JP2014043838A - Feed-water pump and full water level detecting method of feed-water pump - Google Patents

Feed-water pump and full water level detecting method of feed-water pump Download PDF

Info

Publication number
JP2014043838A
JP2014043838A JP2012187985A JP2012187985A JP2014043838A JP 2014043838 A JP2014043838 A JP 2014043838A JP 2012187985 A JP2012187985 A JP 2012187985A JP 2012187985 A JP2012187985 A JP 2012187985A JP 2014043838 A JP2014043838 A JP 2014043838A
Authority
JP
Japan
Prior art keywords
water
pump
pump body
pressure
intake pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012187985A
Other languages
Japanese (ja)
Other versions
JP5772765B2 (en
Inventor
Kenichi Harada
賢一 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2012187985A priority Critical patent/JP5772765B2/en
Publication of JP2014043838A publication Critical patent/JP2014043838A/en
Application granted granted Critical
Publication of JP5772765B2 publication Critical patent/JP5772765B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Control Of Non-Positive-Displacement Pumps (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a feed-water pump and a full water level detecting method of the feed-water pump capable of properly judging whether an internal part of a pump body arrives at a full water level when performing the priming water even in the case of pumping up sea water, lake water or the like.SOLUTION: A feed-water pump which pumps up water from a water storage body and feeds the water to an external part comprises: a pump body; a water suction pipe through which the water is pumped up into the pump body from the water storage body; an air intake pipe which sucks and evacuates the internal part of the pump body; and a service water feed pipe which feeds the water to the external part from the internal part of the pump body. Therein, an air intake port as a connection part between the pump body and the air intake pipe is located above the pump body, a water suction port as a connection part between the pump body and the water suction pipe is located under the pump body and is provided with a means for measuring a differential pressure between a pressure in the air intake pipe and a pressure in the water suction pipe and can detect that the internal part of the pump body becomes full of water in the pump body from circumstances of fluctuation of the differential pressure when performing the priming water before operation of the feed-water pump.

Description

本発明は、海や湖等の貯水体から汲み上げた水を所望の設備に供給するための給水ポンプおよび該給水ポンプの満水検知方法に関する。   The present invention relates to a water supply pump for supplying water pumped up from a water storage body such as a sea or a lake to a desired facility, and a full water detection method for the water supply pump.

高炉における羽口の溶損やコークス炉のガス冷却不足による燃焼放散等を防止するため、それらの設備を冷却する冷却装置に冷却水を供給する給水装置は重要な設備である。この冷却水は、一般に海や湖等の貯水体から給水ポンプを通じて供給されている。   A water supply device that supplies cooling water to a cooling device that cools these facilities is an important facility in order to prevent the melting of the tuyere in the blast furnace and the combustion dissipation due to insufficient gas cooling of the coke oven. This cooling water is generally supplied from a water storage body such as the sea or a lake through a water supply pump.

上記のような給水ポンプは、ポンプ本体内に気体が一定量以上存在する状態では揚水できない。そこで、給水ポンプの運転前には、真空ポンプで給水ポンプのポンプ本体内を吸気(減圧)することによってポンプ本体内に水を汲み上げて(この動作を「呼水」と称する。)、ポンプ本体内に水を充満させる(以下、この状態を「満水(状態)」と称する。)。   The feed water pump as described above cannot pump water in a state where a certain amount or more of gas exists in the pump body. Therefore, before the operation of the water supply pump, the vacuum pump sucks (depressurizes) the inside of the pump main body of the water supply pump to pump water into the pump main body (this operation is referred to as “expiration”), and the pump main body. The inside is filled with water (hereinafter, this state is referred to as “full water (state)”).

上記のような呼水を行う際に給水ポンプのポンプ本体内が満水状態になったことを検知するための技術が、これまでにいくつか開示されている。例えば下記特許文献1には、満水検知器内のフロートもしくは電極棒に異物がからみつくことによる動作不良を防止するための技術が開示されている。   Several techniques for detecting that the inside of the pump body of the water supply pump has become full when performing the above-described exhalation have been disclosed. For example, Patent Document 1 below discloses a technique for preventing an operation failure caused by foreign matter entangled with a float or an electrode rod in a full water detector.

特開平11−230050号公報Japanese Patent Laid-Open No. 11-230050

しかしながら、給水ポンプで海や湖から水を汲み上げることを想定した場合、上記特許文献1に記載されているような従来技術では対策が不十分であった。給水ポンプで海や湖から水を汲み上げる場合、汲み上げる水には細かな異物や塩分が含まれるため、以下のような問題が生じやすかった。すなわち、満水検知器がフロート式である場合には、摺動部であるスピンドルなどに異物や塩が付着して摺動不良が発生する虞があった。また、電極式の場合には、塩が付着することによる短絡が起こり、満水を検知できない虞があった。   However, when it is assumed that water is pumped up from the sea or lake with a water supply pump, the conventional technique as described in Patent Document 1 described above has insufficient measures. When pumping water from the sea or lake with a water pump, the following problems are likely to occur because the pumped water contains fine foreign matter and salt. That is, when the full water detector is a float type, there is a possibility that a foreign matter or salt adheres to a spindle or the like which is a sliding portion and a sliding failure occurs. Further, in the case of the electrode type, there is a possibility that a short circuit occurs due to adhesion of salt, and full water cannot be detected.

そこで、本発明は、海水や湖水等を汲み上げる場合でも、呼水を行う際にポンプ本体内が満水に達したか否かを適切に検知できる給水ポンプおよび該給水ポンプの満水検知方法を提供することを課題とする。   Therefore, the present invention provides a water supply pump capable of appropriately detecting whether or not the inside of the pump body has reached full water when performing exhalation even when pumping seawater, lake water, or the like, and a full water detection method for the water supply pump. This is the issue.

給水ポンプのポンプ本体内が満水のときの水頭圧を検出することで、原理的にはポンプ本体内が満水になったと判断できる。しかしながら、給水ポンプによって貯水体から水を汲み上げるとき、該貯水体の水位によって水頭圧は変化する。また、真空ポンプを用いて呼水を行う際、給水ポンプ内部の圧力損失が大きく、水頭圧だけを検出することは困難であった。   By detecting the water head pressure when the pump body of the feed water pump is full, it can be determined in principle that the pump body is full. However, when water is pumped from the reservoir by the water supply pump, the head pressure changes depending on the water level of the reservoir. Further, when exhalation is performed using a vacuum pump, the pressure loss inside the feed water pump is large, and it is difficult to detect only the water head pressure.

