JP2014044004A - Thermal storage device and structure - Google Patents

Thermal storage device and structure Download PDF

Info

Publication number
JP2014044004A
JP2014044004A JP2012186682A JP2012186682A JP2014044004A JP 2014044004 A JP2014044004 A JP 2014044004A JP 2012186682 A JP2012186682 A JP 2012186682A JP 2012186682 A JP2012186682 A JP 2012186682A JP 2014044004 A JP2014044004 A JP 2014044004A
Authority
JP
Japan
Prior art keywords
phase change
change material
heat
heat exchange
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012186682A
Other languages
Japanese (ja)
Inventor
Hosei Nagano
方星 長野
Takashi Hirako
貴志 平子
Takeshi Totani
剛 戸谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
Original Assignee
Hokkaido University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido University NUC filed Critical Hokkaido University NUC
Priority to JP2012186682A priority Critical patent/JP2014044004A/en
Publication of JP2014044004A publication Critical patent/JP2014044004A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Building Environments (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermal storage device that suppresses the height of a heat exchange member performing heat exchange with the outside of the device.SOLUTION: A thermal storage panel 1 comprises: a face plate 11 that performs heat exchange with the outside of a device; a back plate 17 that is provided so as to form a gap with the face plate 11 and forms a closed space from and to the face plate 11; and a phase change material 20 that is encapsulated between the face plate 11 and the back plate 17 and is subjected to phase change between a solid phase and a liquid phase by heat exchanged with the outside of the device. When the encapsulated phase change material 20 is subjected to temperature change beyond a melting point with phase change, the gap between the face plate 11 and the back plate 17 is a distance of being subjected to temperature change beyond the melting point of the phase change material 20 after the phase change of the encapsulated phase material 20 is completed.

Description

本発明は、蓄熱装置および構造体に関する。   The present invention relates to a heat storage device and a structure.

特許文献1には、宇宙機に適用可能で、軽量且つ、安価な蓄熱部材を提供するため、多数のセルを有するハニカム構造体を備え、各セル内に、蓄熱材が内包されたカプセルと、熱伝導フィラーと、が充填されてなる蓄熱部材が開示されている。そして、ハニカム構造体に蓄熱材が内包されたカプセルと熱伝導フィラーとを充填させることによって、蓄熱部材が厚い場合であっても熱伝導性の良い、軽量且つ、安価な蓄熱部材とし得ることが開示されている。   In Patent Document 1, in order to provide a lightweight and inexpensive heat storage member that can be applied to a spacecraft, it is provided with a honeycomb structure having a large number of cells, and a capsule in which a heat storage material is included in each cell; A heat storage member filled with a heat conductive filler is disclosed. Then, by filling the honeycomb structure with the heat storage material-encapsulated capsule and the heat conductive filler, even if the heat storage member is thick, it can be a light heat storage member with good heat conductivity and light weight. It is disclosed.

特開2011−178867号公報JP 2011-178867 A

本発明は、装置の外部と熱交換する熱交換部材からの高さを抑制した蓄熱装置を提供することを目的とする。   An object of this invention is to provide the thermal storage apparatus which suppressed the height from the heat exchange member which heat-exchanges with the exterior of an apparatus.

請求項1記載の発明は、装置外と熱交換する部材である熱交換部材と、前記熱交換部材と間隙を形成しながら当該熱交換部材に沿って設けられ、当該熱交換部材との間に密閉された空間を形成する密閉部材と、前記熱交換部材と前記密閉部材との間に形成された前記密閉された空間に封入され、装置外と交換される熱により固相と液相との間で相変化する相変化材とを備え、前記熱交換部材と前記密閉部材との間隙は、前記密閉された空間に封入された前記相変化材が相変化を伴いながら融点を超えて温度変化する際に、当該密閉された空間に封入された当該相変化材の相変化が終了した後に当該相変化材の融点を超えて温度変化する距離であることを特徴とする蓄熱装置である。   The invention according to claim 1 is provided along the heat exchange member while forming a gap with the heat exchange member, which is a member that exchanges heat with the outside of the apparatus, and between the heat exchange member A sealed member that forms a sealed space, and is sealed in the sealed space formed between the heat exchange member and the sealed member, and is exchanged between the solid phase and the liquid phase by heat exchanged outside the apparatus. A phase change material that changes phase between them, and the gap between the heat exchange member and the sealing member is such that the phase change material enclosed in the sealed space exceeds the melting point while undergoing a phase change and changes in temperature. In this case, the heat storage device is characterized in that the temperature change distance exceeds the melting point of the phase change material after the phase change of the phase change material sealed in the sealed space is completed.

請求項2記載の発明は、前記相変化材が封入される前記熱交換部材と前記密閉部材との空間には、当該相変化材との間で熱を交換するための他の部材が含まれていないことを特徴とする請求項1記載の蓄熱装置である。
請求項3記載の発明は、前記熱交換部材は、ピッチ系炭素繊維からなる炭素繊維強化樹脂により形成されることを特徴とする請求項1記載の蓄熱装置である。
According to a second aspect of the present invention, the space between the heat exchange member and the sealing member in which the phase change material is enclosed includes other members for exchanging heat with the phase change material. The heat storage device according to claim 1, wherein the heat storage device is not provided.
The invention according to claim 3 is the heat storage device according to claim 1, wherein the heat exchange member is formed of a carbon fiber reinforced resin made of pitch-based carbon fibers.

請求項4記載の発明は、外部の温度変化にともない温度が変化する領域である温度変化領域と、外部と熱交換する部材である熱交換部材と、前記温度変化領域と対向するとともに前記熱交換部材と間隙を形成しながら当該熱交換部材に沿って設けられ、当該熱交換部材との間に密閉された空間を形成する密閉部材と、前記熱交換部材と前記密閉部材との間に形成された前記密閉された空間に封入され、外部と交換される熱により固相と液相との間で相変化する相変化材とを備え、前記熱交換部材と前記密閉部材との間隙は、前記密閉された空間に封入された前記相変化材が相変化を伴いながら融点を超えて温度変化する際に、当該密閉された空間に封入された当該相変化材の相変化が終了した後に当該相変化材の融点を超えて温度変化する距離であることを特徴とする構造体である。   According to a fourth aspect of the present invention, there is provided a temperature change region that is a region where the temperature changes in response to an external temperature change, a heat exchange member that is a member that exchanges heat with the outside, and the temperature change region and the heat exchange member. A sealing member that is provided along the heat exchange member while forming a gap with the member and that forms a sealed space with the heat exchange member; and formed between the heat exchange member and the sealing member. And a phase change material that changes phase between a solid phase and a liquid phase by heat exchanged with the outside, and the gap between the heat exchange member and the sealing member is When the phase change material enclosed in the sealed space undergoes a temperature change exceeding the melting point with a phase change, the phase change material after the phase change of the phase change material enclosed in the sealed space is completed. The distance at which the temperature changes beyond the melting point of the changing material Is a structure characterized by at.

