JP2014041876A - Power semiconductor device - Google Patents

Power semiconductor device Download PDF

Info

Publication number
JP2014041876A
JP2014041876A JP2012182582A JP2012182582A JP2014041876A JP 2014041876 A JP2014041876 A JP 2014041876A JP 2012182582 A JP2012182582 A JP 2012182582A JP 2012182582 A JP2012182582 A JP 2012182582A JP 2014041876 A JP2014041876 A JP 2014041876A
Authority
JP
Japan
Prior art keywords
main surface
thermal expansion
low thermal
semiconductor element
expansion material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012182582A
Other languages
Japanese (ja)
Inventor
Shingo Sudo
進吾 須藤
Yuya Shimizu
悠矢 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012182582A priority Critical patent/JP2014041876A/en
Publication of JP2014041876A publication Critical patent/JP2014041876A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • H01L2224/48139Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate with an intermediate bond, e.g. continuous wire daisy chain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/4901Structure
    • H01L2224/4903Connectors having different sizes, e.g. different diameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/494Connecting portions
    • H01L2224/4943Connecting portions the connecting portions being staggered
    • H01L2224/49431Connecting portions the connecting portions being staggered on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a power semiconductor device which reduces stress of a semiconductor element and inhibits the deterioration of heat radiation performance.SOLUTION: A power semiconductor device includes: an IGBT1A that is a semiconductor element; a circuit board 3 which faces a first main surface of the IGBT1A and is electrically connected with the first main surface of the IGBT1A; a low thermal expansion material 6A which is disposed at a region including a part of a space where the first main surface of the IGBT1A and a main surface of the circuit board 3 face each other, has a thermal expansion coefficient lower than that of the circuit board 3, and achieves high rigidity; and solder 4 which forms joining between the first main surface of the IGBT1A and the main surface of the circuit board 3, between the first main surface of the IGBT1A and a first main surface of the low thermal expansion material 6A, and between a second main surface of the low thermal expansion material 6A and the main surface of the circuit board 3 and is a joining material having heat conductivity higher than that of the low thermal expansion material 6A.

Description

本発明は、半導体素子を組み合わせてインバータ回路などを構成する電力用半導体装置に関するものである。   The present invention relates to a power semiconductor device that constitutes an inverter circuit or the like by combining semiconductor elements.

一般的に、電力用半導体装置は、半導体素子を放熱性に優れるアルミ等のメタルベースの回路基板上に実装し、半導体素子の上から、例えば、アルミワイヤなどで配線することで電気回路の一部を構成している。近年、電力用半導体装置に対しては、SiC(炭化珪素)半導体等の開発もあり、従来よりも高温環境での使用や、高温動作への要求が高まっている。一方、半導体素子については、材料コストの低減や性能向上のための薄型化や、大電流対応に向けた大面積化が進んでいるが、半導体素子の一般的な材料であるシリコン(Si)等はメタルベースの回路基板の材料であるアルミ等に比べて熱膨張率が小さい。その結果、半導体素子の実装後や動作中において、半導体素子と回路基板との熱変形の差によって半導体素子にかかる応力が大きくなり、半導体素子の特性の悪化や素子の破壊という問題が顕在化している。そこで、従来の電力用半導体装置では、半導体素子と回路基板との間に、応力緩衝板として回路基板よりも熱膨張率の低い低熱膨張材を設けてはんだ等の接合材で接合することで、半導体素子にかかる熱膨張差による応力を低減し、半導体素子の特性の悪化や破壊を抑制している(例えば、特許文献1)。   In general, in a power semiconductor device, a semiconductor element is mounted on a metal-based circuit board such as aluminum, which has excellent heat dissipation, and is wired from above the semiconductor element with, for example, aluminum wire. Part. In recent years, SiC (silicon carbide) semiconductors and the like have been developed for power semiconductor devices, and there is an increasing demand for use in high-temperature environments and high-temperature operation. On the other hand, with regard to semiconductor elements, thinning for reduction of material costs and performance improvement and increase in area for handling large currents are progressing, but silicon (Si), which is a general material for semiconductor elements, is being used. Has a lower coefficient of thermal expansion than aluminum, which is a material for metal-based circuit boards. As a result, the stress applied to the semiconductor element increases due to the difference in thermal deformation between the semiconductor element and the circuit board after the semiconductor element is mounted or in operation, and problems such as deterioration of the characteristics of the semiconductor element and destruction of the element have become apparent. Yes. Therefore, in the conventional power semiconductor device, by providing a low thermal expansion material having a lower coefficient of thermal expansion than the circuit board as a stress buffering plate between the semiconductor element and the circuit board, and bonding with a bonding material such as solder, The stress due to the difference in thermal expansion applied to the semiconductor element is reduced, and the deterioration and destruction of the characteristics of the semiconductor element are suppressed (for example, Patent Document 1).

特開2006−190850号公報JP 2006-190850 A

このような電力用半導体装置にあっては、低熱膨張材として、回路基板よりも熱膨張率が低く比較的安価なインバーやコバール等の部材を用いることが一般的である。しかしながら、半導体素子に発生する熱は放熱性に優れる回路基板側から放熱されるので、低熱膨張材を介して放熱が行われることとなるが、インバーやコバール等の熱伝導率は回路基板よりも低いため放熱性が低下するという問題があった。また、低熱膨張材として、熱膨張率が低くかつ熱伝導率の高いモリブデン(Mo)やタングステン(W)を用いることで放熱性を維持することも考えられるが、MoやWは高価なため電力用半導体装置のコスト増加という新たな問題が生じてしまう。   In such a power semiconductor device, it is common to use a member such as Invar or Kovar that has a lower coefficient of thermal expansion than a circuit board and is relatively inexpensive as a low thermal expansion material. However, since the heat generated in the semiconductor element is radiated from the circuit board side with excellent heat dissipation, heat is radiated through the low thermal expansion material, but the thermal conductivity of Invar, Kovar, etc. is higher than that of the circuit board. Since it is low, there was a problem that heat dissipation was reduced. In addition, it is conceivable to maintain heat dissipation by using molybdenum (Mo) or tungsten (W) having a low coefficient of thermal expansion and high thermal conductivity as a low thermal expansion material. A new problem of increasing the cost of the semiconductor device for use occurs.

本発明は、上述のような問題を解決するためになされたもので、コスト増加を抑制しつつ、半導体素子の応力を低減し、かつ放熱性の低下を抑制することができる電力用半導体装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and provides a power semiconductor device capable of reducing the stress of a semiconductor element and suppressing a decrease in heat dissipation while suppressing an increase in cost. The purpose is to provide.