そこで、本発明者は、給水ポンプの上部と下部との差圧を検出することで、貯水体の水位の影響を失くすことを考えた。また、本発明者は、様々な条件で試験を行うことで、貯水体の水位が変化するとそれに応じて給水ポンプ内部の圧力損失が変動することを知見した。さらに、給水ポンプの上部と下部との差圧の変動状況から、ポンプ本体内が満水になったと判断できることを知見した。本発明は、当該知見に基づいてなされたものである。   Then, this inventor considered losing the influence of the water level of a reservoir by detecting the differential pressure of the upper part and the lower part of a water supply pump. Moreover, this inventor discovered that the pressure loss inside a feed pump fluctuate | varies according to the change of the water level of a water storage body by performing a test on various conditions. Furthermore, it was found that it was possible to judge that the inside of the pump body was full from the fluctuation state of the differential pressure between the upper part and the lower part of the feed pump. This invention is made | formed based on the said knowledge.

本発明の第1の態様は、貯水体から水を汲み上げて外部に該水を供給する給水ポンプの満水検知方法であって、給水ポンプは、ポンプ本体と、貯水体からポンプ本体内に水を汲み上げる吸水管と、ポンプ本体内を吸気して減圧する吸気管と、を備えており、ポンプ本体と吸気管との接続部である吸気口はポンプ本体の上部に位置するとともに、ポンプ本体と吸水管との接続部である吸水口はポンプ本体の下部に位置し、給水ポンプの運転前に呼水を行う際に、吸気管内の圧力と吸水管内の圧力との差圧を測定し、該差圧の変動状況からポンプ本体内が満水になっていることを検知する、給水ポンプの満水検知方法である。   A first aspect of the present invention is a full-water detection method for a water supply pump that pumps water from a water reservoir and supplies the water to the outside. The water supply pump pumps water from the water reservoir into the pump main body. The pump has a water intake pipe to be pumped up and an air intake pipe that sucks and decompresses the inside of the pump body, and an intake port that is a connection portion between the pump body and the intake pipe is located at the upper part of the pump body, and The water inlet, which is the connection to the pipe, is located at the lower part of the pump body, and measures the differential pressure between the pressure in the intake pipe and the pressure in the water intake pipe when performing the exhalation before the operation of the water supply pump. This is a water supply pump full detection method for detecting that the pump body is full from the pressure fluctuation.

本発明において「給水ポンプの運転前」とは、給水ポンプに貯水体から汲み上げた水を所望の設備に供給できる状態になる前を意味する。   In the present invention, “before operation of the water supply pump” means before the water pumped up from the water reservoir is supplied to a desired facility.

また、本発明の第2の態様は、貯水体から水を汲み上げて外部に該水を供給する給水ポンプであって、ポンプ本体と、貯水体からポンプ本体内に水を汲み上げる吸水管と、ポンプ本体内を吸気して減圧する吸気管と、ポンプ本体内から外部に水を供給する用水供給管と、を備えており、ポンプ本体と吸気管との接続部である吸気口はポンプ本体の上部に位置するとともに、ポンプ本体と吸水管との接続部である吸水口はポンプ本体の下部に位置し、吸気管内の圧力と吸水管内の圧力との差圧を測定する手段を備え、給水ポンプの運転前に呼水を行う際に、前記差圧の変動状況からポンプ本体内が満水になっていることを検知できる、給水ポンプである。   The second aspect of the present invention is a water supply pump that pumps water from a water reservoir and supplies the water to the outside. The pump main body, a water absorption pipe that pumps water from the water reservoir into the pump main body, and a pump It has an intake pipe that sucks the inside of the main body and decompresses it, and a water supply pipe that supplies water from the inside of the pump body to the outside, and the intake port that connects the pump body and the intake pipe is the upper part of the pump body The water inlet, which is the connection between the pump body and the water suction pipe, is located at the lower part of the pump body, and has means for measuring the differential pressure between the pressure in the suction pipe and the pressure in the water suction pipe. It is a water supply pump which can detect that the inside of a pump main body is full from the fluctuation | variation state of the said differential pressure when performing exhalation before a driving | operation.

上記本発明の第2の態様において、ポンプ本体内が満水になっていると検知したことに基づき、用水供給管を通じて外部に水の供給を開始する手段を備えることが好ましい。   In the second aspect of the present invention described above, it is preferable to provide means for starting the supply of water to the outside through the water supply pipe based on the detection that the inside of the pump body is full.

また、上記本発明の第2の態様において、ポンプ本体内の水位が所定の高さ以上に達したときに、ポンプ本体から吸気管への水の流入を妨げる止水器を備えることが好ましい。   In the second aspect of the present invention, it is preferable to provide a water stop device that prevents the water from flowing from the pump body to the intake pipe when the water level in the pump body reaches a predetermined height or more.

さらに、上記本発明の第2の態様において、吸気管内の圧力と吸水管内の圧力との差圧を測定する手段が隔膜式の圧力計であることが好ましい。   Furthermore, in the second aspect of the present invention, the means for measuring the differential pressure between the pressure in the intake pipe and the pressure in the water absorption pipe is preferably a diaphragm type pressure gauge.

本発明によれば、海水や湖水等を汲み上げる場合でも、呼水を行う際にポンプ本体内が満水に達したか否かを適切に検知することができる給水ポンプおよび該給水ポンプの満水検知方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, even when pumping up seawater, lake water, etc., when performing exhalation, the water supply pump which can detect appropriately whether the inside of a pump body has reached full water, and the full water detection method of the water supply pump Can be provided.