請求項5記載の発明は、装置外と熱交換する板状の部材であり、当該板状の面に沿って配置された繊維を含む繊維強化樹脂によって形成される天井部材と、前記天井部材に沿って設けられる板状の部材であり、当該板状の面に沿って配置された繊維を含む前記繊維強化樹脂によって形成される底部材と、前記天井部材と前記底部材とを離間するように支持し、当該天井部材および当該底部材とともに内部に密閉された空間を形成する支持部材と前記密閉された空間内に配置され、外部と交換した熱により固相と液相の間で相変化する相変化材とを備え、前記密閉された空間と連続する開口が形成されているとともに当該開口が封止されている部分である封止部が、前記支持部材に設けられていることを特徴とする蓄熱装置である。
請求項6記載の発明は、前記天井部材および前記底部材は、厚さ方向よりも面方向の熱伝導率が高いことを特徴とする請求項5記載の蓄熱装置である。
The invention according to claim 5 is a plate-like member that exchanges heat with the outside of the apparatus, and is formed by a fiber-reinforced resin including fibers arranged along the plate-like surface, and the ceiling member A bottom member formed by the fiber reinforced resin including fibers disposed along the plate-like surface, and the ceiling member and the bottom member. A support member that supports and forms a sealed space inside with the ceiling member and the bottom member, and is disposed in the sealed space, and changes phase between a solid phase and a liquid phase by heat exchanged with the outside. A phase change material, wherein an opening that is continuous with the sealed space is formed, and a sealing portion that is a portion where the opening is sealed is provided in the support member, It is a heat storage device.
The invention according to claim 6 is the heat storage device according to claim 5, wherein the ceiling member and the bottom member have higher thermal conductivity in the plane direction than in the thickness direction.

請求項1記載の発明によれば、本構成を有しない場合と比較して、装置の外部と熱交換する熱交換部材からの高さを抑制した蓄熱装置を提供することができる。   According to invention of Claim 1, compared with the case where it does not have this structure, the heat storage apparatus which suppressed the height from the heat exchange member which heat-exchanges with the exterior of an apparatus can be provided.

本実施の形態に係る蓄熱パネルを示す概略構成図である。It is a schematic block diagram which shows the thermal storage panel which concerns on this Embodiment. 本実施の形態に係る蓄熱パネルを示す分解図である。It is an exploded view which shows the thermal storage panel which concerns on this Embodiment. 図1のIII−III面で切断した断面図である。It is sectional drawing cut | disconnected by the III-III surface of FIG. 蓄熱パネルの製造方法を示す概念図である。It is a conceptual diagram which shows the manufacturing method of a thermal storage panel. 蓄熱パネルの製造方法を示す概念図である。It is a conceptual diagram which shows the manufacturing method of a thermal storage panel.

以下、添付図面を参照して、本実施の形態について詳細に説明する。
<蓄熱パネル1の構成>
まず、図1を参照して、本実施の形態が適用される蓄熱パネル1の構成を説明する。ここで、図1は、本実施の形態に係る蓄熱パネル1を示す概略構成図である。
Hereinafter, this embodiment will be described in detail with reference to the accompanying drawings.
<Configuration of heat storage panel 1>
First, with reference to FIG. 1, the structure of the thermal storage panel 1 to which this Embodiment is applied is demonstrated. Here, FIG. 1 is a schematic configuration diagram showing a heat storage panel 1 according to the present embodiment.

本実施の形態が適用される蓄熱パネル(蓄熱装置)1は、構造体の一例である人工衛星、住宅、自動車等(以下、単に「人工衛星」)に設けられ、外部の温度変化に対して、ある期間予め定められた温度に保つことができるよう構成されている。さらに説明をすると、蓄熱パネル1は、例えば外部温度の影響を受けて、人工衛星内のある領域(温度変化領域)における温度が急激に変化することを緩和させるよう、この温度変化領域に対向して設けられる。
図1に示すように、本実施の形態の蓄熱パネル1は、熱伝導を促進する材料(熱伝導促進材料)から形成される容器10と、容器10内に充填されるとともに外部からの熱により固相と液相とで相変化する相変化材(Phase Change Material(PCM))20とを備えている。
A heat storage panel (heat storage device) 1 to which the present exemplary embodiment is applied is provided in an artificial satellite, a house, an automobile, etc. (hereinafter simply referred to as “artificial satellite”) which is an example of a structure, and is adapted to an external temperature change. It is configured to be able to maintain a predetermined temperature for a certain period. To explain further, the heat storage panel 1 faces this temperature change region so as to alleviate a sudden change in temperature in a certain region (temperature change region) within the satellite due to the influence of the external temperature, for example. Provided.
As shown in FIG. 1, the heat storage panel 1 of the present embodiment includes a container 10 formed of a material that promotes heat conduction (a heat conduction promoting material), and the container 10 is filled with heat from outside. A phase change material (Phase Change Material (PCM)) 20 that changes between a solid phase and a liquid phase is provided.