本発明に係る電力用半導体装置は、半導体素子と、半導体素子の第一の主面に対向し半導体素子の第一の主面と電気的に接続される回路基板と、半導体素子の第一の主面と回路基板の主面とが対向する空間の一部を含んだ領域に配置され回路基板よりも熱膨張率が低くかつ剛性が高い低熱膨張材と、半導体素子の第一の主面と回路基板の主面、半導体素子の第一の主面と低熱膨張材の第一の主面、及び低熱膨張材の第二の主面と回路基板の主面とをそれぞれ少なくとも一部の領域で接合し低熱膨張材よりも熱伝導率が高い接合材とを備えたものである。   A power semiconductor device according to the present invention includes a semiconductor element, a circuit board facing the first main surface of the semiconductor element and electrically connected to the first main surface of the semiconductor element, and a first of the semiconductor element A low thermal expansion material which is disposed in a region including a part of a space where the main surface and the main surface of the circuit board face each other and has a lower coefficient of thermal expansion and higher rigidity than the circuit board; and a first main surface of the semiconductor element; The main surface of the circuit board, the first main surface of the semiconductor element and the first main surface of the low thermal expansion material, and the second main surface of the low thermal expansion material and the main surface of the circuit board are each in at least a part of the region. And a bonding material having a thermal conductivity higher than that of the low thermal expansion material.

本発明に係る電力用半導体装置によれば、低熱膨張材が回路基板の熱変形を拘束することで半導体素子にかかる応力を低減するとともに、低熱膨張材を半導体素子と回路基板との間の一部にのみ設けるので放熱性の低下を抑制することができる。また、熱膨張率が低くかつ熱伝導率の高いMoやWを用いることなく放熱性の低下を抑制できるため、コストの増加を抑制することができる。   According to the power semiconductor device of the present invention, the low thermal expansion material constrains thermal deformation of the circuit board to reduce the stress applied to the semiconductor element, and the low thermal expansion material is placed between the semiconductor element and the circuit board. Since it is provided only at the portion, it is possible to suppress a decrease in heat dissipation. Moreover, since a heat dissipation fall can be suppressed without using Mo and W with a low thermal expansion coefficient and high thermal conductivity, the increase in cost can be suppressed.

本発明の実施の形態1にかかる電力用半導体装置の斜視図である。1 is a perspective view of a power semiconductor device according to a first embodiment of the present invention. 本発明の実施の形態1にかかる半導体素子接合部の部分上面図である。It is a partial top view of the semiconductor element junction part concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる半導体素子接合部の断面図である。It is sectional drawing of the semiconductor element junction part concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかる低熱膨張枠の上面図である。It is a top view of the low thermal expansion frame concerning Embodiment 1 of this invention. 本発明の実施の形態2にかかる半導体素子接合部の部分上面図である。It is a partial top view of the semiconductor element junction part concerning Embodiment 2 of this invention. 本発明の実施の形態2にかかる半導体素子接合部の断面図である。It is sectional drawing of the semiconductor element junction part concerning Embodiment 2 of this invention. 本発明の実施の形態2にかかる低熱膨張枠の上面図である。It is a top view of the low thermal expansion frame concerning Embodiment 2 of this invention. 本発明の実施の形態3にかかる半導体素子接合部の部分上面図である。It is a partial top view of the semiconductor element junction part concerning Embodiment 3 of this invention. 本発明の実施の形態3にかかる半導体素子の部分上面図である。It is a partial top view of the semiconductor element concerning Embodiment 3 of this invention. 本発明の実施の形態3にかかる低熱膨張材の部分上面図である。It is a partial top view of the low thermal expansion material concerning Embodiment 3 of this invention. 本発明の実施の形態3にかかる低熱膨張材の部分上面図である。It is a partial top view of the low thermal expansion material concerning Embodiment 3 of this invention. 本発明の実施の形態3にかかる半導体素子の部分上面図である。It is a partial top view of the semiconductor element concerning Embodiment 3 of this invention. 本発明の実施の形態3にかかる低熱膨張材の部分上面図である。It is a partial top view of the low thermal expansion material concerning Embodiment 3 of this invention.

実施の形態1.
まず、本発明の実施の形態1にかかる電力用半導体装置の構成について、図1ないし図4を用いて説明する。各図において同一、又は相当する部分については、同一符号を付して説明する。
Embodiment 1 FIG.
First, the configuration of the power semiconductor device according to the first embodiment of the present invention will be described with reference to FIGS. In the drawings, the same or corresponding parts will be described with the same reference numerals.

図1は実施の形態1にかかる電力用半導体装置100の半導体素子を実装する部分を示した斜視図であり、図2は実施の形態1にかかる電力用半導体装置100の部分上面図であり、図3は図1におけるA−A間の断面図であり、図4は実施の形態1にかかる低熱膨張材6Aの上面図である。なお、図2において示される破線は、IGBT1Aの裏側に存在する低熱膨張材6Aを図示している。   FIG. 1 is a perspective view showing a portion for mounting a semiconductor element of the power semiconductor device 100 according to the first embodiment. FIG. 2 is a partial top view of the power semiconductor device 100 according to the first embodiment. 3 is a cross-sectional view taken along the line AA in FIG. 1, and FIG. 4 is a top view of the low thermal expansion material 6A according to the first embodiment. In addition, the broken line shown in FIG. 2 has illustrated the low thermal expansion material 6A which exists in the back side of IGBT1A.

図1において、電力用半導体装置100に2組の並列接続したIGBT(Insulated Gate Bipolar Transistor)1AとFWD(Free Wheeling Diode)2が実装されている。なお、図1においては合計4つの半導体素子が実装されているが、3つ以下又は5つ以上であっても、1つ以上の半導体素子を備えていれば同様の効果を奏することは言うまでもない。以下、電力用半導体装置100において半導体素子としてIGBT1Aが実装された部分について説明する。なお、本実施の形態では半導体素子としてSiからなるIGBT1A及びFWD2を用いているが、これに限定されるものではなく、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)等の他の半導体素子や、シリコンカーバイト(SiC)等の他の物質からなる半導体素子を用いることとしてもよい。   In FIG. 1, two sets of IGBTs (Insulated Gate Bipolar Transistors) 1 </ b> A and FWDs (Free Wheeling Diodes) 2 connected in parallel are mounted on the power semiconductor device 100. Although a total of four semiconductor elements are mounted in FIG. 1, it goes without saying that even if the number is three or less or five or more, the same effect can be obtained if one or more semiconductor elements are provided. . Hereinafter, a portion where IGBT 1A is mounted as a semiconductor element in power semiconductor device 100 will be described. In this embodiment, IGBT 1A and FWD 2 made of Si are used as semiconductor elements, but the present invention is not limited to this, and other semiconductor elements such as MOSFET (Metal Oxide Field Field Transistor), silicon car A semiconductor element made of another material such as a bite (SiC) may be used.

