JP2014047582A - Design method for tunnel blasting sound reduction device, tunnel blasting sound reduction device, and construction method for tunnel - Google Patents
Design method for tunnel blasting sound reduction device, tunnel blasting sound reduction device, and construction method for tunnel Download PDFInfo
- Publication number
- JP2014047582A JP2014047582A JP2012193223A JP2012193223A JP2014047582A JP 2014047582 A JP2014047582 A JP 2014047582A JP 2012193223 A JP2012193223 A JP 2012193223A JP 2012193223 A JP2012193223 A JP 2012193223A JP 2014047582 A JP2014047582 A JP 2014047582A
- Authority
- JP
- Japan
- Prior art keywords
- sound
- tunnel
- blasting
- sound absorber
- absorber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Building Environments (AREA)
Abstract
Description
本発明は、トンネル発破音低減装置の設計方法及びトンネル発破音低減装置並びにトンネルの構築方法に関する。 The present invention relates to a method for designing a tunnel blast noise reduction device, a tunnel blast noise reduction device, and a tunnel construction method.
従来、山岳トンネル工事などで発破作業を行う際には、切羽部で生じる発破音がトンネル外部に伝播することを防止するために種々の対策が講じられてきた。例えば、代表的な対策としては、トンネル坑口付近に防音扉を設置するものが挙げられる。鋼鉄製やコンクリート製の剛性、質量が大きい防音扉によってトンネル坑口を塞ぐことにより、優れた遮音効果を得ることができる。また、鋼管を隙間なく多数並行配置して防音壁を形成することも提案され、この防音壁では、鋼管の長手方向の剛性が従来の防音パネルよりも格段に向上し、発破音に含まれる低周波音によって防音壁が共鳴することを防止できる(例えば、特許文献1参照)。 Conventionally, when performing blasting work in mountain tunnel construction, various measures have been taken to prevent the blasting sound generated at the face part from propagating outside the tunnel. For example, a typical measure is to install a soundproof door near the tunnel entrance. An excellent sound insulation effect can be obtained by closing the tunnel pit with a soundproof door made of steel or concrete and having a large rigidity and mass. In addition, it has also been proposed to form a soundproof wall by arranging a large number of steel pipes in parallel without any gaps, and in this soundproof wall, the rigidity in the longitudinal direction of the steel pipe is significantly improved compared to conventional soundproof panels, and the low noise included in the blast sound is low. It is possible to prevent the soundproof wall from resonating with the frequency sound (for example, see Patent Document 1).
さらに、トンネルの坑口ないし坑内を隔壁(防音壁)で閉塞することに加え、一端がトンネル坑内に開口し他端が閉塞した経路長の異なる複数の管体を、隔壁より切羽部側に設置する対策も提案されている。そして、複数周波数音の1/4波長の経路長で管体を形成することにより、発破音、特に低周波音を効果的に消音することができる(例えば、特許文献2参照)。 Furthermore, in addition to closing the tunnel entrance or tunnel with a partition wall (soundproof wall), a plurality of pipes having one end opened in the tunnel tunnel and the other end closed and having different path lengths are installed closer to the face than the partition wall. Countermeasures have also been proposed. Then, by forming a tube with a path length of ¼ wavelength of a plurality of frequency sounds, it is possible to effectively mute blast sounds, particularly low frequency sounds (for example, see Patent Document 2).
しかしながら、上記従来の鋼管を用いた防音壁においては、鋼管を並行配置してトンネル坑口を塞ぐようにしているため、設置できる鋼管の数は限られ、これにより、鋼管による発破音低減効果にも限りがある。 However, in the above-described conventional soundproof wall using steel pipes, the number of steel pipes that can be installed is limited because the steel pipes are arranged in parallel to close the tunnel wellhead. There is a limit.