容器10は、炭素系複合材料である炭素繊維強化樹脂(Carbon Fiber Reinforced Plastics(CFRP)、炭素繊維強化プラスチック)により形成される。より詳細には、容器10は、ピッチから製造される所謂ピッチ系炭素繊維にエポキシ樹脂等の樹脂を含浸させた炭素繊維強化樹脂により構成される。
なお、エポキシ樹脂は、熱硬化性樹脂であり、硬化点は例えば130℃程度である。また、一般的に、ピッチ系炭素繊維は、ポリアクリロニトリル(PAN)から製造される所謂PAN系炭素繊維と比較して、熱伝導率が高い。さらに説明をすると、PAN系の炭素繊維強化樹脂は、例えば熱伝導率10W/mK程度であるのに対して、ピッチ系の炭素繊維強化樹脂は、例えば熱伝導率80〜1100W/mK程度である。
The container 10 is formed of carbon fiber reinforced resin (Carbon Fiber Reinforced Plastics (CFRP), carbon fiber reinforced plastic) which is a carbon-based composite material. More specifically, the container 10 is made of a carbon fiber reinforced resin in which a so-called pitch-based carbon fiber manufactured from pitch is impregnated with a resin such as an epoxy resin.
The epoxy resin is a thermosetting resin and has a curing point of about 130 ° C., for example. In general, pitch-based carbon fibers have higher thermal conductivity than so-called PAN-based carbon fibers manufactured from polyacrylonitrile (PAN). More specifically, PAN-based carbon fiber reinforced resin has a thermal conductivity of about 10 W / mK, for example, while pitch-based carbon fiber reinforced resin has a thermal conductivity of about 80 to 1100 W / mK, for example. .

相変化材20には、固相−液相変化における融解熱を利用することで蓄熱が可能な材料が用いられる。例えば、相変化材20には、エイコサン(パラフィン)、水、酢酸ナトリウム、硫酸ナトリウム等の一般的に融解熱が大きい材料が用いられる。なお、この相変化材20の材料は、蓄熱パネル1の使用環境において想定される温度と、相変化材の融点との関係等に基づいて選択される。なお、エイコサンの融点は、例えば50〜60℃であり、エポキシ樹脂の硬化点よりも低い。
なお、相変化材20には、液相−気相変化における潜熱を利用することで蓄熱が可能な材料を用いてもよい。液相−気相変化における蒸発潜熱は、固相−液相変化における融解熱よりも高いため,相変化材20の使用量を抑制し得る。
The phase change material 20 is made of a material that can store heat by utilizing the heat of fusion in the solid-liquid phase change. For example, the phase change material 20 is generally made of a material having a large heat of fusion, such as eicosane (paraffin), water, sodium acetate, sodium sulfate and the like. The material of the phase change material 20 is selected based on the relationship between the temperature assumed in the usage environment of the heat storage panel 1 and the melting point of the phase change material. In addition, the melting | fusing point of eicosane is 50-60 degreeC, for example, and is lower than the hardening point of an epoxy resin.
The phase change material 20 may be made of a material that can store heat by utilizing latent heat in a liquid phase-gas phase change. Since the latent heat of vaporization in the liquid phase-gas phase change is higher than the heat of fusion in the solid phase-liquid phase change, the amount of phase change material 20 used can be suppressed.

ここで、図2を参照して、蓄熱パネル1の容器10の構成を詳細に説明する。図2は、本実施の形態に係る蓄熱パネル1を示す分解図である。
図2に示すように、容器10は、表板11と、周壁13と、封止壁15と、裏板17とを備える。なお、これらの各部材は、ピッチ系の炭素繊維強化樹脂により形成される。
Here, with reference to FIG. 2, the structure of the container 10 of the thermal storage panel 1 is demonstrated in detail. FIG. 2 is an exploded view showing the heat storage panel 1 according to the present embodiment.
As shown in FIG. 2, the container 10 includes a front plate 11, a peripheral wall 13, a sealing wall 15, and a back plate 17. Each of these members is formed of pitch-based carbon fiber reinforced resin.

熱交換部材および天井部材の一例である表板11は、蓄熱パネル1が備えられる人工衛星(図示せず)の外側に向けて配置される板状の部材である。また、この表板11の炭素繊維は、繊維方向が板平面に沿うように積載されている。付言すると、表板11の面方向における熱伝導率は、表板11の厚さ方向における熱伝導率よりも大きくなる。
周壁13は、表板11と裏板17との間に設けられ、表板11と裏板17との間に間隙を形成するよう表板11と裏板17とを支持する部材である。図示の例における周壁13は、相変化材20の周囲のうち3方(3面)を囲む略コの字状の部材である。
封止壁15は、詳細は後述するが、相変化材20を内部に配置した後に容器10を密閉する部材である。なお、周壁13および封止壁15を支持部材として捉えることができる。
The front plate 11, which is an example of a heat exchange member and a ceiling member, is a plate-like member arranged toward the outside of an artificial satellite (not shown) provided with the heat storage panel 1. Further, the carbon fibers of the front plate 11 are stacked such that the fiber direction is along the plate plane. In other words, the thermal conductivity in the surface direction of the front plate 11 is larger than the thermal conductivity in the thickness direction of the front plate 11.
The peripheral wall 13 is a member that is provided between the front plate 11 and the back plate 17 and supports the front plate 11 and the back plate 17 so as to form a gap between the front plate 11 and the back plate 17. The peripheral wall 13 in the illustrated example is a substantially U-shaped member that surrounds three sides (three sides) of the periphery of the phase change material 20.
Although details will be described later, the sealing wall 15 is a member that seals the container 10 after the phase change material 20 is disposed therein. The peripheral wall 13 and the sealing wall 15 can be regarded as support members.

密閉部材および底部材の一例である裏板17は、蓄熱パネル1が備えられる人工衛星(図示せず)の内側に向けて(温度変化領域に対向して)配置される板状の部材である。この裏板17は、表板11と予め定めた間隔を隔てて、表板11に沿うように形成されている。また、裏板17の炭素繊維は、繊維方向が板平面に沿うように積載されている。図示の例においては、表板11の炭素繊維の方向と交差する(異なる向き)向きに沿って、裏板17の炭素繊維が積層されている。しかしながら、表板11に沿って設けてももちろんよい。   The back plate 17, which is an example of a sealing member and a bottom member, is a plate-like member that is arranged (facing the temperature change region) toward the inside of an artificial satellite (not shown) in which the heat storage panel 1 is provided. . The back plate 17 is formed along the front plate 11 at a predetermined interval from the front plate 11. The carbon fibers of the back plate 17 are stacked such that the fiber direction is along the plate plane. In the illustrated example, the carbon fibers of the back plate 17 are laminated along a direction that intersects (different directions) with the direction of the carbon fibers of the front plate 11. However, it may of course be provided along the front plate 11.

