JP2014047589A - Floor material - Google Patents

Floor material Download PDF

Info

Publication number
JP2014047589A
JP2014047589A JP2012193721A JP2012193721A JP2014047589A JP 2014047589 A JP2014047589 A JP 2014047589A JP 2012193721 A JP2012193721 A JP 2012193721A JP 2012193721 A JP2012193721 A JP 2012193721A JP 2014047589 A JP2014047589 A JP 2014047589A
Authority
JP
Japan
Prior art keywords
resin
region
resin region
vinyl chloride
flooring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012193721A
Other languages
Japanese (ja)
Other versions
JP5947162B2 (en
Inventor
Gakuho So
学方 宋
Mamoru Hinoshita
守 日野下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takiron Co Ltd
Original Assignee
Takiron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takiron Co Ltd filed Critical Takiron Co Ltd
Priority to JP2012193721A priority Critical patent/JP5947162B2/en
Publication of JP2014047589A publication Critical patent/JP2014047589A/en
Application granted granted Critical
Publication of JP5947162B2 publication Critical patent/JP5947162B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Floor Finish (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a floor material of which both anti-slip property and antifouling property are simultaneously improved by means different from conventional one.SOLUTION: A floor material F1 has at least first resin regions 1 and second resin regions 2 on a surface of the floor material. The first resin region 1 is a resin region including a vinyl chloride resin and a polyurethane-based thermoplastic elastomer as main component resin and the second resin region 2 is a resin region in which hard particles are contained in the vinyl chloride resin. The first resin region 1 is additionally provided with rubber-elastic physical property by the polyurethane-based thermoplastic elastomer, and exhibits an excellent slip prevention action. The second resin region 2 causes scratches hardly owing to the hard particles, makes staining substance adhered hardly, and can remove staining substance easily even when it is adhered, thus exhibiting both of excellent anti-slip property and excellent antifouling property simultaneously.

Description

本発明は屋内や屋外の床面や階段を被覆する床材に関し、更に詳しくは、良好な防滑性と防汚性を兼ね備えた床材に関する。   The present invention relates to a flooring material that covers indoor and outdoor floors and stairs, and more particularly to a flooring material that has both good anti-slip properties and antifouling properties.

屋内や屋外にある床面や階段を被覆する床材は、歩行者の靴底によって汚れ物質が擦り付けられるため防汚性が要求され、また、歩行者が滑って転倒する危険を回避するために防滑性が要求される。ここで「防汚性」とは、汚れ物質が付着しにくく、付着しても洗浄等により容易に除去できる性質を意味する。   Floor materials covering indoor and outdoor floors and stairs are required to have antifouling properties because dirt materials are rubbed against the soles of pedestrians, and to avoid the risk of pedestrians slipping and falling. Non-slip properties are required. Here, the “antifouling property” means a property that a dirt substance is difficult to adhere and can be easily removed by washing or the like even if it adheres.

防汚性を有する床材としては、例えば、ポリ塩化ビニル樹脂及び/又はエチレン−酢酸ビニル共重合樹脂に、充填材として平均粒子径が1〜15μmの炭酸カルシウム、タルク、クレー、酸化マグネシウム、水酸化マグネシウムのいずれか一又は二以上を含んだ樹脂混合物からなる床材が既に提案されている(特許文献1)。   Examples of the flooring material having antifouling property include, for example, polyvinyl chloride resin and / or ethylene-vinyl acetate copolymer resin, and calcium carbonate, talc, clay, magnesium oxide, water having an average particle diameter of 1 to 15 μm as a filler. A flooring made of a resin mixture containing any one or more of magnesium oxide has already been proposed (Patent Document 1).

また、防滑性、透水性、耐久性を有する床構造として、ベースと、ウレタンエラストマーで構成された多数の小塊を相互に結合剤で結合させて成り且つ前記ベースの上方に設けられた床材層とを有する床構造であって、上記床材層の上面に凹凸が形成され、小塊の相互間部分に小空隙が形成された床構造も既に提案されている(特許文献2)。   Further, as a floor structure having anti-slip property, water permeability, and durability, a floor material provided by bonding a base and a large number of small blocks made of urethane elastomer with a binder and provided above the base. There has already been proposed a floor structure having a layer, in which irregularities are formed on the upper surface of the floor material layer, and a small gap is formed between the small blocks (Patent Document 2).

特開2007−255089号公報JP 2007-255089 A 特開平6−229106号公報JP-A-6-229106

特許文献1の床材は、平均粒子径が1〜15μmの充填材を配合するという手段を採用して、防汚性の向上を図ろうとしているが、充填材は硬質粒子ではないので、塩化ビニル樹脂等からなる床材に充填材を配合しても、床材表面に靴底との摩擦による擦り傷がつきやすく、この擦り傷に汚れ物質が付着して容易に除去されないため、防汚性を十分に向上させることが難しいという問題がある。   The flooring material of Patent Document 1 is intended to improve the antifouling property by adopting a means of blending a filler having an average particle diameter of 1 to 15 μm. However, since the filler is not hard particles, it is chlorinated. Even if a filler is added to a flooring material made of vinyl resin, etc., the flooring surface is likely to be scratched due to friction with the shoe sole, and soiling substances adhere to the scratching and are not easily removed. There is a problem that it is difficult to improve sufficiently.

一方、特許文献2の床構造における床材層は、上面に滑り止め用の凹凸を形成するという手段を採用して防滑性を向上させているので、上面の凹部に塵埃や土埃が溜まりやすく、溜まった塵埃や土埃を掃除しにくいという問題があり、しかも、上面の凸部が磨耗するにつれて防滑性が低下するという問題がある。   On the other hand, the flooring layer in the floor structure of Patent Document 2 adopts a means of forming unevenness for preventing slipping on the upper surface and improves the anti-slip property, so that dust and dirt tend to accumulate in the recesses on the upper surface, There is a problem that it is difficult to clean the accumulated dust and dirt, and further, there is a problem that the slip resistance is lowered as the convex portion on the upper surface is worn.

床材には、前述したように防滑性と防汚性の双方が要求されるが、良好な防滑性と良好な防汚性を合わせ持った床材は、未だ開発されていないようである。   As described above, the floor material is required to have both anti-slip property and anti-stain property. However, it has not yet been developed a floor material having both good anti-slip property and good anti-stain property.

本発明は上記事情の下になされたもので、その解決しようとする課題は、特許文献1,2の上記手段とは異なる手段によって防滑性と防汚性の双方を同時に向上させた床材を提供することにある。   The present invention has been made under the circumstances described above, and the problem to be solved is a flooring material in which both slip resistance and antifouling property are simultaneously improved by means different from the means described in Patent Documents 1 and 2. It is to provide.

上記課題を解決するため、本発明に係る床材は、少なくとも床材表面に第一の樹脂領域と第二の樹脂領域を有する床材であって、上記第一の樹脂領域が塩化ビニル系樹脂とポリウレタン系熱可塑性エラストマーとを主成分樹脂とする樹脂領域であり、上記第二の樹脂領域が塩化ビニル系樹脂に硬質粒子を含有させた樹脂領域であることを特徴とするものである。   In order to solve the above problems, a flooring according to the present invention is a flooring having at least a first resin region and a second resin region on the surface of the flooring, wherein the first resin region is a vinyl chloride resin. And a polyurethane thermoplastic elastomer as a main component resin, and the second resin region is a resin region in which hard particles are contained in a vinyl chloride resin.

本発明の床材にあっては、床材表面における第一の樹脂領域と第二の樹脂領域との面積比が10:90〜35:65であることが好ましい。
そして、第一の樹脂領域に含まれるポリウレタン系熱可塑性エラストマーは塩化ビニル系樹脂との相溶性を有するエラストマーであることが好ましい。ここに「相溶性」とは、ポリウレタン系熱可塑性エラストマーが塩化ビニル系樹脂と相分離しないで見掛け上、均一に混ざる性質を意味する。
また、第二の樹脂領域には、更にエチレン・酢酸ビニル共重合体−塩化ビニルグラフトコポリマーが含まれていることが好ましい。
また、第二の樹脂領域に含まれる硬質粒子は石英粒子であることが好ましい。
In the flooring of the present invention, the area ratio between the first resin region and the second resin region on the flooring surface is preferably 10:90 to 35:65.
The polyurethane-based thermoplastic elastomer contained in the first resin region is preferably an elastomer having compatibility with the vinyl chloride resin. Here, “compatible” means a property that the polyurethane-based thermoplastic elastomer is apparently mixed uniformly without being phase-separated from the vinyl chloride-based resin.
The second resin region preferably further contains an ethylene / vinyl acetate copolymer-vinyl chloride graft copolymer.
Further, the hard particles contained in the second resin region are preferably quartz particles.

本発明に係る床材のように、少なくとも床材表面に第一の樹脂領域と第二の樹脂領域を有し、第一の樹脂領域が塩化ビニル系樹脂とポリウレタン系熱可塑性エラストマーとを主成分樹脂とするものであると、ポリウレタン系熱可塑性エラストマーによって第一の樹脂領域にゴム弾性的な物性が付加されることで、第一の樹脂領域が優れた滑り止め作用を発揮するため、床材表面に防滑用の凹凸を形成しなくても、床材の防滑性が向上する。従って、歩行者が足を滑らせて転倒する危険性が少なくなり、床材表面の塵埃や土埃の掃除が容易になる。
また、本発明に係る床材のように、第二の樹脂領域が塩化ビニル系樹脂に硬質粒子を含有させた領域であると、硬質粒子によって第二の樹脂領域の露出表面に靴底との摩擦よる擦り傷が入りにくくなり、汚れ物質が付着しにくくなると共に、付着しても洗浄等で容易に除去できるようになるため、防汚性が向上する。
このように、本発明の床材は、防滑性の良好な第一の樹脂領域と防汚性の良好な第二の樹脂領域を少なくとも床材表面に有するので、良好な防滑性と良好な防汚性を同時に発揮することができ、特に、床材表面における第一の樹脂領域と第二の防汚性の樹脂領域との面積比が10:90〜35:65であると、防滑性と防汚性をよりバランス良く発揮できるようになる。
なお、本発明の床材は、第一の樹脂領域も第二の樹脂領域も、主成分樹脂が塩化ビニル系樹脂であり、双方の樹脂領域が強固に融着、接合されるので、接合界面で剥離やクラックを生じる心配もない。
As in the flooring according to the present invention, at least the first resin region and the second resin region are provided on the flooring surface, and the first resin region is mainly composed of a vinyl chloride resin and a polyurethane thermoplastic elastomer. When it is a resin, a rubber-based physical property is added to the first resin region by the polyurethane-based thermoplastic elastomer, so that the first resin region exhibits an excellent anti-slip action. Even if the surface is not provided with anti-slip irregularities, the anti-slip property of the flooring is improved. Therefore, the risk of the pedestrian slipping his / her foot and falling is reduced, and the dust and dirt on the floor material surface can be easily cleaned.
In addition, as in the flooring according to the present invention, when the second resin region is a region in which hard particles are contained in a vinyl chloride resin, the exposed surface of the second resin region is bonded to the shoe sole by the hard particles. Scratching due to friction is less likely to occur, dirt substances are less likely to adhere, and even if they adhere, they can be easily removed by washing or the like, so that the antifouling property is improved.
As described above, the floor material of the present invention has at least the first resin region having good anti-slip property and the second resin region having good anti-smudge property on the floor material surface. When the area ratio between the first resin region and the second antifouling resin region on the floor material surface is 10:90 to 35:65, the antislip property can be exhibited. The antifouling property can be exhibited in a more balanced manner.
In the flooring of the present invention, since the main resin is a vinyl chloride resin in both the first resin region and the second resin region, and both resin regions are firmly fused and bonded, There is no worry of peeling or cracking.

また、第一の樹脂領域に含まれるポリウレタン系熱可塑性エラストマーが塩化ビニル系樹脂との相溶性を有するものであると、ポリウレタン系熱可塑性エラストマーが塩化ビニル系樹脂と相分離しないで均一に混ざり、上記のように第一の樹脂領域にゴム弾性的な物性を付加して防滑性を向上させることができる。これに対し、塩化ビニル系樹脂との相溶性がないポリウレタン系熱可塑性エラストマーは、塩化ビニル系樹脂と混合しても相分離して混ざらないので、防滑性の向上に実質的に寄与しない。   Further, if the polyurethane-based thermoplastic elastomer contained in the first resin region is compatible with the vinyl chloride resin, the polyurethane-based thermoplastic elastomer is uniformly mixed without being phase-separated with the vinyl chloride resin, As described above, the rubber property can be added to the first resin region to improve the slip resistance. In contrast, polyurethane-based thermoplastic elastomers that are not compatible with vinyl chloride resins do not substantially contribute to the improvement of anti-slip properties because they are not phase-separated even when mixed with vinyl chloride resins.

更に、第二の樹脂領域にエチレン・酢酸ビニル共重合体−塩化ビニルグラフトコポリマーが含まれていると、防汚性が一層向上するようなる。その理由は、エチレン・酢酸ビニル共重合体−塩化ビニルグラフトコポリマーが、主鎖であるエチレン・酢酸ビニル共重合体に側鎖である塩化ビニルをグラフトしたコポリマーであることから、塩化ビニル側鎖による分子同士の絡み合いによって、塩化ビニル系樹脂中に含まれる汚れ付着の原因となる可塑剤が、第二の樹脂領域の表面にブリードアウトしにくくなり、かつ、第二の樹脂領域の表面に擦り傷が一層付きにくくなるからであると推測される。   Furthermore, when the second resin region contains an ethylene / vinyl acetate copolymer-vinyl chloride graft copolymer, the antifouling property is further improved. The reason is that the ethylene / vinyl acetate copolymer-vinyl chloride graft copolymer is a copolymer obtained by grafting the side chain vinyl chloride to the main chain ethylene / vinyl acetate copolymer. The entanglement between the molecules makes it difficult for the plasticizer that causes dirt adhesion contained in the vinyl chloride resin to bleed out to the surface of the second resin region, and the surface of the second resin region is scratched. It is presumed that it is more difficult to attach.

また、第二の樹脂領域に含まれる硬質粒子が石英粒子であると、擦り傷が付きにくくなって防汚性が確実に向上し、しかも、珪砂などの石英粒子は安価に入手できるので経済的にも有利である。   In addition, if the hard particles contained in the second resin region are quartz particles, they are less likely to be scratched and the antifouling property is surely improved, and quartz particles such as silica sand can be obtained at low cost and economically. Is also advantageous.