また、経路長が異なる複数の管体を隔壁(防音壁)より切羽部側に設置する対策においては、トンネル断面の大部分を管体によって覆う構造であり、また、大規模であるため、重機の往来の支障になるなど、トンネル坑内の作業性の悪化を招くおそれがある。さらに、1/4波長の経路長で管体を形成し、この管体で生成した逆位相の音波によって元の音波を打ち消すサイドブランチ型の吸音機構を利用しているため、低周波音を低減させるためには、長い管体が必要になり、さらに大規模になってしまう。 In addition, in measures to install multiple pipes with different path lengths closer to the face than the bulkhead (soundproof wall), the tunnel cross-section is covered with a pipe, and it is a large scale. There is a risk that workability in the tunnel mine will be deteriorated. In addition, it uses a side-branch sound absorption mechanism that forms a tube with a 1/4 wavelength path length and cancels the original sound wave with the opposite-phase sound wave generated by this tube, reducing low-frequency sound. In order to make this happen, a long tube is required, and the scale becomes even larger.
これに対し、本願の発明者は、図1に示すように、例えば構造用合板を用いて形成した開口部2を有する箱型構造の吸音体1をトンネル発破音低減装置AとしてトンネルTの坑内に設置し、この吸音体1によって発破音を低減させることを考えた。すなわち、複数の吸音体1を切羽部から坑口の間のトンネル坑内の任意の場所に設置してなるトンネル発破音低減装置Aでは、発破作業時に、発破音が吸音体1の近傍を通過するとともに、その一部の音エネルギーが開口部2を通じて吸音体1の内部に入る。そして、吸音体1の内部でヘルムホルツ共鳴が生じるなどし、吸音体1によって内部に入った音エネルギーを吸収して低減させることができる。これにより、複数の吸音体1をまとめて設置したり、分散して設置してトンネル発破音低減装置Aを構成するだけで、坑内の作業性の悪化を招くことなく、また、別途動力などを必要とせずに、発破音の低減効果を得ることが可能になる。
In contrast, the inventor of the present application, as shown in FIG. 1, uses a box-shaped sound absorber 1 having an
一方で、発破音のエネルギーは大きく、発破作業時に、トンネルT坑内に設置した箱型構造の吸音体1の各面には大きな力が加わることになる。そして、このとき、吸音体1の各面の変形や撓みが大きくなると吸音体1の吸音特性が変化し、対象とする周波数の音に対して十分な吸音性能が得られなくなってしまう。より具体的に、本願の発明者は、例えば図9に示すように30Hz付近の周波数域を対象とし、開口部2が形成された吸音体1の面の剛性を変化させた場合の吸音率を調べ、この図9に示す通り、吸音体1の面の剛性によって吸音性能が大きく変化することを確認した。このことから、開口部2を有する箱型構造の吸音体1を備えてなるトンネル発破音低減装置Aにおいては、図10に示すように、吸音体1の各面の剛性不足に起因して、対象の低周波音(図10では30Hz付近/16〜31.5Hz)に対して低減効果が得られず、設計通りの吸音性能が発揮されないおそれがあった。
On the other hand, the energy of the blasting sound is large, and a large force is applied to each surface of the sound absorber 1 having a box-type structure installed in the tunnel T tunnel during the blasting work. At this time, if the deformation or bending of each surface of the sound absorber 1 increases, the sound absorption characteristics of the sound absorber 1 change, and sufficient sound absorption performance cannot be obtained for the sound of the target frequency. More specifically, for example, as shown in FIG. 9, the inventor of the present application targets the frequency range near 30 Hz, and changes the sound absorption rate when the rigidity of the surface of the sound absorber 1 in which the
本発明のトンネル発破音低減装置の設計方法は、トンネル工事の発破作業によって発生する発破音を低減させるための吸音体を備えてなるトンネル発破音低減装置の設計方法であって、前記吸音体は、開口部を有する箱型構造で形成し、且つ、内部に、間仕切り壁を設け、互いに連通する複数の小室を備えて形成するものとし、前記吸音体で低減させる発破音の対象周波数を選定する対象周波数選定工程と、前記吸音体の寸法を設定する吸音体寸法設定工程と、前記吸音体の各面の剛性を設定する吸音体剛性設定工程と、前記吸音体の開口部の摩擦による音エネルギー損失、前記吸音体の内部の空気の共振、前記吸音体の壁面の変位の影響を、等価電気回路理論を応用して表現し、前記等価電気回路理論に基づいて前記吸音体の吸音率を推定する吸音率推定工程とを備え、前記対象周波数選定工程で選定した発破音の対象周波数に対し、前記吸音率推定工程で得られた吸音率が所望の吸音率以上となった場合に、前記吸音体剛性設定工程で設定した剛性を前記吸音体の面の剛性とすることを特徴とする。 The design method of the tunnel blast sound reducing device of the present invention is a design method of a tunnel blast sound reducing device comprising a sound absorber for reducing blast sound generated by blasting work of tunnel construction, wherein the sound absorber is In addition, it is formed with a box structure having an opening, and a partition wall is provided inside, and a plurality of small chambers communicating with each other are formed, and a target frequency of blasting sound to be reduced by the sound absorber is selected. A target frequency selection step, a sound absorber size setting step for setting the dimensions of the sound absorber, a sound absorber rigidity setting step for setting the rigidity of each surface of the sound absorber, and sound energy due to friction of the opening of the sound absorber The effect of loss, resonance of the air inside the sound absorber, and displacement of the wall surface of the sound absorber is expressed by applying an equivalent electric circuit theory, and the sound absorption rate of the sound absorber is estimated based on the equivalent electric circuit theory The sound absorption coefficient when the sound absorption coefficient obtained in the sound absorption coefficient estimation step is equal to or higher than a desired sound absorption coefficient with respect to the target frequency of the blasting sound selected in the target frequency selection process. The rigidity set in the body rigidity setting step is defined as the rigidity of the surface of the sound absorber.