ここで、本実施の形態が適用される蓄熱パネル1の容器10は、相変化材20を外周から覆う部材である。さらに説明をすると、蓄熱パネル1は、容器10内における相変化材20を配置する空間(収容空間35(図4(b)参照)、後述)に突出するように設けられる略平面状の部材であり、相変化材20と容器10との間の熱伝導を促進する部材(他の部材)である所謂フィンを有していない。   Here, the container 10 of the heat storage panel 1 to which the present exemplary embodiment is applied is a member that covers the phase change material 20 from the outer periphery. More specifically, the heat storage panel 1 is a substantially planar member provided so as to protrude into a space (accommodating space 35 (see FIG. 4B), which will be described later) in which the phase change material 20 is disposed in the container 10. There is no so-called fin, which is a member (other member) that promotes heat conduction between the phase change material 20 and the container 10.

また、本実施の形態が適用される容器10の表板11および裏板17は、それぞれ一つの部材として一体で設けられている。さらに説明をすると、容器10は、容器10の内部と連続する開口35a(図4(c)参照、後述)を、表板11および裏板17ではなく、蓄熱パネル1の側面に形成する構成である。ここで、仮に、表板11(あるいは裏板17)の面に開口35a(図4(c)参照)を形成すると、表板11(あるいは裏板17)内にそれぞれ積載される炭素繊維が分断される構成となる。この場合、表板11(あるいは裏板17)の炭素繊維に沿う伝熱が妨げられ得る。   Further, the front plate 11 and the back plate 17 of the container 10 to which the present embodiment is applied are integrally provided as one member. More specifically, the container 10 has a configuration in which an opening 35a (see FIG. 4C, which will be described later) continuous with the inside of the container 10 is formed on the side surface of the heat storage panel 1 instead of the front plate 11 and the back plate 17. is there. Here, if the opening 35a (see FIG. 4C) is formed on the surface of the front plate 11 (or the back plate 17), the carbon fibers loaded in the front plate 11 (or the back plate 17) are divided. It becomes the composition to be done. In this case, heat transfer along the carbon fibers of the front plate 11 (or the back plate 17) can be hindered.

さて、ここでは独立して形成される蓄熱パネル1を、人工衛星に取り付ける構成として説明をしたが、炭素繊維強化樹脂により形成される容器10内に、相変化材20が封止される態様であればよい。しがって、例えば容器10の一部を、人工衛星を形成する部材により構成してもよい。さらに説明をすると、例えば人工衛星を構成する壁部材や床部材(図示せず)が、炭素繊維強化樹脂によって形成されている場合に、表板11に替えて壁部材(図示せず)を利用する。すなわち、壁部材(図示せず)、周壁13、封止壁15、および裏板17により相変化材20を封止する構成であってもよい。この構成により、表板11が不要となるだけでなく、表板11を介することなく、壁部材(図示せず)から相変化材20へ直接熱が伝わるため、熱交換が促進され得る。   Now, although the heat storage panel 1 formed independently was demonstrated as a structure attached to an artificial satellite, in the aspect by which the phase change material 20 is sealed in the container 10 formed with a carbon fiber reinforced resin. I just need it. Therefore, for example, a part of the container 10 may be constituted by a member that forms an artificial satellite. More specifically, for example, when a wall member or floor member (not shown) constituting the artificial satellite is formed of carbon fiber reinforced resin, a wall member (not shown) is used instead of the front plate 11. To do. That is, the phase change material 20 may be sealed with a wall member (not shown), the peripheral wall 13, the sealing wall 15, and the back plate 17. With this configuration, not only the front plate 11 is unnecessary, but also heat is directly transferred from the wall member (not shown) to the phase change material 20 without using the front plate 11, so that heat exchange can be promoted.

<蓄熱パネル1の動作>
ここで、本実施の形態が適用される蓄熱パネル1の動作を説明する。
まず、蓄熱パネル1が設けられた人工衛星(図示せず)の外部の温度が急激に上昇した際における、蓄熱パネル1の動作を説明する。
外部の温度上昇に伴い、表板11(あるいは表板11に加えて周壁13、封止壁15および裏板17)を介して、蓄熱パネル1の外部からの熱が蓄熱パネル1内の相変化材20へ伝わる。そして、熱を受けた相変化材20が、固相から液相へと相変化する。
<Operation of heat storage panel 1>
Here, operation | movement of the thermal storage panel 1 to which this Embodiment is applied is demonstrated.
First, the operation of the heat storage panel 1 when the temperature outside the artificial satellite (not shown) provided with the heat storage panel 1 rapidly increases will be described.
As the temperature rises outside, heat from the outside of the heat storage panel 1 is changed in phase inside the heat storage panel 1 through the front plate 11 (or the peripheral wall 13, sealing wall 15 and back plate 17 in addition to the front plate 11). It is transmitted to the material 20. And the phase change material 20 which received the heat | fever changes a phase from a solid phase to a liquid phase.

ここで、蓄熱パネル1内の相変化材20において固相から液相への相変化が進行している際に、相変化材20の温度は相変化材20の融点に保たれる。すなわち、外部からの熱を相変化材20が吸収している状態となる。そして、相変化材20の固相から液相への相変化が終了した後に、液相の相変化材20の温度が融点を超えて上昇する。
このことから、蓄熱パネル1は、人工衛星(図示せず)の外部の温度が急激に上昇した際に、人工衛星の内部温度の急激な上昇を緩和する。
Here, when the phase change material 20 in the heat storage panel 1 undergoes a phase change from a solid phase to a liquid phase, the temperature of the phase change material 20 is maintained at the melting point of the phase change material 20. That is, the phase change material 20 absorbs heat from the outside. Then, after the phase change of the phase change material 20 from the solid phase to the liquid phase is completed, the temperature of the phase change material 20 in the liquid phase rises above the melting point.
From this, when the temperature outside the artificial satellite (not shown) rapidly increases, the heat storage panel 1 mitigates the rapid increase in the internal temperature of the artificial satellite.