本発明の一実施形態に係る床材の概略断面図である。It is a schematic sectional drawing of the flooring which concerns on one Embodiment of this invention. 本発明の他の実施形態に係る床材の概略断面図である。It is a schematic sectional drawing of the flooring which concerns on other embodiment of this invention. 本発明の更に他の実施形態に係る床材の概略断面図である。It is a schematic sectional drawing of the flooring which concerns on other embodiment of this invention. 本発明の更に他の実施形態に係る床材の概略断面図である。It is a schematic sectional drawing of the flooring which concerns on other embodiment of this invention.

以下、図面を参照して本発明の床材を詳述する。   Hereinafter, the flooring of the present invention will be described in detail with reference to the drawings.

本発明の床材は、少なくとも床材表面に、塩化ビニル系樹脂とポリウレタン系熱可塑性エラストマーとを主成分樹脂とする第一の樹脂領域と、塩化ビニル系樹脂に硬質粒子を含有させた第二の樹脂領域とを有するものであり、第一の樹脂領域と第二の樹脂領域の分布状態によって、図1〜図4に例示のごとき種々異なる実施形態が存在する。   The flooring material of the present invention includes at least a first resin region mainly composed of a vinyl chloride resin and a polyurethane thermoplastic elastomer on the floor material surface, and a second resin material containing hard particles in the vinyl chloride resin. There are various embodiments as illustrated in FIGS. 1 to 4 depending on the distribution state of the first resin region and the second resin region.

即ち、図1に例示する実施形態の床材F1は、床材の厚さ全体にわたる第一の樹脂領域1と第二の樹脂領域2によって床材全体が形成されたものである。
そして、図2に例示する実施形態の床材F2は、表面層3の厚さ全体にわたる第一の樹脂領域1と第二の樹脂領域2によって表面層3が形成され、その裏側に裏面層4が積層されたものである。
また、図3に例示する実施形態の床材F3は、床材全体にわたって小塊状の第一の樹脂領域1と小塊状の第二の樹脂領域2が混在したものである。
更に、図4に例示する実施形態の床材F4は、表面層3の全体にわたって小塊状の第一の樹脂領域1と小塊状の第二の樹脂領域2が混在し、その裏側に裏面層4が積層されたものである。
That is, in the floor material F1 of the embodiment illustrated in FIG. 1, the entire floor material is formed by the first resin region 1 and the second resin region 2 over the entire thickness of the floor material.
In the floor material F2 of the embodiment illustrated in FIG. 2, the surface layer 3 is formed by the first resin region 1 and the second resin region 2 over the entire thickness of the surface layer 3, and the back surface layer 4 is formed on the back side thereof. Are laminated.
Further, the floor material F3 of the embodiment illustrated in FIG. 3 is a mixture of a small lump-shaped first resin region 1 and a small lump-shaped second resin region 2 over the entire flooring material.
Furthermore, in the floor material F4 of the embodiment illustrated in FIG. 4, the first resin region 1 in the form of a lump and the second resin region 2 in the form of a lump are mixed over the entire surface layer 3, and the back layer 4 is formed on the back side thereof. Are laminated.

これら以外にも、図1の床材F1において、床材の厚さ全体にわたる他の機能性の樹脂領域が更に形成されたもの、図2の床材F2において、表面層3の厚さ全体にわたる他の機能性の樹脂領域が表面層3に更に形成されたもの、図3の床材F3において、小塊状の他の機能性の樹脂領域が更に混在したもの、図4の床材F4において、小塊状の他の機能性の樹脂領域が表面層3に更に混在したもの、図2及び図4の床材F2及びF4において、表面層3と裏面層4との間に中間層(例えばガラス不織布など)が設けられたものなど、種々の実施形態が存在する。また、各実施形態の床材の表面は平滑であってもよいし、床材表面にはエンボス加工により凹凸が形成されていてもよい。   In addition to these, in the flooring material F1 in FIG. 1, another functional resin region that extends over the entire thickness of the flooring material is further formed. In the flooring material F2 in FIG. 2, the entire thickness of the surface layer 3 extends. In the case where another functional resin region is further formed on the surface layer 3, in the flooring material F3 in FIG. 3, in the flooring material F4 in FIG. In the floor layer F2 and F4 in FIG. 2 and FIG. 4 in which other functional resin regions in the form of small blocks are further mixed, an intermediate layer (for example, a glass nonwoven fabric) between the surface layer 3 and the back surface layer 4 There are various embodiments, such as those provided. Moreover, the surface of the flooring material of each embodiment may be smooth, and the unevenness | corrugation may be formed in the flooring material surface by embossing.

他の機能性の樹脂領域は、防滑機能と防汚機能を除いた如何なる機能を有する樹脂領域であってもよく、例えば、耐磨耗性、帯電防止性、防黴抗菌性、自発光性、親水性、疎水性、耐候性など、所望の機能を有する樹脂領域を追加して設けることができる。また、他の機能性の樹脂領域は、単独の機能を有する領域であってもよいし、複数の機能を兼ね備えた領域であってもよいし、単独の異なる機能を備えた複数の領域であってもよい。これらの機能性の樹脂領域は、第一の樹脂領域1および第二の樹脂領域2の主成分樹脂(塩化ビニル系樹脂)と相溶性がある熱可塑性樹脂を主成分とする混合物で形成し、第一の樹脂領域1との界面及び第二の樹脂領域2との界面で融着させることが望ましいが、これらの樹脂領域1,2と他の機能性の樹脂領域をバインダー剤等によって接着してもよい。   The other functional resin region may be a resin region having any function except the anti-slip function and the anti-fouling function, for example, wear resistance, antistatic property, antibacterial antibacterial property, self-luminous property, A resin region having a desired function such as hydrophilicity, hydrophobicity, and weather resistance can be additionally provided. The other functional resin region may be a region having a single function, a region having a plurality of functions, or a plurality of regions having a single different function. May be. These functional resin regions are formed of a mixture mainly composed of a thermoplastic resin that is compatible with the main component resin (vinyl chloride resin) of the first resin region 1 and the second resin region 2, It is desirable to fuse at the interface with the first resin region 1 and the interface with the second resin region 2, but these resin regions 1 and 2 and other functional resin regions are bonded with a binder or the like. May be.

第一の樹脂領域1は、前記のように、塩化ビニル系樹脂とポリウレタン系熱可塑性エラストマーとを主成分樹脂とする領域であり、この第一の樹脂領域1には可塑剤が含有され、また、公知の安定剤(例えばエポキシ系、Ba/Zn系などの安定剤)、加工助剤、補強剤、補強材(例えば、ガラス繊維や樹脂繊維など)、耐衝撃改良剤、滑剤なども適宜含有される。   As described above, the first resin region 1 is a region mainly composed of a vinyl chloride resin and a polyurethane thermoplastic elastomer, and the first resin region 1 contains a plasticizer. , Well-known stabilizers (for example, epoxy-based, Ba / Zn-based stabilizers), processing aids, reinforcing agents, reinforcing materials (for example, glass fibers and resin fibers), impact resistance improvers, lubricants, etc. Is done.

第一の樹脂領域1の主成分樹脂である塩化ビニル系樹脂としては、数平均分子量が800〜4000程度で塩素化度が57%程度の一般的な直鎖状の塩化ビニル樹脂、主鎖からの分岐鎖を持つ塩化ビニル樹脂、架橋塩化ビニル樹脂、エチレン−塩化ビニル共重合体、塩素化塩化ビニル樹脂などが使用され、これらの中でも、主鎖からの分岐鎖を持つ塩化ビニル樹脂が好ましく使用される。   As the vinyl chloride resin which is the main component resin of the first resin region 1, a general linear vinyl chloride resin having a number average molecular weight of about 800 to 4000 and a chlorination degree of about 57%, Vinyl chloride resin having a branched chain, crosslinked vinyl chloride resin, ethylene-vinyl chloride copolymer, chlorinated vinyl chloride resin, etc. are used, and among these, vinyl chloride resin having a branched chain from the main chain is preferably used. Is done.

上記の分岐鎖を持つ塩化ビニル樹脂は、結合端を3つ以上有する分岐性単量体を用いて重合させることにより得られるもので、数平均分子量が3000〜5000程度と高く、ゴム弾性を有するものが適している。第一の樹脂領域1の主成分樹脂として、このような分岐鎖を持つ塩化ビニル樹脂を用いると、直鎖状の塩化ビニル樹脂を用いる場合に比べて、湿潤時の床材の防滑性が更に向上し、後述の試験データに示すように、第一の樹脂領域のみからなる床材試験片では湿潤時の滑り抵抗係数が0.5以上となる。   The vinyl chloride resin having the above-mentioned branched chain is obtained by polymerization using a branched monomer having three or more bond ends, and has a high number average molecular weight of about 3000 to 5000 and rubber elasticity. Things are suitable. When a vinyl chloride resin having such a branched chain is used as the main component resin of the first resin region 1, the floor material when wet is more slippery than when a linear vinyl chloride resin is used. As shown in test data to be described later, the flooring test piece consisting only of the first resin region has a slip resistance coefficient of 0.5 or more when wet.

この分岐鎖を持つ塩化ビニル樹脂の分岐鎖の長さや数は、定性的にはゲルパーミエーションクロマトグラフィー(GPC)で数平均分子量(Mn)と重量平均分子量(Mw)を測定してその比(Mw/Mn)から、また、定量的には13C NMRにより、分析することができる。 The length and number of the branched chain of the vinyl chloride resin having the branched chain are qualitatively measured by gel permeation chromatography (GPC) by measuring the number average molecular weight (Mn) and the weight average molecular weight (Mw), and the ratio ( Mw / Mn) and quantitatively by 13 C NMR.

第一の樹脂領域1のもう一つの主成分樹脂であるポリウレタン系熱可塑性エラストマーは、第一の樹脂領域1にゴム弾性的な物性を付加し、第一の樹脂領域1の滑り止め作用、ひいては床材F1〜F4の滑り止め作用を向上させるために混合するものであり、上記塩化ビニル系樹脂との相溶性があるものに限定される。ポリウレタン系熱可塑性エラストマーであっても、塩化ビニル系樹脂との相溶性がないものや、相溶性に劣るものは、塩化ビニル系樹脂と混合しても、相分離して均一に混ざらないため、ゴム弾性的な物性を第一の樹脂領域1に付与して防滑性を高めることが難しく、また床材に適する強度が得られないからである。   The polyurethane-based thermoplastic elastomer, which is another main component resin of the first resin region 1, adds rubber elastic properties to the first resin region 1, thereby preventing the slip of the first resin region 1, It mixes in order to improve the anti-slip action of the flooring materials F1 to F4, and is limited to those having compatibility with the vinyl chloride resin. Even if it is a polyurethane-based thermoplastic elastomer, those that are not compatible with vinyl chloride-based resins and those that are poorly compatible do not mix evenly with vinyl chloride-based resins, and will not mix uniformly. This is because it is difficult to increase the anti-slip property by imparting rubber elastic properties to the first resin region 1, and the strength suitable for the flooring material cannot be obtained.

ポリウレタン系熱可塑性エラストマーは、ハードセグメントとしてのポリイソシアネートと、ソフトセグメントとしてのポリエステルポリオールやポリエーテルポリオールを反応させてウレタン結合させることにより製造されるものであるが、ポリイソシアネートとポリエーテルポリオールを反応させて得られるエーテル型ポリウレタン系熱可塑性エラストマーは、塩化ビニル系樹脂との相溶性に劣り、防滑性の向上に実質的に寄与しないため、本発明には使用し難いものである。これに対し、ポリイソシアネートとポリエステルポリオールを反応させて得られるエステル型ポリウレタン系熱可塑性エラストマーは、塩化ビニル系樹脂との相溶性があり、塩化ビニル系樹脂と混合すると、相分離しないで均一に良く混ざり、ゴム弾性的な物性を第一の樹脂領域1に付加して防滑性の向上に大きく寄与するため、極めて好ましく使用される。   Polyurethane-based thermoplastic elastomers are manufactured by reacting polyisocyanates as hard segments with polyester polyols and polyether polyols as soft segments to form urethane bonds. Polyurethane-based thermoplastic elastomers react with polyisocyanates and polyether polyols. The ether-type polyurethane-based thermoplastic elastomer thus obtained is inferior in compatibility with the vinyl chloride-based resin and does not substantially contribute to the improvement of the anti-slip property, so that it is difficult to use in the present invention. In contrast, ester polyurethane thermoplastic elastomers obtained by reacting polyisocyanates and polyester polyols are compatible with vinyl chloride resins, and when mixed with vinyl chloride resins, they are uniformly good without phase separation. Mixing and adding rubber-elastic properties to the first resin region 1 to greatly contribute to the improvement of anti-slip properties, it is very preferably used.

塩化ビニル系樹脂との相溶性があるエステル型ポリウレタン系熱可塑性エラストマーの具体例としては、例えば、ポリイソシアネートと、アジペート系、ポリカプロラクトン系などのポリエステルポリオールを反応させたものが挙げられ、その硬度が70A以下のものが好ましく使用される。   Specific examples of ester-type polyurethane thermoplastic elastomers compatible with vinyl chloride resins include, for example, those obtained by reacting polyisocyanates with polyester polyols such as adipates and polycaprolactones, and their hardness Is preferably 70 A or less.

上記のエステル型ポリウレタン系熱可塑性エラストマーは、第一の樹脂領域1の主成分樹脂100質量部のうち10〜50質量部を占めていること(換言すれば主成分樹脂の10〜50質量%を占めていること)が好ましい。エステル型ポリウレタン系熱可塑性エラストマーの主成分樹脂に占める割合が上記範囲内であると、後述の試験データに示すように、第一の樹脂領域1のみからなる床材試験片の乾燥時の滑り抵抗係数(JIS A 1407)が0.8以上となり、湿潤時の滑り抵抗係数が0.4以上となって、乾燥時の防滑性も湿潤時の防滑性も向上する。しかし、エステル型ポリウレタン系熱可塑性エラストマーが10質量部を下回ると、乾燥時の滑り抵抗係数が0.8よりも小さくなり、また、50質量部を上回ると、湿潤時の滑り抵抗係数が0.4よりも小さくなって、防滑性の向上が不充分となる。   Said ester type polyurethane-based thermoplastic elastomer occupies 10 to 50 parts by mass of 100 parts by mass of the main component resin in the first resin region 1 (in other words, 10 to 50% by mass of the main component resin). Preferably). When the ratio of the ester-type polyurethane-based thermoplastic elastomer to the main component resin is within the above range, as shown in the test data described later, the slip resistance at the time of drying of the floor material test piece consisting only of the first resin region 1 The coefficient (JIS A 1407) is 0.8 or more, the slip resistance coefficient when wet is 0.4 or more, and the slip resistance during drying and the slip resistance when wet are improved. However, if the ester-type polyurethane-based thermoplastic elastomer is less than 10 parts by mass, the slip resistance coefficient at the time of drying is less than 0.8, and if it exceeds 50 parts by mass, the slip resistance coefficient at the time of wetness is 0.00. It becomes smaller than 4, and the improvement of slip resistance becomes insufficient.