本発明のトンネル発破音低減装置は、トンネル工事の発破作業によって発生する発破音を低減させるための吸音体を備えてなるトンネル発破音低減装置であって、上記のトンネル発破音低減装置の設計方法に基づいて前記吸音体が形成されていることを特徴とする。 A tunnel blast noise reducing device of the present invention is a tunnel blast noise reducing device comprising a sound absorber for reducing blast noise generated by blasting work of tunnel construction, and a method for designing the above tunnel blast noise reducing device The sound absorber is formed based on the above.
本発明のトンネルの構築方法は、発破作業を伴うトンネルの構築方法であって、発破作業を行う箇所よりもトンネル入り口側に近い箇所に上記のトンネル発破音低減装置を複数配置することにより、トンネル発破音の低減を行うことを特徴とする。 A tunnel construction method according to the present invention is a tunnel construction method involving a blasting operation, wherein a plurality of the above tunnel blasting sound reduction devices are arranged at a location closer to the tunnel entrance side than a location where the blasting operation is performed. Blasting sound is reduced.
本発明のトンネル発破音低減装置の設計方法及びトンネル発破音低減装置並びにトンネルの構築方法においては、対象周波数選定工程で選定した発破音の対象周波数に対し、吸音率推定工程で得られた吸音率が所望の吸音率(例えば50%)以上となった場合に、吸音体剛性設定工程で設定した剛性を各面に備えて吸音体を形成する。これにより、発破作業時に、発破音のエネルギーが吸音体の各面に作用しても、吸音体の各面に想定以上の変形や撓みが生じることがなく、対象とする周波数の音に対して十分な吸音性能を得ることが可能になる。 In the tunnel blast noise reducing device design method, the tunnel blast noise reducing device and the tunnel construction method of the present invention, the sound absorption coefficient obtained in the sound absorption coefficient estimation step with respect to the target frequency of the blast sound selected in the target frequency selection step. Is equal to or higher than a desired sound absorption rate (for example, 50%), the sound absorber is formed with the rigidity set in the sound absorber rigidity setting step on each surface. As a result, even during the blasting operation, even if the energy of the blasting sound acts on each surface of the sound absorber, the surface of the sound absorber is not deformed or bent more than expected, and the sound of the target frequency is not affected. Sufficient sound absorbing performance can be obtained.
よって、本発明のトンネル発破音低減装置の設計方法及びトンネル発破音低減装置並びにトンネルの構築方法によれば、吸音体が設計通りの吸音性能を発揮し、好適にトンネル工事の発破作業によって発生する発破音を低減させることが可能になる。また、発破作業を伴うトンネルの構築時に、発破作業を行う箇所よりもトンネル入り口側に近い箇所に上記のトンネル発破音低減装置(吸音体)を複数配置することにより、効果的にトンネル発破音の低減を図ることが可能になるとともに、トンネルの外部への発破音の伝播を効果的に防止できる。 Therefore, according to the design method of the tunnel blast noise reduction device, the tunnel blast noise reduction device, and the tunnel construction method of the present invention, the sound absorber exhibits the sound absorption performance as designed and is preferably generated by the blast work of tunnel construction. Blasting sound can be reduced. In addition, when constructing a tunnel that involves blasting work, multiple tunnel blast noise reduction devices (sound absorbers) are placed closer to the tunnel entrance side than where blasting work is performed, so that tunnel blasting sound can be effectively reduced. Reduction can be achieved and propagation of blasting sound to the outside of the tunnel can be effectively prevented.
