in the recess provided for mechanical balance, and further to the downstream of the impeller in the rotational direction. For example, even in an impeller for a bladeless pump, the generation of the axial thrust is suppressed after the depth of the concave portion continuously becomes shallower and then has a shape that becomes deeper than the shallower slope. Vibration can be reduced, and both the mechanical balance in the air and the hydraulic balance in the water can be adjusted, and troubles caused by clogging or entanglement due to foreign matters mixed in the sewage can be generated without reducing pump efficiency. Hardly, and an object thereof is to provide a for water pump impeller that does not result in product price increase due to extra manufacturing cost increase in the size of the pump.

前記課題を達成するために、先ず特許文献2のように前記機械的バランスを調整した前記羽根車の主通路の吐水作用の反動による流体反力が作用する円周方向位置に前記流体反力と釣合う遠心力を発生させる不釣合い質量を付加するという一般的な手法の適用の検討において、前記流体反力とその作用する円周方向位置は実測するか、あるいは3次元CAD(Computer Aided Design:コンピュータ支援による設計)にて羽根車と揚水流路をモデリングしてそのモデルを数値解析することにより求めることが可能であるが、異物の通過粒径がポンプ口径比の100%である一枚羽根のノンクロッグポンプまたは一つの流路を持つブレードレスポンプでは、流量が少なくて揚程の高い運転範囲である部分流量域において、流路内の水の逆流によるポンプ性能の低下を最小限に抑えようとして羽根車内部の流路形状も異物の通過粒径とほぼ同じ形状となっているため、羽根車内部の流路に前記不釣合い質量を設けると異物の通過粒径が減少することになり、該不釣合い質量を主板や側板に設ける場合は、該不釣合い質量の取付位置が前記機械的バランスを調整するためのバランスウエートと同じ位置となったときに必要な量を取付けることが出来ないという不具合が判明した。   In order to achieve the above-mentioned problem, first, as described in Patent Document 2, the fluid reaction force is applied to a circumferential position where a fluid reaction force is exerted by a reaction of a water discharge action of a main passage of the impeller whose mechanical balance is adjusted. In the examination of application of a general method of adding an unbalanced mass that generates a balanced centrifugal force, the fluid reaction force and the position in the circumferential direction on which the fluid reaction force acts are actually measured, or three-dimensional CAD (Computer Aided Design): It can be obtained by modeling the impeller and pumping flow channel by computer-aided design) and numerically analyzing the model, but the single blade with the passing particle size of foreign matter being 100% of the pump aperture ratio In non-clog pumps or bladeless pumps with a single flow path, flow is limited in the partial flow rate range where the flow rate is low and the lift is high. The shape of the flow path inside the impeller is almost the same as the particle size of the foreign matter in order to minimize the deterioration of pump performance due to the backflow of water in the passage. When the balance mass is provided, the particle diameter of the foreign matter decreases, and when the unbalance mass is provided on the main plate or the side plate, the attachment position of the unbalance mass is a balance weight for adjusting the mechanical balance; A problem was found that the required amount could not be installed when the same position was reached.

次に、特許文献1のように主通路の吐水作用の反動による流体反力と釣合う半径方向の内向きの反作用力を発生させるための補助的な羽根である補助羽根を羽根車の主板と側板の外側に該流体反力が作用する円周方向位置の略軸対称位置となるように設けることを考えたことで、該羽根車の水中での回転に伴って、円周方向に対して傾斜する前記補助羽根が水と衝突して水を半径方向の外向きに変向(吐出)させることによって該補助羽根が水から受ける力は、そのほとんどが本発明の図26に模式的に示されるように該補助羽根に垂直方向に加わり、その水から受ける力Fwは円周方向成分の力Fuと半径方向成分の力である反作用力Fhに分解して考えることができ、該反作用力Fhが該流体反力Fkを相殺する効果を有し、また前記特許文献1の補助羽根は主板と側板の2ヵ所にあるので、例えば、それぞれ該流体反力の半分の力と釣合う反作用力を発生させれば良いことになるが、羽根車の主板と側板の外側にポンプの揚水機能としては作用しない、前記背面および前面補助羽根が凸設されていることで軸動力が増大されることにより、ポンプ効率を著しく低下させると共に前記主板の外側の該背面補助羽根においては、本発明の図28に模式的に示されるように水中モータ軸2を「梃子」、ベアリングBrを「支点」とする“てこ”と見立てると、「支点」から「作用点」となる該流体反力Fkが作用する羽根車4の水流出部の中央高さ位置4kまでの距離Aに比べて「支点」から「力点」となる該背面補助羽根までの距離Bは短いため距離A>距離Bとなり、例えば、該流体反力Fkの半分の力と釣合うモーメントを得るためには該流体反力Fkの半分の力×(距離A÷距離B)倍の力が必要となることから、該背面補助羽根を大きくすることで発生する反作用力Fhを増加しなければならないためポンプ自体が大きなものとなって余分な製造コストが生じてしまうことから、前記側板の外側の該前面補助羽根においては、本発明の図28に示されるように「支点」から「力点」となる該前面補助羽根までの距離Cは距離Aより長いため距離A<距離Cとなり、(距離A÷距離C)<1より、一見、該前面補助羽根を小さくできるように見えるが、該主板4a側にあるボス部4eより直径の大きな羽根車4の吸込口4lが側板側にあるため該前面補助羽根の半径方向の設置範囲が全周に亘って狭くなるので、水中モータ軸2導出方向の幅を大きくして反作用力Fhを稼ぐ必要があると共に、該側板の外側壁とそれに対向するポンプケーシング7側壁で構成される側板側の環状隙間G3と側板の吸込口側端面とそれに対向するポンプケーシング7端面との隙間である側板側の軸方向隙間G4を通って圧力の高い揚水流路から圧力の低い吸込口に向かって発生する循環流れRにより、該前面補助羽根への軟弱異物の絡まりや、該前面補助羽根の成す撹拌によって回転部と静止部の隙間への異物の詰りや揚水流路内の圧漏れによるポンプ揚程の低下が促進される結果となった。   Next, as in Patent Document 1, auxiliary blades that are auxiliary blades for generating an inward reaction force in the radial direction that balances the fluid reaction force due to the reaction of the water discharge action of the main passage are connected to the main plate of the impeller. By considering to provide a position that is substantially axisymmetric with respect to the circumferential position where the fluid reaction force acts on the outside of the side plate, with the rotation of the impeller in water, Most of the force that the auxiliary blade receives from the water when the inclined auxiliary blade collides with water and diverts (discharges) the water outward in the radial direction is schematically shown in FIG. 26 of the present invention. Thus, the force Fw applied to the auxiliary blade in the vertical direction and received from the water can be divided into a circumferential component force Fu and a radial component force Fh, which can be considered as the reaction force Fh. Has the effect of canceling out the fluid reaction force Fk, and Since the auxiliary blades in Document 1 are in two locations, the main plate and the side plate, for example, it is sufficient to generate a reaction force that balances half of the fluid reaction force. Since the rear and front auxiliary blades that do not act as a pumping function of the pump are provided on the outside, the shaft power is increased, thereby significantly reducing pump efficiency and the rear auxiliary blades outside the main plate. In FIG. 28, as schematically shown in FIG. 28 of the present invention, assuming that the submersible motor shaft 2 is a lever and the bearing Br is a fulcrum, the fulcrum is changed to an action point. Since the distance B from the “fulcrum” to the back auxiliary blade, which is the “power point”, is shorter than the distance A from the center height position 4 k of the water outflow portion of the impeller 4 on which the fluid reaction force Fk acts, the distance A > Distance B, for example In order to obtain a moment that balances half of the fluid reaction force Fk, a force that is half the fluid reaction force Fk × (distance A ÷ distance B) times is required. Since the reaction force Fh generated by this operation has to be increased, the pump itself becomes large and an extra manufacturing cost is generated. Therefore, the front auxiliary blade outside the side plate is shown in FIG. 28, the distance C from the “fulcrum” to the front auxiliary blade, which is the “power point”, is longer than the distance A, so the distance A <distance C, and (distance A ÷ distance C) <1, Although it seems that the front auxiliary blades can be made smaller, since the suction port 4l of the impeller 4 having a diameter larger than the boss portion 4e on the main plate 4a side is on the side plate side, the radial installation range of the front auxiliary blades is the entire circumference. Because it narrows over the water It is necessary to increase the width in the direction in which the motor shaft 2 is led out to increase the reaction force Fh, and the side plate-side annular gap G3 composed of the outer wall of the side plate and the side wall of the pump casing 7 facing the side wall, and the suction side of the side plate The front auxiliary vane is circulated by the circulating flow R generated from the high pressure pumping flow path toward the low pressure inlet through the axial gap G4 on the side plate side that is the gap between the end face and the end face of the pump casing 7 facing the end face. As a result, entanglement of soft foreign matter on the surface and stirring by the front auxiliary blade promoted reduction of the pump head due to clogging of foreign matter in the gap between the rotating part and the stationary part and pressure leakage in the pumping flow path.

そこで本願発明者は、前記の問題点を払拭するため、該主板の不要な肉厚部分を該羽根車の水中モータ軸導出方向外側より除肉して凹部を形成し、前記主板上端面より凸出しないように前記凹部内に反力発生板を設けるという新たな構成を創出するに至り、この構成にすれば、前記距離Bは前記距離Aに必然的に近づくことになるので、該流体反力に釣合うために該反力発生板が発生させる反作用力を小さくすることができるので該反力発生板の水中モータ軸導出方向の幅も小さくできるという効果も相乗的に作用することになるが、必要な反作用力を発生させる該反力発生板を設けるために前記凹部をできる限り深くしようとすれば、必然的に該凹部の形状は羽根または羽根車内部流路の形状を写し取ることになるため、該凹部も回転中心について非軸対称な形状となり、また、前記除肉後の形状に合わせて機械的バランスを調整する場合、該凹部内には不釣合い質量の存在する軸対称位置に不釣合い質量に釣合うバランスウエートを取付ける必要があるが、該羽根車の形状および該バランスウエートのため該凹部の円周方向位置によっては、“浅い”、“深い”、“狭い”、“広い”、といった該凹部の形状の差が生じるため、該流体反力が作用する円周方向位置が必ずしも必要とする大きさの該反力発生板を設けるのに適した形状とはならないことが判明した。   Therefore, in order to eliminate the above problems, the inventor of the present application removes an unnecessary thick portion of the main plate from the outside of the impeller underwater motor shaft direction to form a concave portion, and protrudes from the upper end surface of the main plate. A new structure is provided in which a reaction force generating plate is provided in the recess so as not to come out. With this structure, the distance B will inevitably approach the distance A. Since the reaction force generated by the reaction force generating plate to balance the force can be reduced, the effect of reducing the width of the reaction force generating plate in the direction in which the underwater motor shaft is led out also acts synergistically. However, if the recess is to be made as deep as possible in order to provide the reaction force generating plate that generates the necessary reaction force, the shape of the recess necessarily dictates the shape of the blade or impeller internal flow path. Therefore, the recess is also the center of rotation When the mechanical balance is adjusted in accordance with the shape after the thinning, the balance weight balances the unbalanced mass at the axially symmetric position where the unbalanced mass exists in the recess. Depending on the shape of the impeller and the circumferential position of the recess due to the balance weight, the shape of the recess such as “shallow”, “deep”, “narrow”, “wide” Because of the difference, it has been found that the circumferential position where the fluid reaction force acts does not necessarily have a shape suitable for providing the reaction force generation plate having a required size.

そのために本願発明者は、羽根車が一枚の羽根または一つの流路を持つため前記凹部の形状は、“浅い”と“深い”が軸対称位置に存在すること、およびバランスウエートの取付けにより“狭い”と“広い”、が軸対称位置に存在することを見出すと共に、図26に模式的に示されるように該反力発生板が水を半径方向の外向きに変向(吐出)することで半径方向の内向きに反作用力を発生させているのならば、図27に模式的に示されるようにその逆である該反力発生板が水を半径方向の内向きに変向することで半径方向の外向きに反作用力を発生させることも可能であるとする新しい技術思想を創出するに至ったことにより、これを実証するために、該流体反力が作用する円周方向位置の軸対称位置における該凹部内の形状が該バランスウエートの存在により“狭い”ため、該流体反力が作用する円周方向位置の軸対称位置に水を半径方向の外向きに変向させることによって、半径方向の内向きの反作用力を受ける該反力発生板を設けることができない該羽根車において、図27に模式的に示されるように該流体反力が作用する円周方向位置に水を半径方向の内向きに変向することで、半径方向の外向きに反作用力を発生させる該反力発生板を設けて試験を行い、その際には空気中における静的または動的な機械的バランスを調整し、振動が小さくなったかどうかは、ポンプの吐出し方向とその直角の水平方向および水中モータ軸導出方向の3軸方向に加速度計を取付けて振動値を測定することで判断した結果、ポンプの大型化や前記側板側の環状隙間G3と前記側板側の軸方向隙間G4への詰りも防止できると共に、前記形状にて振動の低減も問題なく行えることが確認されたが、該凹部の非軸対称な形状が開放されたまま水中で回転することによる流体の乱れによって動力損失が発生するためポンプ効率が悪く、また、該反力発生板への軟弱異物の絡み付きも改善されなかっため、流体の乱れによる動力損失の発生と該凹部内への異物の侵入を抑制することを意図して、該凹部を覆う蓋を該羽根車に取付けると共に、該凹部内へ水を供給して該反力発生板に該反作用力を発生させるため該凹部内外を連通する連通路を該蓋に設けたことにより、ポンプ効率と該反力発生板への軟弱異物の絡み付きは改善されたが、その反面、一度は低減できていた振動が再び大きくなるという新たな問題が発生したことで、該問題の原因は蓋を設けたことで非軸対称な形状である該凹部内に侵入した水が閉じ込められることになり、該羽根車の水中での回転に伴って該凹部内の非軸対称な水に作用する非軸対称な遠心力が原因となって発生していると推定した。   For this purpose, the inventor of the present application is that the impeller has one blade or one flow path, so that the shape of the recess is “shallow” and “deep” in an axially symmetric position, and the balance weight is attached. It is found that “narrow” and “wide” exist in axially symmetric positions, and the reaction force generating plate redirects (discharges) water outward in the radial direction as schematically shown in FIG. Thus, if the reaction force is generated inward in the radial direction, the reaction force generation plate, which is the opposite, changes the water inward in the radial direction as schematically shown in FIG. In order to demonstrate this, the inventors have created a new technical idea that it is also possible to generate a reaction force in the radially outward direction. The shape in the recess at the axially symmetric position is the balance Since it is “narrow” due to the presence of the acid, the water is directed radially outwardly to the axially symmetric position of the circumferential position where the fluid reaction force acts to receive the radially inward reaction force. In the impeller that cannot be provided with a reaction force generating plate, as shown schematically in FIG. 27, by turning water inward in the radial direction to a circumferential position where the fluid reaction force acts, The reaction force generating plate that generates a reaction force radially outward is provided for testing, and in that case, the static or dynamic mechanical balance in the air is adjusted to determine whether the vibration has been reduced. As a result of determining the vibration value by installing an accelerometer in the three axis directions of the pump discharge direction and the horizontal direction perpendicular to the pump discharge direction and the submersible motor shaft lead-out direction, the pump is increased in size and the annular gap on the side plate side G3 and the side plate side Although it was confirmed that clogging into the gap G4 can be prevented and vibration can be reduced without any problems with the above-mentioned shape, fluid disturbance due to rotation in water with the non-axisymmetric shape of the recess opened. Because power loss is generated by the pump, pump efficiency is poor, and entanglement of soft foreign matter on the reaction force generation plate is not improved, so generation of power loss due to fluid disturbance and entry of foreign matter into the recess is suppressed A communication path that connects the inside and the outside of the recess for attaching the lid that covers the recess to the impeller and supplying water into the recess to generate the reaction force on the reaction force generation plate. Although the pump efficiency and the entanglement of soft foreign matter on the reaction force generation plate were improved by providing the lid on the lid, on the other hand, there was a new problem that the vibration that had been reduced once again became large again. By the way The cause is that the water that has entered into the recess having a non-axisymmetric shape is confined by providing a lid, and the non-axisymmetric water in the recess is rotated as the impeller rotates in water. It was estimated that it was caused by the acting non-axisymmetric centrifugal force.

そこで、前記機械的バランスの調整された羽根車の凹部に水を入れて蓋およびシール材にて該凹部を封水した状態の羽根車を、バランシングマシンを用いて空気中での動的な不釣合い質量とその作用する位置を測定して、該測定値を基に凹部内の水に作用する遠心力を算出し、該凹部内に導入された水に作用する遠心力を相殺する位置にもう一つ反力発生板を取付けて再度試験を行った結果、前記流体反力のみを相殺する位置に該反力発生板を取付けた振動が再び大きくなった羽根車に比べて、実用上問題のないレベルまで振動値が低減され、また、該流体反力と該凹部内に導入された水に作用する遠心力との合力を相殺する位置に該反力発生板を一つ取付けても同様の結果が得られたことで、該バランシングマシンを使用した実機検証の測定値に基く該遠心力の算出と、前記3次元CADにて羽根車をモデリングしてそのモデルを解析することで該凹部内の水に作用する遠心力の算出結果が略同様であったことから、時間的およびコスト的な点などから鑑みれば、該3次元CADのモデル解析による検証方法が望ましい。   Therefore, an impeller in a state where water is poured into the concave portion of the impeller whose mechanical balance has been adjusted and the concave portion is sealed with a lid and a sealing material is used for dynamic immobilization in the air using a balancing machine. Measure the balance mass and the position at which it acts, calculate the centrifugal force acting on the water in the recess based on the measured value, and place it in a position to offset the centrifugal force acting on the water introduced into the recess. As a result of re-testing with one reaction force generation plate attached, it is practically problematic compared to an impeller in which vibration is increased again at a position where only the fluid reaction force is offset. The vibration value is reduced to a level that does not exceed the level, and even if one reaction force generation plate is attached at a position that cancels out the resultant force of the fluid reaction force and the centrifugal force acting on the water introduced into the recess, When the result is obtained, the actual machine verification using the balancing machine is measured. From the calculation of the centrifugal force based on the value and the calculation result of the centrifugal force acting on the water in the recess by analyzing the model by modeling the impeller with the three-dimensional CAD, In view of time and cost, a verification method based on model analysis of the three-dimensional CAD is desirable.