第一の樹脂領域1に含有させる可塑剤は、その種類が限定されるものではなく、公知の種々の可塑剤、例えば、DOP等のフタル酸系可塑剤、リン酸系可塑剤、脂肪酸系可塑剤、エポキシ系可塑剤、その他、塩素化パラフィンのような非高分子系可塑剤、高分子系可塑剤などの公知の可塑剤の群れから選ばれる一種又は複数種の可塑剤を使用することができる。   The type of plasticizer contained in the first resin region 1 is not limited, and various known plasticizers such as phthalic plasticizers such as DOP, phosphoric plasticizers, and fatty acid plasticizers. One or more plasticizers selected from a group of known plasticizers such as non-polymer plasticizers such as chlorinated paraffin, polymer plasticizers, epoxy plasticizers, etc. it can.

上記の可塑剤は、主成分樹脂の塩化ビニル系樹脂100質量部に対し25〜90質量部の割合で第一の樹脂領域1に含まれていることが好ましく、この割合で含まれていると、後述の試験データに示すように、第一の樹脂領域1のみからなる床材試験片であっても、防滑性だけでなくテーバー防汚性まで向上するようになる。可塑剤の含有量が25質量部を下回ると、後述の試験データに示すように、第一の樹脂領域1のみからなる床材試験片の乾燥時の滑り抵抗係数が0.8よりも小さくなって、防滑性の向上が不充分となり、可塑剤の含有量が90質量%を上回ると、後述の試験データに示すように、第一の樹脂領域1のみからなる床材試験片のテーバー防汚性のΔEが乾拭きの場合も水拭きの場合も合格値の範囲を越えてしまい、防汚性が向上し難くなる。   The plasticizer is preferably contained in the first resin region 1 in a proportion of 25 to 90 parts by mass with respect to 100 parts by mass of the vinyl chloride resin as the main component resin. As shown in test data to be described later, even a flooring test piece composed of only the first resin region 1 improves not only the anti-slip property but also the anti-taber anti-stain property. When the content of the plasticizer is less than 25 parts by mass, as shown in test data described later, the slip resistance coefficient during drying of the floor material test piece consisting only of the first resin region 1 becomes smaller than 0.8. Thus, when the improvement of the anti-slip property becomes insufficient and the plasticizer content exceeds 90% by mass, as shown in the test data to be described later, the taber antifouling of the floor material test piece consisting only of the first resin region 1 The property ΔE exceeds the range of acceptable values both in the case of dry wiping and in the case of water wiping, and it is difficult to improve the antifouling property.

一方、第二の樹脂領域2は、前記のように、塩化ビニル系樹脂に硬質粒子を含有させた領域であり、望ましくは、エチレン・酢酸ビニル共重合体−塩化ビニルグラフトコポリマーが更に配合される。そして、可塑剤や充填材も配合され、公知の安定剤、加工助剤、補強剤、補強材(例えばガラス繊維や樹脂繊維など)、耐衝撃改良剤、滑剤なども適宜配合される。   On the other hand, as described above, the second resin region 2 is a region in which hard particles are contained in a vinyl chloride resin, and preferably an ethylene / vinyl acetate copolymer-vinyl chloride graft copolymer is further blended. . Plasticizers and fillers are also blended, and known stabilizers, processing aids, reinforcing agents, reinforcing materials (for example, glass fibers and resin fibers), impact resistance improvers, lubricants, and the like are blended as appropriate.

第二の樹脂領域2の主成分樹脂である塩化ビニル系樹脂としては、数平均重合度800〜1500程度、塩素化度57%程度の直鎖状の塩化ビニル樹脂が好ましく使用されるが、架橋塩化ビニル樹脂、エチレン−塩化ビニル共重合体、塩素化塩化ビニル樹脂なども使用される。また、主鎖からの分岐鎖を持つ塩化ビニル樹脂も使用される。   As the vinyl chloride resin which is the main component resin of the second resin region 2, a linear vinyl chloride resin having a number average polymerization degree of about 800 to 1500 and a chlorination degree of about 57% is preferably used. Vinyl chloride resin, ethylene-vinyl chloride copolymer, chlorinated vinyl chloride resin and the like are also used. A vinyl chloride resin having a branched chain from the main chain is also used.

この第二の樹脂領域2に望ましく配合されるエチレン・酢酸ビニル共重合体−塩化ビニルグラフトコポリマーは、エチレン・酢酸ビニル共重合体をポリマー主鎖としてこれにポリ塩化ビニルをグラフト重合させたものであり、グラフトコポリマー中にエチレン・酢酸ビニル共重合体成分が5〜50質量%(又は酢酸ビニル成分が5〜10質量%)含まれた数平均重合度500〜1100程度のものが使用される。   The ethylene / vinyl acetate copolymer-vinyl chloride graft copolymer desirably blended in the second resin region 2 is obtained by grafting polyvinyl chloride onto the ethylene / vinyl acetate copolymer as a polymer main chain. In addition, a graft copolymer having a number average polymerization degree of about 500 to 1100 in which 5 to 50% by mass of an ethylene / vinyl acetate copolymer component (or 5 to 10% by mass of a vinyl acetate component) is used is used.

上記の塩化ビニル樹脂と、上記のエチレン・酢酸ビニル共重合体−塩化ビニルグラフトコポリマーと、可塑剤等との混合物で、第二の樹脂領域2を形成すると、床材のテーバー防汚性が向上し、後述の汚れ試験の結果から判るように、第二の樹脂領域2のみからなる床材試験片では、乾拭きしたときのΔEが4.5以下となり、水拭きしたときのΔEが4.0以下となる。   When the second resin region 2 is formed from a mixture of the above vinyl chloride resin, the above ethylene / vinyl acetate copolymer-vinyl chloride graft copolymer, and a plasticizer, the taber antifouling property of the flooring is improved. However, as can be seen from the result of the dirt test described later, in the flooring test piece consisting only of the second resin region 2, ΔE when dry wiped is 4.5 or less, and ΔE when wiped with water is 4.0. It becomes as follows.

上記のエチレン・酢酸ビニル共重合体−塩化ビニルグラフトコポリマーは、エチレン・酢酸ビニル共重合体成分が第二の樹脂領域2の樹脂成分の1.5〜20.0質量%を占めるように、塩化ビニル系樹脂と混合することが好ましく、このような混合物で第二の樹脂領域2を形成すると、床材のテーバー防汚性が更に向上し、後述の汚れ試験の結果から判るように、第二の樹脂領域2のみからなる床材試験片では、乾拭きしたときのΔEが4.0以下となり、水拭きしたときのΔEが3.5以下となる。第二の樹脂領域2の樹脂成分中におけるエチレン・酢酸ビニル共重合体成分の占める比率(以下、エチレン・酢酸ビニル成分含有率と記す)が1.5質量%を下回っても、20.0質量%を上回っても、床材のテーバー防汚性は低下する。なお、上記のエチレン・酢酸ビニル成分含有率は、第二の樹脂領域2の樹脂成分中におけるエチレン・酢酸ビニル共重合体成分の質量比を100分率で表したものであり、算定に際しては第二の樹脂領域2の樹脂成分のみを分母とし、可塑剤、安定剤、充填材など樹脂以外の成分は分母に算入しないで求めたものである。   The ethylene / vinyl acetate copolymer-vinyl chloride graft copolymer is chlorinated so that the ethylene / vinyl acetate copolymer component accounts for 1.5 to 20.0% by mass of the resin component in the second resin region 2. It is preferable to mix with a vinyl-based resin. When the second resin region 2 is formed with such a mixture, the taber antifouling property of the flooring is further improved. In the floor material test piece consisting only of the resin region 2, ΔE when wiped dry is 4.0 or less, and ΔE when wiped with water is 3.5 or less. Even if the ratio of the ethylene / vinyl acetate copolymer component in the resin component of the second resin region 2 (hereinafter referred to as ethylene / vinyl acetate component content) is less than 1.5% by mass, 20.0% Even if it exceeds the%, the Taber antifouling property of the flooring material decreases. The ethylene / vinyl acetate component content is the mass ratio of the ethylene / vinyl acetate copolymer component in the resin component of the second resin region 2 in terms of 100 fractions. Only the resin component of the second resin region 2 is used as a denominator, and components other than the resin such as a plasticizer, a stabilizer, and a filler are calculated without being included in the denominator.

エチレン・酢酸ビニル共重合体−塩化ビニルグラフトコポリマーは、前記のように、エチレン・酢酸ビニル共重合体をポリマー主鎖として、これに塩化ビニルをグラフト重合させたものであるから、塩化ビニル系樹脂との相溶性に優れている。そのため、このエチレン・酢酸ビニル共重合体−塩化ビニルグラフトコポリマーと塩化ビニル系樹脂とを成分樹脂とする第二の樹脂領域2を備えた床材は柔軟性が向上し、23℃における10%モジュラス(M10)が減少すると共に、破断伸び率(Lb)が増加するので、床面や階段に床材を沿わせて被覆しやすくなり、施工性が改善される。   As described above, an ethylene / vinyl acetate copolymer-vinyl chloride graft copolymer is obtained by grafting vinyl chloride onto an ethylene / vinyl acetate copolymer as a polymer main chain. Excellent compatibility with. Therefore, the floor material provided with the second resin region 2 comprising the ethylene / vinyl acetate copolymer-vinyl chloride graft copolymer and vinyl chloride resin as component resins is improved in flexibility and has a 10% modulus at 23 ° C. Since (M10) decreases and the elongation at break (Lb) increases, it becomes easier to cover the floor material or stairs along the floor, and the workability is improved.

ちなみに、エチレン・酢酸ビニル共重合体−塩化ビニルグラフトコポリマーに代えてエチレン・酢酸ビニル共重合体を塩化ビニル系樹脂に混合した樹脂領域を形成しても、後述する試験結果から判るように、防汚性は向上せず、柔軟性も不充分である。これより塩化ビニル系樹脂へのエチレン・酢酸ビニル共重合体−塩化ビニルグラフトコポリマーの混合は、床材の防汚性や柔軟性を向上させる上で極めて有効であることが証明される。   Incidentally, even if a resin region is formed by mixing ethylene / vinyl acetate copolymer with vinyl chloride resin instead of ethylene / vinyl acetate copolymer-vinyl chloride graft copolymer, Dirtyness does not improve and flexibility is insufficient. From this, it is proved that mixing of the ethylene / vinyl acetate copolymer-vinyl chloride graft copolymer with the vinyl chloride resin is extremely effective in improving the antifouling property and flexibility of the flooring.

第二の樹脂領域2に含有させる硬質粒子は、第二の樹脂領域2の耐傷性を高めて床材の防汚性を向上させる役目を果たすものであり、モース硬度が6〜13で、平均粒径が30〜80μm程度の硬質粒子が好ましく使用される。好ましい硬質粒子の代表例としては、珪砂その他の石英粒子や、アルミナその他の金属粒子が挙げられ、前者の石英粒子は安価に入手できるので特に好ましく使用される。   The hard particles contained in the second resin region 2 serve to increase the scratch resistance of the second resin region 2 and improve the antifouling property of the flooring material. The Mohs hardness is 6 to 13, Hard particles having a particle size of about 30 to 80 μm are preferably used. Typical examples of preferable hard particles include quartz sand and other quartz particles, alumina and other metal particles, and the former quartz particles are particularly preferably used because they can be obtained at low cost.

この硬質粒子は、第二の樹脂領域2の樹脂成分100質量部に対し2〜15質量部の割合で含有させることが好ましく、かかる割合で含有させると、硬質粒子によって第二の樹脂領域2の表面の耐傷性が向上し、靴底による擦り傷が付きにくくなるため、汚れ物質が付着しにくくなり、付着しても容易に除去できるので、良好な防汚性を長期に亘って発揮できるようになる。そして、耐摩耗性も大きく向上し、後述の摩耗試験の結果から分かるように、第二の樹脂領域2のみからなる床材試験片では、1mm磨耗に要する回転数が1万回以上となる。硬質粒子の含有量が2質量部未満では、防汚性の向上が不充分となり、15質量部を越えると、第二の樹脂領域2が硬くなって床材の柔軟性が低下するので、いずれの場合も好ましくない。硬質粒子の更に好ましい含有量は、樹脂成分100質量部に対して2.5〜10質量部である。   The hard particles are preferably contained at a rate of 2 to 15 parts by mass with respect to 100 parts by mass of the resin component of the second resin region 2. Since the scratch resistance of the surface is improved and scratches due to the shoe sole are less likely to be attached, dirt substances are less likely to adhere and can be easily removed even if attached, so that good antifouling properties can be demonstrated over a long period of time. Become. And the wear resistance is also greatly improved, and as can be seen from the results of the wear test described later, the floor material test piece consisting only of the second resin region 2 has a rotational speed required for 1 mm wear of 10,000 times or more. If the content of hard particles is less than 2 parts by mass, the antifouling property will be insufficient, and if it exceeds 15 parts by mass, the second resin region 2 will become hard and the flexibility of the flooring will decrease. This is also not preferable. The more preferable content of the hard particles is 2.5 to 10 parts by mass with respect to 100 parts by mass of the resin component.

第二の樹脂領域2に含有させる可塑剤としては、二塩基酸とグリコールを反応させた二塩基酸エステル可塑剤が適しており、具体的にはアジピン酸、コハク酸、安息香酸などの脂肪族二塩基酸やフタル酸、1,6−ナフタレンジカルボン酸などの芳香族二塩基酸とグリコールとのエステル可塑剤が使用される。この中でも芳香族二塩基酸とグリコールとのエステル可塑剤が好ましく、特に、フタル酸とグリコールとのエステル可塑剤(DOP等)が極めて好ましく使用される。また、従来から塩化ビニル系樹脂の可塑剤として使用されているリン酸系可塑剤、エポキシ系可塑剤、塩素化パラフィンなどの非高分子系可塑剤、高分子系可塑剤なども使用される。これらの可塑剤の含有量は、第二の樹脂領域2の樹脂成分100質量部に対して、30〜60質量部とするのが適当である。   As the plasticizer to be contained in the second resin region 2, a dibasic acid ester plasticizer obtained by reacting a dibasic acid and a glycol is suitable. Specifically, aliphatic compounds such as adipic acid, succinic acid, and benzoic acid are used. An ester plasticizer of an aromatic dibasic acid such as dibasic acid, phthalic acid, or 1,6-naphthalenedicarboxylic acid and glycol is used. Among these, ester plasticizers of aromatic dibasic acid and glycol are preferable, and ester plasticizers (DOP and the like) of phthalic acid and glycol are particularly preferably used. Further, non-polymer plasticizers such as phosphate plasticizers, epoxy plasticizers, chlorinated paraffins, and polymer plasticizers that have been used as plasticizers for vinyl chloride resins are also used. The content of these plasticizers is suitably 30 to 60 parts by mass with respect to 100 parts by mass of the resin component in the second resin region 2.

第二の樹脂領域2には、上記可塑剤を2種以上混合して含有させることができるが、可塑剤全量の20〜60質量%、なかんずく25〜50質量%は、分子量が500〜8000の高分子タイプの二塩基酸エステル可塑剤で占められることが好ましい。   The second resin region 2 can contain a mixture of two or more of the plasticizers, but 20-60% by mass of the total amount of the plasticizer, especially 25-50% by mass has a molecular weight of 500-8000. It is preferably occupied by a polymer type dibasic ester plasticizer.

床材の表面汚れの原因の一つは、床材に柔軟性を付与する目的で添加する可塑剤が、長期使用の間に床材表面にブリードアウトし、このブリードアウトした粘稠な可塑剤に汚れ物質が絡み取られるようにして汚れ物質が床材表面に定着するためと考えられるが、上記の高分子タイプの二塩基酸エステル可塑剤は、分子鎖が長いため、長期間経過しても前記塩化ビニル系樹脂や前記コポリマーの分子と絡み合って第二の樹脂領域2の表面からブリードアウトすることが少ないため、この高分子タイプの二塩基酸エステル可塑剤を例えば他の低分子タイプの二塩基酸エステル可塑剤や他の可塑剤と併用すると防汚性を向上させることができ、また、前記塩化ビニル系樹脂や前記コポリマーの分子との絡み合いに起因して第二の樹脂領域2の耐傷性を向上させることも可能となる。但し、高分子タイプの二塩基酸エステル可塑剤は塩化ビニル系樹脂との相溶性が低いので、可塑剤全体に占める高分子タイプの二塩基酸エステル可塑剤の比率が過剰になると、第二の樹脂領域2の柔軟性、ひいては床材の柔軟性が低下することになる。それ故、可塑剤全体に占める高分子タイプの二塩基酸エステル可塑剤の比率は、上記範囲とすることが好ましい。   One of the causes of floor surface contamination is that the plasticizer added for the purpose of imparting flexibility to the flooring bleeds out to the flooring surface during long-term use, and this bleed-out viscous plasticizer It is thought that the dirt substance is entangled on the floor material surface, and the dirt substance is fixed on the flooring surface. However, the above polymer type dibasic acid ester plasticizer has a long molecular chain. Are entangled with the molecules of the vinyl chloride resin and the copolymer and rarely bleed out from the surface of the second resin region 2, so that this high molecular type dibasic acid ester plasticizer is used for other low molecular type, for example. When used in combination with a dibasic acid ester plasticizer or other plasticizers, the antifouling property can be improved, and the second resin region 2 is caused by entanglement with the molecules of the vinyl chloride resin or the copolymer. Scratch resistance It is possible to improve. However, since the polymer type dibasic acid ester plasticizer has low compatibility with the vinyl chloride resin, if the ratio of the polymer type dibasic acid ester plasticizer in the entire plasticizer becomes excessive, the second type The flexibility of the resin region 2 and thus the flexibility of the flooring material will be reduced. Therefore, the ratio of the polymer type dibasic acid ester plasticizer in the entire plasticizer is preferably within the above range.

なお、第一の樹脂領域1についても、第二の樹脂領域2の場合と同様に、高分子タイプの二塩基酸エステル可塑剤と他の可塑剤を併用するようにしてもよい。   As in the case of the second resin region 2, the first resin region 1 may be used in combination with a polymer type dibasic acid ester plasticizer and another plasticizer.

また、第二の樹脂領域2には、樹脂成分100質量部に対して充填材を10〜70質量部含有させることが好ましい。充填材としては、炭酸カルシウム(重質炭酸カルシウムや軽質炭酸カルシウム等)、タルクなどの無機系充填材や、フェノール樹脂、メラミン樹脂、木粉、パルプなどの有機系充填材から選ばれた一種又は複数種の粉体や、繊維状もしくは鱗片状等の形状をもったものが使用される。これらの充填材は、樹脂使用量の低減、寸法安定性などを目的として配合されるものであり、そのモース硬度は一般に3以下である。   Moreover, it is preferable to make the 2nd resin area | region 2 contain 10-70 mass parts of fillers with respect to 100 mass parts of resin components. As the filler, one selected from inorganic fillers such as calcium carbonate (heavy calcium carbonate and light calcium carbonate), talc, and organic fillers such as phenol resin, melamine resin, wood flour, pulp, or A plurality of types of powders and those having a shape such as a fiber shape or a scale shape are used. These fillers are blended for the purpose of reducing the amount of resin used, dimensional stability, etc., and their Mohs hardness is generally 3 or less.

以上の第一の樹脂領域1と第二の樹脂領域2は、図1に示す床材F1のように、床材の厚さ全体にわたる樹脂領域として交互に隣接させて床材全体に多数形成してもよいし、図2に示す床材F2のように、床材の表面層3の厚さ全体にわたる樹脂領域として交互に隣接させて表面層3全体に多数形成してもよい。また、図3に示す床材F3のように、多数の小塊状の樹脂領域として床材全体に混在させて形成してもよいし、図4に示す床材F4のように、多数の小塊状の樹脂領域として床材の表面層3全体に混在させて形成してもよい。いずれにしても、第一の樹脂領域1と第二の樹脂領域2は床材F1〜F4の表面(上面)に露出していることが必要であり、露出していなければ防滑性も防汚性も発揮することはできない。   The first resin region 1 and the second resin region 2 described above are formed in a large number on the entire flooring so as to be alternately adjacent as resin regions over the entire thickness of the flooring, as in the flooring F1 shown in FIG. Alternatively, like the floor material F2 shown in FIG. 2, a large number of resin layers may be formed on the entire surface layer 3 so as to be alternately adjacent to each other as a resin region covering the entire thickness of the surface layer 3 of the floor material. Further, as a floor material F3 shown in FIG. 3, it may be formed as a large number of small lump-like resin regions mixed in the entire floor material, or as a large number of small blocks like a floor material F4 shown in FIG. Alternatively, the resin region may be formed in the entire surface layer 3 of the flooring. In any case, the first resin region 1 and the second resin region 2 need to be exposed on the surfaces (upper surfaces) of the flooring materials F1 to F4. Sex cannot be demonstrated.

床材表面における第一の樹脂領域1と第二の樹脂領域2との面積比は10:90〜35:65であることが好ましく、この範囲の面積比であると、防滑性と防汚性がバランス良く発揮される。第一の樹脂領域1の面積比が10を下回り、第二の樹脂領域2の面積比が90を上回ると、優れた防汚性が発揮されるけれども防滑性が不足して滑り易くなり、また、第一の樹脂領域1の面積比が35を上回り、第二の樹脂領域2の面積比が65を下回ると、優れた防滑性が発揮されるけれども防汚性が不足して汚れ易くなる。   The area ratio between the first resin region 1 and the second resin region 2 on the floor material surface is preferably 10:90 to 35:65, and if the area ratio is within this range, the slip resistance and the antifouling property are increased. Is demonstrated in a well-balanced manner. When the area ratio of the first resin region 1 is less than 10 and the area ratio of the second resin region 2 is more than 90, although excellent antifouling properties are exhibited, the antiskid property is insufficient and the slippery becomes easy. When the area ratio of the first resin region 1 exceeds 35 and the area ratio of the second resin region 2 is less than 65, excellent anti-slip properties are exhibited, but the anti-stain property is insufficient and it becomes easy to get dirty.

図1と図2の床材F1,F2は、第一の樹脂領域1と第二の樹脂領域2の体積比を10:90〜35:65に調節すれば、床材表面における双方の樹脂領域1,2の面積比が10:90〜35:65となり、防滑性と防汚性が同時にバランス良く発揮される。これに対し、図3と図4の床材F3,F4の場合は、小塊状の第一の樹脂領域1を形成するための樹脂混合物の粉粒体と、小塊状の第二の樹脂領域2を形成するための樹脂混合物の粉粒体とを、10:90〜35:65の体積比で混合し、この混合粉粒体をシート状に熱プレス成形して床材F3や床材F4の表面層3を作製しても、床材表面における双方の樹脂領域1,2の面積比は厳密に10:90〜35:65にならないが、上記の面積比と略同一の面積比となるので、やはり防滑性と防汚性が同時にバランス良く発揮される。   The flooring materials F1 and F2 in FIGS. 1 and 2 can be obtained by adjusting the volume ratio of the first resin region 1 and the second resin region 2 to 10:90 to 35:65. The area ratio of 1 and 2 is 10:90 to 35:65, and the anti-slip property and the anti-stain property are exhibited in a balanced manner at the same time. On the other hand, in the case of the flooring materials F3 and F4 of FIG. 3 and FIG. 4, the granular material of the resin mixture for forming the small lump-shaped first resin region 1 and the small lump-shaped second resin region 2 are used. Are mixed in a volume ratio of 10:90 to 35:65, and the mixed powder is heat-pressed into a sheet to form the floor material F3 and the floor material F4. Even if the surface layer 3 is produced, the area ratio of the two resin regions 1 and 2 on the floor material surface is not strictly 10:90 to 35:65, but is substantially the same as the above area ratio. The anti-slip and anti-stain properties are also well balanced at the same time.

第一の樹脂領域1と第二の樹脂領域2の平面形状や大きさは特に限定されないが、例えば、連続した帯状の平面形状を有する樹脂領域1,2の場合は、その幅寸法を1〜30mm程度とすることが好ましく、また、三角形、四角形、六角形、丸形、菱形、不定形などの不連続の独立した平面形状を有する樹脂領域1,2の場合は、その縦寸法または横寸法を1〜30mm程度とすることが好ましい。このようにすると、歩行時に靴底によって床材表面の双方の樹脂領域1,2が複数個ずつ同時に踏まれるので、防滑性と防汚性が同時に発揮される。
また、第一の樹脂領域1と第二の樹脂領域2に加えて他の機能性の樹脂領域を更に設ける場合も、上記と同様の幅寸法や、縦寸法または横寸法とすることが好ましい。
The planar shape and size of the first resin region 1 and the second resin region 2 are not particularly limited. For example, in the case of the resin regions 1 and 2 having a continuous belt-like planar shape, the width dimension is 1 to In the case of the resin regions 1 and 2 having discontinuous independent planar shapes such as a triangle, a quadrangle, a hexagon, a circle, a rhombus, and an indeterminate shape, the vertical dimension or the horizontal dimension is preferable. Is preferably about 1 to 30 mm. If it does in this way, since both the resin area | regions 1 and 2 of the floor material surface will be stepped on by the shoe sole simultaneously at the time of a walk, anti-slip property and antifouling property will be exhibited simultaneously.
In addition to the first resin region 1 and the second resin region 2, when another functional resin region is further provided, it is preferable to have the same width dimension, vertical dimension, or horizontal dimension as described above.

なお、第一の樹脂領域1や第二の樹脂領域2の色は特に限定されるものではなく、所望の色に着色すればよいが、比較的汚れ易い第一の樹脂領域1や他の機能性の樹脂領域を濃色系ないし暗色系に着色すると、汚れが目立たなくなるので好ましい。   In addition, the color of the 1st resin area | region 1 or the 2nd resin area | region 2 is not specifically limited, Although what is necessary is just to color to a desired color, the 1st resin area | region 1 and other functions which are comparatively easy to become dirty It is preferable to color the transparent resin region in a dark color or dark color because dirt is not noticeable.

以上のような本発明の床材は、押出成形、粉粒体の熱圧プレス成形、射出成形などの公知の成形方法によって製造され、長尺床シート、床タイル、階段被覆材などの形態で製品化される。   The floor material of the present invention as described above is produced by a known molding method such as extrusion molding, hot-press press molding of powder and injection molding, and is in the form of a long floor sheet, floor tile, staircase covering material, etc. It is commercialized.

例えば、図1に示す床材F1は、長尺の床シートの形態で製品化する場合には、多色押出成形機を使用し、加熱溶融させた第一の樹脂領域1形成用の樹脂混合物と第二の樹脂領域2形成用の樹脂混合物を交互に並列させてシート状に連続押出成形するか、或いは、第一の樹脂領域1形成用の樹脂混合物の粉粒体(定形又は不定形のペレットや鱗片状の小塊)と、第二の樹脂領域2形成用の樹脂混合物の粉粒体(定形又は不定形のペレットや鱗片状の小塊)を、コンベアベルト上に領域ごとに区画して一定の厚みに散布し、熱圧プレスによりシート状に連続成形して製造すればよい。一方、タイル状の床材の形態で製品化する場合には、上記の方法で得られた長尺の床シートをタイル状に切断するか、或いは、多色射出成形機を使用し、加熱溶融させた第一の樹脂領域1形成用の樹脂混合物と第二の樹脂領域2形成用の樹脂混合物をタイル状の型内に射出成形して製造すればよい。   For example, when the floor material F1 shown in FIG. 1 is commercialized in the form of a long floor sheet, a resin mixture for forming the first resin region 1 is melted by heating using a multicolor extrusion molding machine. And the resin mixture for forming the second resin region 2 are alternately juxtaposed and continuously extruded into a sheet, or the resin mixture powder for forming the first resin region 1 (regular or amorphous) Pellets and scale-like small lumps) and the powder mixture of the resin mixture for forming the second resin region 2 (regular or irregular pellets or scale-like lumps) are divided into regions on the conveyor belt. And then sprayed to a certain thickness and continuously formed into a sheet by hot pressing. On the other hand, when producing products in the form of tile-like flooring, the long floor sheet obtained by the above method is cut into tiles, or a multicolor injection molding machine is used to heat and melt. The resin mixture for forming the first resin region 1 and the resin mixture for forming the second resin region 2 may be manufactured by injection molding in a tile-shaped mold.

また、図2に示す床材F2は、例えば、上記の多色押出成形、粉粒体の熱圧プレス成形、多色射出成形等で得られた床材を表面層3としてその裏側に裏面層4を貼着するか、或いは、多色押出成形機を使用し、加熱溶融させた第一の樹脂領域1形成用の樹脂混合物と第二の樹脂領域2形成用の樹脂混合物を交互に並列させてシート状に押出成形すると同時に、その下側に裏面層3形成用の樹脂混合物を二層重ねにしながら押出成形するか、或いは、上記粉粒体の熱圧プレス成形法を採用して、コンベアベルト上に散布した裏面層4形成用の樹脂混合物の粉粒体の上に、第一の樹脂領域1形成用の樹脂混合物の粉粒体と第二の樹脂領域2形成用の樹脂混合物の粉粒体を領域ごとに区画して散布して熱圧プレスすることにより製造すればよい。   Further, the floor material F2 shown in FIG. 2 is a back layer on the back side of the floor material obtained by, for example, the above-described multi-color extrusion molding, hot-press press molding of a granular material, multi-color injection molding, etc. 4 or by using a multi-color extrusion molding machine, the resin mixture for forming the first resin region 1 and the resin mixture for forming the second resin region 2 which are heated and melted are alternately arranged in parallel. At the same time as the sheet is extruded, while the lower layer is extruded with two layers of the resin mixture for forming the back surface layer 3, or the above-mentioned powder pressing method is applied to the conveyor. The powder of the resin mixture for forming the first resin region 1 and the powder of the resin mixture for forming the second resin region 2 are formed on the particles of the resin mixture for forming the back surface layer 4 dispersed on the belt. What is necessary is just to manufacture by dividing and spraying a granule for every area | region and carrying out hot-pressing.

また、図3に示す床材F3は、粉粒体の熱圧プレス成形法を採用して、小塊状の第一の樹脂領域1形成用の樹脂混合物の粉粒体(ペレット状又は小塊状の粉粒体)と小塊状の第二の樹脂領域2形成用の樹脂混合物の粉粒体(ペレット状又は小塊状の粉粒体)とを均一に混合した混合粉粒体を、コンベアベルト上に一定の厚さに散布し、熱圧プレスによりシート状に連続成形して製造すればよい。   Moreover, the floor material F3 shown in FIG. 3 employs a hot-press press molding method of granular material, and the granular material (pellet-shaped or small-lumped shape) of the resin mixture for forming the small first-shaped resin region 1 is used. (Mixed powder particles) and the powder particles (pellet-shaped or small lump particles) of the resin mixture for forming the second resin region 2 in a small lump shape are uniformly mixed on the conveyor belt. What is necessary is just to manufacture by spraying to a fixed thickness and continuously forming into a sheet form by a hot press.

また、図4に示す床材F4は、粉粒体の熱圧プレス成形法を採用して、裏面層4形成用の樹脂混合物の粉粒体と上記の混合粉粒体をコンベアベルト上に二層に重ねて散布し、熱圧プレスによりシート状に連続成形して製造すればよい。   Further, the floor material F4 shown in FIG. 4 employs a hot-press molding method of granular material so that the granular material of the resin mixture for forming the back surface layer 4 and the above mixed granular material are placed on the conveyor belt. What is necessary is just to manufacture by carrying out the superposition | spreading on a layer and continuously forming in a sheet form with a hot press.

以上のように、本発明の床材は、第一の樹脂領域1が塩化ビニル系樹脂とポリウレタン系熱可塑性エラストマーとを主成分樹脂としているので、ポリウレタン系熱可塑性エラストマーによって第一の樹脂領域1にゴム弾性的な物性が付加され、第一の樹脂領域1が優れた滑り止め作用を発揮する。特に、ポリウレタン系熱可塑性エラストマーが塩化ビニル系樹脂との相溶性を有するものであると、防滑性が一層向上する。従って、床材表面に防滑用の凹凸を形成しなくても床材の防滑性が向上するので、歩行者が足を滑らせて転倒する危険性が少なくなり、床材表面の塵埃や土埃の掃除が容易になる。
しかも、本発明の床材は、第二の樹脂領域2が塩化ビニル系樹脂に硬質粒子を含有させたものであるので、硬質粒子によって第二の樹脂領域2に擦り傷が入りにくくなり、汚れ物質が付着しにくくなると共に、付着しても洗浄等で容易に除去することが可能になって、床材の防汚性が向上する。特に、第二の樹脂領域2にエチレン・酢酸ビニル共重合体−塩化ビニルグラフトコポリマーが含まれていると、塩化ビニル側鎖による分子同士の絡み合いによって、汚れ付着の原因となる可塑剤がブリードアウトしにくくなり、かつ、第二の樹脂領域2の表面に擦り傷が一層付きにくくなるため、防汚性が一層向上する。
このように、本発明の床材は、防滑性の良好な第一の樹脂領域1と防汚性の良好な第二の樹脂領域2を少なくとも床材表面に有するので、良好な防滑性と良好な防汚性を同時に発揮することができ、特に、床材表面における第一の樹脂領域1と第二の樹脂領域2との面積比が10:90〜35:65であると、防滑性と防汚性がバランス良く発揮されるようになる。
As described above, in the flooring of the present invention, since the first resin region 1 includes the vinyl chloride resin and the polyurethane-based thermoplastic elastomer as the main component resins, the first resin region 1 is made of the polyurethane-based thermoplastic elastomer. Rubber elastic physical properties are added to the first resin region 1 so that the first resin region 1 exhibits an excellent anti-slip action. In particular, when the polyurethane thermoplastic elastomer is compatible with the vinyl chloride resin, the slip resistance is further improved. Therefore, the slipperiness of the flooring is improved even if the unevenness for slipping is not formed on the flooring surface, so that the risk of a pedestrian slipping and falling is reduced, and the dust and dirt on the flooring surface are reduced. Easy to clean.
Moreover, since the second resin region 2 contains hard particles in a vinyl chloride resin, the floor material of the present invention makes it difficult for scratches to enter the second resin region 2 due to the hard particles, and the dirt substance. Becomes difficult to adhere, and even if it adheres, it can be easily removed by washing or the like, and the antifouling property of the flooring is improved. In particular, when the second resin region 2 contains an ethylene / vinyl acetate copolymer-vinyl chloride graft copolymer, the plasticizer that causes dirt adhesion bleeds out due to the entanglement of molecules by the vinyl chloride side chain. In addition, since the surface of the second resin region 2 is less likely to be scratched, the antifouling property is further improved.
Thus, since the flooring of the present invention has at least the first resin region 1 with good anti-slip property and the second resin region 2 with good anti-smudge property on the floor material surface, good anti-slip property and good When the area ratio of the first resin region 1 to the second resin region 2 on the floor material surface is 10:90 to 35:65, Antifouling properties will be exhibited in a well-balanced manner.

次に、本発明の効果を確認するために行った性能評価試験について説明する。   Next, a performance evaluation test conducted to confirm the effect of the present invention will be described.

[床材試験片の作製]
下記表1に示す配合組成の第一の樹脂領域形成用の樹脂混合物の粉粒体(平均粒径1.3〜1.5mm)と、下記表2に示す配合組成の第二の樹脂領域形成用の樹脂混合物の粉粒体(a)(b)(c)(いずれも平均粒径1.0〜1.2mm)を造粒した。
[Preparation of flooring specimen]
The granular material (average particle size 1.3 to 1.5 mm) of the resin mixture for forming the first resin region having the composition shown in Table 1 below, and the second resin region formation having the composition shown in Table 2 below. Granules (a), (b), and (c) of the resin mixture for use (all average particle diameters of 1.0 to 1.2 mm) were granulated.

Figure 2014047589
Figure 2014047589

Figure 2014047589
Figure 2014047589

表1に示す第一の樹脂領域形成用の粉粒体と、表2に示す第二の樹脂領域形成用の粉粒体(a),(b)又は(c)を、下記表3に示す重量比で均一に混合し、この混合粉粒体を支持面上に均一な厚さに散布して熱圧プレスする製法(下記表3では第一の製法と記す)、又は、第二の樹脂領域形成用の粉粒体(a),(b)又は(c)を支持面上に均一に蒔き、その上に第一の樹脂領域形成用の粉粒体を均一に散布して熱圧プレスする製法(下記表3では第二の製法と記す)によって、小塊状の第一の樹脂領域と小塊状の第二の樹脂領域(a),(b)又は(c)が均一に混在する厚さ2.5mmの床材試験片(No.1〜5,7,9,11〜14)と、不均一に混在する厚さ2.5mmの床材試験片(No.6,8,10)を作製した。
そして、比較のために、第二の樹脂領域形成用の粉粒体(a)のみを支持面上に均一な厚さに散布して熱圧プレスすることにより、第二の樹脂領域のみからなる厚さ2.5mmの床材試験片(No.15)を作製した。
なお、熱圧プレスは、加熱温度190℃、加熱時間10分、圧力10MPa、加圧時間5分、静置時間10分の条件で行った。
Table 1 below shows the first resin region-forming particles shown in Table 1 and the second resin region-forming particles (a), (b) or (c) shown in Table 2. A method of mixing uniformly in a weight ratio, spraying the mixed powder particles on the support surface to a uniform thickness and hot pressing (hereinafter referred to as the first method in Table 3), or a second resin Region-forming granular material (a), (b) or (c) is evenly spread on the support surface, and the first resin-region-forming granular material is uniformly dispersed on the hot press. The thickness in which the small lump-shaped first resin region and the small lump-shaped second resin region (a), (b) or (c) are uniformly mixed by the manufacturing method (described in Table 3 below as the second manufacturing method) 2.5 mm thick flooring specimens (No. 1 to 5, 7, 9, 11 to 14) and non-uniformly mixed 2.5 mm thick flooring specimens (No. 6, 8, 10) Was made.
For comparison, only the second resin region forming powder (a) is sprayed on the support surface to a uniform thickness and hot-pressed to form only the second resin region. A flooring specimen (No. 15) having a thickness of 2.5 mm was produced.
The hot press was performed under the conditions of a heating temperature of 190 ° C., a heating time of 10 minutes, a pressure of 10 MPa, a pressing time of 5 minutes, and a standing time of 10 minutes.

[性能評価試験]
上記の床材試験片(No.1〜15)について、次の方法で防滑性、防汚性、柔軟性を評価すると共に、床材試験片の反りの有無を調べた。
即ち、硬底靴を履いた不特定の18人が湿潤状態の床材試験片の上を歩行して、防滑性、防汚性、柔軟性を官能的に7段階で評価し、極めて良いと評価したときは7点、かなり良いと評価したときは6点、少し良いと評価したときは5点、普通と評価したときは4点、少し悪いと評価したときは3点、かなり悪いと評価したときは2点、極めて悪いと評価したときは1点として、防滑性、防汚性、柔軟性のそれぞれについて平均点を算出し、四捨五入して1点〜7点で表した。また、床材試験片の反りの有無は、肉眼で観察して調べた。これらの結果を下記表3に記載する。
[Performance evaluation test]
About said flooring material test piece (No. 1-15), while evaluating slip resistance, antifouling property, and a softness | flexibility by the following method, the presence or absence of the curvature of a flooring material test piece was investigated.
That is, 18 unspecified people wearing hard-shoe shoes walk on a wet flooring test piece and evaluate the anti-slip property, anti-stain property, and flexibility in 7 levels sensuously. 7 points when evaluated, 6 points when evaluated as good, 5 points when evaluated as slightly good, 4 points when evaluated as normal, 3 points when evaluated as slightly bad, rated as very bad The average score was calculated for each of the anti-slip property, antifouling property and flexibility, and was rounded off and expressed as 1 to 7 points. Further, the presence or absence of warping of the flooring specimen was examined by observing with the naked eye. These results are listed in Table 3 below.

Figure 2014047589
Figure 2014047589

表3より、第一の製法によって、第一の樹脂領域形成用の粉粒体と第二の樹脂領域形成用の粉粒体との均一な混合粉粒体を熱圧プレスして作製された床材試験片(No.1〜5,7,9,11〜14)は、いずれも小塊状の第一の樹脂領域と小塊状の第二の樹脂領域が均一に混在するため、表面側と裏面側の熱膨張率がほぼ等しく、従って反りの発生は見られない。これに対し、第二の製法によって、第二の樹脂領域形成用の粉粒体を蒔いた上に第一の樹脂領域形成用の粉粒体を散布し、熱圧プレスして作製された床材試験片(No.6,8,10)は、裏面側の大部分が小塊状の第二の樹脂領域で占められ、表面側の大部分が小塊状の第一の樹脂領域で占められるため、裏面側と表面側の熱膨張率の差によって反りが生じる。   From Table 3, by the first manufacturing method, it was produced by hot-pressing a uniform mixed granular material of the granular material for forming the first resin region and the granular material for forming the second resin region. Since the floor material test pieces (Nos. 1 to 5, 7, 9, 11 to 14) are uniformly mixed with a small lump-shaped first resin region and a small lump-shaped second resin region, The coefficients of thermal expansion on the back side are almost equal, and therefore no warpage is observed. On the other hand, the floor produced by spraying the powder for forming the first resin region on the second powder for forming the resin region by the second manufacturing method and hot pressing. In the material test piece (No. 6, 8, 10), most of the back side is occupied by a small second resin region, and most of the front side is occupied by a small first resin region. Warpage occurs due to the difference in coefficient of thermal expansion between the back side and the front side.

また、第二の製法で作製された床材試験片(No.6,8,10)は、表面側の大部分が小塊状の第一の樹脂領域で占められるため、防滑性が6〜7点と優れている。しかし、これらの床材試験片(No.6,8,10)と、第一の製法で作製された床材試験片(No.3,7,9)を対比すると、床材試験片(No.6,8,10)と床材試験片(No.3,7,9)は、いずれも第一の樹脂領域形成用の粉粒体と第二の樹脂領域形成用の粉粒体との配合比(重量比)が同じであるにも拘わらず、床材試験片(No.6,8,10)の方が床材試験片(No.3,7,9)よりも、表面における小塊状の第二の樹脂領域の占める面積比率が小さいため、防汚性が1〜2点ほど低くなっている。これより、防滑性と防汚性をバランス良く発揮させるには、小塊状の第一の樹脂領域と小塊状の第二の樹脂領域を偏りなく均一に混在させることが大切であることが判る。   Moreover, since the floor material test piece (No.6,8,10) produced by the 2nd manufacturing method occupied most on the surface side by the 1st resin area | region of a lump shape, slip resistance is 6-7. Is excellent with respect. However, when these flooring specimens (No. 6, 8, 10) and the flooring specimens (No. 3, 7, 9) produced by the first manufacturing method are compared, the flooring specimen (No. .6, 8, 10) and flooring specimens (Nos. 3, 7, 9) are both composed of the first resin region forming powder and the second resin region forming powder. Although the blending ratio (weight ratio) is the same, the flooring specimen (No. 6, 8, 10) is smaller on the surface than the flooring specimen (No. 3, 7, 9). Since the area ratio occupied by the massive second resin region is small, the antifouling property is reduced by 1 to 2 points. From this, it can be seen that it is important to uniformly mix the small lump-shaped first resin region and the small lump-shaped second resin region in order to exhibit the anti-slip property and the antifouling property with good balance.

また、第一の製法によって作製された、小塊状の第一の樹脂領域と小塊状の第二の樹脂領域が均一に混在する床材試験片のうち、第一の樹脂領域形成用の粉粒体と第二の樹脂領域形成用の粉粒体の重量比が10:90〜35:65の範囲にある床材試験片(No.2〜5,7,9,11,12)、即ち、表面に占める小塊状の第一の樹脂領域と小塊状の第二の樹脂領域の面積比が略10:90〜略35:65の範囲にある床材試験片(No.2〜5,7,9,11,12)は、防滑性も防汚性も4点以上(普通以上)と合格の評価を受けており、柔軟性も4点以上と合格の評価を受けている。
これに対し、第一の樹脂領域形成用の粉粒体と第二の樹脂領域形成用の粉粒体の重量比が5:95の床材試験片(No.1)は、防滑性と柔軟性が3点以下と不合格の評価を受けており、また、第一の樹脂領域形成用の粉粒体と第二の樹脂領域形成用の粉粒体の重量比が40:60(面積比が略40:60)の床材試験片(No.13)や、重量比が45:55(面積比が略45:55)の床材試験片(No.14)は、防汚性や、防汚性と防滑性の双方が3点以下と不合格の評価を受けている。
このことから、防滑性と防汚性、更には柔軟性までバランスよく発揮させるためには、床材表面に占める小塊状の第一の樹脂領域と小塊状の第二の樹脂領域との面積比が10:90〜35:65でなければならないと推定される。
In addition, among the floor material test pieces produced by the first manufacturing method, in which the small lump-shaped first resin region and the small lump-shaped second resin region are uniformly mixed, powder particles for forming the first resin region Floor material test piece (No. 2-5, 7, 9, 11, 12) in which the weight ratio of the body and the powder for forming the second resin region is in the range of 10:90 to 35:65, Floor material test pieces (No. 2-5, 7, 7) in which the area ratio of the small resin-like first resin region and the small resin-like second resin region on the surface is in the range of about 10:90 to about 35:65. 9,11,12) have received a pass evaluation of 4 points or more (normal or higher) for anti-slip and anti-stain properties, and also received a pass evaluation of 4 points or more for flexibility.
On the other hand, the floor material test piece (No. 1) having a weight ratio of the powder for forming the first resin region to the powder for forming the second resin region of 5:95 is anti-slip and flexible. The weight ratio of the powder for forming the first resin region to the powder for forming the second resin region is 40:60 (area ratio). Is a flooring specimen (No. 13) having a weight ratio of 45:55 (area ratio is substantially 45:55), Both antifouling property and anti-slip property have been evaluated as rejected with 3 points or less.
From this, in order to exert a good balance of anti-slip and anti-stain properties and even flexibility, the area ratio between the small lump first resin region and the small lump second resin region in the flooring surface Is estimated to be between 10:90 and 35:65.

また、第二の樹脂領域形成用の粉粒体の組成が異なる床材試験片(No.3,4,5)を対比すると、第二の樹脂領域形成用の粉粒体として、樹脂成分が塩化ビニル樹脂80質量部にエチレン・酢酸ビニル共重合体−塩化ビニルグラフトコポリマーを20質量部混合した混合樹脂である粉粒体(a)を用いた床材試験片(No.3)は、防汚性が6点の評価を受けており、第二の樹脂領域形成用の粉粒体として、樹脂成分が塩化ビニル樹脂100質量部のみで、フタル酸系とPET系の可塑剤を合計40質量部配合した粉粒体(b)を用いた床材試験片(No.4)は、防汚性が5点の評価を受けており、第二の樹脂領域形成用の粉粒体として、樹脂成分が塩化ビニル樹脂100質量部のみで、フタル酸系可塑剤を40質量部配合した粉粒体(c)を用いた床材試験片(No.5)は、防汚性が4点の評価を受けている。このことから、エチレン・酢酸ビニル共重合体−塩化ビニルグラフトコポリマーは防汚性の向上に大きく寄与する樹脂であり、PET系可塑剤も防汚性の向上に寄与するものであるが、フタル酸系可塑剤は防汚性にマイナスの効果をもたらすものであることが判る。   Moreover, when the flooring material test piece (No. 3, 4, 5) from which the composition of the granular material for 2nd resin area | region formation differs is compared, as a granular material for 2nd resin area | region formation, a resin component is A flooring specimen (No. 3) using a granular material (a), which is a mixed resin in which 80 parts by mass of a vinyl chloride resin is mixed with 20 parts by mass of an ethylene / vinyl acetate copolymer-vinyl chloride graft copolymer, As the second resin region-forming powder, the resin component is only 100 parts by mass of vinyl chloride resin, and a total of 40 masses of phthalic acid and PET plasticizers. The floor material test piece (No. 4) using the partly blended granular material (b) has received 5 points of antifouling property, and the resin as a granular material for forming the second resin region Powders containing only 100 parts by weight of vinyl chloride resin and 40 parts by weight of phthalic plasticizer c) flooring specimens with (No.5), the antifouling property is evaluated by the four points. Therefore, ethylene-vinyl acetate copolymer-vinyl chloride graft copolymer is a resin that greatly contributes to the improvement of antifouling properties, and PET plasticizers also contribute to the improvement of antifouling properties. It can be seen that the plasticizers have a negative effect on the antifouling properties.

なお、第二の樹脂領域形成用の粉粒体のみで作製した床材試験片(No.15)は、防汚性は7点で優れているが、当然のことながら、防滑性は1点で滑りやすく、また、柔軟性も1点で曲げ施工性に劣るものである。   In addition, although the flooring test piece (No. 15) produced only by the granular material for forming the second resin region is excellent in antifouling property with 7 points, it is natural that the antislip property is 1 point. It is slippery and has one point of flexibility and is inferior in bending workability.

次に、第一の樹脂領域それ自体の性能(物性)を知るために、第一の樹脂領域のみからなる床材試験片について行った防滑性試験、テーバー防汚性試験、耐磨耗性試験について説明する。   Next, in order to know the performance (physical properties) of the first resin area itself, a slip test, a taber antifouling test, and an abrasion resistance test performed on a flooring specimen consisting only of the first resin area. Will be described.

[防滑性試験]
下記表4に記載した組成を有する13種類の第一の樹脂領域形成用の樹脂混合物を調製し、それぞれの樹脂混合物をシート状に成形することによって、全体が第一の樹脂領域で形成された厚さ1.5mmの13種類の床材試験片(No.16〜28)を作製した。
JIS A 1407の試験方法に基づいて、各床材試験片(No.16〜28)の乾燥時の滑り抵抗係数と湿潤時の滑り抵抗係数を求め、下記表4に示した。
[Anti-slip test]
By preparing 13 types of resin mixtures for forming the first resin region having the composition described in Table 4 below, each resin mixture was formed into a sheet shape, so that the whole was formed with the first resin region. Thirteen kinds of flooring specimens (Nos. 16 to 28) having a thickness of 1.5 mm were produced.
Based on the test method of JIS A 1407, the slip resistance coefficient at the time of drying and the slip resistance coefficient at the time of wetness of each flooring specimen (No. 16 to 28) were determined and shown in Table 4 below.

[テーバー防汚性試験]
JIS L 1023−1992の汚れ試験に準じて、750gfの荷重を加えたテーバー磨耗試験機に上記床材試験片(No.16〜28)を順次取り付け、磨耗紙を貼り付けたゴムロールで床材試験片を200回、回転磨耗してから磨耗紙を取り外し、床材試験片の付着物を除去した。次いで、標準汚染物質を床材試験片に落下させながら、80回、回転した後、標準汚染物質の落下を止めて更に20回、回転した。そして、床材試験片をテーバー磨耗試験機から取り外して、乾燥ウエスで試験片の全面を7〜8回軽く乾拭きし、更に、水に濡れたウエスで床材試験片の半面を3〜4回軽く水拭きして、床材試験片の乾拭き部分と水拭き部分について色差計を用いて試験前後の色差を測定し、ΔEを計測した。その結果を下記表4に示す。
[Taber antifouling test]
In accordance with the dirt test of JIS L 1023-1992, the floor material test pieces (No. 16 to 28) are sequentially attached to a Taber abrasion tester to which a load of 750 gf is applied, and the floor material test is performed with a rubber roll to which abrasion paper is attached. After the piece was rotated and worn 200 times, the worn paper was removed and the deposits on the flooring test piece were removed. Next, the sample was rotated 80 times while dropping the standard pollutant onto the floor specimen, and then the standard pollutant was stopped falling and rotated 20 more times. Then, remove the floor test piece from the Taber abrasion tester, lightly wipe the entire surface of the test piece 7-8 times with a dry cloth, and further 3-4 times the half of the floor test piece with a wet cloth. After lightly wiping, the color difference before and after the test was measured using a color difference meter for the dry wipe portion and the water wipe portion of the flooring specimen, and ΔE was measured. The results are shown in Table 4 below.

[耐磨耗性試験]
JIS A 1453に準じて、250gfの荷重を加えたテーバー磨耗試験機に上記床材試験片(No.16〜28)を順次取り付け、磨耗紙を貼り付けたゴムロールで試験片を回転磨耗して、磨耗量から1mm磨耗するのに必要な回転数を算出した。その結果を下記表4に示す。
[Abrasion resistance test]
In accordance with JIS A 1453, the above flooring test pieces (No. 16 to 28) were sequentially attached to a Taber abrasion tester to which a load of 250 gf was applied, and the test piece was rotationally worn with a rubber roll to which an abrasion paper was attached, The number of revolutions required to wear 1 mm was calculated from the amount of wear. The results are shown in Table 4 below.

Figure 2014047589
Figure 2014047589

表4より、塩化ビニル系樹脂と、この塩化ビニル系樹脂との相溶性があるポリエステル型ポリウレタン系熱可塑性エラストマーとを主成分樹脂とし、可塑剤と安定剤を配合した第一の樹脂領域形成用の樹脂混合物で成形された床材試験片(No.17〜22、No.24〜28)は、いずれも乾燥時の滑り抵抗係数が合格値の0.8以上であり、乾燥時の防滑性が良好であることが判る。また、1mm磨耗に要する回転数が合格値の120×10回以上であり、耐磨耗性も良好であることが判る。 From Table 4, for the formation of the first resin region comprising a vinyl chloride resin and a polyester polyurethane thermoplastic elastomer compatible with the vinyl chloride resin as a main component resin and a plasticizer and a stabilizer. The flooring specimens (Nos. 17-22, Nos. 24-28) molded with the resin mixture of No. 1 each have a slip resistance coefficient at the time of drying of 0.8 or more, and the slip resistance at the time of drying. Is found to be good. Moreover, it turns out that the rotation speed required for 1 mm abrasion is 120 * 10 < 2 > times or more of an acceptable value, and abrasion resistance is also favorable.

また、塩化ビニル系樹脂との相溶性があるポリエステル型ポリウレタン系熱可塑性エラストマーが主成分樹脂の15〜45質量%を占めている床材試験片(No.17〜22、No.24〜27)は、いずれも湿潤時の滑り抵抗係数が合格値の0.4以上であり、湿潤時の防滑性も良好である。これに対し、ポリエステル型ポリウレタン系熱可塑性エラストマーが主成分樹脂の60質量%を占めている床材試験片(No.28)は、湿潤時の滑り抵抗係数が合格値の0.4を下回っており、また、ポリウレタン系熱可塑性エラストマーを含まない床材試験片(No.16)は、乾燥時の滑り抵抗係数が合格値の0.8を下回っている。このことから、乾燥時にも湿潤時にも滑り抵抗係数が合格値以上で良好な防滑性を発揮させるためには、塩化ビニル系樹脂との相溶性があるポリエステル型ポリウレタン系熱可塑性エラストマーの配合量を主成分樹脂の10〜50質量%にすればよいことが推定できる。   Moreover, the floor-material test piece (No.17-22, No.24-27) in which the polyester type polyurethane-based thermoplastic elastomer compatible with the vinyl chloride resin occupies 15 to 45% by mass of the main component resin In any case, the slip resistance coefficient when wet is 0.4 or more of the acceptable value, and the slip resistance when wet is good. On the other hand, in the floor material test piece (No. 28) in which the polyester-type polyurethane-based thermoplastic elastomer occupies 60% by mass of the main component resin, the slip resistance coefficient when wet falls below the acceptable value of 0.4. In addition, the flooring test piece (No. 16) which does not contain the polyurethane-based thermoplastic elastomer has a slip resistance coefficient at the time of drying which is less than the acceptable value of 0.8. Therefore, in order to demonstrate good slip resistance when the slip resistance coefficient is above the acceptable value both during drying and when wet, the blending amount of the polyester polyurethane thermoplastic elastomer compatible with the vinyl chloride resin should be It can be estimated that the content may be 10 to 50% by mass of the main component resin.

一方、塩化ビニル系樹脂との相溶性がないポリエーテル型ポリウレタン系熱可塑性エラストマーと塩化ビニル系樹脂とを主成分樹脂とする樹脂混合物で成形された床材試験片(No.23)は、乾燥時の滑り抵抗係数が0.42、湿潤時の滑り抵抗係数が0.20で、いずれも合格値の半分程度であり、防滑性の向上がみられない。そして、1mm磨耗に要する回転数も100×10回で、合格値を下回り、耐磨耗性も良くない。このことから、ポリウレタン系熱可塑性エラストマーであっても塩化ビニル系樹脂との相溶性がないものは、防滑性の向上及び耐磨耗性の向上に寄与しないことが判る。 On the other hand, a floor material test piece (No. 23) molded from a resin mixture containing a polyether type polyurethane-based thermoplastic elastomer and a vinyl chloride-based resin, which are incompatible with the vinyl chloride-based resin, is dried. The slip resistance coefficient at the time was 0.42 and the slip resistance coefficient at the time of wetness was 0.20, both of which were about half of the acceptable values, and no improvement in slip resistance was observed. The number of rotations required for 1 mm wear is 100 × 10 2 times, which is below the acceptable value and wear resistance is not good. From this, it can be seen that polyurethane-based thermoplastic elastomers that are not compatible with vinyl chloride-based resins do not contribute to improvement of anti-slip properties and wear resistance.