以下、図1から図8を参照し、本発明の一実施形態に係るトンネル発破音低減装置の設計方法及びトンネル発破音低減装置並びにトンネルの構築方法について説明する。 Hereinafter, a method for designing a tunnel blast noise reduction device, a tunnel blast noise reduction device, and a tunnel construction method according to an embodiment of the present invention will be described with reference to FIGS.
本実施形態のトンネル発破音低減装置Aは、図1に示すように、トンネルTの切羽部から坑口までの間に設置され、山岳トンネル工事などの発破作業に伴い発生する発破音を吸収して低減させるための装置である。 As shown in FIG. 1, the tunnel blast noise reduction device A of the present embodiment is installed between the face part of the tunnel T and the wellhead, and absorbs the blast sound generated by blasting work such as mountain tunnel construction. It is an apparatus for reducing.
また、本実施形態のトンネル発破音低減装置Aは、複数の吸音体1を備えて構成されている。そして、本実施形態の吸音体1は、図2から図5に示すように、構造用合板などの比較的軽量な素材を用いて、例えば長さ2〜4m、幅1m、高さ0.5m程度の矩形箱型構造で形成されている。なお、発破作業を伴うトンネルTの構築時には、発破作業を行う箇所よりもトンネル入り口側(坑口側)に近い箇所にトンネル発破音低減装置A(吸音体1)を複数配置することが好ましい。
Moreover, the tunnel blast sound reduction device A according to the present embodiment includes a plurality of
また、この吸音体1は、その内部に、間仕切り壁3が設けられている。この間仕切り壁3は、幅方向S1に沿って延びる吸音体1の一対の側壁4、5のうち一方の第1側壁4に一端3aを接続し、長さ方向S2に沿って延びる一対の側壁6、7と平行に第2側壁5に向けて延設されている。また、間仕切り壁3は、幅方向S1略中央に配設され、且つ他端3bと第2側壁5の間に所定の間隔をあけて配設されている。
Further, the
さらに、間仕切り壁3は、上端及び下端を吸音体1の上板8及び下板9にそれぞれ接続して配設されている。これにより、吸音体1の内部には、間仕切り壁3によって互いに連通する複数の小室10、11が形成されている。
Furthermore, the
また、図2から図4に示すように、第1側壁4には、間仕切り壁3と第3側壁6の間の小室10と外部を連通させる開口部2が貫通形成されており、本実施形態では、この開口部2が例えば幅25cm、高さ10cmで形成されている。
As shown in FIGS. 2 to 4, the
そして、本実施形態では、吸音体1を構成する第1側壁4、第2側壁5、第3側壁6、第4側壁7、上板8、下板9に加え、間仕切り壁3と開口部2とによって、開口部2を通じて発破作業時に発生する発破音(音エネルギー)が入るとともにヘルムホルツ共鳴を生じさせるヘルムホルツ共鳴機構12が構成されている。また、本実施形態では、このヘルムホルツ共鳴機構12が、例えば発破音の20〜80Hzの低周波音(低周波帯域)に共鳴するように構成されている。なお、本発明にかかる吸音体1は、その形状、間仕切り壁の数や配置を必ずしも本実施形態のように限定する必要はなく、要求される吸音性能に応じて適宜決定すればよい。
In this embodiment, in addition to the
さらに、本実施形態のトンネル発破音低減装置Aの吸音体1は、第1側壁4、第2側壁5、第3側壁6、第4側壁7、上板8、下板9、間仕切り壁3が、適宜、折り畳み可能、分解可能(着脱可能)とされ、組立式構造で形成されている。
Furthermore, the