図1及び図2において、IGBT1Aは□15mm、厚み60μmの半導体素子であり、IGBT1Aの第一の主面である裏面は、導電性である錫(Sn)−銀(Ag)−銅(Cu)系のはんだ4によって破線で示される位置に配置された低熱膨張材6Aを一部に介して、回路基板3に実装されとともに、IGBT1Aの第二の主面である表面にはアルミワイヤ5が配置される。ここで、半導体素子であるIGBT1Aは縦型半導体であり、その表面及び裏面にそれぞれ図示しないエミッタ電極及びコレクタ電極が設けられ、表面の電極はアルミワイヤ5と、裏面の電極は回路基板3の回路パターン3Cとそれぞれ電気的に接続されている。また、IGBT1Aの表面にはエミッタ電極に加えてゲート電極8が設けられ、ゲート配線9を介して、図示しない制御回路に接続されている。そして、回路パターン3C及びアルミワイヤ5の他端は図示しない外部端子等に接続されており、IGBT1Aがチップの厚み方向に通電されることにより、電力用半導体装置100は、インバータ回路等の一部を構成する。また、アルミワイヤ5は直径400umのAlからなり、例えば、超音波接合によってIGBT1Aの表面に形成された電極に接続する。   1 and 2, IGBT 1A is a semiconductor element with □ 15 mm and a thickness of 60 μm, and the back surface, which is the first main surface of IGBT 1A, is conductive tin (Sn) -silver (Ag) -copper (Cu). It is mounted on the circuit board 3 through a part of the low thermal expansion material 6A arranged at the position shown by the broken line by the solder 4 of the system, and the aluminum wire 5 is arranged on the surface which is the second main surface of the IGBT 1A Is done. Here, the IGBT 1A which is a semiconductor element is a vertical semiconductor, and an emitter electrode and a collector electrode (not shown) are provided on the front surface and the back surface, respectively, the front electrode is an aluminum wire 5, and the back electrode is a circuit of the circuit board 3. Each is electrically connected to the pattern 3C. In addition to the emitter electrode, a gate electrode 8 is provided on the surface of the IGBT 1A, and is connected to a control circuit (not shown) via a gate wiring 9. The other end of the circuit pattern 3C and the aluminum wire 5 is connected to an external terminal (not shown) or the like. When the IGBT 1A is energized in the thickness direction of the chip, the power semiconductor device 100 is a part of an inverter circuit or the like. Configure. The aluminum wire 5 is made of Al having a diameter of 400 μm and is connected to an electrode formed on the surface of the IGBT 1A by ultrasonic bonding, for example.

図3において、回路基板3は、ベース3A、絶縁層3B、回路パターン3Cから構成され、回路基板3の主面である表面に絶縁層3Bを介して回路パターン3Cが設けられた、いわゆるメタルベース基板である。ベース3Aは2mmtのアルミニウム(Al)からなり、絶縁層3Bはアルミナ(Al2O3)等の高熱伝導フィラーを充填された厚み150μmのエポキシ樹脂硬化物からなり、回路パターン3Cは厚み105umのCuからなる。そして、回路基板3の裏面は、放熱グリースや放熱シートを介して図示しないヒートシンクに取り付けられる。   In FIG. 3, the circuit board 3 is composed of a base 3A, an insulating layer 3B, and a circuit pattern 3C, and a circuit pattern 3C is provided on the surface that is the main surface of the circuit board 3 via the insulating layer 3B. It is a substrate. The base 3A is made of 2 mmt of aluminum (Al), the insulating layer 3B is made of a 150 μm thick cured epoxy resin filled with a high thermal conductive filler such as alumina (Al 2 O 3), and the circuit pattern 3C is made of 105 μm thick Cu. And the back surface of the circuit board 3 is attached to the heat sink which is not shown in figure through thermal radiation grease or a thermal radiation sheet.

ここで、図3において、IGBT1Aと回路パターン3Cとの間には低熱膨張材6Aが設置されている。低熱膨張材6Aは、鉄(Fe)−ニッケル(Ni)合金であるインバーからなり、外周□15mm、内周□13mm、厚み0.3mmの枠形状のものであり、IGBT1Aの外周から2mmの幅に沿って設置される。また、低熱膨張材6Aは、はんだ付けのために全面にNiめっきが施されており、IGBT1Aとともに、導電性であるはんだ4によって回路パターン3Cに同時に接合される。より具体的には、IGBT1Aの裏面の一部と回路基板の主面、IGBT1Aの裏面の残部(裏面の一部以外の部分)と低熱膨張材6Aの第一の主面である表面、及び回路基板の主面と低熱膨張材6Aの第二の主面である裏面とがそれぞれはんだ4によって接合される。その際、IGBT1Aと低熱膨張枠6Aとの間のはんだ4の厚さ及び回路パターン3Cと低熱膨張枠6Aとのはんだ4の厚さはそれぞれ50μm程度となる。   Here, in FIG. 3, the low thermal expansion material 6A is installed between the IGBT 1A and the circuit pattern 3C. The low thermal expansion material 6A is made of an invar that is an iron (Fe) -nickel (Ni) alloy, has a frame shape with an outer circumference □ 15 mm, an inner circumference □ 13 mm, and a thickness 0.3 mm, and a width of 2 mm from the outer periphery of the IGBT 1A. It is installed along. The low thermal expansion material 6A is Ni-plated on the entire surface for soldering, and is simultaneously joined to the circuit pattern 3C by the conductive solder 4 together with the IGBT 1A. More specifically, a part of the back surface of the IGBT 1A and the main surface of the circuit board, a remaining portion of the back surface of the IGBT 1A (a portion other than a part of the back surface), the surface that is the first main surface of the low thermal expansion material 6A, and the circuit The main surface of the substrate and the back surface, which is the second main surface of the low thermal expansion material 6 </ b> A, are joined together by the solder 4. At that time, the thickness of the solder 4 between the IGBT 1A and the low thermal expansion frame 6A and the thickness of the solder 4 between the circuit pattern 3C and the low thermal expansion frame 6A are about 50 μm, respectively.

なお、本実施の形態では正方形の形状である低熱膨張材6Aを用いることしたが、図4(a)と図4(b)に例を示すとおり、加工性やはんだ付性を考慮し、外周角や内周角に面取りやRをつけた低熱膨張材6B又は6Cを用いることとしてもよい。また、応力低減の効果を向上させるためには、低熱膨張材6Aの枠を厚く、幅を広くすることが有効であるが、素子の特性や組立性などを考慮し、選択することが可能である。   In the present embodiment, the low thermal expansion material 6A having a square shape is used. However, as shown in FIG. 4A and FIG. 4B, the outer periphery is taken into consideration in consideration of workability and solderability. Low thermal expansion material 6B or 6C having chamfered or rounded corners or inner peripheral angles may be used. In order to improve the effect of reducing stress, it is effective to make the frame of the low thermal expansion material 6A thick and wide. However, it is possible to make a selection in consideration of element characteristics and assembling property. is there.

次に、本発明の実施の形態1にかかる電力用半導体装置100の作用・効果について、従来の電力用半導体装置と比較して説明する。   Next, the operation and effect of the power semiconductor device 100 according to the first embodiment of the present invention will be described in comparison with a conventional power semiconductor device.

まず、従来の電力用半導体装置として、半導体素子であるIGBT、FWDを、低熱膨張材を介さず、はんだによって接合した場合について説明する。半導体素子と回路基板をはんだ付けした場合、はんだの融点で半導体素子と回路基板が接合されるため、はんだの融点以下の状態では、半導体素子と回路基板ははんだの融点を基準として圧縮し熱変形する。ここで、IGBT、FWDなどの半導体素子の主材料であるSiの熱膨張率(2.5ppm/K)は、半導体素子に直接接合されるはんだの熱膨張率(22ppm/K)や回路基板の主材料であるAlの熱膨張率(23ppm/K)に比べて小さい。そのため、はんだの融点以下の状態においては、半導体素子と回路基板の熱変形差によって、半導体素子には圧縮応力が生じる。特に、本実施の形態に示すように半導体素子の厚みが薄くなり剛性が下がると、半導体素子にかかる圧縮応力が大きくなり、面内応力差が大きくなることで、スイッチングロスの増加や素子の耐圧低下など素子の電気特性が悪化してしまい、半導体素子が本来有している特性を充分に発揮できないという問題があった。   First, as a conventional power semiconductor device, a case where IGBTs and FWDs which are semiconductor elements are joined by solder without using a low thermal expansion material will be described. When a semiconductor element and a circuit board are soldered, the semiconductor element and the circuit board are joined at the melting point of the solder. Therefore, in a state below the melting point of the solder, the semiconductor element and the circuit board are compressed and thermally deformed based on the melting point of the solder. To do. Here, the coefficient of thermal expansion (2.5 ppm / K) of Si, which is the main material of semiconductor elements such as IGBT and FWD, is the coefficient of thermal expansion (22 ppm / K) of the solder directly bonded to the semiconductor element. It is smaller than the thermal expansion coefficient (23 ppm / K) of Al, which is the main material. Therefore, in a state below the melting point of the solder, a compressive stress is generated in the semiconductor element due to a thermal deformation difference between the semiconductor element and the circuit board. In particular, as shown in this embodiment, when the thickness of the semiconductor element is reduced and the rigidity is lowered, the compressive stress applied to the semiconductor element is increased, and the in-plane stress difference is increased, thereby increasing the switching loss and the breakdown voltage of the element. There has been a problem that the electrical characteristics of the element, such as a decrease, are deteriorated, and the characteristics inherent to the semiconductor element cannot be fully exhibited.

続いて、本実施の形態にかかる電力用半導体装置100について説明する。本実施の形態では、半導体素子であるIGBT1A及びFWD2は、枠形状の低熱膨張材6Aを一部に介して回路基板3に接合されている。ここで、低熱膨張材6Aの熱膨張率、すなわちインバーの熱膨張率(1.2ppm/K)は、回路基板3主材料であるAlの熱膨張率(23ppm/K)に比べて小さく、また、インバーからなる低熱膨張材6Aの剛性は主にAlからなる回路基板3の剛性よりも高い。その結果、低熱膨張材6Aがはんだ付け後の回路基板3の熱変形を拘束するため、半導体素子であるIGBT1A及びFWD2に負荷される圧縮応力が軽減されるので、半導体素子としての電気特性の悪化が抑制される。   Next, the power semiconductor device 100 according to the present embodiment will be described. In the present embodiment, the semiconductor elements IGBT1A and FWD2 are joined to the circuit board 3 through a part of the frame-shaped low thermal expansion material 6A. Here, the thermal expansion coefficient of the low thermal expansion material 6A, that is, the thermal expansion coefficient of Invar (1.2 ppm / K) is smaller than the thermal expansion coefficient (23 ppm / K) of Al, which is the main material of the circuit board 3, and The rigidity of the low thermal expansion material 6A made of Invar is higher than the rigidity of the circuit board 3 made mainly of Al. As a result, since the low thermal expansion material 6A restrains thermal deformation of the circuit board 3 after soldering, the compressive stress applied to the IGBTs 1A and FWD2 which are semiconductor elements is reduced, so that the electrical characteristics of the semiconductor elements deteriorate. Is suppressed.

また、本実施の形態では、低熱膨張材6Aを半導体素子と回路基板3の間の一部に介しているが、半導体素子で発生する熱量は裏面側の回路基板3を介して放熱されるところ、低熱膨張材6Aであるインバーの熱伝導率(13W/mK)は、はんだ4の熱伝導率(60W/mK)又は回路基板の材料であるCuの熱伝導率(398W/mK)やAlの熱伝導率(237W/mK)と比較して低いため、放熱性の低下が懸念される。しかし、本実施の形態では、低熱膨張材6Aを半導体素子の裏面側の一部にしか設けていないので、低熱膨張材6Aを設けることによる放熱性の低下が抑制される。よって、熱膨張率が低く、かつ、熱伝導率の高いMoやW等の高価な材料を用いることなく放熱性の低下を抑制することができる。   In the present embodiment, the low thermal expansion material 6A is interposed between a part of the semiconductor element and the circuit board 3, but the amount of heat generated in the semiconductor element is dissipated through the circuit board 3 on the back side. The thermal conductivity (13 W / mK) of the invar which is the low thermal expansion material 6A is the thermal conductivity of the solder 4 (60 W / mK) or the thermal conductivity of Cu which is the material of the circuit board (398 W / mK) or Al. Since it is low compared with the thermal conductivity (237 W / mK), there is a concern about a decrease in heat dissipation. However, in this embodiment, since the low thermal expansion material 6A is provided only on a part of the back surface side of the semiconductor element, a decrease in heat dissipation due to the provision of the low thermal expansion material 6A is suppressed. Therefore, it is possible to suppress a decrease in heat dissipation without using an expensive material such as Mo or W having a low coefficient of thermal expansion and a high thermal conductivity.

特に、IGBT1Aの外周から0.5mm〜1.0mmの幅の外周部は、IGBT1Aの上下面電極の絶縁耐圧を確保するために設けられた終端構造の部分であり、IGBT1Aの表面又は裏面において終端構造部分の領域は他の領域と比較して単位面積当たりの発熱量(以下、単に「発熱量」という)が小さい。そのため、発熱量の少ない終端構造に沿って低熱膨張材6Aを配置することで、IGBT1Aの裏面の発熱分布に対応して、IGBT1Aの裏面において低熱膨張材6Aの表面が接合される第一の領域の発熱量は回路基板3の主面が接合される第二の領域の発熱量よりも小さくなるように、低熱膨張材6Aの主面をIGBT1Aの裏面に接合することができるので、電力用半導体装置100全体としての放熱性の低下をより効果的に抑制することができる。   In particular, the outer peripheral portion having a width of 0.5 mm to 1.0 mm from the outer periphery of the IGBT 1A is a portion of the termination structure provided to ensure the withstand voltage of the upper and lower electrodes of the IGBT 1A, and is terminated on the front surface or the back surface of the IGBT 1A. The region of the structure portion has a smaller amount of heat generation per unit area (hereinafter simply referred to as “heat generation amount”) than other regions. Therefore, the first region where the surface of the low thermal expansion material 6A is joined to the back surface of the IGBT 1A in correspondence with the heat generation distribution on the back surface of the IGBT 1A by arranging the low thermal expansion material 6A along the termination structure with a small amount of heat generation. Since the main surface of the low thermal expansion material 6A can be bonded to the back surface of the IGBT 1A so that the amount of generated heat is smaller than the heat generation amount of the second region to which the main surface of the circuit board 3 is bonded, the power semiconductor It is possible to more effectively suppress a decrease in heat dissipation of the device 100 as a whole.

なお、本実施の形態では、ベース3Aにメタルベース基板で多く用いられるAlを用いる構成としたが、パワーモジュールに一般的に用いられるAl2O3や窒化アルミニウム(AlN)とし、メタルベース基板ではなくセラミック基板とすることとしてもよい。さらに、本実施の形態では、回路パターン3CにはCuを用いることとしたが、Cu合金系のリードフレームやCuブロックを電極とするものを適用する事も可能である。   In the present embodiment, Al is often used for the metal base substrate for the base 3A. However, Al2O3 or aluminum nitride (AlN) generally used for power modules is used, and a ceramic substrate is used instead of the metal base substrate. It is good also as doing. Furthermore, in the present embodiment, Cu is used for the circuit pattern 3C, but it is also possible to apply a Cu alloy-based lead frame or a Cu block as an electrode.

また、本実施の形態では、半導体素子と低熱膨張材6Aの外周を□15mmと同一寸法としているが、半導体素子と低熱膨張材6Aの外周寸法を異なる値としてもよく、例えば低熱膨張材6Aの外周寸法を半導体素子よりも大きくし、半導体素子からはみ出るような構成としても、放熱性低下の抑制や半導体素子にかかる圧縮応力低減の効果を得ることができる。さらに、低熱膨張材6Aには、インバーの他、スーパーインバー、42アロイ、コバールなどのリードフレーム材料を適用することも可能である。   Moreover, in this Embodiment, although the outer periphery of semiconductor element and the low thermal expansion material 6A is made into the same dimension as □ 15 mm, the outer periphery dimension of a semiconductor element and the low thermal expansion material 6A may be made into a different value, for example, the low thermal expansion material 6A Even if the outer peripheral dimension is made larger than that of the semiconductor element so as to protrude from the semiconductor element, it is possible to obtain the effect of suppressing the heat dissipation and reducing the compressive stress applied to the semiconductor element. Furthermore, lead frame materials such as super invar, 42 alloy, and kovar can be applied to the low thermal expansion material 6A in addition to invar.

実施の形態2.
上述した実施の形態1では、低熱膨張材6Aを単一の部材から構成するとともに、単一のはんだ4を用いることとしたが、本願発明はこれに限定されず、複数の部材から構成される低熱膨張材6Bを用いることとしてもよく、また、複数種のはんだ4A及び4Bを用いることとしてよい。そこで、実施の形態2として、複数の部材からなる低熱膨張材6Dを用い、かつ、複数種のはんだ4A及び4Bを用いた場合について、以下で説明する。
Embodiment 2. FIG.
In Embodiment 1 described above, the low thermal expansion material 6A is composed of a single member and the single solder 4 is used. However, the present invention is not limited to this, and is composed of a plurality of members. The low thermal expansion material 6B may be used, and a plurality of types of solders 4A and 4B may be used. Therefore, as a second embodiment, a case where a low thermal expansion material 6D composed of a plurality of members and a plurality of types of solders 4A and 4B are used will be described below.

図5は実施の形態2にかかる電力用半導体装置の部分上面図であり、図6は図1におけるA−A間の断面図に相当する実施の形態2にかかる電力用半導体装置の断面図であり、図7は実施の形態2にかかる低熱膨張材6Dの上面図である。図5ないし図7において、図1ないし図4と同じ符号を付けたものは、同一または対応する構成を示しており、以下において、その説明は省略する。また、実施の形態2は、実施の形態1との関係において、低熱膨張材6Dを用いる点及び高液相線はんだ4A並びに低液相線はんだ4Bを用いる点で相違するため、当該相違部分について説明し、同一または対応する部分についての説明は省略する。なお、図5において示される破線は、IGBT1Aの裏側に存在する低熱膨張材6Dを図示しており、図7において示す破線はIGBT1Aの平面位置を図示している。   FIG. 5 is a partial top view of the power semiconductor device according to the second embodiment, and FIG. 6 is a cross-sectional view of the power semiconductor device according to the second embodiment corresponding to the cross-sectional view between AA in FIG. FIG. 7 is a top view of the low thermal expansion material 6D according to the second embodiment. 5 to 7, the same reference numerals as those in FIGS. 1 to 4 denote the same or corresponding components, and the description thereof will be omitted below. Since the second embodiment is different from the first embodiment in that the low thermal expansion material 6D is used and the high liquid phase solder 4A and the low liquid phase solder 4B are used. The description of the same or corresponding parts will be omitted. 5 indicates the low thermal expansion material 6D existing on the back side of the IGBT 1A, and the broken line illustrated in FIG. 7 illustrates the planar position of the IGBT 1A.

図5ないし図7において、インバーよりなる低熱膨張材6Dは枠形状の辺毎に分割された4つの部品から構成されており、回路基板3の主面とNiめっきされた低熱膨張枠6Dの裏面とは導電性であるSn−Cu系の液相線温度350℃以上の高液相線はんだ4Aで接合されている。一方、IGBT1Aの裏面と低熱膨張枠6Dの表面、及びIGBT1Aの裏面と回路パターン3Cの表面とは液相線220℃程度の導電性であるSn−Ag−Cu系の低液相線はんだ4Bで接合されている。   5 to 7, the low thermal expansion material 6D made of invar is composed of four parts divided for each side of the frame shape, and the main surface of the circuit board 3 and the back surface of the Ni-plated low thermal expansion frame 6D. Are joined by a highly liquid phase solder 4A having a conductive Sn—Cu liquidus temperature of 350 ° C. or higher. On the other hand, the back surface of the IGBT 1A and the surface of the low thermal expansion frame 6D, and the back surface of the IGBT 1A and the surface of the circuit pattern 3C are Sn—Ag—Cu based low liquid phase solder 4B having a conductivity of about 220 ° C. It is joined.

このような構成により、本実施の形態では、枠形状である低熱膨張材6Dの4辺を別々の部品とする事によって、低熱膨張材6Dの製造過程において材料歩留まりが向上し、コストの低減が実現できる。また、本実施の形態では、融点の高い高液相線はんだ4Aを用いて回路基板3の主面に低熱膨張材6Dの裏面を接合した後、より融点の低い低液相線はんだ4Bを用いてIGBT1Aの裏面を回路基板3の主面及び低熱膨張材6Dの表面に接合することができるため、IGBT1Aの接合を低熱膨張材6Dが回路基板3に固定された状態で行うことができる。そのため、単一のはんだ4を用いて接合する場合と比較して、IGBT1A、回路基板3、及び低熱膨張材6Dの接合を容易に行うことができ、電力用半導体装置の生産性が向上する。   With this configuration, in the present embodiment, by making the four sides of the frame-shaped low thermal expansion material 6D as separate parts, the material yield is improved in the manufacturing process of the low thermal expansion material 6D, and the cost is reduced. realizable. Further, in the present embodiment, after the back surface of the low thermal expansion material 6D is joined to the main surface of the circuit board 3 using the high liquid phase wire solder 4A having a high melting point, the low liquid phase wire solder 4B having a lower melting point is used. Since the back surface of the IGBT 1A can be bonded to the main surface of the circuit board 3 and the surface of the low thermal expansion material 6D, the IGBT 1A can be bonded with the low thermal expansion material 6D fixed to the circuit board 3. Therefore, compared with the case where it joins using the single solder 4, IGBT1A, the circuit board 3, and the low thermal expansion material 6D can be joined easily, and the productivity of the semiconductor device for electric power improves.

なお、低熱膨張材枠6Dの回路基板3への取り付けに用いる高液相線はんだ4Aは液相線温度の高いSn−Cu系のはんだを用いることとしたが、近年高温動作対応の接合構造として採用されているAg焼結による接合や接合性を考慮した金(Au)−Sn系はんだを用いることとしてもよい。   The high liquidus solder 4A used for attaching the low thermal expansion material frame 6D to the circuit board 3 is Sn-Cu based solder having a high liquidus temperature. It is also possible to use gold (Au) -Sn based solder in consideration of the joining by Ag sintering adopted and the joining property.

実施の形態3.
上述した実施の形態1又は2においては、枠形状の低熱膨張材6A又は6Dを用いることとしたが、これに限定されず、他の形状の低熱膨張材を用いることもできる。特に、ゲート電極が素子の中央に配置されるIGBT等においては、IGBTの裏面の発熱分布は素子中央の発熱量が少ないドーナツ状の発熱分布となるため、IGBTの裏面の発熱分布に対応するように素子中央に低熱膨張材6E又は6Fを配置することしてもよい。そこで、実施の形態3として、低熱膨張材6E又は6Fを用いる場合について、以下で説明する。
Embodiment 3 FIG.
In Embodiment 1 or 2 described above, the frame-shaped low thermal expansion material 6A or 6D is used. However, the present invention is not limited to this, and other shapes of low thermal expansion material can also be used. In particular, in an IGBT or the like in which the gate electrode is arranged at the center of the element, the heat generation distribution on the back surface of the IGBT becomes a donut-shaped heat generation distribution with a small amount of heat generation at the center of the element, so that it corresponds to the heat generation distribution on the back surface of the IGBT. Alternatively, the low thermal expansion material 6E or 6F may be disposed in the center of the element. Therefore, the case where the low thermal expansion material 6E or 6F is used as Embodiment 3 will be described below.

図8は本実施の形態3にかかる電力用半導体装置の部分上面図であり、図9は本実施の形態3において半導体素子として用いるIGBT1Bの部分上面図であり、図10は低熱膨張材6Eの部分上面図であり、図11は低熱膨張材6Dの部分上面図である。ここで、図8において示される破線はIGBT1Bの裏側に存在する低熱膨張材6Eを図示しており、図10及び図11における破線はIGBT1Bの平面位置を示している。図8ないし図11において、図1ないし図7と同一の符号を付けたものは、同一または対応する構成を示しており、以下において、その説明は省略する。なお、実施の形態3は、実施の形態1との関係において、半導体素子としてIGBT1Bを用いる点及び低熱膨張材6E又は6Fを用いる点で相違するため、当該相違部分について説明し、同一または対応する部分についての説明は省略する。   8 is a partial top view of the power semiconductor device according to the third embodiment, FIG. 9 is a partial top view of the IGBT 1B used as a semiconductor element in the third embodiment, and FIG. 10 is a diagram of the low thermal expansion material 6E. FIG. 11 is a partial top view, and FIG. 11 is a partial top view of the low thermal expansion material 6D. Here, the broken line shown in FIG. 8 shows the low thermal expansion material 6E existing on the back side of the IGBT 1B, and the broken line in FIGS. 10 and 11 shows the planar position of the IGBT 1B. 8 to 11, the same reference numerals as those in FIGS. 1 to 7 denote the same or corresponding components, and the description thereof will be omitted below. Note that the third embodiment is different from the first embodiment in that the IGBT 1B is used as a semiconductor element and the low thermal expansion material 6E or 6F is used. The description about the part is omitted.

図8において、インバーよりなる低熱膨張材6Eは、幅1mmm厚み200μmのNiめっきされたX形状の部材であり、IGBT1Bの対角線2方向に沿って配置されている。低熱膨張材6EはIGBT1Bの裏面とSn−Ag−Cu系のはんだ4ではんだ付けされるとともに、回路基板3の主面とはんだ付けされている。また、アルミニウムワイヤ5は、低熱膨張材6Eが設置された領域上を除く位置で、IGBT1Bの表面に設けられた電極に接合されている.   In FIG. 8, a low thermal expansion material 6E made of Invar is an X-shaped member plated with Ni having a width of 1 mm and a thickness of 200 μm, and is disposed along the diagonal 2 direction of the IGBT 1B. The low thermal expansion material 6 </ b> E is soldered to the back surface of the IGBT 1 </ b> B with the Sn—Ag—Cu-based solder 4 and to the main surface of the circuit board 3. The aluminum wire 5 is joined to an electrode provided on the surface of the IGBT 1B at a position excluding the region where the low thermal expansion material 6E is installed.

図9において、IGBT1Bの外周部には終端構造7が設けられており、IGBT1B
の表面中央部にはゲート電極8とゲート配線9が設けられている。そのため、IGBT1Bの主面は、終端構造7の領域に加えて、ゲート電極8及びゲート配線9直下の領域においても発熱量が少なくなるため、IGBT1Bの主面の発熱分布はドーナツ形状となる。
In FIG. 9, a termination structure 7 is provided on the outer periphery of the IGBT 1B.
A gate electrode 8 and a gate wiring 9 are provided at the center of the surface. For this reason, the heat generation amount of the main surface of the IGBT 1B is reduced in the region immediately below the gate electrode 8 and the gate wiring 9 in addition to the region of the termination structure 7, so that the heat generation distribution on the main surface of the IGBT 1B has a donut shape.

また、図10において低熱膨張材6Eの形状を示しているが、低熱膨張材6Eに代えて、IGBT1Bのゲート電極8及びゲート配線9の位置に対応するように、図11に示す低熱膨張材6Fを用いることとしてよい。すなわち、低熱膨張材6Fは、IGBT1Bの対向する二辺とゲート配線9に沿うような形状となっている。さらに、実施の形態1又は2と同様に、IGBT1Bの終端構造7に沿った枠形状の低熱膨張材を組み合わせることとしてもよい。   10 shows the shape of the low thermal expansion material 6E, but instead of the low thermal expansion material 6E, the low thermal expansion material 6F shown in FIG. 11 corresponds to the positions of the gate electrode 8 and the gate wiring 9 of the IGBT 1B. May be used. That is, the low thermal expansion material 6 </ b> F has a shape along the two opposing sides of the IGBT 1 </ b> B and the gate wiring 9. Further, similarly to the first or second embodiment, a frame-shaped low thermal expansion material along the termination structure 7 of the IGBT 1B may be combined.

このような構成により、熱膨張差によって生じるIGBT1Bにかかる応力は素子の中央が一番高くなるところ、素子中央からの距離が長い対角線方向に低熱膨張材6E又は6Fを配置したことにより、はんだ層内で素子中央に向かう熱変形を拘束することができるためIGBT1Bの応力を低減することができる。また、IGBT1Bの裏面においてゲート電極8及びゲート配線9の直下の領域は他の領域と比較して発熱量が小さくなる。そのため、熱伝導率の低い低熱膨張材6E又は6Fはゲート電極8及びゲート配線9の位置に対応するように配置することにより、IGBT1Bの裏面の発熱分布に対応して、IGBT1Bの裏面と低熱膨張材6E又は6Fの表面を接合することができるので、電力用半導体装置全体としての放熱性の低下をより効果的に抑制することができる。   With such a configuration, the stress applied to the IGBT 1B caused by the difference in thermal expansion is the highest in the center of the element. By arranging the low thermal expansion material 6E or 6F in the diagonal direction where the distance from the center of the element is long, the solder layer Since the thermal deformation toward the center of the element can be restrained, the stress of the IGBT 1B can be reduced. In addition, the area immediately below the gate electrode 8 and the gate wiring 9 on the back surface of the IGBT 1B generates less heat than the other areas. Therefore, the low thermal expansion material 6E or 6F having a low thermal conductivity is arranged so as to correspond to the position of the gate electrode 8 and the gate wiring 9, thereby corresponding to the heat generation distribution on the back surface of the IGBT 1B and the low thermal expansion of the IGBT 1B. Since the surfaces of the materials 6E or 6F can be bonded, it is possible to more effectively suppress a decrease in heat dissipation as the entire power semiconductor device.

また、半導体素子の直下に大きなはんだボイドが存在すると、特に半導体素子が薄い場合に、はんだボイド上にアルミワイヤ5を接合する際のダメージによる製品不良率の増加が懸念されるとともに、素子に大電流を通電する際にはんだボイド上で温度が急上昇し最悪の場合には素子が動作しなくなるため、X線検査等によって半導体素子の直下、特にアルミワイヤ5の直下におけるはんだボイドの有無を検査する必要がある。ここで、はんだ層が多層になると、どの層にはんだボイドが存在するのかを判別するのが困難となる場合や、X線の透過性が悪化しはんだボイドの認識が難しくなる場合が存在した。   In addition, when a large solder void exists directly under the semiconductor element, particularly when the semiconductor element is thin, there is a concern about an increase in product defect rate due to damage when joining the aluminum wire 5 on the solder void. When energizing current, the temperature rises rapidly on the solder void and the element does not operate in the worst case. Therefore, the presence or absence of the solder void directly under the semiconductor element, particularly directly under the aluminum wire 5 is inspected by X-ray inspection or the like. There is a need. Here, when there are multiple solder layers, it may be difficult to determine which layer has a solder void, or there may be a case where X-ray permeability is deteriorated and solder void is difficult to recognize.

しかし、本実施の形態では、アルミワイヤ5を低熱膨張材6Eの配置された領域上を除く位置で接合することで、アルミワイヤ5直下のはんだ層は多層となることがないため、はんだ層が多層となった場合と比較してX線検査等によるはんだボイドの検査が容易となり、アルミワイヤ5の接合時におけるダメージの発生を抑制することができる。さらに、IGBT1Bを断続的に通電することで発生する温度変化については、熱伝導率の低い低熱膨張材6Eが配置された領域上が最も大きくなるが、アルミワイヤ5の接合部は低熱膨張材6Eが配置された領域以外の領域上に位置するため、IGBT1Bの通電による温度変化に対するアルミワイヤ5の接合部の信頼性を向上させることができる。   However, in the present embodiment, by joining the aluminum wire 5 at a position excluding the region where the low thermal expansion material 6E is disposed, the solder layer directly below the aluminum wire 5 does not become multi-layered. Compared to the case of multiple layers, the inspection of solder voids by X-ray inspection or the like is facilitated, and the occurrence of damage when the aluminum wire 5 is joined can be suppressed. Further, regarding the temperature change generated by intermittently energizing the IGBT 1B, the region where the low thermal expansion material 6E with low thermal conductivity is arranged is the largest, but the joint portion of the aluminum wire 5 is the low thermal expansion material 6E. Therefore, it is possible to improve the reliability of the joint portion of the aluminum wire 5 against a temperature change caused by energization of the IGBT 1B.

また、素子の中央にゲート電極9を有する半導体素子においては、図12に示すIGBT1Cのように、ゲート配線9を複数備えるものも存在する。このような半導体素子を用いる場合には、図13に示す低熱膨張材6Gを用いることができる。なお、図13において、破線はIGBT1Cの平面位置を示している。低熱膨張材6Gは、IGBT1Cの対向する二辺と複数のゲート配線9に沿うような形状となっている。これにより、IGBT1Cの裏面の発熱分布に対応するように、IGBT1Cの裏面と低熱膨張材6Eの表面とを接合することができるため、電力用半導体装置の放熱性の低下を効果的に抑制することができる。   Further, some semiconductor elements having the gate electrode 9 at the center of the element include a plurality of gate wirings 9 as in the IGBT 1C shown in FIG. When such a semiconductor element is used, a low thermal expansion material 6G shown in FIG. 13 can be used. In FIG. 13, the broken line indicates the planar position of the IGBT 1C. The low thermal expansion material 6G has a shape along the two opposing sides of the IGBT 1C and the plurality of gate wirings 9. Thereby, since the back surface of IGBT1C and the surface of the low thermal expansion material 6E can be joined so as to correspond to the heat generation distribution on the back surface of IGBT1C, it is possible to effectively suppress a decrease in heat dissipation of the power semiconductor device. Can do.

なお、本発明は、発明の範囲内において、各実施の形態を自由に組み合わせることや、各実施の形態を適宜、変形、省略することが可能である。   Note that the present invention can be freely combined with each other within the scope of the invention, and each embodiment can be modified or omitted as appropriate.

1A、1B、1C IGBT
2 FWD
3 回路基板
3A ベース
3B 絶縁層
3C 回路パターン
4 はんだ
4A 高液相線はんだ
4B 低液相線はんだ
5 アルミワイヤ
6A、6B、6C、6D、6E、6F、6G 低熱膨張材
7 終端構造
8 ゲート電極
9 ゲート配線
100 電力用半導体装置
1A, 1B, 1C IGBT
2 FWD
3 Circuit board 3A Base 3B Insulating layer 3C Circuit pattern 4 Solder 4A High liquid phase solder 4B Low liquid phase solder 5 Aluminum wire 6A, 6B, 6C, 6D, 6E, 6F, 6G Low thermal expansion material 7 Termination structure 8 Gate electrode 9 Gate wiring 100 Power semiconductor device

Claims (8)

半導体素子と、
前記半導体素子の第一の主面に対向し、前記半導体素子の第一の主面と電気的に接続される回路基板と、
前記半導体素子の第一の主面と前記回路基板の主面とが対向する空間の一部を含んだ領域に配置され、前記回路基板よりも熱膨張率が低くかつ剛性が高い低熱膨張材と、
前記半導体素子の第一の主面と前記回路基板の主面、前記半導体素子の第一の主面と前記低熱膨張材の第一の主面、及び前記低熱膨張材の第二の主面と前記回路基板の主面とをそれぞれ少なくとも一部の領域で接合し、前記低熱膨張材よりも熱伝導率が高い接合材と、
を備えたことを特徴とする電力用半導体装置。
A semiconductor element;
A circuit board facing the first main surface of the semiconductor element and electrically connected to the first main surface of the semiconductor element;
A low thermal expansion material disposed in a region including a part of a space where the first main surface of the semiconductor element and the main surface of the circuit board are opposed to each other, having a lower coefficient of thermal expansion and higher rigidity than the circuit board; ,
A first main surface of the semiconductor element and a main surface of the circuit board; a first main surface of the semiconductor element; a first main surface of the low thermal expansion material; and a second main surface of the low thermal expansion material. Bonding the main surface of the circuit board in each of at least a part of the region, a bonding material having a higher thermal conductivity than the low thermal expansion material,
A power semiconductor device comprising:
前記接合材は、前記半導体素子の第一の主面と前記低熱膨張材の第一の主面とを、前記半導体素子の第一の主面における発熱分布に対応して接合する、
ことを特徴とする請求項1に記載の電力用半導体装置。
The bonding material bonds the first main surface of the semiconductor element and the first main surface of the low thermal expansion material corresponding to the heat generation distribution on the first main surface of the semiconductor element,
The power semiconductor device according to claim 1.
前記半導体素子の第一の主面において前記低熱膨張材の第一の主面が接合される第一の領域での単位面積当たりの発熱量は、前記半導体素子の第一の主面において前記回路基板の主面が接合される第二の領域での単位面積当たりの発熱量よりも小さい、
ことを特徴とする請求項2に記載の電力用半導体装置。
The amount of heat generated per unit area in the first region where the first main surface of the low thermal expansion material is joined to the first main surface of the semiconductor element is the circuit in the first main surface of the semiconductor element. Less than the calorific value per unit area in the second region where the main surface of the substrate is joined,
The power semiconductor device according to claim 2.
前記低熱膨張材は、前記半導体素子の第一の主面の外周に沿って枠形状に配置される、
ことを特徴とする請求項1ないし3のいずれか1項に記載の電力用半導体装置。
The low thermal expansion material is arranged in a frame shape along the outer periphery of the first main surface of the semiconductor element.
The power semiconductor device according to claim 1, wherein the power semiconductor device is a power semiconductor device.
前記低熱膨張材は、前記半導体素子の第一の主面の中央部で交差する、
ことを特徴とする請求項1ないし3のいずれか1項に記載の電力用半導体装置。
The low thermal expansion material intersects at the center of the first main surface of the semiconductor element;
The power semiconductor device according to claim 1, wherein the power semiconductor device is a power semiconductor device.
前記低熱膨張材は、前記半導体素子の第一の主面の対向する二辺と前記対向する二辺に垂直に引いた直線とに沿って配置される
ことを特徴とする請求項1ないし3のいずれか1項に記載の電力用半導体装置。
The low thermal expansion material is arranged along two opposing sides of the first main surface of the semiconductor element and a straight line drawn perpendicular to the opposing two sides. The power semiconductor device according to claim 1.
前記接合材は、
前記半導体素子の第一の主面と前記回路基板の主面、及び前記半導体素子の第一の主面と前記低熱膨張材の第一の主面とを接合する第一の接合材と、
前記回路基板の主面と前記低熱膨張材の第二の主面とを接合し、前記第一の接合材よりも液相線温度が高い第二の接合材とで構成される、
ことを特徴とする請求項1ないし6のいずれか1項に記載の電力用半導体装置。
The bonding material is
A first bonding material for bonding the first main surface of the semiconductor element and the main surface of the circuit board, and the first main surface of the semiconductor element and the first main surface of the low thermal expansion material;
The main surface of the circuit board and the second main surface of the low thermal expansion material are bonded, and configured by a second bonding material having a higher liquidus temperature than the first bonding material,
The power semiconductor device according to claim 1, wherein the power semiconductor device is a power semiconductor device.
前記半導体素子は、前記第一の主面と反対側の面である第二の主面に電極を備え、
前記電極は、前記低熱膨張材が配置されていない領域上で金属線材と接合される、
ことを特徴とする請求項1ないし7のいずれか1項に記載の電力用半導体装置。
The semiconductor element includes an electrode on a second main surface which is a surface opposite to the first main surface,
The electrode is joined to a metal wire on a region where the low thermal expansion material is not disposed.
The power semiconductor device according to claim 1, wherein the power semiconductor device is a power semiconductor device.
JP2012182582A 2012-08-21 2012-08-21 Power semiconductor device Pending JP2014041876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012182582A JP2014041876A (en) 2012-08-21 2012-08-21 Power semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012182582A JP2014041876A (en) 2012-08-21 2012-08-21 Power semiconductor device

Publications (1)

Publication Number Publication Date
JP2014041876A true JP2014041876A (en) 2014-03-06

Family

ID=50393924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012182582A Pending JP2014041876A (en) 2012-08-21 2012-08-21 Power semiconductor device

Country Status (1)

Country Link
JP (1) JP2014041876A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018020640A1 (en) * 2016-07-28 2018-12-13 三菱電機株式会社 Semiconductor device
JP2020115520A (en) * 2019-01-18 2020-07-30 三菱電機株式会社 Manufacturing method of power semiconductor device, power semiconductor device and power conversion apparatus
US11600541B2 (en) 2020-02-14 2023-03-07 Fuji Electric Co., Ltd. Semiconductor module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59186332A (en) * 1983-04-06 1984-10-23 Hitachi Ltd Semiconductor device
JP2003133337A (en) * 2001-10-23 2003-05-09 Nissan Motor Co Ltd Semiconductor-mounting structure and semiconductor mounting method
JP2007150040A (en) * 2005-11-29 2007-06-14 Mitsubishi Electric Corp Semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59186332A (en) * 1983-04-06 1984-10-23 Hitachi Ltd Semiconductor device
JP2003133337A (en) * 2001-10-23 2003-05-09 Nissan Motor Co Ltd Semiconductor-mounting structure and semiconductor mounting method
JP2007150040A (en) * 2005-11-29 2007-06-14 Mitsubishi Electric Corp Semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018020640A1 (en) * 2016-07-28 2018-12-13 三菱電機株式会社 Semiconductor device
US12009332B2 (en) 2016-07-28 2024-06-11 Mitsubishi Electric Corporation Semiconductor device having high yield strength intermediate plate
JP2020115520A (en) * 2019-01-18 2020-07-30 三菱電機株式会社 Manufacturing method of power semiconductor device, power semiconductor device and power conversion apparatus
JP7034105B2 (en) 2019-01-18 2022-03-11 三菱電機株式会社 Manufacturing method of power semiconductor device, power semiconductor device and power conversion device
US11600541B2 (en) 2020-02-14 2023-03-07 Fuji Electric Co., Ltd. Semiconductor module

Similar Documents

Publication Publication Date Title
JP6983187B2 (en) Power semiconductor devices
JP5542567B2 (en) Semiconductor device
JP7060104B2 (en) Semiconductor device
JP6218898B2 (en) Power semiconductor device
US20120306086A1 (en) Semiconductor device and wiring substrate
CN108735692B (en) Semiconductor device with a semiconductor device having a plurality of semiconductor chips
JP6604926B2 (en) Semiconductor module
JP6988345B2 (en) Semiconductor device
JP5182274B2 (en) Power semiconductor device
US20130112993A1 (en) Semiconductor device and wiring substrate
JP2019125708A (en) Semiconductor device
JPWO2021002132A1 (en) Circuit structure of semiconductor module
WO2017183222A1 (en) Semiconductor device and method for manufacturing same
WO2014021077A1 (en) Multilayer substrate and power module using multilayer substrate
JP5054755B2 (en) Semiconductor device
JP2014041876A (en) Power semiconductor device
JP5217015B2 (en) Power converter and manufacturing method thereof
JP2019134018A (en) Semiconductor device
JP2007215302A (en) Inverter apparatus
JP2015026667A (en) Semiconductor module
JP6316221B2 (en) Semiconductor device
JP5724415B2 (en) Semiconductor module
WO2022009557A1 (en) Semiconductor device and semiconductor chip
JP5444486B2 (en) Inverter device
JP2009064904A (en) Copper circuit board and semiconductor module device using the same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20140326

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150303

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20150401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151027

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160301