次に、人工衛星(図示せず)の外部の温度が急激に下降した際における、蓄熱パネル1の動作を説明する。
外部の温度下降に伴い、蓄熱パネル1内に配置された相変化材20が液相から固相へと相変化する。ここで、蓄熱パネル1内の相変化材20において液相から固相への相変化が進行している際に、相変化材20の温度は相変化材20の融点に保たれ、相変化材20が外部へ熱を放出している状態となる。そして、相変化が終了した後に、固相の相変化材20の温度が融点を超えて下降する。
このことから、蓄熱パネル1は、人工衛星(図示せず)の外部の温度が急激に下降した際に、人工衛星の内部温度の急激な下降を緩和する。
Next, the operation of the heat storage panel 1 when the temperature outside the artificial satellite (not shown) rapidly decreases will be described.
As the temperature falls outside, the phase change material 20 arranged in the heat storage panel 1 changes from a liquid phase to a solid phase. Here, when the phase change from the liquid phase to the solid phase proceeds in the phase change material 20 in the heat storage panel 1, the temperature of the phase change material 20 is maintained at the melting point of the phase change material 20, and the phase change material. 20 is in a state of releasing heat to the outside. Then, after the phase change is completed, the temperature of the solid phase change material 20 drops below the melting point.
For this reason, when the temperature outside the artificial satellite (not shown) rapidly decreases, the heat storage panel 1 moderates the rapid decrease in the internal temperature of the artificial satellite.

<蓄熱パネル1の厚み>
次に、図3を参照して、蓄熱パネル1の厚みについて説明をする。ここで、図3は、図1のIII−III面で切断した断面図である。
本実施の形態が適用される蓄熱パネル1は、蓄熱パネル1を設置するために必要とする空間を抑制するべく、蓄熱パネル1の厚みt1を抑制して形成される。厚みt1を抑制することで、例えば人工衛星(図示せず)を構成する壁部材や床部材(図示せず)の一部として(あるいは壁部材や床部材とともに)蓄熱パネル1を設置する際に、設置場所の寸法についての制限が抑制される。
<Thickness of heat storage panel 1>
Next, the thickness of the heat storage panel 1 will be described with reference to FIG. Here, FIG. 3 is a cross-sectional view taken along the III-III plane of FIG.
The heat storage panel 1 to which this embodiment is applied is formed by suppressing the thickness t1 of the heat storage panel 1 in order to suppress the space required for installing the heat storage panel 1. By controlling the thickness t1, for example, when installing the heat storage panel 1 as a part of a wall member or floor member (not shown) constituting an artificial satellite (not shown) (or together with the wall member or floor member). , Restrictions on the dimensions of the installation location are suppressed.

ここで、蓄熱パネル1の厚みt1を抑制した場合、蓄熱パネル1内の相変化材20の体積が抑制されることから、相変化材20が蓄熱パネル1の外部と交換可能な熱量が制限されることとなる。
また、一般的に相変化材20は、容器10よりも熱伝導率が低い。したがって、仮に、蓄熱パネル1の内部に配置される相変化材20により交換可能な熱量を大きくするために、表板11と裏板17との間隙t2を大きくし過ぎた場合には、表板11(および裏板17)から伝わる熱が相変化材20全体に均一に伝わらない状態となり得る。
Here, since the volume of the phase change material 20 in the heat storage panel 1 is suppressed when the thickness t1 of the heat storage panel 1 is suppressed, the amount of heat that the phase change material 20 can exchange with the outside of the heat storage panel 1 is limited. The Rukoto.
In general, the phase change material 20 has a lower thermal conductivity than the container 10. Therefore, if the gap t2 between the front plate 11 and the back plate 17 is excessively increased in order to increase the amount of heat that can be exchanged by the phase change material 20 disposed inside the heat storage panel 1, the front plate 11 (and the back plate 17) may not be uniformly transmitted to the entire phase change material 20.

そして、相変化材20全体に熱が伝わらない状態となると、相変化材20の相変化が終了する前に、既に相変化が終了した一部の相変化材20の温度が変化し得る。具体的に説明をすると、例えば、蓄熱パネル1の外部の温度が上昇した際に、本来、蓄熱パネル1内の相変化材20全体が、固相から液相へ変化した後に、液相の相変化材20の温度が融点を超えて上昇する。しかしながら、相変化材20全体に熱が伝わりにくい場合、相変化材20における熱が十分に伝わらない領域が固相の状態であるにもかかわらず、相変化材20における熱が十分に伝わる領域では液相に相変化した相変化材20の温度が上昇を開始し得る。
この場合、蓄熱パネル1内の相変化材20全体を蓄熱に利用できていない状態となる。言い替えると、相変化材20全体に熱が均一に伝わらない状態となると、相変化材20が蓄熱パネル1の外部と交換可能な熱量がさらに制限される。また、人工衛星の内部の温度変化を緩和させる能力が制限されることとなる。
And when it will be in the state where heat is not transmitted to the phase change material 20 whole, the temperature of the one part phase change material 20 which has already completed the phase change may change before the phase change of the phase change material 20 is complete | finished. More specifically, for example, when the temperature outside the heat storage panel 1 rises, after the entire phase change material 20 in the heat storage panel 1 originally changed from the solid phase to the liquid phase, the liquid phase The temperature of the change material 20 rises above the melting point. However, when it is difficult for heat to be transmitted to the entire phase change material 20, in the region where the heat in the phase change material 20 is sufficiently transmitted even though the region where the heat in the phase change material 20 is not sufficiently transmitted is in a solid state. The temperature of the phase change material 20 that has changed to the liquid phase may start to rise.
In this case, the entire phase change material 20 in the heat storage panel 1 is not available for heat storage. In other words, when heat is not uniformly transmitted to the entire phase change material 20, the amount of heat that the phase change material 20 can exchange with the outside of the heat storage panel 1 is further limited. In addition, the ability to mitigate temperature changes inside the satellite will be limited.

そこで、本実施の形態においては、蓄熱パネル1内に配置された相変化材20全体の相変化が終了した後に、相変化が終了した相変化材20の温度が融点を超えて変化するように、表板11と裏板17との間隙t2を定める。付言すると、本実施の形態においては、蓄熱パネル1が外部と交換する熱量に応じて、間隙t2が定められる。   So, in this Embodiment, after the phase change of the whole phase change material 20 arrange | positioned in the thermal storage panel 1 is complete | finished, the temperature of the phase change material 20 in which the phase change was completed changes exceeding melting | fusing point. A gap t2 between the front plate 11 and the back plate 17 is determined. In other words, in the present embodiment, the gap t2 is determined according to the amount of heat exchanged by the heat storage panel 1 with the outside.