そして、上記構成からなる本実施形態のトンネル発破音低減装置Aにおいては、図1に示すように、吸音体1を切羽部から坑口の間のトンネル坑内の任意の場所に、複数の吸音体1を積み重ねるなどしてまとめて設置したり、分散して設置する。また、例えば発破音の発生源側の切羽部側に開口部2を向けるなど、適宜開口部2の位置を調整しながら吸音体1を設置する。このように複数の吸音体1を設置すると、発破作業時に、発破音が吸音体1の近傍を通過するとともに、その一部の音エネルギーが開口部2を通じて吸音体1の内部に入り、吸収される。また、このとき、本実施形態では、ヘルムホルツ共鳴機構12が吸音体1の内部に形成されているため、この吸音体1の内部に音エネルギーが入るとともにヘルムホルツ共鳴が生じ、これにより、確実且つ効果的に発破音が吸収されて低減する。
And in the tunnel blast noise reduction apparatus A of this embodiment which consists of the said structure, as shown in FIG. 1, the
一方で、発破作業時に、吸音体1の第1側壁4、第2側壁5、第3側壁6、第4側壁7、上板8、下板9の各面に発破エネルギーが加わり、吸音体1の各面の変形や撓みが発生して、対象とする周波数の音に対し十分な吸音性能が得られなくなるおそれがある。
On the other hand, during the blasting operation, blasting energy is applied to each surface of the
これに対し、本実施形態では、発破作業時に、吸音体1の各面の変形や撓みの発生を抑え、対象とする周波数の音に対して十分な吸音性能が発揮されるように吸音体1を形成する。具体的に、本実施形態のトンネル発破音低減装置の設計方法では、図6に示すように、はじめに、発破音実測データの周波数分析結果などに基づいて、吸音体1で低減させる発破音の対象周波数を選定する(対象周波数選定工程)。また、吸音体1の寸法(長さ、幅、高さ)を設定する(吸音体寸法設定工程)。
On the other hand, in the present embodiment, during the blasting operation, the
次に、吸音体1の材質を選定するとともに、吸音体1の各面の剛性を設定する(吸音体剛性設定工程)。このとき、密度やヤング率、ポアソン比などを考慮しながら、発破音の圧力によって吸音体1の各面に過度な変形を生じさせない十分な剛性を設定する。
Next, the material of the
このように、対象周波数、吸音体1の寸法、剛性を設定した段階で、この吸音体1の対象周波数の発破音に対する吸音性能をシミュレーションによって確認する。このとき、本実施形態では、吸音体1の開口部2の摩擦による音エネルギー損失、吸音体1の内部の空気の共振、吸音体1の壁面の変位の影響を、図7に示すように、等価電気回路理論を応用して表現し、この等価電気回路理論に基づいて吸音体1の吸音率を推定する(吸音率推定工程)。すなわち、対象周波数の発破エネルギーを入力し、大気中を伝播するときの空気の抵抗、吸音体1の内部空気の影響(抵抗、共振)、吸音体1の開口部2を出入りするときの音エネルギー損失、吸音体1の壁面の質量や剛性にかかる音エネルギー損失を求め、吸音体1による吸音率を算出する。
In this way, at the stage where the target frequency, the size and rigidity of the
そして、選定した発破音の対象周波数に対し、得られた吸音率が予め設定した所望の吸音率(例えば50%)以上となった場合に、吸音体剛性設定工程で設定した剛性を吸音体の面の剛性とする。 When the obtained sound absorption coefficient is equal to or higher than a predetermined desired sound absorption coefficient (for example, 50%) with respect to the selected target frequency of the blasting sound, the rigidity set in the sound absorber rigidity setting step is The rigidity of the surface.