しかし、一般に水ポンプは、その性能や用途などに応じて複数のモータ出力や周波数違いのものがシリーズ化されて使い分けられており、その中にはモータ出力が小さいものや電源周波数が大きいまたは極数が小さいために羽根車の回転数の速いものがあることから、負荷を定格値に抑えるために羽根車の外径が小さくなっているので、必然、該凹部の外周径も小さくなって、一箇所に大きさの適正な反力発生板を取付けることが出来ない場合もあることから、本発明者は前述の発明を基にして、該反力発生板を2分割し、一方は該羽根車の水中での回転に伴って該凹部内を円周方向に移動する水を半径方向の内向きに変向させることによって半径方向の外向きの反作用力を受ける形状とし、他方を該羽根車の水中での回転に伴って該凹部内を円周方向に移動する水を半径方向の外向きに変向させることによって半径方向の内向きの反作用力を受ける形状として各々を水中モータ軸に対して180°に振り分けて設けることで、該反力発生板を2分割しても同じ方向の反作用力を発生させることができるので、該凹部外周径が小さくても必要な大きさの反作用力を発生させる該反力発生板を羽根車に設けることが可能となると共に、2分割後の該反力発生板を分割前と同じ大きさで形成することで、より大きな該流体反力や該凹部内に導入された水に作用する該遠心力を相殺することが可能となることに加えて、該反力発生板を該流体反力を相殺するものと該凹部内に導入された水に作用する該遠心力を相殺するものに分割すれば、大きな1つの該反力発生板を小さな4つの該反力発生板として該凹部内に分割配置することができるため、該凹部外周とボス部外周間の狭小な羽根車を用いる水ポンプにおいても、本発明の分割反力発生板の対応が可能であることを確認した。   However, in general, water pumps are used in series with multiple motor outputs and different frequencies depending on the performance and application. Among them, the motor output is low, the power supply frequency is high, or the pole is Since the number of impellers is fast because of the small number, the outer diameter of the impeller is reduced in order to suppress the load to the rated value. Since it may not be possible to attach a reaction force generation plate having an appropriate size at one location, the present inventor divides the reaction force generation plate into two parts based on the above-mentioned invention, one of which is the blade. As the vehicle rotates in water, the water moving in the circumferential direction in the concave portion is changed inward in the radial direction to receive a reaction force in the outward radial direction, and the other is the impeller. In the recess as the water rotates in water By distributing the water moving in the circumferential direction outward in the radial direction and receiving the reaction force inward in the radial direction, each is distributed at 180 ° with respect to the submersible motor shaft. Since the reaction force in the same direction can be generated even if the force generation plate is divided into two, the impeller is provided with the reaction force generation plate that generates the necessary reaction force even if the recess outer peripheral diameter is small. And the centrifugal force acting on the larger fluid reaction force and the water introduced into the recess by forming the reaction force generation plate after the division into the same size as before the division. If the reaction force generating plate is divided into one that cancels the fluid reaction force and one that cancels the centrifugal force acting on the water introduced into the recess. , One large reaction force generation plate is connected to four small reaction force generation Since the raw plate can be divided and disposed in the recess, the split reaction force generation plate of the present invention can be used even in a water pump using a narrow impeller between the outer periphery of the recess and the outer periphery of the boss. It was confirmed.

また、前記流体反力は前記羽根車から吐出される流れに対するものであるから、必然、ポンプ吐出し量が変動すれば該流体反力の大きさ、および、作用する円周方向位置が変化することから、前記反力発生板は円周方向にある程度の角度範囲を有して形成されており、大小はあるが該反力発生板の存在する範囲においては半径方向の反作用力が発生しているので、ポンプ吐出し量の変動に伴って該流体反力の作用する円周方向位置が変化しても該反力発生板が存在している円周方向範囲またはその軸対称位置において該流体反力を減殺して振動を低減することが可能であるが、例えば図18ないし図20に示すように該反力発生板を前記蓋の下端面や凹部内の底面に取外し可能に設けるように構成しておけば、実際にポンプを設置する現場での実運転吐出し量に合わせた最適な形状および設置位置の該反力発生板に取り替えて該羽根車に装備させることで、該反力発生板による該流体反力の減殺量を大きくすることで相殺させることができるので、より振動を低減することが可能となる。   In addition, since the fluid reaction force is for the flow discharged from the impeller, the magnitude of the fluid reaction force and the position of the acting circumferential direction will inevitably change if the pump discharge amount fluctuates. Therefore, the reaction force generating plate is formed to have a certain angular range in the circumferential direction, and a reaction force in the radial direction is generated in the range where the reaction force generating plate exists although it is large or small. Therefore, even if the circumferential position on which the fluid reaction force acts changes as the pump discharge amount changes, the fluid in the circumferential range where the reaction force generation plate exists or in the axially symmetric position thereof Although it is possible to reduce the reaction force to reduce the vibration, for example, as shown in FIGS. 18 to 20, the reaction force generating plate is detachably provided on the lower end surface of the lid or the bottom surface in the recess. If configured, at the site where the pump is actually installed By replacing the reaction force generating plate in the optimum shape and installation position according to the actual operation discharge amount and installing it on the impeller, the amount of fluid reaction force by the reaction force generating plate is increased. Since they can be offset, vibration can be further reduced.

更にまた、図10ないし図12に示すように前記羽根車の水中での回転に伴って前記凹部内を円周方向に移動する水が前記反力発生板に最初に衝突する部位である該反力発生板の該羽根車回転方向の上流側端部を、該反力発生板の取付面側から反取付面側に向かって該羽根車回転方向の下流側へ傾斜させれば、該羽根車の水中での回転に伴って該凹部内を円周方向に移動する水の水勢による押し流し作用により、水に含まれる軟弱異物が該反力発生板に絡まるのを抑制することができると共に、別の手段として図13に示すように該羽根車の水中での回転に伴って該凹部内を円周方向に移動する水を半径方向の内向きに変向させることによって半径方向の外向きの反作用力を受ける該反力発生板の該羽根車回転方向の上流側端部を該凹部外周壁に接続させるか、或いは更に別の手段として図14に示すように該羽根車の水中での回転に伴って該凹部内を円周方向に移動する水を半径方向の外向きに変向させることによって半径方向の内向きの反作用力を受ける該反力発生板の該羽根車回転方向の上流側端部をボス部外側壁に接続させておけば、水に含まれる軟弱異物が絡まり易い凸部および該異物が詰まりやすい隙間を該反力発生板の該羽根車回転方向の上流側端部から無くすことができるので、該反力発生板への該軟弱異物の絡みおよび異物の詰りを抑制することができると共に、該凹部内を円周方向に移動する水を効率良く該反力発生板へ誘導することができるので発生する該反作用力を大きくすることが可能となる。   Furthermore, as shown in FIGS. 10 to 12, the reaction that is a portion where water moving in the circumferential direction in the recess as the impeller rotates in water first collides with the reaction force generating plate. If the upstream end of the force generation plate in the impeller rotation direction is inclined from the attachment surface side of the reaction force generation plate toward the opposite attachment surface side toward the downstream side in the impeller rotation direction, the impeller As a result of the swirling action caused by the water force of water moving in the circumferential direction along the rotation of the water in the recess, it is possible to prevent soft foreign substances contained in the water from being entangled with the reaction force generating plate. As shown in FIG. 13, the outward reaction in the radial direction is caused by diverting the water that moves in the circumferential direction in the concave portion in the radial direction as the impeller rotates in the water. The upstream end of the reaction force generating plate receiving the force in the impeller rotation direction is the outer periphery of the recess. 14 or as another means, the water moving in the circumferential direction in the recess is turned radially outward as the impeller rotates in water as shown in FIG. If the upstream end of the reaction force generating plate that receives the inward reaction force in the radial direction is connected to the outer wall of the boss portion, a convex portion that is likely to be entangled with soft foreign matter contained in water. In addition, since the clearance between the reaction force generation plate and the impeller rotating direction can be eliminated from the upstream end of the reaction force generation plate, the entanglement of the soft foreign material and the clogging of the foreign material can be suppressed. In addition, the water that moves in the circumferential direction in the recess can be efficiently guided to the reaction force generation plate, so that the reaction force generated can be increased.

なお、前記蓋には前記反力発生板へ水を供給して反作用力を発生させるため前記凹部内外を連通させる連通路が設けられているが、前記主板と該蓋とで構成される隙間が封水されていないと該羽根車の回転に伴って該凹部内の水に作用する遠心力によって水が該凹部外へ漏れ出てしまい、その漏れ出た分を補填するため該連通路より該凹部内に水が導入されるため、ポンプ運転中は該凹部内に水が通水し続けることになり、汚水などのように異物が混入する可能性がある場合、該凹部内に異物がしだいに堆積してアンバランスを生じて振動が大きくなりポンプの破損に至る可能性があるため、該主板と該蓋との接合部にシール材を用いて封止構成とすれば、一度該凹部内が水で満たされると、それ以上水は浸入できないので、該凹部内への異物の堆積を防止することができることから振動を抑制することが可能となる。   The lid is provided with a communication path that connects the inside and outside of the recess to supply water to the reaction force generation plate to generate a reaction force, but there is a gap formed by the main plate and the lid. If it is not sealed, water will leak out of the recess due to centrifugal force acting on the water in the recess as the impeller rotates, and in order to compensate for the leak, Since water is introduced into the recess, water will continue to flow into the recess during pump operation, and if there is a possibility that foreign matter will be mixed in such as sewage, the foreign matter will gradually get into the recess. If the sealing structure is used by using a sealing material at the joint between the main plate and the lid, the imbalance may occur due to accumulation on the surface, resulting in increased vibration and damage to the pump. When the water is filled with water, no further water can enter, so It is possible to the suppress vibrations since it is possible to prevent deposition.

次に、本発明者は更なる振動の低減を目指して、段落0013に記載の「凹部深さの浅い昇圧部と凹部深さの深い低圧部の不均一な圧力分布状態で、該凹部内よりも圧力が高いポンプケーシングの揚水流路と連通する、蓋上端面の空間との圧力差によって、水中モータ軸導出方向の下向きに軸方向スラストが作用して振動が大きくなるという」課題を解決すべく、前記羽根車の水中での回転に伴って該凹部内を円周方向に移動する水を遮蔽する遮蔽板を前記急激に深くなる部位またはその上流側近傍に設けるという新たな技術思想を創出したことで、これを検証するために図29に示されるように位置A,位置B,位置C,位置Dのような各円周方向の該当位置に、該遮蔽板を一ヶ所設けてそれぞれの構成における振動値を測定する際に、該遮蔽板を設ける各円周方向の該当位置は、図29と図30に示すように該急激に深くなる形状最深部の落込側壁面4oにおける凹部外周径φDoとボス部外径φDb間の中間径φDmとの交点4mの位置Aを基準として90°毎に設置すると共に、該羽根車の水中での回転に伴って該凹部内を円周方向に移動する水が衝突する該遮蔽板の該羽根車回転方向の上流側側壁は、余計な反作用力が生じないように該凹部内を円周方向に移動する水に対して略直角に各位置毎に形成しながら、各々位置における振動値を計測した結果、位置A<位置D<位置B<位置Cの順に振動値が低減することが判明したことで、段落0013および図22に示すように急激に深くなる部位においては流路が楔状から急拡大されているため水の流れが拡大されて減圧されることに加えて、流れが拡大凹部の落込側壁面から剥離することで該凹部に低圧が発生する相乗の低圧作用を抑制させる、位置Aから90°上流側の位置Dの範囲に遮蔽板を設置することが好ましく、図23に示すように遮蔽板と反力発生板を併設することで、反力発生板のみを設置した場合に比べて、該遮蔽板を併設した方が振動値が小さくなり、反力発生板と遮蔽板の振動低減効果が相乗的に作用することを確認した。   Next, with the aim of further reducing vibrations, the present inventor described in paragraph 0013 “in a non-uniform pressure distribution state in the pressure-increasing portion having a shallow concave portion and the low-pressure portion having a deep concave portion than in the concave portion. `` The problem is that the axial thrust acts in the downward direction of the submersible motor shaft and the vibration increases due to the pressure difference with the space at the top end surface of the lid that communicates with the pumping pump flow path of the pump casing with high pressure. '' Therefore, a new technical concept is created in which a shielding plate that shields water moving in the circumferential direction in the concave portion as the impeller rotates in water is provided in the rapidly deepening portion or in the vicinity thereof upstream. Therefore, in order to verify this, as shown in FIG. 29, the shielding plate is provided at one place at each position in the circumferential direction such as position A, position B, position C, and position D. When measuring vibration values in a configuration, As shown in FIGS. 29 and 30, the corresponding position in each circumferential direction where the shielding plate is provided is an intermediate diameter between the outer peripheral diameter φDo of the recess and the outer diameter φDb of the boss portion in the falling side wall surface 4 o of the deepest shape that sharply deepens. The blades of the shielding plate that are installed every 90 ° with respect to the position A of the intersection 4m with φDm and that the water moving in the circumferential direction collides with the rotation of the impeller in water as the impeller rotates in water The upstream side wall in the vehicle rotation direction measures vibration values at each position while being formed at each position approximately perpendicular to the water moving in the circumferential direction in the recess so that no excessive reaction force is generated. As a result, it has been found that the vibration value decreases in the order of position A <position D <position B <position C, and as a result, the flow path suddenly increases from the wedge shape at the site where it becomes deeper as shown in paragraph 0013 and FIG. Because it is enlarged, the flow of water is expanded and depressurized. In addition to the above, the flow is separated from the falling side wall surface of the enlarged concave portion to suppress a synergistic low pressure action that generates a low pressure in the concave portion. As shown in FIG. 23, it is preferable to install a shielding plate and a reaction force generation plate, so that the vibration value is smaller when the shielding plate is provided than when only the reaction force generation plate is installed. Thus, it was confirmed that the vibration reduction effect of the reaction force generation plate and the shielding plate acts synergistically.

そして、前記反力発生板と前記遮蔽板を羽根車に設ける場合、空気中の前記機械的バランスを調整して水中の前記水力的バランスと両立させようとすれば、該反力発生板や該遮蔽板の軸対称位置に該反力発生板や該遮蔽板の質量に釣合うバランスウエートを設ける必要があり、その際には羽根車の軽量化や材料費の低減、鋳造時の各部の冷却速度差を小さくしてヒケや鋳巣の発生を抑制して鋳造精度を向上させる必要性からできる限りバランスウエートは少なくすることが望ましく、そのためには、該反力発生板と該遮蔽板を小さくする必要があり、小さくすることは本発明形状を外径が小さな羽根車に適用する際にも有効となることから、該反力発生板は、振動の低減に必要な反作用力を発生させなければならないが、例えば図28の羽根車が流体反力Fkおよび反作用力Fhを受ける位置とベアリングBrとの位置関係を示す説明図を用いて説明すると、ベアリングBr「支点」から距離Aを隔てた「作用点」に作用する該流体反力Fkと、それに対抗する「力点」となる抗力Faの関係は、「支点」から「力点」までの距離が距離Aと同一の場合はFk=Faであり、距離Aより短い場合はFk<Faとなり、逆に距離Aより長い場合はFk>Faとなることから、図7に示すようにその水中モータ軸導出方向における設置位置が該流体反力Fkの作用する羽根車の水流出部の中央高さ位置に近ければ近いほど、該流体反力Fkと該凹部内に導入された水に作用する該遠心力Fcの相殺に必要な該抗力Faに相当する反作用力Fhが小さくて済むことから、該反力発生板を小さくて軽量に構成することができるため、それと対抗させるバランスウエートも軽量化することができると共に、該凹部の各軸対称位置において、より“深い”方に該反力発生板を設置することで、支点から力点までの距離を長く確保することができるので、更に該抗力Faに相当する反作用力Fhを小さくすることができることから、可能な限り該反力発生板を小さく構成することができる。   When the reaction force generation plate and the shielding plate are provided on the impeller, if the mechanical balance in the air is adjusted so as to be compatible with the hydraulic balance in water, the reaction force generation plate and the It is necessary to provide a balance weight that balances the reaction force generation plate and the mass of the shielding plate at the axially symmetrical position of the shielding plate. In this case, the weight of the impeller is reduced, the material cost is reduced, and each part is cooled during casting. It is desirable to reduce the balance weight as much as possible from the need to reduce the speed difference and suppress the occurrence of sink marks and voids to improve casting accuracy. To that end, the reaction force generation plate and the shielding plate are made small. Since the reduction is effective even when the shape of the present invention is applied to an impeller having a small outer diameter, the reaction force generation plate must generate a reaction force necessary to reduce vibration. For example, the blade of FIG. Will be described with reference to the explanatory view showing the positional relationship between the bearing Br and the position that receives the fluid reaction force Fk and the reaction force Fh, the fluid reaction acting on the “action point” separated from the bearing Br “fulcrum” by a distance A. When the distance from the “fulcrum” to the “power point” is the same as the distance A, Fk = Fa and when the distance from the “fulcrum” is shorter than the distance A, Fk <Fk If the distance A is longer than the distance A, Fk> Fa. Therefore, as shown in FIG. 7, the installation position in the submerged motor shaft lead-out direction is that of the water outflow portion of the impeller on which the fluid reaction force Fk acts. The closer to the center height position, the smaller the reaction force Fh corresponding to the drag Fa necessary for canceling out the fluid reaction force Fk and the centrifugal force Fc acting on the water introduced into the recess. From the reaction force generation plate Since it can be configured to be light and lightweight, the balance weight that opposes it can also be reduced in weight, and the reaction force generating plate can be installed in a “deeper” direction at each axially symmetric position of the recess. Since a long distance from the fulcrum to the force point can be secured, the reaction force Fh corresponding to the drag Fa can be further reduced, so that the reaction force generating plate can be made as small as possible.

また、該反力発生板を翼形状に形成することで、具体的には図8に示すように水中モータ軸に直角な水平断面における前記反力発生板の形状を、該羽根車の水中での回転に伴って該凹部内を円周方向に移動する水を半径方向の内向きまたは外向きに変向させる側の変向側側壁の流れ方向長さに比べて反対側の裏側側壁の方が長くなるように形成すれば、該反力発生板の該羽根車回転方向の上流側端部から下流側端部へ流れる水の経路差により変向側側壁に比べて裏側側壁の流速が速くなるので裏側側壁の圧力が低下して該反力発生板の両側壁間に圧力差が生じて流入速度と流出速度との幾何平均速度の方向に垂直な分力であるJISB0131の用語の番号8162に定義される「揚力」が発生するため、その「揚力」の分だけ、該反力発生板によって発生する反作用力を大きくすることができるので、該反力発生板を小さくすることができる。   Further, by forming the reaction force generating plate into a blade shape, specifically, the shape of the reaction force generating plate in a horizontal cross section perpendicular to the underwater motor shaft as shown in FIG. The rear side wall on the opposite side compared to the flow direction length of the direction-changing side wall on the side that diverts the water moving in the circumferential direction in the concave portion in accordance with the rotation of the inner side in the radial direction. If the reaction force generating plate is formed to be longer, the flow velocity of the back side wall is higher than the direction side wall due to the difference in the path of water flowing from the upstream end to the downstream end in the impeller rotation direction of the reaction force generation plate. As a result, the pressure on the back side wall decreases and a pressure difference is generated between the both side walls of the reaction force generation plate, and the component number 8162 of JISB0131 is a component force perpendicular to the direction of the geometric mean speed of the inflow speed and the outflow speed. Is generated, the reaction force is generated by the amount of the lift. It is possible to increase the reaction force generated, it is possible to reduce the reaction force generating plate.

更に、前記反力発生板が該羽根車の水中での回転に伴って該凹部内を円周方向に移動する水を半径方向の内向きまたは外向きに変向させる際、図31に示されるように該凹部内を円周方向に移動する水の流れに対する前記反力発生板の取付角θが0°および90°(遮蔽)の時は半径方向の反作用力Fhは発生せず、前記取付角θが45°のときに最大値をとるので、該羽根車の水中での回転に伴って該凹部内を円周方向に移動する水に対して前記取付角θを略45°の傾きをもって形成すれば、該反力発生板を必要最小限の大きに形成することができる。   Further, when the reaction force generating plate turns the water that moves in the circumferential direction in the concave portion in accordance with the rotation of the impeller in water inward or outward in the radial direction, it is shown in FIG. Thus, when the mounting angle θ of the reaction force generating plate with respect to the flow of water moving in the circumferential direction in the recess is 0 ° and 90 ° (shielding), no radial reaction force Fh is generated and the mounting Since the maximum value is obtained when the angle θ is 45 °, the mounting angle θ has an inclination of about 45 ° with respect to the water moving in the circumferential direction in the recess as the impeller rotates in water. If formed, the reaction force generating plate can be formed to the minimum necessary size.