例えば、蓄熱パネル1の容器10をピッチ系の炭素繊維強化樹脂により形成し、相変化材20にエイコサンを用いるとともに、蓄熱パネル1の厚みt1が2mm、かつ表板11および裏板17の厚みt3が0.5mmとなるようにした場合、表板11と裏板17との間隙t2が1mmとなる。
また、例えば、間隙t2は、0.25mm〜5mmの範囲で構成される(厚みt1は、例えば0.5mm〜10mm)。ここで、間隙t2が0.25mmより小さい場合は、表板11と裏板17との間の空間を安定して作成することが困難となり得る。また、間隙t2が5mmよりも大きい場合は、相変化材20の相変化が終了する前に、一部の相変化材20の温度が融点を超えて変化し得る。
For example, the container 10 of the heat storage panel 1 is formed of pitch-based carbon fiber reinforced resin, eicosane is used for the phase change material 20, the thickness t1 of the heat storage panel 1 is 2 mm, and the thickness t3 of the front plate 11 and the back plate 17 Is 0.5 mm, the gap t2 between the front plate 11 and the back plate 17 is 1 mm.
For example, the gap t2 is configured in the range of 0.25 mm to 5 mm (the thickness t1 is 0.5 mm to 10 mm, for example). Here, when the gap t2 is smaller than 0.25 mm, it may be difficult to stably create a space between the front plate 11 and the back plate 17. Further, when the gap t2 is larger than 5 mm, the temperature of a part of the phase change material 20 may change beyond the melting point before the phase change of the phase change material 20 is completed.

<蓄熱パネル1の製造方法>
次に、図4を参照して、蓄熱パネル1の製造方法について説明をする。ここで、図4は、蓄熱パネル1の製造方法を示す概念図である。
まず、炭素繊維を一方向に引き揃えたテープや織物に樹脂を含浸させて作った中間素材(プリプレグ)を積層することにより、表板11、周壁13、封止壁15、裏板17の形状をそれぞれ形成する。また、例えば、ポリテトラフルオロエチレン、オレフィン系樹脂、フッ素系樹脂、あるいはポリエステル等の離型材により、板状部材である支持材30を形成する。なお、ポリテトラフルオロエチレンの融点は、例えば320℃であり、エポキシ樹脂の硬化点よりも高い。
<Method for manufacturing heat storage panel 1>
Next, with reference to FIG. 4, the manufacturing method of the thermal storage panel 1 is demonstrated. Here, FIG. 4 is a conceptual diagram showing a method for manufacturing the heat storage panel 1.
First, the shape of the front plate 11, the peripheral wall 13, the sealing wall 15, and the back plate 17 is obtained by laminating an intermediate material (prepreg) made by impregnating resin into a tape or fabric in which carbon fibers are aligned in one direction. Respectively. Further, for example, the support member 30 that is a plate-like member is formed of a release material such as polytetrafluoroethylene, olefin resin, fluorine resin, or polyester. The melting point of polytetrafluoroethylene is, for example, 320 ° C., which is higher than the curing point of the epoxy resin.

次に、図4(a)に示すように、支持材30の一部を覆うように、表板11、周壁13および裏板17を配置する。そして、プリプレグに含まれる余分な樹脂や空気等を除去するため、オートクレーブ内で、加圧しながらプリプレグに含まれる樹脂の硬化点以上に加熱する(オートクレーブ成形)。このことにより、プリプレグに含まれる樹脂が硬化し、かつ表板11、周壁13および裏板17が一体となることで、容器本体19が形成される。なお、図4(a)においては図示を省略するが、封止壁15も別途オートクレーブ成形により硬化することで成形される。   Next, as shown to Fig.4 (a), the front board 11, the surrounding wall 13, and the backplate 17 are arrange | positioned so that a part of support material 30 may be covered. And in order to remove excess resin, air, etc. contained in a prepreg, it heats more than the hardening point of resin contained in a prepreg, pressurizing within an autoclave (autoclave shaping | molding). As a result, the resin contained in the prepreg is cured, and the front plate 11, the peripheral wall 13 and the back plate 17 are integrated to form the container body 19. In addition, although illustration is abbreviate | omitted in Fig.4 (a), the sealing wall 15 is also shape | molded by hardening by autoclave shaping | molding separately.

次に、図4(b)に示すように、一体となって形成された容器本体19から、支持材30が引き抜かれる(図中矢印参照)。ここで、上述のように支持材30が離型材により形成されていることから、支持材30の引き抜きは容易となる。
支持材30が配置されていた容器本体19内には、収容空間35が形成される。なお、上述のように容器本体19の内部に支持材30を配置することなく、オートクレーブ成形において容器本体19を加圧した場合、内側を支持する部材が存在しないことから収容空間35が意図しない形状に変形し得る。
Next, as shown in FIG.4 (b), the support material 30 is extracted from the container main body 19 formed integrally (refer arrow in the figure). Here, since the support member 30 is formed of a release material as described above, the support member 30 can be easily pulled out.
An accommodation space 35 is formed in the container main body 19 in which the support member 30 is disposed. In addition, when the container main body 19 is pressurized in autoclave molding without arranging the support material 30 inside the container main body 19 as described above, there is no member that supports the inner side, so that the accommodation space 35 is not intended. Can be transformed into

そして、図4(c)に示すように、容器本体19の収容空間35へ相変化材20が挿入される(図中矢印参照)。容器本体19の収容空間35へ挿入される相変化材20は、液相(液体)の状態であっても、固相(固体)の状態であってもよい。なお、液相の相変化材20を収容空間35に挿入(充填)することにより、収容空間35の隅部まで相変化材20を配置させ得る。   Then, as shown in FIG. 4C, the phase change material 20 is inserted into the accommodation space 35 of the container body 19 (see the arrow in the figure). The phase change material 20 inserted into the storage space 35 of the container body 19 may be in a liquid phase (liquid) state or a solid phase (solid) state. In addition, by inserting (filling) the liquid phase change material 20 into the accommodation space 35, the phase change material 20 can be disposed up to the corner of the accommodation space 35.

そして、図4(d)に示すように、相変化材20が挿入された収容空間35へ、さらに封止壁15を挿入する(図中矢印参照)。このとき、封止壁15と容器本体19とが接触する領域に、例えば接着剤となる樹脂を塗布しておくことで、相変化材20が容器本体19および封止壁15により封止された状態となる。
付言すると、本実施の形態とは異なり、支持材30を用いずにオートクレーブ成形法を施した場合、言い替えると、相変化材20の周囲を表板11、周壁13、封止壁15および裏板17により覆い、いわば容器10内に相変化材20を予め配置した状態で加熱すると、液相へと相変化した相変化材20が容器10から漏出し得る。
And as shown in FIG.4 (d), the sealing wall 15 is further inserted in the accommodation space 35 in which the phase change material 20 was inserted (refer arrow in the figure). At this time, the phase change material 20 is sealed by the container body 19 and the sealing wall 15 by applying, for example, a resin serving as an adhesive to a region where the sealing wall 15 and the container body 19 are in contact with each other. It becomes a state.
In other words, unlike the present embodiment, when the autoclave molding method is performed without using the support material 30, in other words, the periphery of the phase change material 20 is the front plate 11, the peripheral wall 13, the sealing wall 15 and the back plate. When the phase change material 20 is heated in a state where the phase change material 20 is placed in the container 10 in advance, the phase change material 20 that has changed to the liquid phase may leak out of the container 10.

<変形例>
次に、図5を参照して、蓄熱パネル1の変形例について説明をする。ここで、図5は、蓄熱パネル100の製造方法を示す概念図である。
上述の実施の形態においては、1つの蓄熱パネル1に1つの収容空間35が形成されることを説明したが、1つの蓄熱パネル1に複数の収容空間35を有する構成であってもよい。複数の収容空間35を有する場合、例えば平面方向において蓄熱パネル1を大型化し、蓄熱パネル1が外部と熱交換可能な面積を増加させ得る。あるいは、蓄熱パネル1が内部に備える相変化材20の体積を増加させ得る。
<Modification>
Next, with reference to FIG. 5, the modification of the thermal storage panel 1 is demonstrated. Here, FIG. 5 is a conceptual diagram showing a method for manufacturing the heat storage panel 100.
In the above-described embodiment, it has been described that one storage space 35 is formed in one heat storage panel 1, but a configuration having a plurality of storage spaces 35 in one heat storage panel 1 may be employed. When it has the some accommodation space 35, the thermal storage panel 1 can be enlarged, for example in a plane direction, and the area where the thermal storage panel 1 can heat-exchange with the exterior can be increased. Or the volume of the phase change material 20 with which the thermal storage panel 1 is equipped can be increased.

図5に示すように、蓄熱パネル100が複数の収容空間35を内部に有する場合、蓄熱パネル100の外周に収容空間351〜354が開口するように形成される。そして、それぞれの収容空間351〜354に相変化材201〜204および封止壁151〜154が挿入される(矢印S1〜S4参照)ことで、蓄熱パネル100内の複数の箇所に相変化材201〜204が収容された状態となる。   As shown in FIG. 5, when the heat storage panel 100 has a plurality of storage spaces 35 therein, the storage spaces 351 to 354 are formed to open on the outer periphery of the heat storage panel 100. And the phase change material 201 is inserted in the some location in the thermal storage panel 100 by inserting the phase change materials 201-204 and the sealing walls 151-154 in each accommodation space 351-354 (refer arrow S1-S4). ˜204 is housed.

さて、上述の実施の形態においては、蓄熱パネル1を平面状の部材として説明したが、表板11と裏板17とが予め定めた間隔を隔てて設けられ、かつ表板11と裏板17との間に相変化材20が配置される構成であれば、曲面状の蓄熱パネル1として形成してもよい。また、複数の平面状の部材を組み合わせるとともに内部の収容空間35が連続する蓄熱パネル1を形成してもよい。   In the above-described embodiment, the heat storage panel 1 has been described as a planar member. However, the front plate 11 and the back plate 17 are provided at a predetermined interval, and the front plate 11 and the back plate 17 are provided. The phase change material 20 may be formed as a curved heat storage panel 1. Moreover, you may form the thermal storage panel 1 with which the internal accommodating space 35 continues, combining a some planar member.

なお、上述の実施の形態においては、炭素繊維強化樹脂として説明をしたが、炭素繊維に限定するものではなく、熱伝導率が高い繊維を用いた繊維強化樹脂であれば他の繊維を用いてももちろんよい。   In the above-described embodiment, the carbon fiber reinforced resin has been described. However, the present invention is not limited to the carbon fiber, and other fibers may be used as long as the fiber reinforced resin uses a fiber having high thermal conductivity. Of course it is good.

1…蓄熱パネル、10…容器、11…表板、13…周壁、15…封止壁、17…裏板、19…容器本体、20…相変化材、30…支持材 DESCRIPTION OF SYMBOLS 1 ... Thermal storage panel, 10 ... Container, 11 ... Front plate, 13 ... Perimeter wall, 15 ... Sealing wall, 17 ... Back plate, 19 ... Container main body, 20 ... Phase change material, 30 ... Support material

Claims (6)

装置外と熱交換する部材である熱交換部材と、
前記熱交換部材と間隙を形成しながら当該熱交換部材に沿って設けられ、当該熱交換部材との間に密閉された空間を形成する密閉部材と、
前記熱交換部材と前記密閉部材との間に形成された前記密閉された空間に封入され、装置外と交換される熱により固相と液相との間で相変化する相変化材と
を備え、
前記熱交換部材と前記密閉部材との間隙は、前記密閉された空間に封入された前記相変化材が相変化を伴いながら融点を超えて温度変化する際に、当該密閉された空間に封入された当該相変化材の相変化が終了した後に当該相変化材の融点を超えて温度変化する距離である
ことを特徴とする蓄熱装置。
A heat exchange member that is a member that exchanges heat with the outside of the apparatus;
A sealing member provided along the heat exchange member while forming a gap with the heat exchange member, and forming a sealed space between the heat exchange member;
A phase change material that is sealed in the sealed space formed between the heat exchange member and the sealing member and changes phase between a solid phase and a liquid phase by heat exchanged outside the apparatus. ,
The gap between the heat exchange member and the sealing member is sealed in the sealed space when the phase change material sealed in the sealed space changes in temperature beyond the melting point with phase change. Further, the heat storage device is a distance that changes in temperature beyond the melting point of the phase change material after the phase change of the phase change material is completed.
前記相変化材が封入される前記熱交換部材と前記密閉部材との空間には、当該相変化材との間で熱を交換するための他の部材が含まれていないことを特徴とする請求項1記載の蓄熱装置。   The space between the heat exchange member and the sealing member in which the phase change material is enclosed does not include other members for exchanging heat with the phase change material. Item 1. The heat storage device according to item 1. 前記熱交換部材は、ピッチ系炭素繊維からなる炭素繊維強化樹脂により形成されることを特徴とする請求項1記載の蓄熱装置。   The heat storage device according to claim 1, wherein the heat exchange member is formed of a carbon fiber reinforced resin made of pitch-based carbon fibers. 外部の温度変化にともない温度が変化する領域である温度変化領域と、
外部と熱交換する部材である熱交換部材と、
前記温度変化領域と対向するとともに前記熱交換部材と間隙を形成しながら当該熱交換部材に沿って設けられ、当該熱交換部材との間に密閉された空間を形成する密閉部材と、
前記熱交換部材と前記密閉部材との間に形成された前記密閉された空間に封入され、外部と交換される熱により固相と液相との間で相変化する相変化材と
を備え、
前記熱交換部材と前記密閉部材との間隙は、前記密閉された空間に封入された前記相変化材が相変化を伴いながら融点を超えて温度変化する際に、当該密閉された空間に封入された当該相変化材の相変化が終了した後に当該相変化材の融点を超えて温度変化する距離である
ことを特徴とする構造体。
A temperature change region in which the temperature changes with an external temperature change; and
A heat exchange member that is a member that exchanges heat with the outside;
A sealing member that is provided along the heat exchange member while facing the temperature change region and forming a gap with the heat exchange member, and forms a sealed space with the heat exchange member;
A phase change material that is enclosed in the sealed space formed between the heat exchange member and the sealing member, and that changes phase between a solid phase and a liquid phase by heat exchanged with the outside;
The gap between the heat exchange member and the sealing member is sealed in the sealed space when the phase change material sealed in the sealed space changes in temperature beyond the melting point with phase change. Further, the structure is characterized in that after the phase change of the phase change material is finished, the distance is a distance at which the temperature changes beyond the melting point of the phase change material.
装置外と熱交換する板状の部材であり、当該板状の面に沿って配置された繊維を含む繊維強化樹脂によって形成される天井部材と、
前記天井部材に沿って設けられる板状の部材であり、当該板状の面に沿って配置された繊維を含む前記繊維強化樹脂によって形成される底部材と、
前記天井部材と前記底部材とを離間するように支持し、当該天井部材および当該底部材とともに内部に密閉された空間を形成する支持部材と
前記密閉された空間内に配置され、外部と交換した熱により固相と液相の間で相変化する相変化材と
を備え、
前記密閉された空間と連続する開口が形成されているとともに当該開口が封止されている部分である封止部が、前記支持部材に設けられていることを特徴とする蓄熱装置。
It is a plate-like member that exchanges heat with the outside of the device, and a ceiling member that is formed by a fiber reinforced resin including fibers arranged along the plate-like surface;
A plate-like member provided along the ceiling member, and a bottom member formed of the fiber-reinforced resin including fibers arranged along the plate-like surface;
The ceiling member and the bottom member are supported so as to be separated from each other, and the ceiling member and the supporting member that form a sealed space inside the bottom member together with the ceiling member and the bottom member are disposed in the sealed space and exchanged with the outside A phase change material that changes phase between a solid phase and a liquid phase by heat;
An opening that is continuous with the sealed space is formed, and a sealing portion that is a portion where the opening is sealed is provided in the support member.
前記天井部材および前記底部材は、厚さ方向よりも面方向の熱伝導率が高いことを特徴とする請求項5記載の蓄熱装置。   The heat storage device according to claim 5, wherein the ceiling member and the bottom member have higher thermal conductivity in the plane direction than in the thickness direction.
JP2012186682A 2012-08-27 2012-08-27 Thermal storage device and structure Pending JP2014044004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012186682A JP2014044004A (en) 2012-08-27 2012-08-27 Thermal storage device and structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012186682A JP2014044004A (en) 2012-08-27 2012-08-27 Thermal storage device and structure

Publications (1)

Publication Number Publication Date
JP2014044004A true JP2014044004A (en) 2014-03-13

Family

ID=50395391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012186682A Pending JP2014044004A (en) 2012-08-27 2012-08-27 Thermal storage device and structure

Country Status (1)

Country Link
JP (1) JP2014044004A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103990640A (en) * 2014-05-13 2014-08-20 中国科学院广州能源研究所 Phase change heat storage type intelligent high-temperature rapid fermentation apparatus for kitchen garbage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103990640A (en) * 2014-05-13 2014-08-20 中国科学院广州能源研究所 Phase change heat storage type intelligent high-temperature rapid fermentation apparatus for kitchen garbage

Similar Documents

Publication Publication Date Title
JP5221820B1 (en) Battery block and manufacturing method thereof
JP6490105B2 (en) Battery module including cartridge provided with gripping section
US9774063B2 (en) Battery pack assembly having thermal transfer sheets
KR200482882Y1 (en) Battery pack assembly
KR101261925B1 (en) Battery package stuffing Phase Change Material in interior thereof and battery using the same
JP6188725B2 (en) Housing for electrical module of battery pack for automobile, and related battery pack
CN109792013A (en) Battery case for automobile batteries temperature management
CN102187493A (en) Battery pack
Zhao et al. Performance assessment of a passive core cooling design for cylindrical lithium‐ion batteries
JP7354842B2 (en) Partition members and assembled batteries
CN110178263A (en) Battery pack with improved temperature control energy
JP6860977B2 (en) Composite material using phase change substance, its manufacturing method and its arrangement method
CN105580161B (en) Battery pack with electric insulation component
US11359852B2 (en) Transport container for transporting temperature-sensitive transport goods
JP2021515961A (en) Battery module with improved cooling efficiency and battery pack containing it
JP2017076504A (en) Battery module and battery module manufacturing method
JP5619435B2 (en) Thermal storage member and manufacturing method thereof
CN210430029U (en) Plate-type heating and cooling heat conduction device and temperature-controllable lithium battery pack adopting same
JP2017016977A (en) Battery temperature control structure
BR112012028258B1 (en) DEVICE FOR MANUFACTURING A PART IN COMPOSITE MATERIAL THROUGH RESIN TRANSFER MOLDING AND METHOD FOR IMPLEMENTING THE SAME
JP2014044004A (en) Thermal storage device and structure
JP2014044005A (en) Heat storage device manufacturing method, structure manufacturing method, and heat storage device
JP2022094716A (en) Battery pack structure
CN206685510U (en) Heat-transfer device and supply unit
KR101379323B1 (en) End plate for redox flow battery