一方、算出した吸音率が所望の吸音率(例えば50%)を下回り、吸音体1の剛性が十分に確保されていないと判定された場合には、吸音体寸法設定工程に戻って吸音体1の各面の大きさや縦横比を変更するなどして吸音体1の寸法を再設定し、改めて吸音体剛性設定工程で吸音体1の各面の剛性を設定し、吸音体1による吸音率を算定する。そして、所望の吸音率が得られるまで上記操作を行ない、吸音体1の面の剛性を決定する。
On the other hand, when it is determined that the calculated sound absorption rate is lower than a desired sound absorption rate (for example, 50%) and the
ここで、図8に、上記の本実施形態のトンネル発破音低減装置の設計方法に従い、吸音体1を等価電気回路理論に基づいてモデル化し、その吸音特性をシミュレーションした結果を示す。この図8では、発破音の周波数と吸音体1による発破音の平均吸音率の関係を示している。そして、この図に示すように、本実施形態のトンネル発破音低減装置Aの吸音体1においては、発破音の20〜80Hzの低周波数帯域で、ヘルムホルツ共鳴機構12により、50%以上の吸音率が得られることが確認された。また、40〜63Hzでは吸音率が80%を超え、特に優れた吸音効果が発揮されることが確認された。
Here, FIG. 8 shows the result of modeling the
したがって、本実施形態のトンネル発破音低減装置の設計方法及びトンネル発破音低減装置においては、対象周波数選定工程で選定した発破音の対象周波数に対し、吸音率推定工程で得られた吸音率が所望の吸音率(例えば50%)以上となった場合に、吸音体剛性設定工程で設定した剛性を各面に備えて吸音体1を形成する。これにより、発破作業時に、発破音のエネルギーが吸音体1の各面に作用しても、吸音体1の各面に想定以上の変形や撓みが生じることがなく、対象とする周波数の音に対して十分な吸音性能を得ることが可能になる。よって、吸音体1が設計通りの吸音性能を発揮し、好適にトンネル工事の発破作業によって発生する発破音を低減させることが可能になる。また、発破作業を伴うトンネルTの構築時に、発破作業を行う箇所よりもトンネル入り口側(坑口側)に近い箇所にトンネル発破音低減装置A(吸音体1)を複数配置することにより、効果的にトンネル発破音の低減を図ることが可能になるとともに、トンネルTの外部への発破音の伝播を効果的に防止できる。
Therefore, in the tunnel blast noise reducing device design method and the tunnel blast noise reducing device of the present embodiment, the sound absorption rate obtained in the sound absorption rate estimation step is desired for the target frequency of the blast sound selected in the target frequency selection step. The
また、本実施形態のトンネル発破音低減装置Aにおいては、複数の吸音体1を切羽部から坑口の間のトンネルT坑内の任意の場所に設置すると、発破作業時に、発破音が吸音体1の近傍を通過するとともに、その一部の音エネルギーが開口部2を通じて吸音体1の内部に入る。このとき、吸音体1の内部にヘルムホルツ共鳴機構12が形成されているため、内部に入った音エネルギーを吸収し低減することが可能になる。
Moreover, in the tunnel blasting sound reduction device A of the present embodiment, when a plurality of
これにより、本実施形態のトンネル発破音低減装置Aにおいては、切羽部から坑口の間のトンネルT坑内の任意の場所に、複数の吸音体1をまとめて設置したり、分散して設置しておくだけで、坑内の作業性の悪化を招くことなく、また、別途動力などを必要とせずに、確実に発破音の低減効果を得ることが可能になる。
Thereby, in the tunnel blasting sound reduction device A of the present embodiment, a plurality of
さらに、吸音体1が折り畳み可能及び/又は分解可能な組立式構造で形成されていることにより、設置、移動、撤去を容易に行なうことができ、坑内作業の妨げになることがない。また、再利用を可能にし、コスト削減を図ることも可能になる。
Furthermore, since the
以上、本発明に係るトンネル発破音低減装置の設計方法及びトンネル発破音低減装置の一実施形態について説明したが、本発明は上記の実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。 As mentioned above, although the design method of the tunnel blasting sound reducing device and the embodiment of the tunnel blasting sound reducing device according to the present invention have been described, the present invention is not limited to the above embodiment, and does not depart from the gist thereof. It can be changed as appropriate.