給水ポンプ10の構成を概略的に示した図である。It is the figure which showed the structure of the water supply pump 10 roughly. 呼水を行う際の吸気管内の圧力と吸水管内の圧力との差圧の時間変化を示した図である。It is the figure which showed the time change of the differential pressure | voltage between the pressure in an intake pipe at the time of performing exhalation, and the pressure in a water absorption pipe. 貯水体の水位と、吸気管内の圧力と吸水管内の圧力との差圧と、の関係を示した図である。It is the figure which showed the relationship between the water level of a water storage body, and the pressure difference between the pressure in an intake pipe, and the pressure in a water absorption pipe. 図4(A)および図4(B)は、給水ポンプの運転準備方法の流れを概略的に示したフローチャートである。4 (A) and 4 (B) are flowcharts schematically showing the flow of the operation preparation method for the feed water pump.

以下、図面を参照しつつ本発明の実施形態例について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の給水ポンプの一つの実施形態例である給水ポンプ10について、構成を概略的に示した図である。   FIG. 1 is a diagram schematically showing the configuration of a water supply pump 10 which is one embodiment of the water supply pump of the present invention.

給水ポンプ10は、貯水体20から水を汲み上げて外部に該水を供給するポンプである。図1に示したように、給水ポンプ10は、ポンプ本体1と、貯水体20からポンプ本体1内に水を汲み上げる吸水管2と、ポンプ本体1内を吸気して減圧する吸気管3と、ポンプ本体1内から外部に水を供給する用水供給管4と、を備えている。給水ポンプ10は、さらに、吸気管3内の圧力と吸水管2内の圧力との差圧を測定する手段6(差圧計6)を備えており、後に詳述するように、給水ポンプ10の運転前に呼水を行う際に、差圧計6で測定した差圧の変動状況からポンプ本体1内が満水になっていることを検知できる。   The water supply pump 10 is a pump that draws water from the water reservoir 20 and supplies the water to the outside. As shown in FIG. 1, the water supply pump 10 includes a pump main body 1, a water intake pipe 2 that pumps water into the pump main body 1 from the water storage body 20, an intake pipe 3 that sucks the inside of the pump main body 1 and decompresses it, And a water supply pipe 4 for supplying water from the inside of the pump body 1 to the outside. The water supply pump 10 further includes means 6 (differential pressure gauge 6) for measuring a differential pressure between the pressure in the intake pipe 3 and the pressure in the water absorption pipe 2. As will be described in detail later, When exhalation is performed before operation, it can be detected from the fluctuation state of the differential pressure measured by the differential pressure gauge 6 that the inside of the pump body 1 is full.

ポンプ本体1は、吸水管2との接続部である開口部2a(以下、「吸水口2a」という。)と、吸気管3との接続部である開口部3a(以下、「吸気口3a」という。)と、用水供給管4との接続部である開口部4a(以下、「用水供給口4a」という。)と、を備えた容器である。吸気口3aはポンプ本体1の上部に位置し、吸水口2aはポンプ本体1の下部かつ貯水体20の水位よりも高い場所に位置している。   The pump body 1 has an opening 2a (hereinafter referred to as “water intake port 2a”) that is a connection portion with the water suction pipe 2 and an opening portion 3a (hereinafter referred to as “intake port 3a”) that is a connection portion with the intake pipe 3. And an opening 4 a (hereinafter referred to as “water supply port 4 a”) that is a connection portion with the water supply pipe 4. The intake port 3 a is located in the upper part of the pump body 1, and the water intake port 2 a is located in the lower part of the pump body 1 and higher than the water level of the water reservoir 20.

吸水管2は、一端が吸水口2aでポンプ本体1に接続されており、他端は貯水体20に浸される筒状体である。給水ポンプ10の運転前に呼水を行う際、ポンプ本体1内が減圧されると、吸水管2を介して貯水体20からポンプ本体1内に水が汲み上げられる。   One end of the water absorption pipe 2 is connected to the pump body 1 through a water inlet 2 a, and the other end is a cylindrical body immersed in the water storage body 20. When exhalation is performed before the operation of the water supply pump 10, if the pressure inside the pump body 1 is reduced, water is pumped from the water reservoir 20 into the pump body 1 through the water suction pipe 2.

吸気管3は、一端が吸気口3aでポンプ本体1に接続されており、他端は不図示の真空ポンプに接続された筒状体である。給水ポンプ10の運転前に呼水を行う際、当該真空ポンプを稼働させることによって、吸気管3を介してポンプ本体1内から吸気し、ポンプ本体1内を減圧することができる。吸気管3には吸気弁3cが備えられており、吸気管3に繋がれた真空ポンプを稼働させて吸気弁3cを開くことにより、ポンプ本体1内から吸気することができる。また、吸気弁3cを閉じることによって、吸気管3内の流体の流通を止めることができる。   One end of the intake pipe 3 is connected to the pump body 1 through an intake port 3a, and the other end is a cylindrical body connected to a vacuum pump (not shown). When exhalation is performed before the feed water pump 10 is operated, by operating the vacuum pump, it is possible to intake air from the inside of the pump body 1 through the intake pipe 3 and decompress the inside of the pump body 1. The intake pipe 3 is provided with an intake valve 3c. By operating a vacuum pump connected to the intake pipe 3 and opening the intake valve 3c, it is possible to intake air from within the pump body 1. Further, by closing the intake valve 3c, the flow of fluid in the intake pipe 3 can be stopped.

また、吸気管3には止水器3bが設けられている。止水器3bは、ポンプ本体1内の水位が所定の高さ以上に達したとき、ポンプ本体1から吸気管3へと水が流入することを防げるものである。このような止水器3bとしては、例えば公知のフロート弁を用いることができる。   The intake pipe 3 is provided with a water stop 3b. The water stop 3b can prevent water from flowing into the intake pipe 3 from the pump body 1 when the water level in the pump body 1 reaches a predetermined height or more. As such a water stop 3b, a well-known float valve can be used, for example.

用水供給管4は、一端が用水供給口4aでポンプ本体1に接続されており、他端は給水ポンプ10で汲み上げた水を供給する所望の設備に接続された筒状体である。貯水体20から給水ポンプ10で汲み上げた水は、用水供給管4を介して所望の設備に供給することができる。用水供給管4には制水弁4bが備えられており、制水弁4bの開閉を制御することによって、用水供給管4に繋がれた所望の設備への水の供給量を制御することができる。   One end of the water supply pipe 4 is connected to the pump body 1 through a water supply port 4a, and the other end is a cylindrical body connected to desired equipment for supplying water pumped up by the water supply pump 10. The water pumped up by the water supply pump 10 from the water reservoir 20 can be supplied to desired equipment through the water supply pipe 4. The water supply pipe 4 is provided with a water control valve 4b. By controlling the opening / closing of the water control valve 4b, the amount of water supplied to a desired facility connected to the water supply pipe 4 can be controlled. it can.