また、直鎖状の塩化ビニル系樹脂と、これとの相溶性があるポリエステル型ウレタン系熱可塑性エラストマーとを主成分樹脂とする樹脂混合物で成形された床材試験片(No.17、No.18)は、湿潤時の滑り抵抗係数が合格値(0.4以上)であるというものの、0.5未満であり、あまり高くない。これに対し、分岐鎖を持つ塩化ビニル系樹脂と、これとの相溶性があるポリエステル型ウレタン系熱可塑性エラストマーとを主成分樹脂とする樹脂混合物(該エラストマーが主成分樹脂の15〜45質量%を占めるもの)で成形された床材試験片(No.19〜22、No.24〜27)は、いずれも湿潤時の滑り抵抗係数が0.5以上と高い数値を示し、湿潤時の防滑性が更に向上している。このことから、分岐鎖を持つ塩化ビニル系樹脂は、防滑性、特に湿潤時の防滑性の向上に寄与することが判る。また、床材試験片(No.17、No.18、No.19)を比較すると、直鎖状の塩化ビニル系樹脂を用いた床材試験片(No.17、No.18)は、乾燥時の滑り抵抗係数が1未満であるのに対し、分岐鎖を持つ塩化ビニル系樹脂を用いた床材試験片(No.19)は、乾燥時の滑り抵抗係数が1以上と高い数値を示しており、このことから、分岐鎖を持つ塩化ビニル系樹脂は、湿潤時のみならず乾燥時の防滑性の向上にも有効であることが判る。   Further, a floor material test piece (No. 17, No. 17) molded from a resin mixture containing a linear vinyl chloride resin and a polyester urethane thermoplastic elastomer compatible with the resin as a main component resin. 18) is that the slip resistance coefficient when wet is an acceptable value (0.4 or more), but it is less than 0.5 and not so high. On the other hand, a resin mixture comprising a vinyl chloride resin having a branched chain and a polyester urethane thermoplastic elastomer compatible with the resin as a main component resin (the elastomer is 15 to 45% by mass of the main component resin) No. 19-22, No. 24-27, all of the flooring test specimens molded with a high resistance value of 0.5 or more when being wet, and anti-slip when wet The property is further improved. From this, it can be seen that the vinyl chloride resin having a branched chain contributes to the improvement of the slip resistance, particularly when wet. In addition, when comparing flooring specimens (No.17, No.18, No.19), flooring specimens (No.17, No.18) using linear vinyl chloride resin were dried. While the slip resistance coefficient at the time is less than 1, the floor material test piece (No. 19) using the vinyl chloride resin having a branched chain shows a high value of the slip resistance coefficient at the time of drying of 1 or more. From this, it can be seen that the vinyl chloride resin having a branched chain is effective not only in the wet state but also in improving the anti-slip property in the dry state.

また、No.17の床材試験片以外の床材試験片は、いずれもテーバー防汚性のΔEが合格値の範囲であり、特に、塩化ビニル系樹脂との相溶性がないポリエーテル型ポリウレタン系熱可塑性エラストマーを用いた床材試験片(No.23)は、滑り抵抗係数も耐磨耗性も不合格であるが、テーバー防汚性のΔEが他の床材試験片に比べて遥かに小さく、防汚性に優れている。これは、相溶性のないポリエーテル型ポリウレタン系熱可塑性エラストマーを塩化ビニル系樹脂と混合しても、相分離して混ざらず、ゴム弾性的な物性を付加できないため、表面に微細な擦り傷が付きにくくなるからであると考えられる。
なお、No.17の床材試験片の防滑性は合格値の範囲内であるものの、ΔEが合格値から少し外れたのは、数平均分子量1030の直鎖状の塩化ビニル樹脂を使用したため、表面に微細な擦り傷が付きやすくなったからであると考えられる。
No. The floor material test pieces other than 17 floor material test pieces all have a Taber antifouling ΔE in the acceptable value range, and in particular, are polyether-type polyurethane thermoplastic elastomers that are not compatible with vinyl chloride resin. The floor material test piece (No. 23) using JIS has not passed the slip resistance coefficient and the abrasion resistance, but the Taber antifouling property ΔE is much smaller than other floor material test pieces, Excellent soiling. This is because even if an incompatible polyether-type polyurethane-based thermoplastic elastomer is mixed with vinyl chloride resin, it does not mix and phase, and rubber elastic properties cannot be added, resulting in fine scratches on the surface. This is considered to be difficult.
In addition, No. Although the anti-slip property of the floor material test piece 17 was within the range of the acceptable value, ΔE slightly deviated from the acceptable value because a linear vinyl chloride resin having a number average molecular weight of 1030 was used. This is thought to be because the scratches were easily attached.

次に、可塑剤の影響を調べるために、下記表5に示すように可塑剤の配合量を変更した5種類の第一の樹脂領域形成用の樹脂混合物を調製し、それぞれの樹脂混合物をシート状に押出成形することによって、全体が第一の樹脂領域で形成された厚さ1.5mmの5種類の床材試験片(No.29〜33)を作製した。
これらの床材試験片(No.29〜33)について、前記と同様に、防滑性試験、テーバー防汚性試験、耐磨耗性試験を行い、その結果を下記表5に示した。
Next, in order to investigate the influence of the plasticizer, as shown in Table 5 below, five types of resin mixtures for forming the first resin region in which the blending amount of the plasticizer was changed were prepared, and each resin mixture was prepared as a sheet. By extruding into a shape, five types of floor material test pieces (No. 29 to 33) having a thickness of 1.5 mm, which were formed entirely in the first resin region, were produced.
These flooring specimens (Nos. 29 to 33) were subjected to a slip resistance test, a Taber stain resistance test, and an abrasion resistance test in the same manner as described above, and the results are shown in Table 5 below.

Figure 2014047589
Figure 2014047589

表5より、可塑剤の配合量が多くなるほど、乾燥時及び湿潤時の滑り抵抗係数が大きくなり、乾拭き及び水拭きのテーバー防汚性のΔEも大きくなり、1mm磨耗に要する回転数も大きくなっている。このことから、可塑剤は、防滑性、防汚性、耐磨耗性の向上に有効であることが判る。
そして、可塑剤/塩化ビニル系樹脂の比が0.29〜0.86の範囲にある床材試験片(No.30〜32)は、滑り抵抗係数も、テーバー防汚性のΔEも、1mm磨耗に要する回転数も、合格値の範囲内にあるのに対し、可塑剤/塩化ビニル系樹脂の比が0.21の床材試験片(No.29)は、乾燥時の滑り抵抗係数が合格値を下回っており、また、可塑剤/塩化ビニル系樹脂の比が1.14の床材試験片(No.33)は、テーバー防汚性のΔEが乾拭きの場合も水拭きの場合も合格値の範囲から外れている。このことから、良好な防滑性、テーバー防汚性、耐磨耗性を発揮させるためには、可塑剤/塩化ビニル系樹脂の比が0.25〜0.9の範囲となるように、換言すれば、可塑剤が塩化ビニル系樹脂100質量部に対し25〜90質量部となるように配合する必要があると推測される。
From Table 5, as the plasticizer content increases, the slip resistance coefficient when dry and wet increases, the ΔE of the taber antifouling property for dry and water wipe increases, and the number of rotations required for 1 mm wear also increases. ing. From this, it can be seen that the plasticizer is effective in improving anti-slip properties, anti-stain properties, and abrasion resistance.
And the flooring test piece (No. 30-32) in which the plasticizer / vinyl chloride resin ratio is in the range of 0.29 to 0.86 has a slip resistance coefficient and a Taber antifouling ΔE of 1 mm. The number of revolutions required for abrasion is also within the range of acceptable values, whereas the flooring specimen (No. 29) with a plasticizer / vinyl chloride resin ratio of 0.21 has a slip resistance coefficient during drying. The floor material test piece (No. 33) having a plasticizer / vinyl chloride resin ratio of 1.14, which is below the acceptable value, has a Taber antifouling ΔE of both dry and water wipes. Out of range of acceptable values. From this, in order to exhibit good anti-slip properties, Taber antifouling properties, and abrasion resistance, the plasticizer / vinyl chloride resin ratio is in the range of 0.25 to 0.9. Then, it is estimated that it is necessary to mix | blend a plasticizer so that it may become 25-90 mass parts with respect to 100 mass parts of vinyl chloride-type resin.

次に、第二の樹脂領域それ自体の性能(物性)を知るために、第二の樹脂領域のみからなる床材試験片について行ったテーバー防汚性試験、柔軟性試験、耐磨耗性試験について説明する。   Next, in order to know the performance (physical properties) of the second resin region itself, a Taber antifouling test, a flexibility test, and an abrasion resistance test conducted on a flooring specimen consisting only of the second resin region. Will be described.

下記の表6及び表7に示す組成の第二の樹脂領域形成用の28種類の樹脂混合物(安定剤を更に6.5質量部加えたもの)を調製し、それぞれの樹脂混合物をシート状に成形することによって、全体が第二の樹脂領域で形成された厚さ2mmの28種類の床材試験片(No.34〜61)を作製した。
なお、ここで用いたエチレン・酢酸ビニル共重合体−塩化ビニルグラフトコポリマーAは、グラフトコポリマー中にエチレン・酢酸ビニル共重合体成分を41質量%(酢酸ビニル成分を8.6質量%)含有するものである。ただし、床材試験片(No.37,44)は、グラフトコポリマー中にエチレン・酢酸ビニル共重合体成分を10質量%(酢酸ビニル成分を7.7質量%)含有するエチレン・酢酸ビニル共重合体−塩化ビニルグラフトコポリマーBを用いた。
28 types of resin mixtures for forming the second resin region having the compositions shown in Table 6 and Table 7 below (prepared with 6.5 parts by mass of stabilizer) were prepared, and each resin mixture was formed into a sheet. By molding, 28 kinds of flooring specimens (No. 34 to 61) having a thickness of 2 mm, which were formed entirely in the second resin region, were produced.
The ethylene / vinyl acetate copolymer-vinyl chloride graft copolymer A used here contains 41% by mass of the ethylene / vinyl acetate copolymer component (8.6% by mass of the vinyl acetate component) in the graft copolymer. Is. However, the floor material test piece (No. 37, 44) is an ethylene / vinyl acetate copolymer containing 10% by mass of ethylene / vinyl acetate copolymer component (7.7% by mass of vinyl acetate component) in the graft copolymer. A coalescence-vinyl chloride graft copolymer B was used.

そして、それぞれの床材試験片(No.34〜61)について、前記のテーバー防汚性試験と同様にして、乾拭きした場合と水拭きした場合のΔEを計測すると共に、前記の耐摩耗性試験と同様にして、1mm磨耗に要する回転数を算出し、これらの結果を下記の表6と表7に示した。
更に、JIS K 6251の引張試験に準じて、各床材試験片(No.34〜61)の23℃における引張特性を、引張速度100mm/分、チャック間距離70mmの条件で測定し、得られた引張特性曲線から、23℃における10%モジュラス(M10)と、破断伸び率(Lb)を求め、その結果を下記の表6と表7に示した。また、試験室の温度を0±2℃に変更した以外は上記と同様にして、各床材試験片(No.34〜61)の0℃における10%モジュラス(M10)と、破断伸び率(Lb)を求め、その結果を下記の表6と表7に示した。
なお、下記の表6,表7においては、試験結果を対比し易くするために、一部の床材試験片について重複して記載している。
And about each flooring material test piece (No. 34-61), while carrying out the same as the above-mentioned Taber antifouling property test, it measures ΔE at the time of dry wiping and water wiping, and the above-mentioned abrasion resistance test In the same manner as above, the number of rotations required for 1 mm wear was calculated, and these results are shown in Tables 6 and 7 below.
Further, according to the tensile test of JIS K 6251, the tensile properties at 23 ° C. of each flooring specimen (No. 34 to 61) were measured under the conditions of a tensile speed of 100 mm / min and a distance between chucks of 70 mm. The 10% modulus (M10) at 23 ° C. and the elongation at break (Lb) were determined from the tensile characteristic curves, and the results are shown in Tables 6 and 7 below. Further, in the same manner as above except that the temperature of the test chamber was changed to 0 ± 2 ° C., 10% modulus (M10) at 0 ° C. of each flooring specimen (No. 34 to 61) and elongation at break ( Lb) was determined and the results are shown in Tables 6 and 7 below.
In Tables 6 and 7 below, some flooring specimens are shown redundantly for easy comparison of the test results.

Figure 2014047589
Figure 2014047589

Figure 2014047589
Figure 2014047589

表6及び表7から、塩化ビニル樹脂と、エチレン・酢酸ビニル共重合体−塩化ビニルグラフトコポリマーとを主成分樹脂とする第二の樹脂領域形成用の樹脂混合物で全体が形成された床材試験片(No.37〜57)は、いずれも、乾拭きの場合のテーバー防汚性のΔEが合格値(4.5以下)であり、水拭きの場合のテーバー防汚性のΔEも合格値(4.0以下)であって、優れたテーバー防汚性を有することが判る。
これに対し、塩化ビニル樹脂のみを樹脂成分とし、エチレン・酢酸ビニル共重合体−塩化ビニルグラフトコポリマーを含まない樹脂混合物で作製された床材試験片(No.34〜36)は、いずれも、乾拭きの場合のテーバー防汚性のΔEが合格値(4.5以下)でなく、また、床材試験片(No.34)では、水拭きの場合のテーバー防汚性のΔEも合格値(4.0以下)を外れており、テーバー防汚性に劣ることが判る。
また、塩化ビニル樹脂と、エチレン・酢酸ビニル共重合体とを樹脂成分とし、エチレン・酢酸ビニル共重合体−塩化ビニルグラフトコポリマーを含まない第二の樹脂領域形成用の樹脂混合物で作製された床材試験片(No.58〜61)も、乾拭きの場合のテーバー防汚性のΔEが合格値(4.5以下)でなく、床材試験片(No.61)では、水拭きの場合のテーバー防汚性のΔEも合格値(4.0以下)を外れており、テーバー防汚性に劣ることが判る。
以上のことから、エチレン・酢酸ビニル共重合体−塩化ビニルグラフトコポリマーは、テーバー防汚性を向上させるために極めて有効な樹脂成分であることが裏付けられる。また、エチレン・酢酸ビニル共重合体は、それ自体では塩化ビニル樹脂との相溶性に劣るため、テーバー防汚性の向上には寄与せず、床材試験片(No.58〜61)を対比すれば判るように、エチレン・酢酸ビニル共重合体の配合量が多くなるほど、かえってテーバー防汚性が低下するようになる。
From Tables 6 and 7, flooring test in which the whole was formed with a resin mixture for forming a second resin region comprising a vinyl chloride resin and an ethylene / vinyl acetate copolymer-vinyl chloride graft copolymer as a main resin. Each of the pieces (Nos. 37 to 57) has a Taber antifouling ΔE in the case of dry wiping being an acceptable value (4.5 or less), and the Taber antifouling ΔE in the case of water wiping is also an acceptable value ( 4.0 or less) and it can be seen that it has excellent Taber antifouling properties.
On the other hand, flooring specimens (Nos. 34 to 36) made of a resin mixture containing only a vinyl chloride resin as a resin component and not containing an ethylene / vinyl acetate copolymer-vinyl chloride graft copolymer, The Taber antifouling ΔE in the case of dry wiping is not an acceptable value (4.5 or less), and the flooring specimen (No. 34) also has an acceptable value for the Taber antifouling ΔE in the case of water wiping (No. 34) 4.0 or less), which indicates that the anti-Taber antifouling property is poor.
Also, a floor made of a resin mixture for forming a second resin region, which contains vinyl chloride resin and ethylene / vinyl acetate copolymer as resin components and does not contain ethylene / vinyl acetate copolymer-vinyl chloride graft copolymer. In the case of the material test piece (No. 58 to 61), the Taber antifouling ΔE in the case of dry wiping is not an acceptable value (4.5 or less), and in the case of the floor material test piece (No. 61), The Taber antifouling ΔE is also outside the acceptable value (4.0 or less), indicating that the Taber antifouling property is inferior.
From the above, it is confirmed that the ethylene / vinyl acetate copolymer-vinyl chloride graft copolymer is an extremely effective resin component for improving the Taber antifouling property. In addition, the ethylene / vinyl acetate copolymer itself is inferior in compatibility with the vinyl chloride resin, so it does not contribute to the improvement of the Taber antifouling property, and the floor material test piece (No. 58 to 61) is compared. As can be seen, as the blending amount of the ethylene / vinyl acetate copolymer increases, the Taber antifouling property decreases.

また、塩化ビニル樹脂と、エチレン・酢酸ビニル共重合体−塩化ビニルグラフトコポリマーとを主成分とし、この樹脂成分中におけるエチレン・酢酸ビニル共重合体成分の含有率が1.5〜20.0質量%である第二の樹脂領域形成用の樹脂混合物で作製された床材試験片(No.38〜48,50〜57)は、いずれも、乾拭きの場合のテーバー防汚性のΔEが4.0以下と更に小さくなり、水拭きの場合のテーバー防汚性のΔEも3.5以下と更に小さくなって、一層優れたテーバー防汚性を発揮することが判る。
しかし、樹脂成分中におけるエチレン・酢酸ビニル共重合体成分の含有率が1.0質量%である第二の樹脂領域形成用の樹脂混合物で作製された床材試験片(No.37)や、樹脂成分中におけるエチレン・酢酸ビニル共重合体成分の含有率が22.6質量%である第二の樹脂領域形成用の樹脂混合物で作製された床材試験片(No.49)は、乾拭きの場合のテーバー防汚性のΔEと水拭きの場合のテーバー防汚性のΔEがそれぞれ4.1と4.5であり、合格値ではあるが、床材試験片(No.38〜48,50〜57)に比べると、テーバー防汚性が少し劣っていることが判る。
このことから、樹脂成分中のエチレン・酢酸ビニル共重合体成分の含有率を1.5〜20.0質量%にすることが、テーバー防汚性を更に向上させるために有効であることが裏付けられる。
The main component is a vinyl chloride resin and an ethylene / vinyl acetate copolymer-vinyl chloride graft copolymer, and the content of the ethylene / vinyl acetate copolymer component in the resin component is 1.5 to 20.0 mass%. % Of the flooring specimens (Nos. 38 to 48, 50 to 57) made of the resin mixture for forming the second resin region of 4% have a Taber antifouling ΔE of 4. It can be seen that ΔE of the Taber antifouling property in the case of wiping with water is further reduced to 3.5 or less, and further excellent Taber antifouling property is exhibited.
However, a flooring test piece (No. 37) made of a resin mixture for forming a second resin region in which the content of the ethylene / vinyl acetate copolymer component in the resin component is 1.0% by mass, The floor material test piece (No. 49) made of the resin mixture for forming the second resin region in which the content of the ethylene / vinyl acetate copolymer component in the resin component is 22.6% by mass is dry wiped. The Taber antifouling ΔE in the case and the Taber antifouling ΔE in the case of water wiping are 4.1 and 4.5, respectively, which are acceptable values, but are floor test specimens (No. 38 to 48, 50). It can be seen that the anti-taber antifouling property is slightly inferior to -57).
From this, it is proved that the content of the ethylene / vinyl acetate copolymer component in the resin component is 1.5-20.0% by mass is effective for further improving the Taber antifouling property. It is done.

また、表7において、床材試験片(No.42,50,51,40,52,53)を対比すると、可塑剤全体に占める高分子タイプ二塩基酸エステル可塑剤の比率が20〜60質量%である床材試験片(No.51,40,52)は、上記比率が20質量%を下回る床材試験片(No.42,50)や、上記比率が60質量%を上回る床材試験片(No.53)に比べて、テーバー防汚性のΔEが乾拭きの場合も水拭きの場合も低くなり、テーバー防汚性が一層向上している。そして、高分子タイプ二塩基酸エステル可塑剤を含まない床材試験片(No.42)は、23℃における破断伸び率(Lb)が148%で合格値(150%以上)から外れており、また、高分子タイプ二塩基酸エステル可塑剤が可塑剤全体の63質量%を占める床材試験片(No.53)は、23℃と0℃における10%モジュラス(M10)も破断伸び率(Lb)も、合格値から外れている。
このことから、可塑剤全体に占める高分子タイプ二塩基酸エステル可塑剤の比率を20〜60質量%に調整することは、テーバー防汚性を一層向上させるため及び良好な柔軟性を付与するために、極めて有効であることが裏付けられる。
In Table 7, when the flooring specimens (No. 42, 50, 51, 40, 52, 53) are compared, the ratio of the polymer type dibasic acid ester plasticizer in the entire plasticizer is 20 to 60 mass. % Flooring test piece (No. 51, 40, 52) is a flooring test piece (No. 42, 50) in which the ratio is less than 20% by mass, or a flooring test in which the ratio is more than 60% by mass. Compared with the piece (No. 53), the Taber antifouling ΔE is low both in the case of dry wiping and in the case of water wiping, and the Taber antifouling property is further improved. And the floor material test piece (No. 42) which does not contain a polymer type dibasic acid ester plasticizer has a breaking elongation (Lb) at 23 ° C. of 148%, which is out of the acceptable value (150% or more), In addition, the floor type test piece (No. 53) in which the polymer type dibasic acid ester plasticizer accounts for 63% by mass of the entire plasticizer is 10% modulus (M10) at 23 ° C. and 0 ° C. ) Is also out of the acceptable value.
From this, adjusting the ratio of the polymer type dibasic acid ester plasticizer in the entire plasticizer to 20 to 60% by mass is intended to further improve the Taber antifouling property and to give good flexibility. Therefore, it is proved that it is extremely effective.

また、表7において、床材試験片(No.43,54,40,55,56,57)を対比すると、塩化ビニル系樹脂混合物中に、モース硬度6〜13の硬質粒子として石英粒子やアルミナ粒子を樹脂成分100質量部に対して2〜15質量部含有させた床材試験片(No.54,40,55,56)は、床材試験片(No.54)の耐摩耗性が合格値(1万回以上/1mm)を若干下回るものの、他の床材試験片(No.40,55,56)はいずれも耐摩耗性が合格値となっている。
これに対し、硬質粒子として石英粒子やアルミナ粒子を含まない床材試験片(No.43)は、耐摩耗性が合格値を大幅に下回り、また、硬質粒子を15質量部を越えて20質量部と過剰に含有させた床材試験片(No.57)は、耐摩耗性が13870回/1mmと顕著に向上するけれども、23℃と0℃における10%モジュラス(M10)及び破断伸び率(Lb)が合格値から外れて柔軟性が低下する。
このことから、塩化ビニル系樹脂混合物中にモース硬度6〜13の硬質粒子を樹脂成分100質量部に対して2〜15質量部含有させることは、床材の柔軟性を低下させないで耐摩耗性を向上させるために有効であることが裏付けられる。
In Table 7, when comparing the floor specimens (No. 43, 54, 40, 55, 56, 57), quartz particles or alumina as hard particles having a Mohs hardness of 6 to 13 in the vinyl chloride resin mixture. The floor material test piece (No. 54, 40, 55, 56) containing 2 to 15 parts by mass of particles with respect to 100 parts by mass of the resin component passes the wear resistance of the floor material test piece (No. 54). Although slightly lower than the value (10,000 times or more / 1 mm), all the other flooring specimens (No. 40, 55, 56) have acceptable values for wear resistance.
On the other hand, the floor material test piece (No. 43) which does not contain quartz particles or alumina particles as hard particles has a wear resistance significantly lower than the acceptable value, and the hard particles exceed 15 parts by mass and 20 masses. The floor material test piece (No. 57) contained excessively with the part significantly improved the abrasion resistance to 13870 times / 1 mm, but 10% modulus (M10) and elongation at break (23 ° C. and 0 ° C.) Lb) deviates from the acceptable value and the flexibility decreases.
From this, inclusion of 2 to 15 parts by mass of hard particles having a Mohs hardness of 6 to 13 with respect to 100 parts by mass of the resin component in the vinyl chloride resin mixture does not reduce the flexibility of the flooring and is resistant to abrasion. It is proved that it is effective for improving.

1 第一の樹脂領域
2 第二の樹脂領域
3 表面層
4 裏面層
F1,F2,F3,F4 床材
DESCRIPTION OF SYMBOLS 1 1st resin area | region 2 2nd resin area | region 3 Surface layer 4 Back surface layer F1, F2, F3, F4 Flooring

Claims (5)

少なくとも床材表面に第一の樹脂領域と第二の樹脂領域を有する床材であって、上記第一の樹脂領域が塩化ビニル系樹脂とポリウレタン系熱可塑性エラストマーとを主成分樹脂とする樹脂領域であり、上記第二の樹脂領域が塩化ビニル系樹脂に硬質粒子を含有させた樹脂領域であることを特徴とする床材。   A floor material having at least a first resin region and a second resin region on the floor material surface, wherein the first resin region includes a vinyl chloride resin and a polyurethane thermoplastic elastomer as main component resins. And the second resin region is a resin region in which hard particles are contained in a vinyl chloride resin. 床材表面における前記第一の樹脂領域と前記第二の樹脂領域との面積比が10:90〜35:65であることを特徴とする請求項1に記載の床材。   The flooring material according to claim 1, wherein an area ratio of the first resin region and the second resin region on the flooring material surface is 10:90 to 35:65. 前記第一の樹脂領域に含まれるポリウレタン系熱可塑性エラストマーが塩化ビニル系樹脂との相溶性を有するエラストマーであることを特徴とする請求項1又は請求項2に記載の床材。   The flooring material according to claim 1 or 2, wherein the polyurethane thermoplastic elastomer contained in the first resin region is an elastomer having compatibility with a vinyl chloride resin. 前記第二の樹脂領域に、更にエチレン・酢酸ビニル共重合体−塩化ビニルグラフトコポリマーが含まれていることを特徴とする請求項1ないし請求項3のいずれかに記載の床材。   The flooring according to any one of claims 1 to 3, wherein an ethylene / vinyl acetate copolymer-vinyl chloride graft copolymer is further contained in the second resin region. 前記第二の樹脂領域に含まれる硬質粒子が石英粒子であることを特徴とする請求項1ないし請求項4のいずれかに記載の床材。   The flooring material according to any one of claims 1 to 4, wherein the hard particles contained in the second resin region are quartz particles.
JP2012193721A 2012-09-04 2012-09-04 Flooring Active JP5947162B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012193721A JP5947162B2 (en) 2012-09-04 2012-09-04 Flooring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012193721A JP5947162B2 (en) 2012-09-04 2012-09-04 Flooring

Publications (2)

Publication Number Publication Date
JP2014047589A true JP2014047589A (en) 2014-03-17
JP5947162B2 JP5947162B2 (en) 2016-07-06

Family

ID=50607553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012193721A Active JP5947162B2 (en) 2012-09-04 2012-09-04 Flooring

Country Status (1)

Country Link
JP (1) JP5947162B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS621715A (en) * 1985-06-28 1987-01-07 Nippon Polyurethan Kogyo Kk Production of composite material of polyvinyl chloride-polyurethane type
JPH07502575A (en) * 1991-12-23 1995-03-16 ジ アムティコ カンパニー リミティド floor covering
JP2550766Y2 (en) * 1993-06-14 1997-10-15 ロンシール工業株式会社 Non-slip flooring
JP2007255089A (en) * 2006-03-24 2007-10-04 Toli Corp Antifouling floor material
JP2011032657A (en) * 2009-07-30 2011-02-17 Takiron Co Ltd Floor sheet
JP2013189794A (en) * 2012-03-13 2013-09-26 Takiron Co Ltd Antifouling floor material
JP2014043670A (en) * 2012-08-24 2014-03-13 Takiron Co Ltd Skid-proof floor material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS621715A (en) * 1985-06-28 1987-01-07 Nippon Polyurethan Kogyo Kk Production of composite material of polyvinyl chloride-polyurethane type
JPH07502575A (en) * 1991-12-23 1995-03-16 ジ アムティコ カンパニー リミティド floor covering
JP2550766Y2 (en) * 1993-06-14 1997-10-15 ロンシール工業株式会社 Non-slip flooring
JP2007255089A (en) * 2006-03-24 2007-10-04 Toli Corp Antifouling floor material
JP2011032657A (en) * 2009-07-30 2011-02-17 Takiron Co Ltd Floor sheet
JP2013189794A (en) * 2012-03-13 2013-09-26 Takiron Co Ltd Antifouling floor material
JP2014043670A (en) * 2012-08-24 2014-03-13 Takiron Co Ltd Skid-proof floor material

Also Published As

Publication number Publication date
JP5947162B2 (en) 2016-07-06

Similar Documents

Publication Publication Date Title
US10005926B2 (en) Sewing-free hot melt adhesive TPU leather and preparation method thereof
CN104428374B (en) Polymer composites, gained panel and preparation method thereof
CN104277316B (en) Antiskid EVA sole and preparation method thereof
US20150291827A1 (en) Coatings, compositions, coated articles and methods
ES2401412T3 (en) Mixtures of synthetic materials comprising a thermoplastic polyurethane (TPU) and a shock resistant poly (meth) acrylate
US20040211130A1 (en) High traction flooring laminate
US10737473B2 (en) Transparent film for flooring and flooring comprising same
US7186453B2 (en) Resilient floor covering with regenerative, dirt-repellent surface
JPH07502575A (en) floor covering
JP5992766B2 (en) Non-slip flooring
KR101930708B1 (en) Transparent film for floor material, method for preparing the same and floor material comprising the same
CA2873565C (en) Hybrid flooring product
US11203677B2 (en) Resilient surface coverings and methods of making and using thereof
KR101191307B1 (en) Polyurethane binder, rubber chip mixed composition and elastic floor comprising the same
US20230212404A1 (en) Surface Covering With An Ultra-Violet (UV) Curable Surface Coating
JP5947162B2 (en) Flooring
EP3556819B1 (en) Multilayer or monolayer flooring
JP5992699B2 (en) Antifouling flooring
KR100938212B1 (en) Composition of pavement for path
JP2015172157A (en) Elastic composite material
GB2460239A (en) Multilayer coating of a floor
JP2001254504A (en) Nonslip floor member and its manufacturing method
JP4179822B2 (en) Flooring
JP2010125057A (en) Carpet
KR102527462B1 (en) Flooring Material Having Improved Scratch Resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150723

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20151212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160602

R150 Certificate of patent or registration of utility model

Ref document number: 5947162

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250