1 吸音体
2 開口部
3 間仕切り壁
3a 一端
3b 他端
4 第1側壁
5 第2側壁
6 第3側壁
7 第4側壁
8 上板
9 下板
10 小室
11 小室
12 ヘルムホルツ共鳴機構
A トンネル発破音低減装置
S1 幅方向
S2 長さ方向
T トンネル
DESCRIPTION OF
Claims (3)
前記吸音体は、開口部を有する箱型構造で形成し、且つ、内部に、間仕切り壁を設け、互いに連通する複数の小室を備えて形成するものとし、
前記吸音体で低減させる発破音の対象周波数を選定する対象周波数選定工程と、
前記吸音体の寸法を設定する吸音体寸法設定工程と、
前記吸音体の各面の剛性を設定する吸音体剛性設定工程と、
前記吸音体の開口部の摩擦による音エネルギー損失、前記吸音体の内部の空気の共振、前記吸音体の壁面の変位の影響を、等価電気回路理論を応用して表現し、前記等価電気回路理論に基づいて前記吸音体の吸音率を推定する吸音率推定工程とを備え、
前記対象周波数選定工程で選定した発破音の対象周波数に対し、前記吸音率推定工程で得られた吸音率が所望の吸音率以上となった場合に、前記吸音体剛性設定工程で設定した剛性を前記吸音体の面の剛性とすることを特徴とするトンネル発破音低減装置の設計方法。 A design method of a tunnel blasting sound reduction device comprising a sound absorber for reducing blasting sound generated by blasting work of tunnel construction,
The sound absorber is formed with a box-type structure having an opening, and is provided with a partition wall in the interior and includes a plurality of small chambers communicating with each other.
A target frequency selection step of selecting a target frequency of blasting sound to be reduced by the sound absorber;
A sound absorber size setting step for setting the dimensions of the sound absorber;
A sound absorber rigidity setting step for setting the rigidity of each surface of the sound absorber;
Representing the effects of sound energy loss due to friction at the opening of the sound absorber, resonance of the air inside the sound absorber, and displacement of the wall surface of the sound absorber by applying an equivalent electric circuit theory, the equivalent electric circuit theory And a sound absorption coefficient estimation step for estimating the sound absorption coefficient of the sound absorber based on
When the sound absorption coefficient obtained in the sound absorption coefficient estimation step is equal to or higher than a desired sound absorption coefficient with respect to the target frequency of the blasting sound selected in the target frequency selection step, the rigidity set in the sound absorber rigidity setting step is set. A design method of a tunnel blasting sound reducing device, characterized in that the sound absorbing body has a rigid surface.
請求項1記載のトンネル発破音低減装置の設計方法に基づいて前記吸音体が形成されていることを特徴とするトンネル発破音低減装置。 A tunnel blasting sound reduction device comprising a sound absorber for reducing blasting sound generated by blasting work of tunnel construction,
The tunnel blast sound reducing device according to claim 1, wherein the sound absorber is formed based on the design method of the tunnel blast sound reducing device according to claim 1.
発破作業を行う箇所よりもトンネル入り口側に近い箇所に請求項2記載のトンネル発破音低減装置を複数配置することにより、トンネル発破音の低減を行うことを特徴とするトンネルの構築方法。 A tunnel construction method involving blasting work,
A tunnel construction method characterized in that a tunnel blast noise is reduced by arranging a plurality of tunnel blast noise reduction devices according to claim 2 at a location closer to the tunnel entrance side than a location where a blast operation is performed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012193223A JP5601545B2 (en) | 2012-09-03 | 2012-09-03 | Tunnel blast noise reducing device design method, tunnel blast noise reducing device, and tunnel construction method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012193223A JP5601545B2 (en) | 2012-09-03 | 2012-09-03 | Tunnel blast noise reducing device design method, tunnel blast noise reducing device, and tunnel construction method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014047582A true JP2014047582A (en) | 2014-03-17 |
JP5601545B2 JP5601545B2 (en) | 2014-10-08 |
Family
ID=50607546
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012193223A Active JP5601545B2 (en) | 2012-09-03 | 2012-09-03 | Tunnel blast noise reducing device design method, tunnel blast noise reducing device, and tunnel construction method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5601545B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019148143A (en) * | 2018-02-28 | 2019-09-05 | 株式会社フジタ | Blasting sound reduction method and blasting sound reduction device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63237097A (en) * | 1987-03-26 | 1988-10-03 | 松下電工株式会社 | Headphone type silencer |
JPH09228794A (en) * | 1996-02-20 | 1997-09-02 | Ohbayashi Corp | Sound insulation pannel and sound insulation structure using same |
JP2009288704A (en) * | 2008-05-30 | 2009-12-10 | Kobe Steel Ltd | Sound absorbing structure |
JP2011256609A (en) * | 2010-06-09 | 2011-12-22 | Ohbayashi Corp | Tunnel blast sound damping method and tunnel blast sound damper |