また、前記遮蔽板の小型化ついては、凹部内を移動する水の周速は中心から遠くなる、即ち凹部外周に向かう程水に作用する周速度は速くなることから、図23および図29に示されるボス部外周から凹部外周間の半径方向の凹部全幅遮蔽板の内周側から、該全幅の30%、40%そして前記中間径φDm位置となる50%に相当する長さだけ短くしながら順次試験を行った結果、凹部全幅遮蔽板の振動低減効果に対して該30%、40%内周側を短くしてもその効果には大差はなく、該中間径φDm位置となる50%内周側を短くしても若干振動が大きくなるが実用上問題のないレベルであることが判明したことに加えて、該遮蔽板の上端面は該凹部内を円周方向に移動する水を遮蔽するため該蓋取付面である環状溝底面と同一面とした方が振動低減効果は高いが、軽量化や加工逃しのため該蓋取付面より数mm程度下側に形成しても実用上問題の無いことも確認した。   Further, regarding the downsizing of the shielding plate, the peripheral speed of the water moving in the concave portion becomes far from the center, that is, the peripheral speed acting on the water increases toward the outer periphery of the concave portion. From the inner periphery side of the full width shielding plate in the radial direction between the outer periphery of the boss portion and the outer periphery of the concave portion, the length is shortened by a length corresponding to 30% and 40% of the total width and 50% corresponding to the intermediate diameter φDm position. As a result of the test, even if the inner circumference side is shortened by 30% and 40% with respect to the vibration reduction effect of the full width concave plate, there is no significant difference in the effect. In addition to the fact that the vibration is slightly increased even if the side is shortened, but it has been found that the level is not problematic in practice, the upper end surface of the shielding plate shields the water moving in the circumferential direction in the recess. Therefore, it is better to have the same surface as the bottom surface of the annular groove that is the lid mounting surface. Although the vibration reducing effect is high, it was confirmed that there is no practical problem even if it is formed about several millimeters below the lid mounting surface for weight reduction and processing escape.

更にまた、前記遮蔽板の内周側から全幅の30%、40%、50%に相当する長さだけ短くした検証設置範囲内に前記羽根車の水中での回転に伴って凹部内を円周方向に移動する水を半径方向の内向きに変向させることによって半径方向の外向きの反作用力を受けることで前記流体反力または該凹部内に導入された水に作用する遠心力の何れか一方または相方を減殺または相殺されるように構成されている前記反力発生板を設置することで、その該反力発生板の上流側端部を前記凹部外周壁に接続させると共に、その下流側端部を該凹部外周と前記ボス部外周間の中間径φDm以下となる位置まで伸ばして形成すれば、該反力発生板に該遮蔽板の機能を付加することが可能となるので、該遮蔽板を別途設ける必要が無くなり、羽根車をより軽量化することができる。   Furthermore, within the verification installation range shortened by a length corresponding to 30%, 40%, and 50% of the total width from the inner peripheral side of the shielding plate, the circumference of the recess is increased as the impeller rotates in water. Either the fluid reaction force or the centrifugal force acting on the water introduced into the recess by receiving a radially outward reaction force by turning the water moving in the radial direction inward By installing the reaction force generating plate configured to reduce or cancel one or the other, the upstream end of the reaction force generating plate is connected to the outer peripheral wall of the recess, and the downstream side thereof If the end portion is formed to extend to a position where the intermediate diameter φDm is less than or equal to the outer periphery of the recess and the outer periphery of the boss portion, the function of the shielding plate can be added to the reaction force generating plate. There is no need to provide a separate plate, making the impeller lighter It can be of.

また、前記反力発生板または前記遮蔽板の何れか一方または相方の取付位置が、前記バランスウエートの該羽根車回転方向の上流側側壁に近い前記反力発生板場合または前記バランスウエート範囲位置内の遮蔽板場合、該バランスウエート上流側側壁を該遮蔽板の機能を具備させた該反力発生板の形状とすれば、前記反力発生板または前記遮蔽板と該バランスウエートを一体化でき該凹部内をシンプルかつコンパクトに形成することが可能となるので、異物の詰りや絡みをさらに抑制すると共に、羽根車の軽量化および製作が容易となる。   Further, in the case where the reaction force generation plate is close to the upstream side wall of the balance weight in the impeller rotation direction or in the balance weight range position, either one of the reaction force generation plate and the shielding plate or the mounting position of the other side In the case of the shielding plate, if the upstream side wall of the balance weight has the shape of the reaction force generating plate having the function of the shielding plate, the reaction force generating plate or the shielding plate and the balance weight can be integrated. Since the concave portion can be formed in a simple and compact manner, the clogging and entanglement of foreign matters can be further suppressed, and the impeller can be reduced in weight and manufactured easily.

以上このように、試行錯誤の末に辿り着いた構成に基づいた、具体的手段は以下の通りです。   As described above, the specific means based on the configuration that has been reached after trial and error are as follows.

本発明の請求項1に係る発明では、水中モータの下端に装着されたポンプケーシングに内装され、水中モータ軸を中心として回転する異物の通過性を重視した一枚羽根または一つの流路を持つ水ポンプ用羽根車において、前記羽根車は水中で回転する際に、該羽根車から吐出される流れに対する流体反力を半径方向の内向きに受け、該羽根車の主板に形成された凹部の中心部分に、水中モータ軸の導下先端部に取付けるためのボス部を設けると共に、前記凹部を覆う蓋を備え、水中において該凹部内に水を導入する該凹部内外を連通する連通路が前記蓋に設けられていると共に、空気中においては該凹部内の水を排出するための水抜き孔が前記蓋に穿設されており、該羽根車の水中での回転に伴って該凹部内を円周方向に移動する水を半径方向の内向きまたは外向きのいずれか一方に変向させることによって半径方向の外向きまたは内向きのいずれか一方の反作用力を受ける反力発生板が該凹部内に設けられ、該羽根車は水中で回転する際に、前記反力発生板によって発生する前記反作用力によって前記流体反力と該凹部内に導入された水に作用する遠心力との合力が減殺または相殺されるように構成されていることを最も主要な特徴とする。   In the invention according to claim 1 of the present invention, it has a single blade or a single flow passage which is built in a pump casing attached to the lower end of the submersible motor and emphasizes the passage of foreign matters rotating around the submersible motor shaft. In the impeller for a water pump, when the impeller rotates in water, it receives a fluid reaction force against the flow discharged from the impeller inward in the radial direction, and a recess formed in the main plate of the impeller. The central portion is provided with a boss portion to be attached to the guided tip portion of the submersible motor shaft, and includes a lid that covers the concave portion, and the communication path that communicates the inside and outside of the concave portion for introducing water into the concave portion in water In the air, a drain hole for discharging water in the concave portion is formed in the lid, and the inside of the concave portion is rotated in the water as the impeller rotates in water. Radial water moving in the circumferential direction A reaction force generating plate that receives a reaction force in either the outward or inward direction in the radial direction by changing the inward or outward direction is provided in the recess. And the resultant reaction force generated by the reaction force generating plate reduces or cancels out the resultant force of the fluid reaction force and the centrifugal force acting on the water introduced into the recess. It is the most important feature.

本発明の請求項1の水ポンプ用羽根車において、本発明の請求項2に係る発明は、前記反力発生板が該凹部内に二つ以上設けられ、前記羽根車は水中で回転する際に、該反力発生板の内少なくとも一つによって発生する前記反作用力によって前記流体反力が減殺または相殺され、該反力発生板の他の少なくとも一つによって発生する該反作用力によって該凹部内に導入された水に作用する遠心力が減殺または相殺されるように構成されている。   In the water pump impeller according to claim 1 of the present invention, the invention according to claim 2 of the present invention is characterized in that two or more reaction force generating plates are provided in the recess, and the impeller rotates in water. In addition, the fluid reaction force is reduced or offset by the reaction force generated by at least one of the reaction force generation plates, and the reaction force generated by at least one other of the reaction force generation plates causes the reaction force in the recess. The centrifugal force acting on the water introduced into the water is reduced or offset.

また、本発明の請求項1または2に記載の水ポンプ用羽根車において、本発明の請求項3に係る発明は、前記反力発生板を設けることが可能な浅い部分と深い部分が軸対称位置に存在する前記凹部内において、該凹部の深さがより深い側に該反力発生板が設けられるように構成されている。   Further, in the water pump impeller according to claim 1 or 2 of the present invention, the invention according to claim 3 of the present invention is such that the shallow portion and the deep portion where the reaction force generating plate can be provided are axisymmetric. The reaction force generation plate is provided on the side where the depth of the recess is deeper in the recess existing at the position.

更に、本発明の請求項1ないし3のいずれか一項に記載の水ポンプ用羽根車において、本発明の請求項4に係る発明は、前記流体反力を受ける該羽根車の周面に開口された水流出部の中央高さ位置に対抗するように、前記反力発生板が形成されるように構成されている。   Furthermore, in the impeller for water pumps according to any one of claims 1 to 3 of the present invention, the invention according to claim 4 of the present invention provides an opening on a peripheral surface of the impeller that receives the fluid reaction force. The reaction force generating plate is formed so as to oppose the central height position of the water outflow portion.

また、本発明の請求項1ないし4のいずれか一項に記載の水ポンプ用羽根車において、本発明の請求項5に係る発明は、前記反力発生板の水平断面形状は、該羽根車の水中での回転に伴って該凹部内を円周方向に移動する水を半径方向の内向きまたは外向きのいずれか一方に変向させる側である変向側側壁の流れ方向長さに対して反対側の裏側側壁の方が長い翼断面形状に形成されるように構成されている。   Further, in the water pump impeller according to any one of claims 1 to 4, the invention according to claim 5 of the present invention is characterized in that the horizontal cross-sectional shape of the reaction force generating plate is the impeller. With respect to the flow direction length of the direction-changing side wall, which is the side that turns the water that moves in the circumferential direction in the concave portion in accordance with the rotation of the water in the radial direction inward or outward. The opposite back side wall is formed to have a longer blade cross-sectional shape.

また、本発明の請求項1ないし5のいずれか一項に記載の水ポンプ用羽根車において、本発明の請求項6に係る発明は、前記反力発生板の該羽根車の水中での回転に伴って該凹部内を円周方向に移動する水を半径方向の内向きまたは外向きのいずれか一方に変向させる側である変向側側壁全面の取付角が、該羽根車の水中での回転に伴って該凹部内を円周方向に移動する水の流れに対して45°の傾きをもって形成されるように構成されている。   Further, in the impeller for water pump according to any one of claims 1 to 5, the invention according to claim 6 of the present invention is the rotation of the impeller in water of the impeller. Accordingly, the mounting angle of the entire side wall of the turning side, which is the side that turns the water that moves in the circumferential direction in the concave portion to either the inward or outward direction in the radial direction, Is formed with an inclination of 45 ° with respect to the flow of water moving in the circumferential direction in the concave portion as the rotation of.

また、本発明の請求項1ないし6のいずれか一項に記載の水ポンプ用羽根車において、本発明の請求項7に係る発明は、前記反力発生板の該羽根車回転方向の上流側端部が前記反力発生板の前記凹部底面または蓋背面の取付面から反取付面に向かって該羽根車回転方向の下流側に向かって傾斜されるように構成されている。   Further, in the water pump impeller according to any one of claims 1 to 6, the invention according to claim 7 of the present invention is an upstream side of the reaction force generating plate in the impeller rotation direction. The end portion is configured to be inclined toward the downstream side in the impeller rotation direction from the mounting surface on the bottom surface of the recess or the back surface of the lid of the reaction force generation plate toward the mounting surface.

更に、本発明の請求項1ないし7のいずれか一項に記載の水ポンプ用羽根車において、本発明の請求項8に係る発明は、該羽根車の水中での回転に伴って該凹部内を円周方向に移動する水を半径方向の内向きに変向させることによって、半径方向の外向きの反作用力を受ける前記反力発生板の該羽根車回転方向の上流側端部が前記凹部外周壁に接続されるか、または、該羽根車の水中での回転に伴って該凹部内を円周方向に移動する水を半径方向の外向きに変向させることによって、半径方向の内向きの反作用力を受ける前記反力発生板の該羽根車回転方向の上流側端部が前記ボス部外側壁に接続されるように構成されている。   Furthermore, in the impeller for water pumps according to any one of claims 1 to 7, the invention according to claim 8 of the present invention is characterized in that the inside of the concave portion is caused by the rotation of the impeller in water. The upstream end of the reaction force generating plate receiving the reaction force in the radial direction is changed into the recess by rotating the water moving in the circumferential direction inward in the radial direction. Inward in the radial direction by turning the water that is connected to the outer peripheral wall or moves radially in the recess as the impeller rotates in water in the radial direction. The upstream end of the reaction force generating plate that receives the reaction force in the rotational direction of the impeller is connected to the outer wall of the boss portion.

更にまた、本発明の請求項1ないし7のいずれか一項に記載の水ポンプ用羽根車において、本発明の請求項9に係る発明は、前記反力発生板を、該羽根車の水中での回転に伴って該凹部内を円周方向に移動する水を半径方向の内向きに変向させることによって半径方向の外向きの反作用力を受ける反力発生板と、該羽根車の水中での回転に伴って該凹部内を円周方向に移動する水を半径方向の外向きに変向させることによって半径方向の内向きの反作用力を受ける反力発生板に2分割させた、各反力発生板を水中モータ軸に対して180°位置に設けられるように構成されている。   Furthermore, in the water pump impeller according to any one of claims 1 to 7 of the present invention, the invention according to claim 9 of the present invention is characterized in that the reaction force generation plate is placed in the water of the impeller. A reaction force generating plate that receives an outward reaction force in the radial direction by diverting the water moving in the circumferential direction in the concave portion in accordance with the rotation of Each of the reaction plates is divided into two reaction force generating plates that receive a reaction force in the radial direction by turning the water that moves in the circumferential direction in the recesses in the radial direction with the rotation of The force generating plate is configured to be provided at a 180 ° position with respect to the submersible motor shaft.

次に、本発明の請求項1ないし8のいずれか一項に記載の水ポンプ用羽根車において、本発明の請求項10に係る発明は、前記反力発生板を、該羽根車の水中での回転に伴って該凹部内を円周方向に移動する水を半径方向の内向きに変向させることによって半径方向の外向きの反作用力を受ける反力発生板と、該羽根車の水中での回転に伴って該凹部内を円周方向に移動する水を半径方向の外向きに変向させることによって半径方向の内向きの反作用力を受ける反力発生板に2分割させた、各反力発生板を水中モータ軸に対して180°に振り分けて半径距離を異ならせて設けられるように構成されている。   Next, in the water pump impeller according to any one of claims 1 to 8 of the present invention, the invention according to claim 10 of the present invention is characterized in that the reaction force generating plate is placed in the water of the impeller. A reaction force generating plate that receives an outward reaction force in the radial direction by diverting the water moving in the circumferential direction in the concave portion in accordance with the rotation of Each of the reaction plates is divided into two reaction force generating plates that receive a reaction force in the radial direction by turning the water that moves in the circumferential direction in the recesses in the radial direction with the rotation of The force generation plate is arranged at 180 ° with respect to the submersible motor shaft so as to be provided with different radial distances.

そして、本発明の請求項1ないし10のいずれか一項に記載の水ポンプ用羽根車において、本発明の請求項11に係る発明は、前記反力発生板が該羽根車または前記蓋或いは双方に取り外して交換可能に構成されている。   In the water pump impeller according to any one of claims 1 to 10, the invention according to claim 11 of the present invention is such that the reaction force generating plate is the impeller, the lid, or both. It is configured to be removable and replaceable.

また、本発明の請求項1ないし11のいずれか一項に記載の水ポンプ用羽根車において、本発明の請求項12に係る発明は、前記凹部は該羽根車回転方向の下流に向かって該凹部の深さが連続的に浅くなった後に、前記浅くなる勾配に比べて急激に深くなる形状を有し、該羽根車の水中での回転に伴って前記凹部内を円周方向に移動する水の勢いを抑制する遮蔽板を該凹部外周壁より水中モータ軸の中心方向に向かって凸設されると共に、その内周側端部が該凹部外周と前記ボス部外周間の中間径以下となる位置まで伸びて形成され、前記遮蔽板の該羽根車回転方向の上流側側壁は該凹部内を円周方向に移動する水の流れに対して直角に形成され、該中間径において該羽根車回転方向に対して前記浅くなる勾配から急激に深くなる形状最深部の落込側壁面における該中間径との交点位置を0°とし、該羽根車回転方向の上流側に90°以下の範囲に該遮蔽板の該上流側側壁が位置するように形成されている。   Moreover, in the impeller for water pumps according to any one of claims 1 to 11 of the present invention, the invention according to claim 12 of the present invention is characterized in that the concave portion is directed toward the downstream in the impeller rotation direction. After the depth of the concave portion becomes continuously shallow, it has a shape that becomes deeper than the shallow slope, and moves in the circumferential direction in the concave portion as the impeller rotates in water. A shielding plate that suppresses the momentum of water is provided so as to protrude from the outer peripheral wall of the recess toward the center of the underwater motor shaft, and its inner peripheral end is equal to or less than the intermediate diameter between the outer periphery of the concave and the outer periphery of the boss. The upstream side wall of the shield plate in the direction of rotation of the impeller is formed at right angles to the flow of water moving in the circumferential direction in the recess, and the impeller is at the intermediate diameter. The deepest part of the shape that suddenly deepens from the shallower gradient with respect to the rotation direction The intersection between the intermediate diameter is 0 ° in 落込 side wall, the upstream side wall of the shielding plate is formed so as to be located in a range of less than 90 ° on the upstream side of the impeller rotation direction.

更に、請求項1ないし4および6と10のいずれか一項に記載の水ポンプ用羽根車において、本発明の請求項13に係る発明は、前記凹部は該羽根車回転方向の下流に向かって該凹部の深さが連続的に浅くなった後に、前記浅くなる勾配に比べて急激に深くなる形状を有し、該羽根車の水中での回転に伴って該凹部内を円周方向に移動する水を半径方向の内向きに変向させることによって半径方向の外向きの反作用力を受けることで前記流体反力または該凹部内に導入された水に作用する遠心力のいずれか一方または両方を減殺または相殺されるように構成されている前記反力発生板の上流側端部が前記凹部外周壁に接続されると共に、その下流側端部が該凹部外周と前記ボス部外周間の中間径以下となる直径位置まで伸びて形成され、該中間径において該羽根車回転方向に対して前記浅くなる勾配から急激に深くなる形状最深部の落込側壁面における該中間径との交点位置を0°とし、該羽根車回転方向の上流側に90°以下の範囲に該反力発生板の前記下流側端部が位置するように形成されている。   Furthermore, in the impeller for water pumps according to any one of claims 1 to 4 and 6 and 10, the invention according to claim 13 of the present invention is such that the recess is directed downstream in the rotational direction of the impeller. After the depth of the concave portion becomes continuously shallow, it has a shape that becomes deeper than the shallowing gradient, and moves in the circumferential direction in the concave portion as the impeller rotates in water. Either or both of the fluid reaction force and the centrifugal force acting on the water introduced into the recess by receiving a radially outward reaction force by turning the water to be radially inward The upstream end of the reaction force generating plate configured to reduce or cancel out is connected to the outer peripheral wall of the recess, and the downstream end is intermediate between the outer periphery of the recess and the outer periphery of the boss. Formed to extend to a diameter position equal to or less than the diameter, The point of intersection with the intermediate diameter on the falling side wall surface of the deepest part of the shape that suddenly deepens from the shallow gradient with respect to the impeller rotation direction in diameter is 0 °, and 90 ° upstream of the impeller rotation direction. The downstream end portion of the reaction force generation plate is located in the following range.

更にまた、本発明の請求項1ないし13のいずれか一項に記載の水ポンプ用羽根車において、本発明の請求項14に係る発明は、前記反力発生板または前記遮蔽板のいずれか一方或いは双方が、該羽根車の空気中における静的または動的な機械的バランスを調整するためのバランスウエートと一体で形成されている。   Furthermore, in the water pump impeller according to any one of claims 1 to 13 of the present invention, the invention according to claim 14 of the present invention is the reaction force generation plate or the shielding plate. Alternatively, both are integrally formed with a balance weight for adjusting a static or dynamic mechanical balance in the air of the impeller.

また、本発明の請求項1ないし14のいずれか一項に記載の水ポンプ用羽根車において、本発明の請求項15に係る発明は、前記主板と前記蓋との接合部はシール材を用いて封止構成されている。   Further, in the water pump impeller according to any one of claims 1 to 14 of the present invention, the invention according to claim 15 of the present invention uses a sealing material at the joint between the main plate and the lid. The sealing configuration.

請求項1の発明に係る水ポンプ用羽根車によれば、図1ないし図4に示すように水中モータの下端に装着されたポンプケーシングに内装され、水中モータ軸を中心として回転する異物の通過性を重視した一枚羽根または一つの流路を持つ水ポンプ用羽根車において、前記羽根車は水中で回転する際に、該羽根車から吐出される流れに対する流体反力を半径方向の内向きに受け、該羽根車の主板に形成された凹部の中心部分に、水中モータ軸の導下先端部に取付けるためのボス部を設けると共に、前記凹部を覆う蓋を備え、水中において該凹部内に水を導入する該凹部内外を連通する連通路が前記蓋に設けられていると共に、空気中においては該凹部内の水を排出するための水抜き孔が前記蓋に穿設されており、該羽根車の水中での回転に伴って該凹部内を円周方向に移動する水を半径方向の内向きまたは外向きのいずれか一方に変向させることによって半径方向の外向きまたは内向きのいずれか一方の反作用力を受ける反力発生板が該凹部内に設けられ、該羽根車は水中で回転する際に、前記反力発生板によって発生する前記反作用力によって前記流体反力と不均一な容積の該凹部内に導入された水に不均一に作用する遠心力との合力が減殺または相殺されるように構成されていることで、該羽根車外周の一箇所に開口された水流出部から吐出されるため、該吐出反動の流体反力が羽根車の求心方向に作用することに加えて、該凹部内形状が“浅い”と“深い”の夫々容積の異なる部位が軸対称位置に存在することで、羽根車の旋回に伴い該凹部内の不均一な容積内の水には夫々不均一な遠心力と該流体反力の水力的な相乗作用による、該流体反力と該遠心力の水力的アンバランスを、蓋により蓋装された羽根車の凹部内に設けられた反力発生板の水力的な反作用力によって、減殺または相殺されることで振動が抑制されると共に、前記バランスウエートの取付による空気中での前記機械的バランスと水中運転で発生する前記水力的アンバランスの両方を抑制することができ、また特許文献1のような羽根車の外側に本発明の反力発生板に相当する背面および前面補助羽根が凸設露出することがないので、該補助羽根を収容するための不要な空間部を羽根車の上下部に設ける必要がないことから、水中モータ軸方向の寸法を小さく構成することができるので、特にポンプの大型化による余計な製造コストによる製品価格上昇を生じることなく、かつ、水中での羽根車の旋回に伴う軸動力の増加もないことからポンプ効率の低下を生じることもなく、更に汚水に混入した異物等による反力発生板への詰りや絡みによるトラブルが発生し難くなるという利点を有している。   According to the impeller for a water pump according to the first aspect of the present invention, as shown in FIGS. 1 to 4, the passage of a foreign substance that is built in a pump casing attached to the lower end of the submersible motor and rotates about the submersible motor shaft. In an impeller for a water pump having a single blade or a single flow path with an emphasis on performance, when the impeller rotates in water, the fluid reaction force against the flow discharged from the impeller is radially inward. And a boss portion is provided at the central portion of the concave portion formed in the main plate of the impeller and is provided with a boss portion to be attached to the leading end portion of the submerged motor shaft. The lid is provided with a communication path that communicates the inside and outside of the recess for introducing water, and in the air, a drain hole for discharging water in the recess is formed in the lid. As the impeller rotates in water Reaction force generation that receives either a radially outward or inward reaction force by diverting the water moving in the circumferential direction in the concave direction to either the radially inward or outward direction A plate is provided in the recess, and when the impeller rotates in water, the reaction force generated by the reaction force generating plate causes water introduced into the recess to have a volume that is not uniform with the fluid reaction force. Since the resultant force with the centrifugal force acting non-uniformly is reduced or offset, it is discharged from the water outflow portion opened at one location on the outer periphery of the impeller, so that the discharge reaction In addition to the fluid reaction force acting in the centripetal direction of the impeller, there are portions with different volumes of the shallow shape and the deep shape in the recesses in the axially symmetric positions, so that the impeller turns. As a result, water in the non-uniform volume in the recess is not suitable. Reaction force generated in a recess of an impeller covered with a lid, by the hydraulic synergistic action of a single centrifugal force and the fluid reaction force, to generate a hydraulic imbalance between the fluid reaction force and the centrifugal force. Vibration is suppressed by reducing or canceling out by the hydraulic reaction force of the plate, and both the mechanical balance in the air due to the attachment of the balance weight and the hydraulic imbalance that occurs in underwater operation In addition, since the rear and front auxiliary blades corresponding to the reaction force generating plate of the present invention are not projected and exposed outside the impeller as in Patent Document 1, the auxiliary blades are accommodated. Since there is no need to provide unnecessary space for the upper and lower parts of the impeller, the dimensions in the submersible motor axial direction can be reduced. In addition, there is no increase in shaft power associated with the rotation of the impeller in water, so there is no reduction in pump efficiency, and there is no clogging of the reaction force generating plate due to foreign matter mixed in the sewage. It has the advantage that troubles due to entanglement are less likely to occur.

本発明の請求項1に基づいた請求項2の発明に係る水ポンプ用羽根車によれば、図5に示すように前記反力発生板が該凹部内に二つ以上設けられ、前記羽根車は水中で回転する際に、該反力発生板の内少なくとも一つによって発生する前記反作用力によって前記流体反力が減殺または相殺され、該反力発生板の他の少なくとも一つによって発生する該反作用力によって不均一な容積の該凹部内に導入された水に不均一に作用する遠心力が減殺または相殺されるように構成されていることで、該流体反力と該遠心力の夫々の水力的アンバランスに見合った最適な各反作用力が得られることで、振動の抑制効果が極めて大きい。   According to the water pump impeller according to the invention of claim 2 based on claim 1 of the present invention, as shown in FIG. 5, two or more reaction force generating plates are provided in the recess, and the impeller When rotating in water, the reaction force generated by at least one of the reaction force generation plates reduces or cancels the fluid reaction force, and the reaction force generation plate generates at least one of the reaction force generation plates. The centrifugal force acting non-uniformly on the water introduced into the recess of the non-uniform volume by the reaction force is configured to be reduced or offset, so that each of the fluid reaction force and the centrifugal force is Since each optimum reaction force corresponding to the hydraulic imbalance is obtained, the vibration suppressing effect is extremely large.

本発明の請求項1または2に基づいた請求項3と、本発明の請求項1ないし3のいずれか一項に基づいた請求項4の発明に係る水ポンプ用羽根車によれば、図6および図7に示すように前記反力発生板を設けることが可能な浅い部分と深い部分が軸対称位置に存在する前記凹部内において、該凹部の深さがより深い側に該反力発生板が設けられ、また前記流体反力を受ける該羽根車の周面に開口された水流出部の中央高さ位置に対抗するように、前記反力発生板が形成されるように構成されていることで、段落0025『・・図28の羽根車が流体反力Fkおよび反作用力Fhを受ける位置とベアリングBrとの位置関係を示す説明図を用いて説明すると、ベアリングBr「支点」から距離Aを隔てた「作用点」に作用する該流体反力Fkとそれに対抗する「力点」となる抗力Faの関係は、「支点」から「力点」までの距離が距離Aと同一の場合はFk=Faであり、距離Aより短い場合はFk<Faとなり、逆に距離Aより長い場合はFk>Faとなることから、図7に示すようにその水中モータ軸導出方向における設置位置が該流体反力Fkの作用する羽根車の水流出部の中央高さ位置に近ければ近いほど、該流体反力Fkと該凹部内に導入された水に作用する該遠心力Fcの相殺に必要な該抗力Faに相当する反作用力Fhが小さくて済む・・』に記載の如く、「支点」から該流体反力Fkと該遠心力Fcの「作用点」までの距離と同等若しくはそれを越える距離に抗力Faに相当する反作用力Fhを作用させることで、該反作用力Fhを小さくすることができることから、該反力発生板自体を小さく軽量に構成することができるので、半径方向の凹部幅を大きく確保できない羽根車外径の小さな羽根車にも適用できるという効果を有している。   According to the impeller for a water pump according to claim 3 based on claim 1 or 2 of the present invention and the invention of claim 4 based on any one of claims 1 to 3 of the present invention, FIG. As shown in FIG. 7, the reaction force generation plate is provided on the deeper side of the recess in the recess where the shallow portion and the deep portion where the reaction force generation plate can be provided exist in the axially symmetric position. And the reaction force generating plate is formed so as to oppose the center height position of the water outflow portion opened in the peripheral surface of the impeller that receives the fluid reaction force. Thus, paragraph 0025 “..., Using the explanatory diagram showing the positional relationship between the bearing Br and the position where the impeller in FIG. 28 receives the fluid reaction force Fk and the reaction force Fh, the distance A from the bearing Br“ fulcrum ” The fluid reaction force Fk acting on the “action point” separated by When the distance from the “fulcrum” to the “power point” is the same as the distance A, Fk = Fa, and when the distance is shorter than the distance A, Fk <Fa. On the contrary, when it is longer than the distance A, since Fk> Fa, as shown in FIG. 7, the center position of the water outflow portion of the impeller on which the fluid reaction force Fk acts is the installation position in the submerged motor shaft lead-out direction. The closer to the position, the smaller the reaction force Fh corresponding to the reaction force Fa necessary for canceling out the fluid reaction force Fk and the centrifugal force Fc acting on the water introduced into the recess. As described, the reaction force Fh corresponding to the drag Fa is applied to a distance equal to or exceeding the distance from the “fulcrum” to the “action point” of the fluid reaction force Fk and the centrifugal force Fc. Because the force Fh can be reduced It is possible to configure a small lightweight reaction force generating plate itself has the effect that can be applied to a small impeller of the impeller outer diameter that can not secure a large radial recess width.

本発明の請求項1ないし4のいずれか一項に基づいた請求項5の発明に係る水ポンプ用羽根車によれば、図8に示すように前記反力発生板の水平断面形状は、該羽根車の水中での回転に伴って該凹部内を円周方向に移動する水を半径方向の内向きまたは外向きのいずれか一方に変向させる側である変向側側壁の流れ方向長さに対して反対側の裏側側壁の方が長い翼断面形状に形成されるように構成されていることで、段落0026『・・該反力発生板の該羽根車回転方向の上流側端部から下流側端部へ流れる水の経路差により変向側側壁に比べて裏側側壁の流速が速くなるので裏側側壁の圧力が低下して該反力発生板の両側壁間に圧力差が生じて流入速度と流出速度との幾何平均速度の方向に垂直な分力であるJISB0131の用語の番号8162に定義される「揚力」が発生するため、その「揚力」の分だけ、該反力発生板によって発生する反作用力を大きくすることができる・・』の記載の如く、前記段落0049の請求項3と4の発明と同様に、該反力発生板を小さく構成することができるので、半径方向の凹部幅を大きく確保できない羽根車外径の小さな羽根車にも適用できるという効果を有している。   According to the impeller for a water pump according to the invention of claim 5 based on any one of claims 1 to 4 of the present invention, as shown in FIG. The flow direction length of the direction change side wall which is the side that changes the water moving in the circumferential direction in the concave portion in accordance with the rotation of the impeller in water either inward or outward in the radial direction. The rear side wall on the opposite side is formed so as to have a longer blade cross-sectional shape, so that the paragraph 0026 “·· from the upstream end of the reaction force generating plate in the impeller rotation direction The flow rate of the back side wall becomes faster than the direction side wall due to the difference in the path of the water flowing to the downstream end, so the pressure on the back side wall decreases and a pressure difference occurs between the both side walls of the reaction force generating plate. The number of the term in JIS B 0131 which is a component force perpendicular to the direction of the geometric mean velocity of velocity and outflow velocity Since the “lifting force” defined in 162 is generated, the reaction force generated by the reaction force generating plate can be increased by the amount of the “lifting force”. As in the inventions of Items 3 and 4, since the reaction force generating plate can be made small, it has an effect that it can be applied to an impeller with a small outer diameter of the impeller that cannot secure a large recess width in the radial direction. Yes.

本発明の請求項1ないし5のいずれか一項に基づいた請求項6の発明に係る水ポンプ用羽根車によれば、図9に示すように前記反力発生板の該羽根車の水中での回転に伴って該凹部内を円周方向に移動する水を半径方向の内向きまたは外向きのいずれか一方に変向させる側である変向側側壁全面の取付角が、該羽根車の水中での回転に伴って該凹部内を円周方向に移動する水の流れに対して45°の傾きをもって形成されるように構成されていることで、段落0027『・・図31に示されるように該凹部内を円周方向に移動する水の流れに対する前記反力発生板の取付角θが0°および90°(遮蔽)の時は半径方向の反作用力Fhは発生せず、前記取付角θが45°のときに最大値をとるので、該羽根車の水中での回転に伴って該凹部内を円周方向に移動する水に対して前記取付角θを45°の傾きをもって形成すれば、該反力発生板を必要最小限の大きに形成することができる・・』の記載の如く、前記段落0049と0050の請求項3ないし5の発明と同様に、該反力発生板を小さく構成することができるので、半径方向の凹部幅を大きく確保できない羽根車外径の小さな羽根車にも適用できるという効果を有している。   According to the impeller for water pumps of the invention of claim 6 based on any one of claims 1 to 5 of the present invention, as shown in FIG. The mounting angle of the entire side wall of the turning side, which is the side that turns the water that moves in the circumferential direction in the concave portion in accordance with the rotation of the turning direction, either inward or outward in the radial direction, It is configured to be formed with an inclination of 45 ° with respect to the flow of water moving in the circumferential direction in the concave portion as it rotates in water. Thus, when the mounting angle θ of the reaction force generating plate with respect to the flow of water moving in the circumferential direction in the recess is 0 ° and 90 ° (shielding), no radial reaction force Fh is generated and the mounting Since the maximum value is obtained when the angle θ is 45 °, a circle is formed in the recess as the impeller rotates in water. If the mounting angle θ is formed with an inclination of 45 ° with respect to the water moving in the direction, the reaction force generating plate can be formed to the minimum necessary size. Since the reaction force generating plate can be made small in the same manner as in the inventions of claims 3 to 5 of 0050 and 0050, it can be applied to an impeller with a small outer diameter of the impeller that cannot secure a large radial recess width. have.

本発明の請求項1ないし6のいずれか一項に基づいた請求項7の発明に係る水ポンプ用羽根車によれば、図10ないし図12に示すように前記反力発生板の該羽根車回転方向の上流側端部が前記反力発生板の前記凹部底面または蓋背面の取付面から反取付面に向かって該羽根車回転方向の下流側に向かって傾斜されるように構成されていることで、該羽根車の水中での回転に伴って該凹部内を円周方向に移動する水の水勢による押し流し作用により、水に含まれる軟弱異物が前記反力発生板に絡まるのを抑制することができるので、異物の絡み付きや閉塞に起因した故障もなく、安定的に振動の低減が維持できるという効果を奏する。   According to the impeller for a water pump according to the invention of claim 7 based on any one of claims 1 to 6 of the present invention, the impeller of the reaction force generating plate as shown in FIGS. 10 to 12. The upstream end portion in the rotational direction is configured to be inclined toward the downstream side in the impeller rotational direction from the mounting surface on the bottom surface of the recess or the back surface of the lid of the reaction force generation plate toward the counter mounting surface. Thus, the soft foreign matter contained in the water is prevented from being entangled with the reaction force generating plate due to the flushing action of the water that moves in the circumferential direction in the recess as the impeller rotates in the water. As a result, there is no failure due to entanglement or blockage of foreign matter, and there is an effect that vibration reduction can be stably maintained.

本発明の請求項1ないし7のいずれか一項に基づいた請求項8の発明に係る水ポンプ用羽根車によれば、図13および図14に示すように 前記羽根車の水中での回転に伴って該凹部内を円周方向に移動する水を半径方向の内向きに変向させることによって、半径方向の外向きの反作用力を受ける前記反力発生板の該羽根車回転方向の上流側端部が前記凹部外周壁に接続されるか、または、該羽根車の水中での回転に伴って該凹部内を円周方向に移動する水を半径方向の外向きに変向させることによって、半径方向の内向きの反作用力を受ける前記反力発生板の該羽根車回転方向の上流側端部が前記ボス部外側壁に接続されるように構成されていることで、水に含まれる軟弱異物が絡まり易い凸部および該軟弱異物が詰りやすい隙間を前記反力発生板の該羽根車回転方向の上流側端部から無くすことができるので、前記反力発生板への該軟弱異物の絡みおよび詰りを抑制することができるると共に、該凹部内を円周方向に移動する水を効率良く円滑に該反力発生板へ誘導することができるので、無駄なく大きな反作用力を発生することができるとから、該反力発生板を小さくすることができるので、前記段落0052の請求項7発明の異物の絡み付きや閉塞に起因した故障もなく、安定的に振動の低減が維持できる効果に加えて、前記段落0049ないし0051の請求項3ないし6発明の、該反力発生板を小さく構成することができるので、半径方向の凹部幅を大きく確保できない羽根車外径の小さな羽根車にも適用できるという効果を有している。   According to the impeller for a water pump according to the invention of claim 8 based on any one of claims 1 to 7 of the present invention, as shown in FIGS. 13 and 14, the impeller can be rotated in water. Accordingly, the water moving in the circumferential direction in the recess is redirected inward in the radial direction, whereby the reaction force generating plate receiving the reaction force in the radial direction is upstream in the impeller rotation direction. The end portion is connected to the outer peripheral wall of the concave portion, or the water that moves in the circumferential direction in the concave portion with the rotation of the impeller in water is diverted outward in the radial direction, The upstream end portion of the reaction force generating plate that receives an inward reaction force in the radial direction is connected to the outer wall of the boss portion so that the soft force contained in water The convex portion where the foreign matter tends to get entangled and the gap where the soft foreign matter tends to be clogged are Since it can be eliminated from the upstream end of the generating plate in the rotational direction of the impeller, it is possible to suppress the entanglement and clogging of the soft foreign matter to the reaction force generating plate, and to move the inside of the recess in the circumferential direction. Since water that moves to the reaction force generating plate can be efficiently and smoothly guided to the reaction force generation plate, a large reaction force can be generated without waste, so the reaction force generation plate can be made smaller. In addition to the effect that the vibration can be stably reduced without failure due to the entanglement or blockage of the foreign matter according to claim 7 of the paragraph 0052, the reaction of the invention according to claims 3 to 6 of the paragraphs 0049 to 0051 described above. Since the force generating plate can be made small, it has an effect that it can be applied to an impeller with a small outer diameter of the impeller that cannot secure a large concave portion width in the radial direction.

本発明の請求項1ないし7に基づいた請求項9の発明に係る水ポンプ用羽根車によれば、図15および図16に示すように、前記反力発生板を、該羽根車の水中での回転に伴って該凹部内を円周方向に移動する水を半径方向の内向きに変向させることによって半径方向の外向きの反作用力を受ける反力発生板と、該羽根車の水中での回転に伴って該凹部内を円周方向に移動する水を半径方向の外向きに変向させることによって半径方向の内向きの反作用力を受ける反力発生板に2分割させた、各反力発生板を水中モータ軸に対して180°位置に設けられるように構成されていることで、該反力発生板を軸対称に2分割しても同じ方向の反作用力を発生させることが出来るので、該凹部外周径が小さくても必要な大きさの反作用力を発生させる該反力発生板を該羽根車に設けることが可能となるので、より外径の小さな該羽根車にも該反力発生板を設置することができると共に、2分割後の該反力発生板を分割前と同じ大きさで形成することで、より大きな該流体反力や該凹部内に導入された水に作用する該遠心力を相殺することが可能となることから、前記段落0050ないし0052と0054の請求項3ないし6と8発明の、該反力発生板を小さく構成することができるので、半径方向の凹部幅を大きく確保できない羽根車外径の小さな羽根車にも適用できるという効果に加えて、大きな該流体反力や該遠心力の発生する例えばJISB0131の用語の番号1324に定義され付図12に示されるような「スクリューインペラ渦巻ポンプ」のスクリュー形状の羽根車にも容易に対応できる利点を有している。   According to the impeller for a water pump according to the ninth aspect of the present invention based on the first to seventh aspects of the present invention, as shown in FIGS. 15 and 16, the reaction force generating plate is placed in the water of the impeller. A reaction force generating plate that receives an outward reaction force in the radial direction by diverting the water moving in the circumferential direction in the concave portion in accordance with the rotation of Each of the reaction plates is divided into two reaction force generating plates that receive a reaction force in the radial direction by turning the water that moves in the circumferential direction in the recesses in the radial direction with the rotation of Since the force generating plate is provided at a position of 180 ° with respect to the submersible motor shaft, the reaction force in the same direction can be generated even if the reaction force generating plate is divided into two axially symmetrically. Therefore, even if the outer diameter of the recess is small, the reaction force of the required size is generated. Since the reaction force generation plate can be provided on the impeller, the reaction force generation plate can be installed also on the impeller having a smaller outer diameter, and the reaction force generation plate after being divided into two parts By forming the same size as before the division, it is possible to cancel out the larger fluid reaction force and the centrifugal force acting on the water introduced into the recess. According to claims 3 to 6 and 8 of the inventions of 0054, the reaction force generating plate can be made small, so that it can be applied to an impeller with a small outer diameter of the impeller that cannot secure a large radial recess width. In addition, a screw-type impeller of a “screw impeller centrifugal pump” as defined in FIG. It has the advantage that it can cope with.

本発明の請求項1ないし8のいずれか一項に基づいた請求項10の発明に係る水ポンプ用羽根車によれば、図17に示すように前記反力発生板を、該羽根車の水中での回転に伴って該凹部内を円周方向に移動する水を半径方向の内向きに変向させることによって半径方向の外向きの反作用力を受ける反力発生板と、該羽根車の水中での回転に伴って該凹部内を円周方向に移動する水を半径方向の外向きに変向させることによって半径方向の内向きの反作用力を受ける反力発生板に2分割させた、各反力発生板を水中モータ軸に対して180°に振り分けて半径距離を異ならせて設けられるように構成されていることで、前記段落0054の請求項9発明と同様の効果を奏する。   According to the impeller for a water pump according to the invention of claim 10 based on any one of claims 1 to 8 of the present invention, as shown in FIG. A reaction force generating plate that receives an outward reaction force in the radial direction by diverting water moving in the circumferential direction in the concave portion in the radial direction along with the rotation of Each of the reaction force generating plates that receive the reaction force in the radial direction is divided into two by changing the water moving in the circumferential direction in the recesses in the radial direction along with the rotation of By arranging the reaction force generating plate at 180 ° with respect to the submersible motor shaft so as to have different radial distances, the same effect as that of the ninth invention of the above paragraph 0054 can be obtained.

本発明の請求項1ないし10のいずれか一項に基づいた請求項11の発明に係る水ポンプ用羽根車によれば、図18ないし図20に示すように前記反力発生板が該羽根車または前記蓋或いは双方に取り外して交換可能に構成されていることで、実際にポンプを設置する現場での実運転吐出し量に合わせた最適な形状および設置位置の該反力発生板に取り替えて該羽根車に装備させることが可能となるので、該反力発生板による該流体反力の減殺量が大きくなって略相殺できるので、より振動を低減することができるという効果を有している。   According to an impeller for a water pump according to an eleventh aspect of the present invention based on any one of the first to tenth aspects of the present invention, as shown in FIGS. Or, it can be removed and replaced on the lid or both, so that it can be replaced with the reaction force generating plate with the optimum shape and installation position according to the actual operation discharge amount at the site where the pump is actually installed. Since the impeller can be equipped, the amount of fluid reaction force killed by the reaction force generating plate is increased and can be substantially canceled out, so that vibration can be further reduced. .

本発明の請求項1ないし11のいずれか一項に基づいた請求項12の発明に係る水ポンプ用羽根車によれば、図21ないし図23に示すように示されるように前記凹部は該羽根車回転方向の下流に向かって該凹部の深さが連続的に浅くなった後に、前記浅くなる勾配に比べて急激に深くなる形状を有し、該羽根車の水中での回転に伴って前記凹部内を円周方向に移動する水の勢いを抑制する遮蔽板を該凹部外周壁より水中モータ軸の中心方向に向かって凸設されると共に、その内周側端部が該凹部外周と前記ボス部外周間の中間径以下となる位置まで伸びて形成され、前記遮蔽板の該羽根車回転方向の上流側側壁は該凹部内を円周方向に移動する水の流れに対して該中間径において該羽根車回転方向に対して前記浅くなる勾配から急激に深くなる形状最深部の落込側壁面における該中間径との交点位置を0°とし、該羽根車回転方向の上流側90°以下の範囲に該遮蔽板の該上流側側壁が位置するように形成されていることで、前記段落0024『・・図29に示されるように位置A,位置B,位置C,位置Dのような円周方向位置に、該遮蔽板を一ヶ所設けてそれぞれの構成における振動値を測定する際に、該遮蔽板を設ける円周方向位置は、図29と図30に示すように該急激に深くなる形状最深部の落込側壁面4oにおける凹部外周径φDoとボス部外径φDb間の中間径φDmとの交点4m位置Aを基準として90°毎に設置すると共に、該羽根車の水中での回転に伴って該凹部内を円周方向に移動する水が衝突する該遮蔽板の該羽根車回転方向の上流側側壁は、余計な反作用力が生じないように該凹部内を円周方向に移動する水に対して略直角に各位置毎に形成しながら、各々位置における振動値を計測した結果、位置A<位置D<位置B<位置Cの順に振動値が低減することが判明したことで、段落0013および図22に示すように急激に深くなる部位においては流路が楔状から急拡大されているため水の流れが拡大されて減圧されることに加えて、流れが拡大凹部の落込側壁面から剥離することで該凹部に低圧が発生する相乗の低圧作用を抑制させる、位置Aから90°上流側の位置Dの範囲に遮蔽板を設置することが好ましく、図23に示すように遮蔽板と反力発生板を併設することで、反力発生板のみを設置した場合に比べて、該遮蔽板を併設した方が振動値が小さくなり、反力発生板と遮蔽板の振動低減効果が相乗的に作用・・』の記載の如く、該羽根車回転方向の下流に向かって該凹部の深さが連続的に浅くなった後に、前記浅くなる勾配から急激に深くなる形状を有する、例えばブレードレスポンプ用の羽根車においても、前記軸方向スラストの発生を効率良く抑制して振動を効果的に低減できると共に、前記反力発生板の効果を相乗的に作用させることができるので、振動を極めて低減し得るという効果を有している。   According to the water pump impeller of the twelfth aspect of the present invention based on any one of the first to eleventh aspects of the present invention, as shown in FIGS. After the depth of the concave portion continuously decreases toward the downstream in the vehicle rotation direction, the shape has a shape that becomes sharply deeper than the shallow gradient, and the rotation of the impeller in water A shielding plate that suppresses the momentum of the water moving in the circumferential direction in the concave portion is protruded from the outer peripheral wall of the concave portion toward the center of the underwater motor shaft, and the inner peripheral side end portion thereof The upstream side wall of the shielding plate in the rotational direction of the impeller is formed so as to extend to a position equal to or less than the intermediate diameter between the outer circumferences of the boss portions, and the intermediate diameter with respect to the flow of water moving in the circumferential direction in the recess. Suddenly deeper from the shallower gradient with respect to the direction of rotation of the impeller The point of intersection with the intermediate diameter on the falling side wall surface of the deepest part of the shape is 0 °, and the upstream side wall of the shielding plate is located in the range of 90 ° or less upstream in the impeller rotation direction. Thus, in the respective paragraphs, the shielding plates are provided at the circumferential positions such as the position A, the position B, the position C and the position D as shown in FIG. When the vibration value is measured, the circumferential position where the shielding plate is provided is as follows. As shown in FIGS. 29 and 30, the outer peripheral diameter φDo of the recess on the falling side wall surface 4o of the deepest shape and the outside of the boss portion This is installed every 90 ° with respect to the intersection 4m position A with the intermediate diameter φDm between the diameters φDb, and the water that moves in the circumferential direction collides with the rotation of the impeller in water as the impeller rotates in the water. The upstream side wall of the shielding plate in the direction of rotation of the impeller is an extra reaction. As a result of measuring the vibration value at each position while being formed at each position substantially perpendicular to the water moving in the circumferential direction in the recess so as not to occur, position A <position D <position B <position Since it has been found that the vibration value decreases in the order of C, the flow of water is expanded from the wedge shape at the portion where the vibration value suddenly deepens as shown in paragraph 0013 and FIG. In addition to that, the flow is separated from the falling side wall surface of the enlarged concave portion to suppress a synergistic low pressure action that generates a low pressure in the concave portion. It is preferable to install the shielding plate and the reaction force generation plate as shown in FIG. 23, and the vibration value is higher when the shielding plate is provided than when only the reaction force generation plate is installed. Reduced vibration reduction of reaction force generation plate and shielding plate As the description of `` the effect of the effect synergistically ... '', after the depth of the concave portion is continuously reduced toward the downstream in the rotation direction of the impeller, the shape has a shape that becomes deeper from the decreasing gradient. For example, even in an impeller for a bladeless pump, the generation of the axial thrust can be efficiently suppressed and vibrations can be effectively reduced, and the effect of the reaction force generation plate can be made to act synergistically. The vibration can be extremely reduced.

本発明の請求項1ないし4および6と10のいずれか一項に基づいた請求項13の発明に係る水ポンプ用羽根車によれば、図24に示されるように前記凹部は該羽根車回転方向の下流に向かって該凹部の深さが連続的に浅くなった後に、前記浅くなる勾配に比べて急激に深くなる形状を有し、該羽根車の水中での回転に伴って該凹部内を円周方向に移動する水を半径方向の内向きに変向させることによって半径方向の外向きの反作用力を受けることで前記流体反力または該凹部内に導入された水に作用する遠心力のいずれか一方または両方を減殺または相殺されるように構成されている前記反力発生板の上流側端部が前記凹部外周壁に接続されると共に、その下流側端部が該凹部外周と前記ボス部外周間の中間径以下となる位置まで伸びて形成され、該中間径において該羽根車回転方向に対して前記浅くなる勾配から急激に深くなる形状最深部の落込側壁面における該中間径との交点位置を0°とし、該羽根車回転方向の上流側90°以下の範囲に該反力発生板の前記下流側端部が位置するように形成されていることで、前記段落0057の請求項12発明と同様の効果を奏する。   According to the impeller for a water pump according to the invention of claim 13 based on any one of claims 1 to 4 and 6 and 10 of the present invention, as shown in FIG. After the depth of the concave portion is continuously reduced toward the downstream in the direction, the concave portion has a shape that becomes sharply deeper than the shallow gradient, and the inside of the concave portion is rotated as the impeller rotates in water. The centrifugal force acting on the fluid reaction force or the water introduced into the recess by receiving the reaction force in the radial direction by turning the water moving in the circumferential direction inward in the radial direction An upstream end of the reaction force generating plate configured to reduce or cancel either one or both of the two is connected to the recess outer peripheral wall, and a downstream end thereof is connected to the outer periphery of the recess. Extends to a position that is less than or equal to the intermediate diameter between the boss outer circumferences In the intermediate diameter, the intersection position with the intermediate diameter on the falling side wall surface of the deepest part of the shape that sharply deepens from the shallow gradient with respect to the impeller rotation direction is 0 °, and the upstream of the impeller rotation direction By forming the downstream end portion of the reaction force generating plate in a range of 90 ° or less on the side, the same effect as that of the invention of claim 12 of the paragraph 0057 is achieved.

本発明の請求項1ないし13のいずれか一項に基づいた請求項14の発明に係る水ポンプ用羽根車によれば、図25に示されるように前記反力発生板または前記遮蔽板のいずれか一方或いは双方が、該羽根車の空気中における静的または動的な機械的バランスを調整するためのバランスウエートと一体で形成されていることで、前記段落0030に記載の如く、該凹部内をシンプルかつコンパクトに形成することが可能となるので、異物の詰りや絡みをさらに抑制すると共に、羽根車の軽量化および製作が容易となるという効果を有している。   According to the water pump impeller of the fourteenth aspect of the present invention based on any one of the first to thirteenth aspects of the present invention, as shown in FIG. 25, either the reaction force generating plate or the shielding plate. One or both of them are formed integrally with a balance weight for adjusting a static or dynamic mechanical balance in the air of the impeller as described in paragraph 0030 above. Can be formed in a simple and compact manner, so that the clogging and entanglement of foreign matters can be further suppressed, and the impeller can be reduced in weight and manufactured easily.

本発明の請求項1ないし14のいずれか一項に基づいた請求項15の発明に係る水ポンプ用羽根車によれば、図1に示されるように前記主板と前記蓋との接合部はシール材を用いて封止構成されていることで、一度該凹部内が水で満たされると、それ以上水は浸入できないので、該凹部内への異物堆積などの異物に起因した故障がなくなることで、極めて安定的に振動防止が維持し得るとういう効果を有している。   According to the water pump impeller of the invention of claim 15 based on any one of claims 1 to 14 of the present invention, the joint between the main plate and the lid is sealed as shown in FIG. Since the recess is filled with water, once the inside of the recess is filled with water, water cannot enter any more, so there is no failure due to foreign matters such as foreign matter accumulation in the recess. It has the effect that vibration prevention can be maintained extremely stably.

本発明の実施例1ないし15の水ポンプ用羽根車を備えた水中モータポンプの構成を示した縦断側面図である。It is the vertical side view which showed the structure of the submersible motor pump provided with the impeller for water pumps of Examples 1 to 15 of the present invention. 図1のS1−S1線における、本発明の実施例1ないし15の水ポンプ用羽根車を示す断面矢視図である。It is a cross-sectional arrow line view which shows the impeller for water pumps of Example 1 thru | or 15 of this invention in the S1-S1 line | wire of FIG. 図2における、本発明の実施例1の凹部に反力発生板を設けた態様の、水ポンプ用羽根車の蓋を取り外した状態を示す平面図である。It is a top view which shows the state which removed the cover of the impeller for water pumps of the aspect which provided the reaction force generation board in the recessed part of Example 1 of this invention in FIG. 図3のS2−S2線における、本発明の実施例1の水ポンプ用羽根車の蓋を取付けた断面矢視図である。FIG. 5 is a cross-sectional view taken along the line S2-S2 of FIG. 図2における、本発明の実施例2の凹部に分割反力発生板を設けた態様の、水ポンプ用羽根車の蓋を取り外した状態を示す平面図である。It is a top view which shows the state which removed the cover of the impeller for water pumps of the aspect which provided the division | segmentation reaction force generation | occurrence | production board in the recessed part of Example 2 of this invention in FIG. 図2における、本発明の実施例3の凹部の深さがより深い側に反力発生板を設けた態様の、水ポンプ用羽根車の蓋を取り外した状態を示す平面図である。It is a top view which shows the state which removed the cover of the impeller for water pumps of the aspect which provided the reaction force generation | occurrence | production board in the side where the depth of the recessed part of Example 3 of this invention in FIG. 2 is deeper. 図6のS3−S3線における、本発明の実施例4の羽根車の水流出部の中央高さ位置に対抗するように反力発生板を設けた態様の、水ポンプ用羽根車の蓋を取付けた断面矢視図である。The water pump impeller cover in the aspect in which the reaction force generation plate is provided so as to oppose the center height position of the water outflow portion of the impeller according to the fourth embodiment of the present invention in the S3-S3 line of FIG. It is the attached cross-sectional arrow view. 図2における、本発明の実施例5の反力発生板を翼断面形状に形成した、水ポンプ用羽根車の蓋を取り外した状態を示す平面図である。It is a top view which shows the state which removed the cover of the impeller for water pumps which formed the reaction force generation board of Example 5 of this invention in FIG. 2 in the blade cross-sectional shape. 図2における、本発明の実施例6の反力発生板の変向側側壁全面の取付角を水の流れに対して45°の傾きをもって形成させた、水ポンプ用羽根車の蓋を取り外した状態を示す平面図である。In FIG. 2, the cover of the impeller for water pump, in which the mounting angle of the entire side wall on the direction of change side of the reaction force generation plate of Example 6 of the present invention is inclined at 45 ° with respect to the flow of water, is removed. It is a top view which shows a state. 図2における、本発明の実施例7の反力発生板の羽根車回転方向の上流側端部を下流側に傾斜させた態様の、水ポンプ用羽根車の蓋を取り外した状態を示す平面図である。The top view which shows the state which removed the cover of the impeller for water pumps of the aspect which inclined the upstream edge part of the impeller rotation direction of the reaction force generation board of Example 7 of this invention in FIG. 2 to the downstream. It is. 図10のS4−S4線における、本発明の実施例7の反力発生板を凹部底面に立設させた態様の、水ポンプ用羽根車の要部断面矢視図である。It is the principal part cross-sectional arrow view of the impeller for water pumps of the aspect which made the reaction force generation board of Example 7 of this invention stand in the recessed part bottom surface in the S4-S4 line of FIG. 図10のS4−S4線における、本発明の実施例7の反力発生板を蓋背面に垂設させた態様の、水ポンプ用羽根車の要部断面矢視図である。It is the principal part cross-sectional arrow view of the impeller for water pumps of the aspect which made the reaction force generation board of Example 7 of this invention suspended from the cover back surface in the S4-S4 line | wire of FIG. 図2における、本発明の実施例8の反力発生板の羽根車回転方向の上流側端部を凹部外周壁に接続させた態様の、水ポンプ用羽根車の蓋を取り外した状態を示す平面図である。The plane which shows the state which removed the lid | cover of the impeller for water pumps of the aspect which connected the upstream edge part of the impeller rotation direction of the reaction force generation plate of Example 8 of this invention to the recessed part outer peripheral wall in FIG. FIG. 図2における、本発明の実施例8の他の事例の反力発生板の羽根車回転方向の上流側端部をボス部外側壁に接続させた態様の、水ポンプ用羽根車の蓋を取り外した状態を示す平面図である。In FIG. 2, the lid of the water pump impeller in a mode in which the upstream end of the reaction force generating plate of the eighth embodiment of the present invention in the rotating direction of the impeller is connected to the outer wall of the boss is removed. It is a top view which shows the state. 図2における、本発明の実施例9の2分割させた各反力発生板を水中モータ軸に対して180°位置に設けた態様の、水ポンプ用羽根車の蓋を取り外した状態を示す平面図である。The plane which shows the state which removed the cover of the impeller for water pumps of the aspect which provided each reaction force generation | occurrence | production plate divided into 2 of Example 9 of this invention in the position of 180 degrees with respect to the submersible motor shaft in FIG. FIG. 図2における、本発明の実施例9の他の事例の実施例2の分割反力発生板を更に水中モータ軸に対して180°位置に分割させた態様の、水ポンプ用羽根車の蓋を取り外した状態を示す平面図である。In FIG. 2, the lid of the impeller for a water pump in which the split reaction force generating plate of the second embodiment of the ninth embodiment of the present invention is further divided into 180 ° positions with respect to the submersible motor shaft. It is a top view which shows the state removed. 図2における、本発明の実施例10の2分割させた各反力発生板を水中モータ軸に対して180°に振り分けて半径距離を異ならせて設けた態様の、水ポンプ用羽根車の蓋を取り外した状態を示す平面図である。In FIG. 2, the lid of the water pump impeller according to the embodiment in which the two reaction force generation plates of the tenth embodiment of the present invention are provided at 180 ° with respect to the submersible motor shaft so as to have different radial distances. It is a top view which shows the state which removed. 図2における、本発明の実施例11の反力発生板を取り外して交換可能に設けた態様の、水ポンプ用羽根車の蓋を取り外した状態を示す平面図である。It is a top view which shows the state which removed the cover of the impeller for water pumps of the aspect which removed and provided the reaction force generation board of Example 11 of this invention in FIG. 図18のS5−S5線における、本発明の実施例11の反力発生板を凹部底面に立設させた態様の、水ポンプ用羽根車の断面矢視図である。It is the cross-sectional arrow view of the impeller for water pumps of the aspect which made the reaction force generation board of Example 11 of this invention standing at the recessed part bottom surface in the S5-S5 line | wire of FIG. 図18のS5−S5線における、本発明の実施例11の他の事例の反力発生板を蓋背面に垂設させた態様の、水ポンプ用羽根車の断面矢視図である。It is the cross-sectional arrow view of the impeller for water pumps of the aspect which suspended the reaction force generation | occurrence | production board of the other example of Example 11 of this invention in the back surface of the lid | cover in the S5-S5 line | wire of FIG. 図2のS6−S6線における、本発明の水ポンプ用羽根車の凹部が羽根車回転方向の下流に向かって凹部の深さが連続的に浅くなる状態を説明する断面矢視図である。FIG. 6 is a cross-sectional arrow view illustrating a state in which the concave portion of the water pump impeller of the present invention continuously decreases in depth toward the downstream in the impeller rotation direction in the S6-S6 line of FIG. 2. 図2のS7−S7線における、本発明の水ポンプ用羽根車の凹部が羽根車回転方向の下流に向かって凹部の深さが連続的に浅くなる勾配から急激に深くなる状態を説明する断面矢視図と蓋を取り外した状態の平面図とによって、遮蔽板の取付範囲を説明するたの説明図である。2 is a cross-sectional view illustrating a state in which the concave portion of the water pump impeller according to the present invention suddenly becomes deeper from the gradient in which the depth of the concave portion continuously decreases toward the downstream side in the impeller rotating direction in the line S7-S7 in FIG. It is explanatory drawing for demonstrating the attachment range of a shielding board with the arrow view and the top view of the state which removed the cover. 図2における、本発明の実施例12の遮蔽板と反力発生板を設けた態様の、水ポンプ用羽根車の蓋を取り外した状態を示す平面図である。It is a top view which shows the state which removed the cover of the impeller for water pumps of the aspect which provided the shielding board and reaction force generation | occurrence | production board of Example 12 of this invention in FIG. 図2における、本発明の実施例13の遮蔽板の機能を具備させた反力発生板を設けた、水ポンプ用羽根車の蓋を取り外した状態を示す平面図である。It is a top view which shows the state which removed the cover of the impeller for water pumps which provided the reaction force generation board which comprised the function of the shielding board of Example 13 of this invention in FIG. 図2における、本発明の実施例14の反力発生板と遮蔽板の双方をバランスウエートと一体に形成させた態様の、水ポンプ用羽根車の蓋を取り外した状態を示す平面図である。It is a top view which shows the state which removed the lid | cover of the impeller for water pumps of the aspect which formed both the reaction force generation board and shielding board of Example 14 of this invention in FIG. 2 with the balance weight. 本発明の反力発生板が該凹部内を円周方向に移動する水を半径方向の外向きに変向させることによって、半径方向の内向きの反作用力を受ける状態を示す説明図である。It is explanatory drawing which shows the state which receives the reaction force of a radial inward by the reaction force generation | occurrence | production board of this invention turning the water which moves the inside of this recessed part in the circumferential direction to a radial outward. 本発明の反力発生板が該凹部内を円周方向に移動する水を半径方向の内向きに変向させることによって、半径方向の外向きの反作用力を受ける状態を示す説明図である。It is explanatory drawing which shows the state which receives the reaction force of a radial outward by the reaction force generation | occurrence | production board of this invention turning the water which moves the inside of this recessed part in the circumferential direction in the radial direction. 先行技術である特許文献1における、羽根車が流体反力および反作用力を受ける位置とベアリングとの位置関係を示す説明図である。It is explanatory drawing which shows the positional relationship of the position and the bearing which the impeller receives the fluid reaction force and reaction force in patent document 1 which is a prior art. 本発明の遮蔽板の検証を説明するための説明図である。It is explanatory drawing for demonstrating verification of the shielding board of this invention. 図29のS8−S8線における、本発明の遮蔽板と凹部形状との関係を示した断面矢視図である。It is the cross-sectional arrow figure which showed the relationship between the shielding board of this invention, and a recessed part shape in the S8-S8 line | wire of FIG. 本発明の反力発生板の取付角と発生する反作用力との関係を示す説明図である。It is explanatory drawing which shows the relationship between the attachment angle of the reaction force generation board of this invention, and the reaction force to generate | occur | produce.

以下、本発明の水中モータの下端に装着されたポンプケーシングに内装され、水中モータ軸を中心として回転する異物の通過性を重視した一枚羽根または一つの流路を持つ水ポンプ用羽根車において、前記羽根車は水中で回転する際に、該羽根車から吐出される流れに対する流体反力を半径方向の内向きに受け、該羽根車の主板に形成された凹部の中心部分に、水中モータ軸の導下先端部に取付けるためのボス部を設けると共に、前記凹部を覆う蓋を備え、水中において該凹部内に水を導入する該凹部内外を連通する連通路が前記蓋に設けられていると共に、空気中においては該凹部内の水を排出するための水抜き孔が前記蓋に穿設されており、該羽根車の水中での回転に伴って該凹部内を円周方向に移動する水を半径方向の内向きまたは外向きのいずれか一方に変向させることによって半径方向の外向きまたは内向きのいずれか一方の反作用力を受ける反力発生板が該凹部内に設けられ、該羽根車は水中で回転する際に、前記反力発生板によって発生する前記反作用力によって前記流体反力と該凹部内に導入された水に作用する遠心力との合力が減殺または相殺されるように構成される実施形態として、以下の如く本願発明の実施例に基づき、図面を参照して詳細に説明するが、この実施例の形態により本発明が限定されるものではない。   Hereinafter, in the impeller for a water pump having a single blade or one flow passage, which is built in a pump casing attached to the lower end of the submersible motor of the present invention and places importance on the passage of foreign matters rotating around the submersible motor shaft. When the impeller rotates in water, it receives a fluid reaction force against the flow discharged from the impeller inward in the radial direction, and a submersible motor is provided in the central portion of the recess formed in the main plate of the impeller. A boss portion is provided to be attached to the leading end portion of the shaft, and a lid that covers the concave portion is provided, and a communication path that communicates the inside and outside of the concave portion for introducing water into the concave portion in water is provided in the lid. In addition, in the air, a drain hole for discharging water in the recess is formed in the lid, and the inside of the recess moves in the circumferential direction as the impeller rotates in water. Water inward or outward in the radial direction When the impeller rotates in water, a reaction force generating plate that receives a reaction force in either the outward or inward direction in the radial direction by being changed to one of the two is provided in the recess. As an embodiment configured to reduce or cancel the resultant force of the fluid reaction force and the centrifugal force acting on the water introduced into the recess by the reaction force generated by the reaction force generation plate, As described above, the present invention will be described in detail with reference to the drawings, but the present invention is not limited to the embodiments.

図1ないし4において、1は水中モータポンプのモータ部であり、2は該水中モータ1から導下されメカニカルシールを装着しながらオイル室3を貫通して水中モータポンプのポンプケーシング7内に導出された水中モータ軸であり、該ポンプケーシング7内に導下される水中モータ軸2の導下先端に、該水中モータ軸2を中心として回転する異物の通過性を重視した一枚羽根または一つの流路を持つ水ポンプ用羽根車4の主板4aに形成された凹部4bの中心部分に設けられたボス部4eを装着し、該凹部4bの外周縁には該凹部4bを覆う蓋5を取付けるための環状溝4gが設けられ、該蓋5の中心部分にボス部外側壁4hよりも大きな孔5aを形成し、該孔5aはボス部外側壁4hよりも大きく形成されることで凹部4b内に水を導入するための環状の隙間である連通路6を形成し、望ましくは該連通路6を水中モータ軸2の回転中心より偏心状に構成することで凹部4b内への水の導入を積極的に行うことができ、該蓋上端面5cが主板上端面4dと略同一となるように環状溝4gの軸方向深さを形成することで、該連通路6への水の流入をよりスムーズに行え、該蓋5は環状溝4gと複数の蓋締結具12にて固定され、該蓋締結具12になべこねじを採用すれば頭部が半球状なので蓋締結具12への長尺異物の絡み付きも抑制することができ、該蓋締結具12の羽根車4回転方向に対する下流側には気中運転時に凹部4b内の水を排出するための水抜き孔5bが穿設されており、該羽根車4は水中で回転する際に、該羽根車4から吐出される流れに対する流体反力Fkを主に該羽根車4の周面に開口された水流出部の中央高さ位置4kにおいて半径方向の内向きに受け、該羽根車4の水中での回転に伴って該凹部4b内を円周方向に移動する水を半径方向の内向きまたは外向きの何れか一方に変向させることによって、半径方向の外向きまたは内向きの何れか一方の反作用力Fhを受ける反力発生板9が該凹部4b内に設けられ、図3に示すように該羽根車4は水中で回転する際に、前記反力発生板9によって発生する前記反作用力Fhによって前記流体反力Fkと不均一な容積の該凹部4b内に導入された水に不均一に作用する遠心力Fcとの合力Fgが減殺または相殺されるように構成されている。   1 to 4, reference numeral 1 denotes a motor portion of the submersible motor pump, and 2 denotes a submersible motor 1 which is guided from the submersible motor 1 and passes through the oil chamber 3 while being fitted with a mechanical seal, and is led into a pump casing 7 of the submersible motor pump. A submerged motor shaft that has a single blade or one attached to the leading end of the submersible motor shaft 2 guided into the pump casing 7 with emphasis on the passage of foreign matter that rotates around the submersible motor shaft 2. A boss 4e provided at the central portion of the recess 4b formed in the main plate 4a of the water pump impeller 4 having one flow path is mounted, and a lid 5 covering the recess 4b is provided on the outer peripheral edge of the recess 4b. An annular groove 4g for mounting is provided, and a hole 5a larger than the boss outer wall 4h is formed in the central portion of the lid 5, and the hole 5a is formed larger than the boss outer wall 4h, thereby forming the recess 4b. Water is introduced inside The communication passage 6 that is an annular gap for forming the communication passage 6 is formed, and preferably the communication passage 6 is formed eccentrically with respect to the rotation center of the submersible motor shaft 2 to actively introduce water into the recess 4b. By forming the axial depth of the annular groove 4g so that the upper end surface 5c of the lid is substantially the same as the upper end surface 4d of the main plate, water can flow into the communication passage 6 more smoothly, The lid 5 is fixed by an annular groove 4g and a plurality of lid fasteners 12. If a pan head screw is used for the lid fastener 12, the head is hemispherical, so that long foreign objects may be entangled with the lid fastener 12. A drain hole 5b is formed on the downstream side of the lid fastener 12 with respect to the direction of rotation of the impeller 4 in order to discharge water in the recess 4b during air operation. 4 is the fluid reaction force Fk against the flow discharged from the impeller 4 when rotating in water. At the central height position 4k of the water outflow portion opened on the peripheral surface of the impeller 4 and received inward in the radial direction, and the recess 4b is rotated in the circumferential direction as the impeller 4 rotates in water. The reaction force generating plate 9 that receives the reaction force Fh in either the outward or inward direction in the radial direction by changing the water moving in the inward or outward direction in the radial direction is As shown in FIG. 3, when the impeller 4 rotates in water, the fluid reaction force Fk and the non-uniform volume of the fluid reaction force Fk are generated by the reaction force Fh generated by the reaction force generation plate 9. The resultant force Fg with the centrifugal force Fc acting non-uniformly on the water introduced into the recess 4b is reduced or offset.

前記実施例1に基づいて、例えば図5を用いて説明すると、前記反力発生板9が前記凹部4b内に二つ以上設けられ、前記羽根車4は水中で回転する際に、該反力発生板9の内少なくとも一つによって発生する前記反作用力Fhによって、前記流体反力Fkが減殺または相殺され、該反力発生板9の他の少なくとも一つによって発生する該反作用力Fhによって不均一な容積の該凹部4b内に導入された水に不均一に作用する遠心力Fcが減殺または相殺されるように構成する。   For example, referring to FIG. 5, based on the first embodiment, two or more reaction force generation plates 9 are provided in the recess 4b, and when the impeller 4 rotates in water, the reaction force is increased. The fluid reaction force Fk is reduced or offset by the reaction force Fh generated by at least one of the generation plates 9 and is non-uniform by the reaction force Fh generated by at least one other of the reaction force generation plates 9. The centrifugal force Fc acting non-uniformly on the water introduced into the concave portion 4b having a large volume is configured to be reduced or offset.

前記実施例1または2に基づいて、例えば図6を用いて説明すると、前記反力発生板9を設けることが可能な浅い部分と深い部分が軸対称位置に存在する前記凹部4b内において、該凹部4bの深さがより深い側に該反力発生板9が設けられるように構成する。   Based on the first or second embodiment, for example, with reference to FIG. 6, in the concave portion 4b in which the shallow portion and the deep portion where the reaction force generation plate 9 can be provided exist in the axially symmetric position, The reaction force generating plate 9 is configured to be provided on the deeper side of the recess 4b.

前記実施例1ないし3のいずれかの実施例に基づいて、例えば図7を用いて説明すると、前記流体反力Fhを受ける前記羽根車4の周面に開口された水流出部の中央高さ位置4kに対抗するように、前記反力発生板9が形成されるように構成する。   Based on any one of the first to third embodiments, for example, with reference to FIG. 7, the central height of the water outflow portion that is opened on the peripheral surface of the impeller 4 that receives the fluid reaction force Fh. The reaction force generation plate 9 is formed so as to oppose the position 4k.

前記実施例1ないし4のいずれかの実施例に基づいて、例えば図8を用いて説明すると、図3に示す前記流体反力Fkと前記遠心力Fcおよびその合力Fgは同様に前記羽根車4に作用し、前記反力発生板9の水平断面形状は、該羽根車4の水中での回転に伴って前記凹部4b内を円周方向に移動する水を半径方向の内向きまたは外向きのいずれか一方に変向させる側である変向側側壁9aの流れ方向長さに対して反対側の裏側側壁9bの方が長い翼断面形状に形成したことで、前記反作用力Fhに加えて揚力を発生するように構成する。   Based on any of the first to fourth embodiments, for example, using FIG. 8, the fluid reaction force Fk, the centrifugal force Fc, and the resultant force Fg shown in FIG. The horizontal cross-sectional shape of the reaction force generating plate 9 is such that the water moving in the circumferential direction in the concave portion 4b with the rotation of the impeller 4 in the water is radially inward or outward. The back side wall 9b opposite to the flow direction length of the direction change side wall 9a, which is the direction to be changed to one of the sides, is formed in a longer blade cross-sectional shape, so that lift force is added to the reaction force Fh. Is configured to generate

前記実施例1ないし5のいずれかの実施例に基づいて、例えば図9を用いて説明すると、図3に示す前記流体反力Fkと前記遠心力Fcおよびその合力Fgは同様に前記羽根車4に作用し、前記反力発生板9の該羽根車4の水中での回転に伴って前記凹部4b内を円周方向に移動する水を半径方向の内向きまたは外向きのいずれか一方に変向させる側である変向側側壁9a全面の取付角θが、該羽根車4の水中での回転に伴って該凹部4b内を円周方向に移動する水の流れに対して45°の傾きをもって形成したことで、該反力発生板9を必要最小限の大きさに構成する。   Based on any one of the first to fifth embodiments, for example, using FIG. 9, the fluid reaction force Fk, the centrifugal force Fc, and the resultant force Fg shown in FIG. As the reaction force generating plate 9 rotates in the water of the impeller 4 in the water, the water that moves in the circumferential direction in the concave portion 4b is changed either inward or outward in the radial direction. The mounting angle θ of the entire direction side wall 9a, which is the direction to be directed, is inclined by 45 ° with respect to the flow of water moving in the circumferential direction in the recess 4b as the impeller 4 rotates in water. Thus, the reaction force generation plate 9 is configured to a minimum size.

前記実施例1ないし6のいずれかの実施例に基づいて、例えば図10ないし12を用いて説明すると、図3に示す前記流体反力Fkと前記遠心力Fcおよびその合力Fgは同様に前記羽根車4に作用し、前記反力発生板9の該羽根車4回転方向の上流側端部9cが前記反力発生板9の前記凹部4b底面または蓋5背面の取付面9eから反取付面9fに向かって該羽根車4回転方向の下流側に向かって傾斜させたことで、該羽根車4の水中での回転に伴って該凹部4b内を円周方向に移動する水の水勢による押し流し作用により、水に含まれる軟弱異物が、該反力発生板9に絡まることのないように緩やかな傾斜に構成することが望ましい。   Based on any one of the first to sixth embodiments, for example, referring to FIGS. 10 to 12, the fluid reaction force Fk, the centrifugal force Fc, and the resultant force Fg shown in FIG. The upstream end portion 9c of the reaction force generating plate 9 in the rotational direction of the impeller 4 acts on the wheel 4 from the mounting surface 9e on the bottom surface of the recess 4b or the back surface of the lid 5 to the counter mounting surface 9f. As the impeller 4 is inclined toward the downstream side in the direction of rotation of the impeller 4, the swirling action caused by the water force of the water moving in the circumferential direction in the recess 4 b as the impeller 4 rotates in water. Therefore, it is desirable that the soft foreign matter contained in the water is configured to have a gentle inclination so that the reaction force generation plate 9 is not entangled.

前記実施例1ないし7の実施例に基づいて、例えば図13および14を用いて説明すると、図3に示す前記流体反力Fkと前記遠心力Fcおよびその合力Fgは同様に前記羽根車4に作用し、該羽根車4の水中での回転に伴って該凹部4b内を円周方向に移動する水を半径方向の内向きに変向させることによって、半径方向の外向きの反作用力Fhを受ける前記反力発生板9の該羽根車4回転方向の上流側端部9cが前記凹部外周壁4iに接続されるか、または、該羽根車4の水中での回転に伴って該凹部4b内を円周方向に移動する水を半径方向の外向きに変向させることによって、半径方向の内向きの反作用力Fhを受ける前記反力発生板9の該羽根車4回転方向の上流側端部9cが前記ボス部外側壁4hに接続したことで、該凹部4b内を円周方向に移動する水を効率良く円滑に該反力発生板9へ誘導するよう、該上流側端部9cは該凹部外周壁4iまたはボス部外側壁4h側壁に滑らかに接続するように構成する。   Based on the first to seventh embodiments, for example, with reference to FIGS. 13 and 14, the fluid reaction force Fk, the centrifugal force Fc and the resultant force Fg shown in FIG. When the impeller 4 rotates in water, the water that moves in the circumferential direction in the concave portion 4b is diverted inward in the radial direction, so that the outward reaction force Fh in the radial direction is increased. An upstream end portion 9c of the reaction force generating plate 9 to be received in the rotational direction of the impeller 4 is connected to the outer peripheral wall 4i of the concave portion, or inside the concave portion 4b as the impeller 4 rotates in water. Of the reaction force generating plate 9 receiving the reaction force Fh in the radial direction by changing the water moving in the circumferential direction outward in the radial direction. 9c is connected to the outer wall 4h of the boss part, The upstream end 9c is smoothly connected to the recess outer peripheral wall 4i or the boss outer wall 4h so that water moving in the circumferential direction can be efficiently and smoothly guided to the reaction force generating plate 9. Configure.

前記実施例1ないし7のいずれかの実施例に基づいて、例えば図15および16を用いて説明すると、図3に示す前記流体反力Fkと前記遠心力Fcおよびその合力Fgは同様に前記羽根車4に作用し、前記反力発生板9を、該羽根車4の水中での回転に伴って前記凹部4b内を円周方向に移動する水を半径方向の内向きに変向させることによって半径方向の外向きの反作用力Fhを受ける反力発生板9と、該羽根車4の水中での回転に伴って該凹部4b内を円周方向に移動する水を半径方向の外向きに変向させることによって半径方向の内向きの反作用力Fhを受ける反力発生板9に2分割させた、各反力発生板9を水中モータ軸2に対して180°位置に設けられたことで、反力発生板9を小さくするか或るは大きな反作用力Fhを発生するように構成する。   Based on one of the first to seventh embodiments, for example, with reference to FIGS. 15 and 16, the fluid reaction force Fk, the centrifugal force Fc, and the resultant force Fg shown in FIG. By acting on the wheel 4 and turning the reaction force generating plate 9 inward in the radial direction, the water moving in the circumferential direction in the recess 4b as the impeller 4 rotates in water. A reaction force generating plate 9 that receives an outward reaction force Fh in the radial direction, and the water that moves in the circumferential direction in the recess 4b as the impeller 4 rotates in water is changed outward in the radial direction. Each reaction force generation plate 9 is divided into two by a reaction force generation plate 9 that receives an inward reaction force Fh in the radial direction by being oriented, and is provided at a position of 180 ° with respect to the underwater motor shaft 2. Reduce reaction force generating plate 9 or generate large reaction force Fh It is configured so that.

前記実施例1ないし8のいずれかの実施例に基づいて、例えば図17を用いて説明すると、図3に示す前記流体反力Fkと前記遠心力Fcおよびその合力Fgは同様に前記羽根車4に作用し、前記反力発生板9を、該羽根車4の水中での回転に伴って前記凹部4b内を円周方向に移動する水を半径方向の内向きに変向させることによって半径方向の外向きの反作用力Fhを受ける反力発生板9と、該羽根車4の水中での回転に伴って該凹部4b内を円周方向に移動する水を半径方向の外向きに変向させることによって半径方向の内向きの反作用力Fhを受ける反力発生板9に2分割させた、各反力発生板9を水中モータ軸2に対して180°に振り分けて半径距離を異ならせて設けられたことで、反力発生板9を小さくするか或るは大きな反作用力Fhを発生するように構成する。   Based on any one of the first to eighth embodiments, for example, using FIG. 17, the fluid reaction force Fk, the centrifugal force Fc, and the resultant force Fg shown in FIG. And the reaction force generating plate 9 is changed in the radial direction by turning the water moving in the circumferential direction in the recess 4b in the radial direction as the impeller 4 rotates in the water. The reaction force generation plate 9 that receives the outward reaction force Fh of water and the water that moves in the circumferential direction in the concave portion 4b in response to the rotation of the impeller 4 in water are changed outward in the radial direction. Accordingly, the reaction force generation plates 9 that receive the inward reaction force Fh in the radial direction are divided into two, and each reaction force generation plate 9 is distributed 180 degrees with respect to the submersible motor shaft 2 and provided with different radial distances. As a result, the reaction force generation plate 9 can be made smaller or larger. It configured to generate a use force Fh.

前記実施例1ないし10のいずれかの実施例に基づいて、例えば図18ないし20を用いて説明すると、図3に示す前記流体反力Fkと前記遠心力Fcおよびその合力Fgは同様に前記羽根車4に作用し、前記反力発生板9が該羽根車4または前記蓋5或いは双方に取り外して交換可能に構成したことで、実際にポンプを設置する現場での実運転吐出し量に合わせた最適な形状および設置位置の該反力発生板9に取り替えて、現場の状況に容易に対応し得ると共に、該反力発生板9は該羽根車4または前記蓋5或いは双方と複数の締結具13にて固定され、望ましくは該締結具13になべこねじを採用すれば反力発生板9への水の流れを乱すことがないと共に、頭部が半球状なので該締結具13への長尺異物の絡み付きも抑制することができるように構成する。   Based on any of the first to tenth embodiments, for example, with reference to FIGS. 18 to 20, the fluid reaction force Fk, the centrifugal force Fc, and the resultant force Fg shown in FIG. Since the reaction force generating plate 9 acts on the wheel 4 and can be removed and replaced with the impeller 4 or the lid 5 or both, it can match the actual operation discharge amount at the site where the pump is actually installed. The reaction force generation plate 9 can be easily replaced with the reaction force generation plate 9 having an optimum shape and installation position, and the reaction force generation plate 9 can be fastened to the impeller 4 and / or the lid 5 with a plurality of fastenings. If it is fixed by the tool 13 and preferably a pan head screw is used for the fastener 13, the flow of water to the reaction force generating plate 9 is not disturbed, and the head is hemispherical. It can also prevent tangling of long foreign objects Configured to.

前記実施例1ないし11のいずれかの実施例に基づいて、例えば図23を用いて説明すると、図3に示す前記流体反力Fkと前記遠心力Fcおよびその合力Fgは同様に前記羽根車4に作用し、前記凹部4bは該羽根車4回転方向の下流に向かって該凹部4bの深さが連続的に浅くなった後に、前記浅くなる勾配から急激に深くなる形状を有し、該羽根車4の水中での回転に伴って前記凹部4b内を円周方向に移動する水の勢いを抑制する遮蔽板10を該凹部外周壁4iより水中モータ軸2の中心方向に向かって凸設されると共に、その内周側端部10aが該凹部4b外周と前記ボス部4e外周間の中間径φDm以下となる位置まで伸びて形成され、詳しくは該中間径φDmは(凹部外周径φDo+ボス部外径φDb)÷2で求められ、前記遮蔽板10の該羽根車4回転方向の上流側側壁10bは該凹部4b内を円周方向に移動する水の流れに対して直角に形成され、該中間径φDmにおいて該羽根車4回転方向に対して前記浅くなる勾配から急激に深くなる形状最深部の落込側壁面4oにおける該中間径φDmとの交点4m位置を0°とし、該羽根車4回転方向の上流側90°以下の範囲に該遮蔽板10の該上流側側壁10bが位置するように形成したことで、該羽根車4回転方向の下流に向かって該凹部4bの深さが連続的に浅くなった後に、前記浅くなる勾配から急激に深くなる形状を有する、水ポンプ用羽根車4においても、前記軸方向スラストの発生を効率良く抑制して振動を効果的に低減できると共に、前記反力発生板9の効果を相乗的に作用させることができ、望ましくは、該遮蔽板10の上端面10cを前記環状溝4g底面まで形成させることで、その効果をより一層大きくすることができる。   For example, referring to FIG. 23, the fluid reaction force Fk, the centrifugal force Fc, and the resultant force Fg shown in FIG. The concave portion 4b has a shape in which the depth of the concave portion 4b becomes shallow gradually after the depth of the concave portion 4b is continuously reduced toward the downstream in the rotation direction of the impeller 4 and the blade 4 A shielding plate 10 that suppresses the momentum of water that moves in the circumferential direction in the concave portion 4b as the vehicle 4 rotates in water is projected from the outer peripheral wall 4i toward the center of the underwater motor shaft 2. In addition, the inner peripheral side end 10a is formed to extend to a position where the intermediate diameter φDm between the outer periphery of the recess 4b and the outer periphery of the boss portion 4e is less than or equal to, and more specifically, the intermediate diameter φDm is (recess outer periphery diameter φDo + boss portion) Outer diameter φDb) ÷ 2 The upstream side wall 10b of the plate 10 in the rotation direction of the impeller 4 is formed at right angles to the flow of water moving in the circumferential direction in the recess 4b, and at the intermediate diameter φDm with respect to the rotation direction of the impeller 4 The position of the intersection 4m with the intermediate diameter φDm on the falling side wall surface 4o of the deepest shape that suddenly deepens from the shallow slope is 0 °, and the shielding is in the range of 90 ° or less on the upstream side in the rotation direction of the impeller 4. By forming the upstream side wall 10b of the plate 10 so as to be positioned, the depth of the concave portion 4b continuously decreases toward the downstream in the rotation direction of the impeller 4 and then rapidly decreases from the decreasing gradient. Also in the impeller 4 for the water pump having a deeper shape, the generation of the axial thrust can be efficiently suppressed and vibration can be effectively reduced, and the effect of the reaction force generating plate 9 can be synergistically operated. And preferably By forming the upper end surface 10c of the shield plate 10 to the annular groove 4g bottom, it can be further increased more the effect.

前記実施例1ないし4および6と10のいずれかの実施例に基づいて、例えば図24を用いて説明すると、図3に示す前記流体反力Fkと前記遠心力Fcおよびその合力Fgは同様に前記羽根車4に作用し、前記凹部4bは該羽根車4回転方向の下流に向かって該凹部4bの深さが連続的に浅くなった後に、前記浅くなる勾配に比べて急激に深くなる形状を有し、該羽根車4の水中での回転に伴って該凹部4b内を円周方向に移動する水を半径方向の内向きに変向させることによって半径方向の外向きの反作用力Fhを受けることで前記流体反力Fkまたは該凹部4b内に導入された水に作用する遠心力Fcのいずれか一方または両方を減殺または相殺されるように構成されている前記反力発生板9の上流側端部9cが前記凹部外周壁4iに接続されると共に、その下流側端部9dが該凹部4b外周と前記ボス部4e外周間の中間径φDm以下となる位置まで伸びて形成され、詳しくは該中間径φDmは(凹部外周径φDo+ボス部外径φDb)÷2で求められ、該中間径φDmにおいて該羽根車4回転方向に対して前記浅くなる勾配から急激に深くなる形状最深部の落込側壁面4oにおける該中間径φDmとの交点4m位置を0°とし、該羽根車4回転方向の上流側90°以下の範囲に該反力発生板9の前記下流側端部9dが位置するように形成されるように構成する。   For example, referring to FIG. 24 based on any one of Examples 1 to 4 and 6 and 10, the fluid reaction force Fk, the centrifugal force Fc, and the resultant force Fg shown in FIG. The shape which acts on the impeller 4 and the concave portion 4b becomes deeper than the gradient which becomes shallower after the depth of the concave portion 4b becomes continuously shallow toward the downstream in the rotation direction of the impeller 4. And the outward reaction force Fh in the radial direction is changed by turning the water moving in the circumferential direction in the concave portion 4b inward in the radial direction as the impeller 4 rotates in water. Upon receiving, the fluid reaction force Fk or the centrifugal force Fc acting on the water introduced into the recess 4b, either one or both of the upstream of the reaction force generation plate 9 configured to attenuate or cancel The side end portion 9c is formed on the concave outer peripheral wall 4i. The downstream end 9d is formed to extend to a position where the intermediate diameter φDm between the outer periphery of the recess 4b and the outer periphery of the boss 4e is equal to or smaller than the outer diameter 9d. The outer diameter φDb) ÷ 2, and the intersection with the intermediate diameter φDm at the falling side wall surface 4o of the deepest part of the shape that suddenly deepens from the shallow gradient with respect to the rotation direction of the impeller 4 at the intermediate diameter φDm The 4m position is set to 0 °, and the downstream end portion 9d of the reaction force generating plate 9 is formed so as to be positioned in a range of 90 ° or less on the upstream side in the rotation direction of the impeller 4.

前記実施例1ないし13のいずれかの実施例に基づいて、例えば図25を用いて説明すると、図3に示す前記流体反力Fkと前記遠心力Fcおよびその合力Fgは同様に前記羽根車4に作用し、前記反力発生板9または前記遮蔽板10のいずれか一方或いは双方が、該羽根車4の空気中における静的または動的な機械的バランスを調整するためのバランスウエートWbと一体に形成したことで、前記凹部4b内をシンプルかつコンパクトに形成できるので、異物の詰りや絡みをさらに抑制すると共に、羽根車4の軽量化および製作が容易なように構成する。   Based on any one of the first to thirteenth embodiments, for example, using FIG. 25, the fluid reaction force Fk, the centrifugal force Fc, and the resultant force Fg shown in FIG. One or both of the reaction force generation plate 9 and the shielding plate 10 is integrated with a balance weight Wb for adjusting a static or dynamic mechanical balance in the air of the impeller 4. Since the concave portion 4b can be formed in a simple and compact manner, the clogging and entanglement of foreign matters can be further suppressed, and the impeller 4 can be reduced in weight and manufactured easily.

前記実施例1ないし14のいずれかの実施例に基づいて、例えば図1を用いて説明すると、前記環状溝4gと前記蓋5との接合部をシール材11を用いて封止構成したことで、一度該凹部4b内が水で満たされると、それ以上水は浸入できないので、該凹部4b内への異物堆積などの異物に起因した故障がなくなることで、極めて安定的に振動防止が維持されている。   Based on any one of Examples 1 to 14, for example, with reference to FIG. 1, the joint between the annular groove 4 g and the lid 5 is sealed using a sealing material 11. Once the concave portion 4b is filled with water, no further water can enter, so that the failure due to foreign matters such as foreign matter accumulation in the concave portion 4b is eliminated, and the vibration prevention is maintained extremely stably. ing.

1 水中モータ
2 水中モータ軸
3 オイル室
4 羽根車
4a 主板
4b 凹部
4c 主板外側壁
4d 主板上端面
4e ボス部
4g 環状溝
4h ボス部外側壁
4i 凹部外周壁
4k 水流出部の中央高さ位置
4l 羽根車の吸込口
4m 凹部の浅くなる勾配から急激に深くなる形状最深部の落込側壁面におけるφDmとの交点
4o 落込側壁面
5 蓋
5a 孔
5b 水抜き孔
5c 蓋の上端面
6 連通路
7 ポンプケーシング
7a 揚水流路
7b 伏鉢状部
7c 内側壁
7d 上端面
8 空間
9 反力発生板
9a 変向側側壁
9b 裏側側壁
9c 上流側端部
9d 下流側端部
9e 取付面
9f 反取付面
10 遮蔽板
10a 内周側端部
10b 上流側側壁
10c 上端面
11 シール材
12 蓋の締結具
13 反力発生板の締結具
Br ベアリング
φDb ボス部外径
φDm 中間径
φDo 凹部外周径
G1 環状隙間
G2 軸方向隙間
G3 側板側の環状隙間
G4 側板側の軸方向隙間
R 循環流れ
Wb バランスウエート
θ 反力発生板の取付角
Fa 抗力
Fc 遠心力
Fg 合力
Fh 反作用力
Fk 流体反力
Fu 円周方向成分の力
Fw 水から受ける力
DESCRIPTION OF SYMBOLS 1 Submersible motor 2 Submersible motor shaft 3 Oil chamber 4 Impeller 4a Main plate 4b Concave 4c Main plate outer wall 4d Main plate upper end surface 4e Boss part 4g Annular groove 4h Boss part outer wall 4i Concave outer peripheral wall 4k Center height position of water outflow part 4l Impeller suction port 4m Intersection with φDm on the falling side wall surface of the deepest shape that suddenly deepens from the shallow slope of the recess 4o Dropping side wall surface 5 Lid 5a hole 5b Drain hole 5c Upper end surface of the lid 6 Communication path 7 Pump Casing 7a Pumping channel 7b Shaft-shaped part 7c Inner side wall 7d Upper end surface 8 Space 9 Reaction force generating plate 9a Turning side wall 9b Back side side wall 9c Upstream side end 9d Downstream side end 9e Mounting surface 9f Anti-mounting surface 10 Shielding Plate 10a Inner peripheral side end 10b Upstream side wall 10c Upper end surface 11 Sealing material 12 Lid fastener 13 Reaction force generating plate fastener Br Bearing φDb Boss outer diameter φDm Intermediate diameter φDo Concave outer diameter G1 Annular gap G2 Axial gap G3 Annular gap on the side plate G4 Axial gap on the side plate side R Circulation flow Wb Balance weight θ Mounting angle of the reaction force generating plate Fa Drag force Fc Centrifugal force Fg Combined force Fh Reaction force Fk Fluid reaction force Fu Force of circumferential component Fw Force received from water

Claims (15)

水中モータの下端に装着されたポンプケーシングに内装され、水中モータ軸を中心として回転する異物の通過性を重視した一枚羽根または一つの流路を持つ水ポンプ用羽根車において、前記羽根車は水中で回転する際に、該羽根車から吐出される流れに対する流体反力を半径方向の内向きに受け、該羽根車の主板に形成された凹部の中心部分に、水中モータ軸の導下先端部に取付けるためのボス部を設けると共に、前記凹部を覆う蓋を備え、水中において該凹部内に水を導入する該凹部内外を連通する連通路が前記蓋に設けられていると共に、空気中においては該凹部内の水を排出するための水抜き孔が前記蓋に穿設されており、該羽根車の水中での回転に伴って該凹部内を円周方向に移動する水を半径方向の内向きまたは外向きのいずれか一方に変向させることによって半径方向の外向きまたは内向きのいずれか一方の反作用力を受ける反力発生板が該凹部内に設けられ、該羽根車は水中で回転する際に、前記反力発生板によって発生する前記反作用力によって前記流体反力と不均一な容積の該凹部内に導入された水に不均一に作用する遠心力との合力が減殺または相殺されるように構成されていることを特徴とする、水ポンプ用羽根車。   In an impeller for a water pump, which is built in a pump casing attached to the lower end of a submersible motor and has a single blade or a single flow passage with an emphasis on the passage of foreign matter rotating around the submersible motor shaft, the impeller is When rotating in water, a fluid reaction force against the flow discharged from the impeller is received inward in the radial direction, and the guided tip of the submersible motor shaft is placed in the central portion of the recess formed in the main plate of the impeller. A boss part for attaching to the part, a cover for covering the concave part, a communication path communicating the inside and outside of the concave part for introducing water into the concave part in the water and provided in the lid, and in the air A drain hole for discharging water in the recess is formed in the lid, and the water that moves in the circumferential direction in the recess as the impeller rotates in water is supplied in the radial direction. Either inward or outward A reaction force generating plate that receives a reaction force of either outward or inward in the radial direction by turning in the direction is provided in the recess, and the reaction force is generated when the impeller rotates in water. The reaction force generated by the generating plate is configured to reduce or cancel out the resultant force of the fluid reaction force and the centrifugal force acting nonuniformly on the water introduced into the recess having a nonuniform volume. An impeller for a water pump, characterized in that 請求項1に記載の水ポンプ用羽根車であって、前記反力発生板が該凹部内に二つ以上設けられ、前記羽根車は水中で回転する際に、該反力発生板の内少なくとも一つによって発生する前記反作用力によって前記流体反力が減殺または相殺され、該反力発生板の他の少なくとも一つによって発生する該反作用力によって不均一な容積の該凹部内に導入された水に不均一に作用する遠心力が減殺または相殺されるように構成されていることを特徴とする、水ポンプ用羽根車。   2. The water pump impeller according to claim 1, wherein two or more reaction force generation plates are provided in the recess, and the impeller rotates at least in the reaction force generation plate when rotating in water. The fluid reaction force is reduced or offset by the reaction force generated by one, and the water introduced into the recesses of non-uniform volume by the reaction force generated by at least one other of the reaction force generation plates. An impeller for a water pump, characterized in that the centrifugal force acting non-uniformly is reduced or offset. 請求項1または2に記載の水ポンプ用羽根車であって、前記反力発生板を設けることが可能な浅い部分と深い部分が軸対称位置に存在する前記凹部内において、該凹部の深さがより深い側に該反力発生板が設けられるように構成したことを特徴とする、水ポンプ用羽根車。   The impeller for a water pump according to claim 1 or 2, wherein the depth of the concave portion is within the concave portion in which the shallow portion and the deep portion where the reaction force generating plate can be provided exist in an axially symmetric position. An impeller for a water pump, characterized in that the reaction force generating plate is provided on a deeper side. 請求項1ないし3のいずれか一項に記載の水ポンプ用羽根車であって、前記流体反力を受ける該羽根車の周面に開口された水流出部の中央高さ位置に対抗するように、前記反力発生板が形成されるように構成したことを特徴とする、水ポンプ用羽根車。   4. The water pump impeller according to claim 1, wherein the water pump impeller is opposed to a central height position of a water outflow portion opened in a peripheral surface of the impeller that receives the fluid reaction force. 5. The water pump impeller is characterized in that the reaction force generating plate is formed. 請求項1ないし4のいずれか一項に記載の水ポンプ用羽根車であって、前記反力発生板の水平断面形状は、該羽根車の水中での回転に伴って該凹部内を円周方向に移動する水を半径方向の内向きまたは外向きのいずれか一方に変向させる側である変向側側壁の流れ方向長さに対して反対側の裏側側壁の方が長い翼断面形状に形成されるように構成したことを特徴とする、水ポンプ用羽根車。   5. The impeller for a water pump according to claim 1, wherein a horizontal cross-sectional shape of the reaction force generation plate is circumferential in the recess as the impeller rotates in water. The rear side wall on the opposite side has a longer blade cross-sectional shape than the flow direction length of the direction-changing side wall, which is the side that diverts water moving in the direction to either the radially inward or outward direction. An impeller for water pumps, characterized in that it is formed. 請求項1ないし5のいずれか一項に記載の水ポンプ用羽根車であって、前記反力発生板の該羽根車の水中での回転に伴って該凹部内を円周方向に移動する水を半径方向の内向きまたは外向きのいずれか一方に変向させる側である変向側側壁全面の取付角が、該羽根車の水中での回転に伴って該凹部内を円周方向に移動する水の流れに対して45°の傾きをもって形成されるように構成したことを特徴とする、水ポンプ用羽根車。   6. The water pump impeller according to claim 1, wherein the water moves in the circumferential direction in the recess as the impeller rotates in the water of the impeller in water. The mounting angle of the entire side wall of the turning side, which is the side that turns the wire inward or outward in the radial direction, moves in the circumferential direction in the recess as the impeller rotates in water. An impeller for a water pump, characterized in that the water pump is formed with an inclination of 45 ° with respect to the flow of water. 請求項1ないし6のいずれか一項に記載の水ポンプ用羽根車であって、前記反力発生板の該羽根車回転方向の上流側端部が前記反力発生板の前記凹部底面または蓋背面の取付面から反取付面に向かって該羽根車回転方向の下流側に向かって傾斜されるように構成したことを特徴とする、水ポンプ用羽根車。   It is an impeller for water pumps as described in any one of Claims 1 thru | or 6, Comprising: The upstream edge part of this impeller rotation direction of the said reaction force generation plate is the said recessed part bottom face or lid | cover of the said reaction force generation plate. An impeller for a water pump, wherein the impeller is configured to be inclined toward the downstream side in the rotational direction of the impeller from the attachment surface on the back surface toward the non-attachment surface. 請求項1ないし7のいずれか一項に記載の水ポンプ用羽根車であって、該羽根車の水中での回転に伴って該凹部内を円周方向に移動する水を半径方向の内向きに変向させることによって、半径方向の外向きの反作用力を受ける前記反力発生板の該羽根車回転方向の上流側端部が前記凹部外周壁に接続されるか、または、該羽根車の水中での回転に伴って該凹部内を円周方向に移動する水を半径方向の外向きに変向させることによって、半径方向の内向きの反作用力を受ける前記反力発生板の該羽根車回転方向の上流側端部が前記ボス部外側壁に接続されるように構成したことを特徴とする、水ポンプ用羽根車。   The impeller for a water pump according to any one of claims 1 to 7, wherein the water that moves in the circumferential direction in the recess as the impeller rotates in water is radially inward. Or the upstream end of the reaction force generating plate that receives an outward reaction force in the radial direction is connected to the outer peripheral wall of the recess or the impeller The impeller of the reaction force generating plate that receives an inward reaction force in the radial direction by diverting the water that moves in the circumferential direction in the concave portion in the radial direction in accordance with the rotation in water to the radial direction. An impeller for a water pump, characterized in that an upstream end in a rotational direction is connected to the outer wall of the boss part. 請求項1ないし7のいずれか一項に記載の水ポンプ用羽根車であって、前記反力発生板を、該羽根車の水中での回転に伴って該凹部内を円周方向に移動する水を半径方向の内向きに変向させることによって半径方向の外向きの反作用力を受ける反力発生板と、該羽根車の水中での回転に伴って該凹部内を円周方向に移動する水を半径方向の外向きに変向させることによって半径方向の内向きの反作用力を受ける反力発生板に2分割させた、各反力発生板を水中モータ軸に対して180°位置に設けられるように構成したことを特徴とする、水ポンプ用羽根車。   The impeller for a water pump according to any one of claims 1 to 7, wherein the reaction force generating plate is moved in the circumferential direction in the recess as the impeller rotates in water. A reaction force generating plate that receives an outward reaction force in the radial direction by turning water inward in the radial direction, and moves in the recess in the circumferential direction as the impeller rotates in water. Each reaction force generating plate is provided at 180 ° with respect to the submersible motor shaft. The reaction force generating plate is divided into two by receiving the reaction force in the radial direction by turning the water outward in the radial direction. An impeller for a water pump, characterized by being configured as described above. 請求項1ないし8のいずれか一項に記載の水ポンプ用羽根車であって、前記反力発生板を、該羽根車の水中での回転に伴って該凹部内を円周方向に移動する水を半径方向の内向きに変向させることによって半径方向の外向きの反作用力を受ける反力発生板と、該羽根車の水中での回転に伴って該凹部内を円周方向に移動する水を半径方向の外向きに変向させることによって半径方向の内向きの反作用力を受ける反力発生板に2分割させた、各反力発生板を水中モータ軸に対して180°に振り分けて半径距離を異ならせて設けられるように構成したことを特徴とする、水ポンプ用羽根車。   The impeller for a water pump according to any one of claims 1 to 8, wherein the reaction force generating plate is moved in the circumferential direction in the recess as the impeller rotates in water. A reaction force generating plate that receives an outward reaction force in the radial direction by turning water inward in the radial direction, and moves in the recess in the circumferential direction as the impeller rotates in water. Each reaction force generating plate is divided into 180 ° with respect to the underwater motor shaft by dividing the water into two reaction force generating plates that receive the reaction force in the radial direction by turning the water outward in the radial direction. An impeller for a water pump, characterized in that it is configured to be provided with different radial distances. 請求項1ないし10のいずれか一項に記載の水ポンプ用羽根車であって、前記反力発生板が該羽根車または前記蓋或いは双方に取り外して交換可能に構成されていることを特徴とする、水ポンプ用羽根車。   It is the impeller for water pumps as described in any one of Claims 1 thru | or 10, Comprising: The said reaction force generation | occurrence | production board is comprised so that it can replace | exchange and remove to this impeller or the said lid | cover, or both. An impeller for a water pump. 請求項1ないし11のいずれか一項に記載の水ポンプ用羽根車であって、前記凹部は該羽根車回転方向の下流に向かって該凹部の深さが連続的に浅くなった後に、前記浅くなる勾配に比べて急激に深くなる形状を有し、該羽根車の水中での回転に伴って前記凹部内を円周方向に移動する水の勢いを抑制する遮蔽板を該凹部外周壁より水中モータ軸の中心方向に向かって凸設されると共に、その内周側端部が該凹部外周と前記ボス部外周間の中間径以下となる位置まで伸びて形成され、前記遮蔽板の該羽根車回転方向の上流側側壁は該凹部内を円周方向に移動する水の流れに対して直角に形成され、該中間径において該羽根車回転方向に対して前記浅くなる勾配から急激に深くなる形状最深部の落込側壁面における該中間径との交点位置を0°とし、該羽根車回転方向の上流側90°以下の範囲に該遮蔽板の該上流側側壁が位置するように形成されていることを特徴とする、水ポンプ用羽根車。   The impeller for a water pump according to any one of claims 1 to 11, wherein the recess has a depth that is continuously reduced toward the downstream in the rotation direction of the impeller. A shielding plate that has a shape that becomes deeper and deeper than a shallow gradient, and that suppresses the momentum of water that moves in the circumferential direction in the recess as the impeller rotates in water from the outer wall of the recess. The blade of the shielding plate is formed so as to project toward the center of the submersible motor shaft, and its inner peripheral side end extends to a position equal to or less than the intermediate diameter between the outer periphery of the recess and the outer periphery of the boss. The upstream side wall in the direction of rotation of the vehicle is formed at a right angle to the flow of water moving in the circumferential direction in the recess, and becomes deeper from the shallow gradient with respect to the direction of rotation of the impeller at the intermediate diameter. The point of intersection with the intermediate diameter on the falling side wall surface of the deepest part is 0 ° And, wherein the upper stream side wall of the shielding plate on the upstream side and 90 ° or less in the range of the impeller rotation direction are formed so as to be located, the impeller for a water pump. 請求項1ないし4および6と10のいずれか一項に記載の水ポンプ用羽根車であって、前記凹部は該羽根車回転方向の下流に向かって該凹部の深さが連続的に浅くなった後に、前記浅くなる勾配に比べて急激に深くなる形状を有し、該羽根車の水中での回転に伴って該凹部内を円周方向に移動する水を半径方向の内向きに変向させることによって半径方向の外向きの反作用力を受けることで前記流体反力または該凹部内に導入された水に作用する遠心力のいずれか一方または両方を減殺または相殺されるように構成されている前記反力発生板の上流側端部が前記凹部外周壁に接続されると共に、その下流側端部が該凹部外周と前記ボス部外周間の中間径以下となる位置まで伸びて形成され、該中間径において該羽根車回転方向に対して前記浅くなる勾配から急激に深くなる形状最深部の落込側壁面における該中間径との交点位置を0°とし、該羽根車回転方向の上流側90°以下の範囲に該反力発生板の前記下流側端部が位置するように形成されていることを特徴とする、水ポンプ用羽根車。   The impeller for a water pump according to any one of claims 1 to 4, 6 and 10, wherein the depth of the concave portion of the concave portion decreases continuously toward the downstream in the impeller rotating direction. After that, it has a shape that becomes deeper and deeper than the shallower gradient, and the water that moves in the circumferential direction in the recess as the impeller rotates in water is turned inward in the radial direction. By receiving an outward reaction force in the radial direction, the fluid reaction force or the centrifugal force acting on the water introduced into the recess is reduced or offset. The upstream end of the reaction force generating plate is connected to the outer peripheral wall of the recess, and the downstream end thereof is formed to extend to a position equal to or less than the intermediate diameter between the outer periphery of the recess and the outer periphery of the boss, The shallow diameter relative to the rotational direction of the impeller at the intermediate diameter. The downstream side of the reaction force generating plate is within a range of 90 ° or less on the upstream side in the impeller rotational direction, with the intersection position with the intermediate diameter on the falling side wall surface of the deepest part of the shape deepening rapidly from the gradient An impeller for a water pump, characterized in that the end portion is located. 請求項1ないし13のいずれか一項に記載の水ポンプ用羽根車であって、前記反力発生板または前記遮蔽板のいずれか一方或いは双方が、該羽根車の空気中における静的または動的な機械的バランスを調整するためのバランスウエートと一体で形成されていることを特徴とする、水ポンプ用羽根車。   The water pump impeller according to any one of claims 1 to 13, wherein either one or both of the reaction force generation plate and the shielding plate are static or dynamic in the air of the impeller. A water pump impeller characterized by being formed integrally with a balance weight for adjusting a mechanical balance. 請求項1ないし14のいずれか一項に記載の水ポンプ用羽根車であって、前記主板と前記蓋との接合部はシール材を用いて封止構成されていることを特徴とする、水ポンプ用羽根車。   The water pump impeller according to any one of claims 1 to 14, wherein a joint portion between the main plate and the lid is configured to be sealed using a sealing material. Pump impeller.
JP2012193054A 2012-09-03 2012-09-03 Water pump impeller Active JP5984588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012193054A JP5984588B2 (en) 2012-09-03 2012-09-03 Water pump impeller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012193054A JP5984588B2 (en) 2012-09-03 2012-09-03 Water pump impeller

Publications (2)

Publication Number Publication Date
JP2014047748A true JP2014047748A (en) 2014-03-17
JP5984588B2 JP5984588B2 (en) 2016-09-06

Family

ID=50607675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012193054A Active JP5984588B2 (en) 2012-09-03 2012-09-03 Water pump impeller

Country Status (1)

Country Link
JP (1) JP5984588B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105443397A (en) * 2014-09-24 2016-03-30 杭州三花研究院有限公司 Electronic pump
CN105443447A (en) * 2014-09-24 2016-03-30 杭州三花研究院有限公司 Electronic pump
JP2019183807A (en) * 2018-04-17 2019-10-24 株式会社鶴見製作所 Centrifugal pump

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007255324A (en) * 2006-03-23 2007-10-04 Shin Meiwa Ind Co Ltd Impeller for centrifugal pump and balance adjusting method of impeller for centrifugal pump
JP2009103077A (en) * 2007-10-24 2009-05-14 Ebara Corp Impeller for sewage pump, and sewage pump

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007255324A (en) * 2006-03-23 2007-10-04 Shin Meiwa Ind Co Ltd Impeller for centrifugal pump and balance adjusting method of impeller for centrifugal pump
JP2009103077A (en) * 2007-10-24 2009-05-14 Ebara Corp Impeller for sewage pump, and sewage pump

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105443397A (en) * 2014-09-24 2016-03-30 杭州三花研究院有限公司 Electronic pump
CN105443447A (en) * 2014-09-24 2016-03-30 杭州三花研究院有限公司 Electronic pump
CN105443397B (en) * 2014-09-24 2019-02-12 浙江三花汽车零部件有限公司 Electronic pump
CN105443447B (en) * 2014-09-24 2019-03-01 浙江三花汽车零部件有限公司 Electronic pump
JP2019183807A (en) * 2018-04-17 2019-10-24 株式会社鶴見製作所 Centrifugal pump

Also Published As

Publication number Publication date
JP5984588B2 (en) 2016-09-06

Similar Documents

Publication Publication Date Title
JP5044105B2 (en) Centrifugal pump impeller and centrifugal pump equipped with the impeller
KR101803546B1 (en) Pump intake device
JP5620208B2 (en) Double suction vertical pump with vortex prevention device
JP5984588B2 (en) Water pump impeller
Suhane Experimental study on centrifugal pump to determine the effect of radial clearance on pressure pulsations, vibrations and noise
JP5916558B2 (en) Submersible motor pump
EA036287B1 (en) Rotary parts for a slurry pump
CN108087291A (en) Cavity configuration centrifugal pump after a kind of high-lift linear leaf molded line
JP2021531435A (en) Inlet components for slurry pumps
Watanabe et al. CFD analysis of axial thrust in three stages centrifugal pump at design and partload conditions
CN208057427U (en) Cavity configuration centrifugal pump after a kind of high lift linear leaf molded line
GB2555560A (en) Slurry pump back side liner
JP2008280932A (en) Axial flow turbomachine
JP5517880B2 (en) Eddy flow pump device
JP5904900B2 (en) Water pump impeller and submersible motor pump equipped with the impeller
JP2010121543A (en) Pump impeller, pump device, and method for adjusting balance of the pump impeller
JP2019070333A (en) Submerged pump
JP2011236915A (en) Impeller device for centrifugal pump and centrifugal pump with the same
RU2610802C1 (en) Centrifugal pump runner
JP2009008021A (en) Centrifugal type turbomachine
KR102239431B1 (en) Submersible pump with vortex prevention device
JP7398405B2 (en) vertical shaft pump
Cooper et al. CFD-Aided Hydraulic Development of a Steam Generator Feed Pump
JP7374620B2 (en) Pump tongue member, pump device, and tongue repair method
JP2019065829A (en) Fluid machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160802

R150 Certificate of patent or registration of utility model

Ref document number: 5984588

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250