差圧計6は、吸気管3内の圧力と吸水管2内の圧力との差圧を測定できるものであれば特に限定されない。本実施形態例では、吸気管3の所定位置3xと、吸水管2の所定位置2xとに差圧計6に接続された導管5をそれぞれ接続して、吸気管3内の圧力と吸水管内2の圧力との差圧を測定する。この例では、差圧計6は隔膜式の圧力計であることが好ましい。隔膜式の圧力計は摺動部や電極部が露出されていないため、摺動不良や短絡が起こらないからである。   The differential pressure gauge 6 is not particularly limited as long as it can measure the differential pressure between the pressure in the intake pipe 3 and the pressure in the water absorption pipe 2. In this embodiment, the pipe 5 connected to the differential pressure gauge 6 is connected to the predetermined position 3x of the intake pipe 3 and the predetermined position 2x of the water absorption pipe 2, respectively, so that the pressure in the intake pipe 3 and the water absorption pipe 2 Measure the differential pressure from the pressure. In this example, the differential pressure gauge 6 is preferably a diaphragm type pressure gauge. This is because the diaphragm type pressure gauge is not exposed to the sliding portion or the electrode portion, so that sliding failure or short circuit does not occur.

吸気管3内の圧力と吸水管2内の圧力との差圧を測定する手段としては、前述の実施形態例以外に、例えば、吸気管3の所定位置3xと吸水管2の所定位置2xとにそれぞれ圧力計を取り付けて各々の圧力を測定してからこの差を求めてもよい。この場合の圧力計も隔膜式の圧力計であることが好ましい。   As a means for measuring the differential pressure between the pressure in the intake pipe 3 and the pressure in the water absorption pipe 2, for example, a predetermined position 3 x of the intake pipe 3 and a predetermined position 2 x of the water absorption pipe 2 can be used. This difference may be obtained after each pressure gauge is attached to each and the respective pressures are measured. The pressure gauge in this case is also preferably a diaphragm type pressure gauge.

また、図示していないが、給水ポンプ10は、ポンプ本体1内が満水になっていると検知したことに基づいて用水供給管4を通じて外部への水の供給を開始する手段を備えることが好ましい。このような手段としては、例えば、差圧計6による測定結果(吸気管3内の圧力と吸水管2内の圧力との差圧の変動状況)に基づいて、制水弁4bの開閉を制御できる制御装置を挙げることができる。当該制御装置は、例えば、差圧計6による測定結果から制水弁4bの操作量を演算し、制水弁4bの動作制御を実行可能なCPUと、このCPUに対する記憶装置と、を備えた装置で構成することができる。当該CPUは、マイクロプロセッサユニット及びその動作に必要な各種周辺回路を組み合わせて構成され、このCPUに対する記憶装置は、例えば、制水弁4bの操作量演算や動作制御に必要なプログラムや各種データを記憶するROMと、CPUの作業領域として機能するRAM等を組み合わせて構成される。当該構成に加えて、さらに、制御装置のCPUが、ROMに記憶されたソフトウエアと組み合わされることにより、制水弁4bの動作制御を適切に行うことができる。給水ポンプ10において、差圧計6から制御装置へ向けて出力された信号は、制御装置の入力ポートを介して入力信号としてCPUへと達する。制御装置のCPUは、上記入力信号および制御装置のROMに記憶されたプログラムに基づいて制水弁4bの操作量を演算し、制御装置の出力ポートを介して制水弁4bに対する動作指令を出力する。   Moreover, although not shown in figure, it is preferable that the water supply pump 10 is provided with a means to start supply of the water through the water supply pipe 4 based on having detected that the inside of the pump main body 1 is full. . As such means, for example, the opening / closing of the water control valve 4b can be controlled based on the measurement result by the differential pressure gauge 6 (fluctuation state of the differential pressure between the pressure in the intake pipe 3 and the pressure in the water absorption pipe 2). A control device can be mentioned. The control device includes, for example, a CPU capable of calculating the operation amount of the water control valve 4b from the measurement result of the differential pressure gauge 6 and executing operation control of the water control valve 4b, and a storage device for the CPU. Can be configured. The CPU is configured by combining a microprocessor unit and various peripheral circuits necessary for the operation thereof, and a storage device for the CPU stores, for example, programs and various data necessary for operation amount calculation and operation control of the water control valve 4b. A ROM that stores data and a RAM that functions as a work area for the CPU are combined. In addition to this configuration, the CPU of the control device can be appropriately controlled with respect to the operation of the water control valve 4b by being combined with the software stored in the ROM. In the feed water pump 10, a signal output from the differential pressure gauge 6 toward the control device reaches the CPU as an input signal via the input port of the control device. The CPU of the control device calculates the operation amount of the water control valve 4b based on the input signal and the program stored in the ROM of the control device, and outputs an operation command to the water control valve 4b via the output port of the control device. To do.

貯水体20は、給水ポンプ10によって所望の設備に水を供給する際に、十分な量の水を供給できるものであれば特に限定されない。貯水体20としては、例えば海や湖を挙げることができる。給水ポンプ10によれば、呼水を行う際に、汲み上げる水に含まれた細かな異物や塩分によってポンプ本体1内が満水になったか否かの判断が妨げられることを、防止できる。したがって、給水ポンプ10によれば、海水や湖水等のように細かな異物や塩分を含む水を汲み上げる場合でも、呼水を行う際にポンプ本体1内が満水に達したか否かを適切に判断することができ、所望の設備に安定して給水することができる。   The water storage body 20 is not particularly limited as long as it can supply a sufficient amount of water when supplying water to a desired facility by the water supply pump 10. Examples of the water reservoir 20 include the sea and a lake. According to the water supply pump 10, when exhalation is performed, it is possible to prevent the determination of whether or not the inside of the pump body 1 is full due to fine foreign matters and salt contained in the pumped water. Therefore, according to the water supply pump 10, even when pumping up water containing fine foreign matter or salt, such as seawater or lake water, whether or not the inside of the pump body 1 has reached the full level when exhaling water is appropriately determined. The water can be determined and can be stably supplied to the desired equipment.

次に、給水ポンプ10の運転を開始する前に呼水を行う際に、ポンプ本体1内が満水になったことを検知する給水ポンプ10の満水検知方法について以下に説明する。   Next, a full water detection method of the feed water pump 10 for detecting that the inside of the pump body 1 is full when exhalation is performed before the operation of the feed water pump 10 is started will be described below.

給水ポンプ10は、運転前に呼水を行う際に、吸気管3内の圧力と吸水管2内の圧力との差圧を測定し、該差圧の変動状況からポンプ本体1内が満水になっていることを検知することができる。吸気管3内の圧力と吸水管2内の圧力との差圧は、上述したように、差圧計6によって測定することができる。上記差圧の変動状況からポンプ本体1内が満水になっていることを検知する方法について、以下に詳細に説明する。   The water supply pump 10 measures the differential pressure between the pressure in the intake pipe 3 and the pressure in the water intake pipe 2 when exhaling water before operation, and the pump body 1 is filled with water from the fluctuation state of the differential pressure. Can be detected. The differential pressure between the pressure in the intake pipe 3 and the pressure in the water absorption pipe 2 can be measured by the differential pressure gauge 6 as described above. A method for detecting that the inside of the pump body 1 is full from the fluctuation state of the differential pressure will be described in detail below.

給水ポンプ10のポンプ本体1内が満水のときの水頭圧を検出することで、原理的にはポンプ本体1内が満水になったと判断できる。しかしながら、給水ポンプ10によって貯水体20から水を汲み上げるとき、貯水体20の水位によって水頭圧は変化する。また、吸気管3に接続された真空ポンプを用いて呼水を行う際、給水ポンプ10内部の圧力損失が大きく、水頭圧だけを検出することは困難であった。そこで、本発明者は、給水ポンプ10の上部と下部との差圧を検出することで、貯水体20の水位の影響を失くすことを考えた。また、本発明者は、様々な条件で試験を行うことで、貯水体20の水位が変化するとそれに応じて給水ポンプ10内部の圧力損失が変動することを知見した。さらに、給水ポンプ10の上部と下部との差圧の変動状況から、ポンプ本体1内が満水になったと判断できることを知見した。   By detecting the water head pressure when the inside of the pump body 1 of the feed water pump 10 is full, it can be determined in principle that the inside of the pump body 1 is full. However, when water is pumped from the water reservoir 20 by the water supply pump 10, the water head pressure changes depending on the water level of the water reservoir 20. Further, when exhalation is performed using a vacuum pump connected to the intake pipe 3, the pressure loss inside the water supply pump 10 is large, and it is difficult to detect only the water head pressure. Then, this inventor considered losing the influence of the water level of the reservoir 20 by detecting the differential pressure between the upper part and the lower part of the water supply pump 10. Moreover, this inventor discovered that the pressure loss inside the feed water pump 10 fluctuate | varies according to the change of the water level of the water storage body 20 by performing a test on various conditions. Furthermore, it discovered that it could be judged from the fluctuation | variation state of the differential pressure of the upper part of the feed water pump 10 and the lower part that the inside of the pump main body 1 became full.

具体的には、ポンプ本体1の上部にある吸気管3と下部にある吸水管2のそれぞれの所定位置3x、2xに、差圧計6に接続された導管5、5をそれぞれ接続して、吸気管3内の圧力と吸水管2内の圧力との差圧を測定する。図2は、呼水を行う際の吸気管3内の圧力と吸水管2内の圧力との差圧の時間変化を示した図である。図2に示したグラフの横軸は、吸気管3に接続された真空ポンプを起動してからの時間[秒]であり、縦軸は吸気管3内の圧力と吸水管2内の圧力との差圧[kPa]である。   Specifically, the pipes 5 and 5 connected to the differential pressure gauge 6 are respectively connected to predetermined positions 3x and 2x of the intake pipe 3 at the upper part of the pump body 1 and the water absorption pipe 2 at the lower part, respectively. The pressure difference between the pressure in the pipe 3 and the pressure in the water absorption pipe 2 is measured. FIG. 2 is a diagram showing the change over time in the differential pressure between the pressure in the intake pipe 3 and the pressure in the water absorption pipe 2 when performing exhalation. The horizontal axis of the graph shown in FIG. 2 is the time [seconds] from the start of the vacuum pump connected to the intake pipe 3, and the vertical axis represents the pressure in the intake pipe 3 and the pressure in the water absorption pipe 2. The differential pressure [kPa].

図2に示したグラフにおいて、Iの時点で真空ポンプを起動し、IIの時点では吸水口2aに水が到達し、IIIの時点ではポンプ本体1の上部(吸気口3a)に水が到達し、IVの時点では吸気管3の所定位置3xに水が到達し、Vの時点では止水器3bが閉じたと考えられる。I〜IIの区間では、給水ポンプ内を流れる空気による圧力損失がみられる。II〜IIIの区間では、吸水管2の所定位置2xから水位が上昇していると考えられる。III〜IVの区間では、ポンプ本体1の容量に比べて吸気管3の径が細いため、水位が急上昇したと考えられる。IV〜Vの区間では、止水器3bのフロートが浮くことで吸気管3への水の流れが止められ、圧力損失が減ったと考えられる。   In the graph shown in FIG. 2, the vacuum pump is started at time I, water reaches the water inlet 2a at time II, and water reaches the upper portion of the pump body 1 (air inlet 3a) at time III. It is considered that water has reached the predetermined position 3x of the intake pipe 3 at the time of IV, and the water stop 3b has been closed at the time of V. In the section from I to II, pressure loss due to air flowing in the feed water pump is observed. In the section of II to III, it is considered that the water level is rising from the predetermined position 2x of the water absorption pipe 2. In the section of III to IV, the diameter of the intake pipe 3 is narrower than the capacity of the pump body 1, so the water level is considered to have increased rapidly. In the section of IV to V, it is considered that the flow of water to the intake pipe 3 is stopped by the float of the water stop 3b floating, and the pressure loss is reduced.

図2に示したように、真空ポンプを起動してから約68秒〜約70秒(III〜IVの区間)では、差圧が急上昇している。具体的には、IIIの時点から差圧の時間変化の傾きが0.64kPa/秒から7.00kPa/秒に変化している。これは、ポンプ本体1の容量に比べて吸気管3の径が細いため、水位が急上昇し、圧力損失が急増したためであると考えられる。このことから、真空ポンプを起動してから約68秒(III)の時点で貯水体20から汲み上げられた水は吸気管3にまで達していることがわかる。このように、ポンプ本体1内が満水となった後は差圧が急激に増加するため、この差圧の傾きの変化の度合いを、ポンプ本体1内が満水であると判断する閾値とすることができる。したがって、差圧の時間変化の傾きが所定の値を超えたときに、ポンプ本体1内が満水になった判断できる。   As shown in FIG. 2, the differential pressure increases rapidly in about 68 seconds to about 70 seconds (section III to IV) after starting the vacuum pump. Specifically, the slope of the time variation of the differential pressure from the time point III changes from 0.64 kPa / second to 7.00 kPa / second. This is considered to be because the diameter of the intake pipe 3 is smaller than the capacity of the pump body 1, so that the water level rapidly rises and the pressure loss rapidly increases. From this, it can be seen that the water pumped from the water reservoir 20 reaches the intake pipe 3 at about 68 seconds (III) after the vacuum pump is started. Thus, since the differential pressure increases rapidly after the inside of the pump body 1 becomes full, the degree of change in the gradient of the differential pressure is set as a threshold value for determining that the inside of the pump body 1 is full. Can do. Therefore, it can be determined that the inside of the pump body 1 is full when the slope of the time variation of the differential pressure exceeds a predetermined value.

また、差圧の時間変化の傾きが急激に大きくなる時点(IIIの時点)での差圧(以下、「変曲点における差圧」という。)と、呼水過程における最大差圧(IVの時点での差圧)との中間値も、ポンプ本体1内が満水になったと判断する閾値にすることができる。   In addition, the differential pressure at the point of time when the slope of the temporal change of the differential pressure suddenly increases (time point III) (hereinafter referred to as “the differential pressure at the inflection point”) and the maximum differential pressure (IV The intermediate value with the differential pressure at the time point can also be a threshold value for determining that the inside of the pump body 1 is full.

ただし、真空ポンプの特性上、貯水体20の水位の変動により水頭圧が変化すると空気の吸込み量が変化するため、それに伴い圧力損失が変化する。即ち、貯水体20の水位の変動によって差圧が変化するので、様々な条件で繰り返し実験を行って変曲点における差圧と呼水過程における最大差圧との値をそれぞれ多数求め、ポンプ本体1内が満水であると判断できるより適正な閾値を検討した。   However, due to the characteristics of the vacuum pump, when the water head pressure changes due to the fluctuation of the water level of the water reservoir 20, the air suction amount changes, and the pressure loss changes accordingly. That is, since the differential pressure changes due to fluctuations in the water level of the reservoir 20, repeated experiments are performed under various conditions to obtain a large number of values of the differential pressure at the inflection point and the maximum differential pressure in the priming process. A more appropriate threshold value that can be judged to be full in 1 was examined.

図3は、貯水体20の水位に対する、変曲点における差圧と、呼水過程における最大差圧と、両者の中間値と、を示した図である。図3に示したように、変曲点における差圧と呼水過程における最大差圧との中間値は、貯水体20の水位によって値が異なる。したがって、貯水体20の水位が異なる場合の複数の中間値について平均を取った値を、ポンプ本体1内が満水であると判断する閾値とすることが好ましいと考えられる。   FIG. 3 is a diagram showing the differential pressure at the inflection point, the maximum differential pressure in the expiratory process, and the intermediate value between the two with respect to the water level of the reservoir 20. As shown in FIG. 3, the intermediate value between the differential pressure at the inflection point and the maximum differential pressure in the expiration process varies depending on the water level of the reservoir 20. Therefore, it is considered preferable to use a value obtained by averaging the plurality of intermediate values when the water levels of the water storage bodies 20 are different as the threshold value for determining that the pump body 1 is full.

ポンプ本体1内が満水であると判断する上記のような閾値は、実際に使用するポンプ内部の圧力損失や圧力の検出位置に加え、ポンプ本体内を吸気する真空ポンプの能力等によって異なる。したがって、適正な閾値は、実際に使用する給水ポンプや給水ポンプと真空ポンプの組み合わせ毎に設定する必要がある。   The above threshold value for determining that the inside of the pump body 1 is full varies depending on the pressure loss inside the pump that is actually used and the detection position of the pressure, as well as the ability of the vacuum pump that sucks the inside of the pump body. Therefore, an appropriate threshold value needs to be set for each actually used feed water pump or a combination of a feed water pump and a vacuum pump.

図4(A)および図4(B)は、上記のようにして差圧の変動状況からポンプ本体1内が満水になったと判断する、給水ポンプの満水検知方法の流れを概略的に示したフローチャートである。   FIG. 4 (A) and FIG. 4 (B) schematically show the flow of the full water detection method of the feed water pump that determines that the inside of the pump body 1 is full from the fluctuation state of the differential pressure as described above. It is a flowchart.

図4(A)に例示した方法は、真空ポンプ起動工程S11および満水判断工程S12を有している。真空ポンプ起動工程S11は、吸気管3に接続された真空ポンプを起動し、ポンプ本体1内を減圧する工程である。ポンプ本体1内を減圧することによって、吸水管2を介して貯水体20からポンプ本体1内に水が汲み上げられる。満水判断工程S12は、上記のようにしてポンプ本体1内に水が汲み上げられ始めた後、吸気管3内の圧力と吸水管2内の圧力との差圧の時間変化の傾きが所定の閾値に達したかを判断する工程である。上述したように、当該差圧の時間変化の傾きが所定の閾値に達したか否かによって、ポンプ本体1内が満水になったか否かを判断することができる。当該判断は作業者が行ってもよく、自動で判断し得る装置を用いてもよい。上記差圧の時間変化の傾きがが所定の閾値に達するまで満水判断工程S12を繰り返し、所定の閾値達したと判断されれば、給水ポンプ10を起動させて所望の設備に水を供給することができる。   The method illustrated in FIG. 4A includes a vacuum pump activation step S11 and a full water determination step S12. The vacuum pump starting step S11 is a step of starting the vacuum pump connected to the intake pipe 3 and depressurizing the inside of the pump body 1. By depressurizing the inside of the pump body 1, water is pumped from the water reservoir 20 into the pump body 1 through the water absorption pipe 2. In the full water determination step S12, after the water starts to be pumped into the pump body 1 as described above, the gradient of the time variation of the pressure difference between the pressure in the intake pipe 3 and the pressure in the water absorption pipe 2 is a predetermined threshold value. This is a step of determining whether or not As described above, whether or not the inside of the pump body 1 is full can be determined based on whether or not the slope of the time-dependent change in the differential pressure has reached a predetermined threshold value. The determination may be performed by an operator, or an apparatus that can determine automatically may be used. The full water determination step S12 is repeated until the gradient of the time variation of the differential pressure reaches a predetermined threshold. If it is determined that the predetermined threshold has been reached, the water supply pump 10 is activated to supply water to a desired facility. Can do.

図4(B)に例示した方法は、満水判断工程S22の内容が図4(A)に例示した方法の満水判断工程S12と異なる以外は同様である。従って、図4(B)に例示した方法については、満水判断工程S22についてのみ説明する。満水判断工程S22は、上述したようにして変曲点における差圧と呼水過程における最大差圧との中間値を閾値として求めておき、吸気管3内の圧力と吸水管2内の圧力との差圧が当該閾値に達したかを判断する工程である。上述したように、吸気管3内の圧力と吸水管2内の圧力との差圧が、変曲点における差圧と呼水過程における最大差圧との中間値に達したか否かによって、ポンプ本体1内が満水になったか否かを判断することができる。差圧が上記中間値に達するまで満水判断工程S22を繰り返し、中間値に達したと判断されれば、給水ポンプ10を起動させて所望の設備に水を供給することができる。   The method illustrated in FIG. 4B is the same except that the content of the full water determination step S22 is different from the full water determination step S12 of the method illustrated in FIG. Therefore, only the full water determination step S22 will be described for the method illustrated in FIG. In the full water determination step S22, as described above, an intermediate value between the differential pressure at the inflection point and the maximum differential pressure in the expiration process is obtained as a threshold value, and the pressure in the intake pipe 3 and the pressure in the intake pipe 2 are calculated. This is a step of determining whether or not the differential pressure has reached the threshold value. As described above, depending on whether or not the differential pressure between the pressure in the intake pipe 3 and the pressure in the water intake pipe 2 has reached an intermediate value between the differential pressure at the inflection point and the maximum differential pressure in the expiration process, It can be determined whether the inside of the pump body 1 is full. The full water determination step S22 is repeated until the differential pressure reaches the intermediate value, and if it is determined that the intermediate value has been reached, the water supply pump 10 can be activated to supply water to the desired equipment.

これまでに説明したように、本発明によれば、給水ポンプの上部と下部との差圧の変動状況からポンプ本体内が満水になったと判断しており、海水や湖水等のように細かな異物や塩分を含む水を汲み上げる場合でも、呼水の際にポンプ本体内が満水に達したか否かを適切に判断できる。よって、本発明の給水ポンプを用いた給水装置によれば、高炉やコークス炉等の所望の装置を冷却する冷却装置に冷却水を安定して供給することができる。   As explained so far, according to the present invention, it is determined that the inside of the pump body is full from the fluctuation state of the differential pressure between the upper part and the lower part of the feed water pump, and it is as fine as seawater or lake water. Even when pumping up water containing foreign matter or salt, it is possible to appropriately determine whether or not the inside of the pump body has reached full water at the time of expiration. Therefore, according to the water supply apparatus using the water supply pump of the present invention, the cooling water can be stably supplied to a cooling apparatus that cools a desired apparatus such as a blast furnace or a coke oven.

1 ポンプ本体
2 吸水管
2a 吸水口
3 吸気管
3a 吸気口
3b 止水器
3c 吸気弁
4 用水供給管
4a 用水供給口
4b 制水弁
6 差圧計
10 給水ポンプ
20 貯水体
DESCRIPTION OF SYMBOLS 1 Pump main body 2 Water intake pipe 2a Water intake port 3 Intake pipe 3a Air intake port 3b Water stop 3c Intake valve 4 Water supply pipe 4a Water supply port 4b Water control valve 6 Differential pressure gauge 10 Water supply pump 20 Water storage body

Claims (5)

貯水体から水を汲み上げて外部に該水を供給する給水ポンプの満水検知方法であって、
前記給水ポンプは、ポンプ本体と、前記貯水体から前記ポンプ本体内に水を汲み上げる吸水管と、前記ポンプ本体内を吸気して減圧する吸気管と、を備えており、
前記ポンプ本体と前記吸気管との接続部である吸気口は前記ポンプ本体の上部に位置するとともに、前記ポンプ本体と前記吸水管との接続部である吸水口は前記ポンプ本体の下部に位置し、
前記給水ポンプの運転前に呼水を行う際に、前記吸気管内の圧力と前記吸水管内の圧力との差圧を測定し、
前記差圧の変動状況から前記ポンプ本体内が満水になっていることを検知する、給水ポンプの満水検知方法。
A full water detection method for a water supply pump that pumps water from a reservoir and supplies the water to the outside.
The water supply pump includes a pump body, a water intake pipe that pumps water into the pump body from the water reservoir, and an intake pipe that sucks and decompresses the inside of the pump body,
An intake port that is a connection portion between the pump body and the intake pipe is located at an upper portion of the pump body, and a water intake port that is a connection portion between the pump body and the water absorption pipe is located at a lower portion of the pump body. ,
When performing exhalation before operation of the water supply pump, measure the differential pressure between the pressure in the intake pipe and the pressure in the water intake pipe,
A full water detection method for a water supply pump, wherein the pump main body is detected to be full from the fluctuation state of the differential pressure.
貯水体から水を汲み上げて外部に該水を供給する給水ポンプであって、
ポンプ本体と、前記貯水体から前記ポンプ本体内に水を汲み上げる吸水管と、前記ポンプ本体内を吸気して減圧する吸気管と、前記ポンプ本体内から外部に前記水を供給する用水供給管と、を備えており、
前記ポンプ本体と前記吸気管との接続部である吸気口は前記ポンプ本体の上部に位置するとともに、前記ポンプ本体と前記吸水管との接続部である吸水口は前記ポンプ本体の下部に位置し、
前記吸気管内の圧力と前記吸水管内の圧力との差圧を測定する手段を備え、
前記給水ポンプの運転前に呼水を行う際に、前記差圧の変動状況から前記ポンプ本体内が満水になっていることを検知できる、給水ポンプ。
A water supply pump that pumps water from a reservoir and supplies the water to the outside.
A pump body, a water suction pipe for pumping water from the water reservoir into the pump body, an intake pipe for sucking and depressurizing the inside of the pump body, and a water supply pipe for supplying the water from the pump body to the outside , And
An intake port that is a connection portion between the pump body and the intake pipe is located at an upper portion of the pump body, and a water intake port that is a connection portion between the pump body and the water absorption pipe is located at a lower portion of the pump body. ,
Means for measuring a pressure difference between the pressure in the intake pipe and the pressure in the water intake pipe;
A water supply pump capable of detecting that the inside of the pump body is full from the fluctuation state of the differential pressure when exhalation is performed before the operation of the water supply pump.
前記ポンプ本体内が満水になっているとの前記検知に基づき、前記用水供給管を通じて外部に前記水の供給を開始する手段を備える、請求項2に記載の給水ポンプ。   The water supply pump according to claim 2, further comprising means for starting the supply of water to the outside through the water supply pipe based on the detection that the inside of the pump body is full. 前記ポンプ本体内の水位が所定の高さ以上に達したときに、前記ポンプ本体から前記吸気管への水の流入を妨げる止水器を備える、請求項2または3に記載の給水ポンプ。   The water supply pump according to claim 2 or 3, further comprising a water stop device that prevents water from flowing from the pump body to the intake pipe when a water level in the pump body reaches a predetermined height or more. 前記差圧を測定する手段が隔膜式の圧力計である、請求項2乃至4のいずれかに記載の給水ポンプ。   The water supply pump according to any one of claims 2 to 4, wherein the means for measuring the differential pressure is a diaphragm type pressure gauge.
JP2012187985A 2012-08-28 2012-08-28 Water supply pump and method for detecting full water in water supply pump Active JP5772765B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012187985A JP5772765B2 (en) 2012-08-28 2012-08-28 Water supply pump and method for detecting full water in water supply pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012187985A JP5772765B2 (en) 2012-08-28 2012-08-28 Water supply pump and method for detecting full water in water supply pump

Publications (2)

Publication Number Publication Date
JP2014043838A true JP2014043838A (en) 2014-03-13
JP5772765B2 JP5772765B2 (en) 2015-09-02

Family

ID=50395272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012187985A Active JP5772765B2 (en) 2012-08-28 2012-08-28 Water supply pump and method for detecting full water in water supply pump

Country Status (1)

Country Link
JP (1) JP5772765B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112177909A (en) * 2020-09-30 2021-01-05 兖州煤业股份有限公司 Multistage pump starting method, system and equipment
CN116428150A (en) * 2023-03-18 2023-07-14 锦州重型水泵有限公司 Cavitation-free constant-flow water feeding pump set and operation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6375586U (en) * 1987-10-19 1988-05-19
JPS6422893U (en) * 1987-07-31 1989-02-07
US5356274A (en) * 1992-06-25 1994-10-18 Lee Mu Chun Supplying self-suction unit
JP2009209684A (en) * 2008-02-29 2009-09-17 Kawamoto Pump Mfg Co Ltd Vacuum pump unit and method of controlling vacuum pump unit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6422893U (en) * 1987-07-31 1989-02-07
JPS6375586U (en) * 1987-10-19 1988-05-19
US5356274A (en) * 1992-06-25 1994-10-18 Lee Mu Chun Supplying self-suction unit
JP2009209684A (en) * 2008-02-29 2009-09-17 Kawamoto Pump Mfg Co Ltd Vacuum pump unit and method of controlling vacuum pump unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112177909A (en) * 2020-09-30 2021-01-05 兖州煤业股份有限公司 Multistage pump starting method, system and equipment
CN116428150A (en) * 2023-03-18 2023-07-14 锦州重型水泵有限公司 Cavitation-free constant-flow water feeding pump set and operation method

Also Published As

Publication number Publication date
JP5772765B2 (en) 2015-09-02

Similar Documents

Publication Publication Date Title
JP2019528127A5 (en)
CA2723978A1 (en) A medical fluid circuit comprising a low level detector 1
JP2016525682A5 (en)
KR102523119B1 (en) Method of inspecting gas supply system
CN109000860B (en) Water system leakage detection device and method
US20180306682A1 (en) Smart pump for a portable gas detection instrument
JP5772765B2 (en) Water supply pump and method for detecting full water in water supply pump
CN108026907A (en) Compensation device for positive displacement pump
KR20160120556A (en) Pressure sensor failure diagnosis method of a fuel cell system
CN105397211A (en) Electronic Discharge Machine
CN207438160U (en) A kind of gate valve leak detection apparatus and pipe-line system
JP2004317165A (en) Water tank type pressure-resistant expansion measuring method for high-pressure container
JP6221829B2 (en) Abnormality diagnosis device for fuel supply system
JP2007040135A (en) Variable speed water supply device
JP2009192418A (en) Leakage detecting system for liquid feed pipe
CN105259260A (en) Novel transformer oil chromatography online monitoring device with three-way valve
KR20130033699A (en) Method for deciding fuel level of fuel tank
JP2017180373A (en) Water level controller
US8381583B2 (en) Method for determining a functioning of a gas bleed valve
JP2007333566A (en) Gas cavitation testing method and apparatus
JP2007187143A (en) Leakage diagnosing device
JP4742548B2 (en) Method and apparatus for monitoring a liquefied gas tank
KR100740274B1 (en) A device for detecting the over-flood
CN107829954B (en) A kind of dry running protection device and method of motor-operated well pump
CN107726054A (en) A kind of gate valve leak detection apparatus and pipe-line system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150615

R151 Written notification of patent or utility model registration

Ref document number: 5772765

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350