-
2012
- 2012-09-03 JP JP2012193223A patent/JP5601545B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63237097A (en) * | 1987-03-26 | 1988-10-03 | 松下電工株式会社 | Headphone type silencer |
JPH09228794A (en) * | 1996-02-20 | 1997-09-02 | Ohbayashi Corp | Sound insulation pannel and sound insulation structure using same |
JP2009288704A (en) * | 2008-05-30 | 2009-12-10 | Kobe Steel Ltd | Sound absorbing structure |
JP2011256609A (en) * | 2010-06-09 | 2011-12-22 | Ohbayashi Corp | Tunnel blast sound damping method and tunnel blast sound damper |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019148143A (en) * | 2018-02-28 | 2019-09-05 | 株式会社フジタ | Blasting sound reduction method and blasting sound reduction device |
JP2022003223A (en) * | 2018-02-28 | 2022-01-11 | 株式会社フジタ | Blasting sound reduction method and blasting sound reduction device |
JP2022003224A (en) * | 2018-02-28 | 2022-01-11 | 株式会社フジタ | Blasting sound reduction method and blasting sound reduction device |
JP6994410B2 (en) | 2018-02-28 | 2022-01-14 | 株式会社フジタ | Blasting sound reduction method |
JP7146048B2 (en) | 2018-02-28 | 2022-10-03 | 株式会社フジタ | Blasting noise reduction method and blasting noise reduction device |
JP2023059978A (en) * | 2018-02-28 | 2023-04-27 | 株式会社フジタ | Blasting sound reduction method and blasting sound reduction device |
JP7270700B2 (en) | 2018-02-28 | 2023-05-10 | 株式会社フジタ | Blasting noise reduction method |
JP7441986B2 (en) | 2018-02-28 | 2024-03-01 | 株式会社フジタ | Explosion sound reduction method and Explosion noise reduction device |
Also Published As
Publication number | Publication date |
---|---|
JP5601545B2 (en) | 2014-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Mathematical modeling and analysis of a meta-plate for very low-frequency band gap | |
Claeys et al. | Design and validation of metamaterials for multiple structural stop bands in waveguides | |
Lee | Optimal topology of reactive muffler achieving target transmission loss values: Design and experiment | |
Wierschem et al. | Response attenuation in a large-scale structure subjected to blast excitation utilizing a system of essentially nonlinear vibration absorbers | |
Yu et al. | Hybrid silencers with micro-perforated panels and internal partitions | |
JP5788688B2 (en) | Tunnel silencer | |
Sanada et al. | Extension of the frequency range of resonant sound absorbers using two-degree-of-freedom Helmholtz-based resonators with a flexible panel | |
Ma et al. | In-structure shock of underground structures: A theoretical approach | |
Iqbal et al. | Vibration control of periodically supported pipes employing optimally designed dampers | |
Huang et al. | Micro-perforated absorbers with incompletely partitioned cavities | |
Qiao et al. | Structural control of high-rise buildings subjected to multi-hazard excitations using inerter-based vibration absorbers | |
Vo et al. | A reinvestigation of the spring-mass model for metamaterial bandgap prediction | |
Giannini et al. | Rotational and multimodal local resonators for broadband sound insulation of orthotropic metamaterial plates | |
JP5601545B2 (en) | Tunnel blast noise reducing device design method, tunnel blast noise reducing device, and tunnel construction method | |
Wrona et al. | Semi-active links in double-panel noise barriers | |
JP6762129B2 (en) | Sound absorber | |
JP6044164B2 (en) | Sound equipment | |
Melo et al. | Dynamic metamaterials for structural stopband creation | |
JP6175090B2 (en) | Tunnel blast noise reduction device | |
JP2017101530A (en) | Noise reduction structure | |
JP6299100B2 (en) | Tunnel silencer and tunnel silencer method | |
JP2015083756A (en) | Tunnel low frequency sound reduction device | |
Park et al. | Noise reduction for compressors by modes control using topology optimization of eigenvalue | |
Beli et al. | Influence of additive manufacturing variability in elastic band gaps of beams with periodically distributed resonators | |
JP2016194682A (en) | Noise reduction device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20140514 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140514 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20140703 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140722 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140806 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5601545 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |