JP2014040859A - Bearing lining method - Google Patents

Bearing lining method Download PDF

Info

Publication number
JP2014040859A
JP2014040859A JP2012183102A JP2012183102A JP2014040859A JP 2014040859 A JP2014040859 A JP 2014040859A JP 2012183102 A JP2012183102 A JP 2012183102A JP 2012183102 A JP2012183102 A JP 2012183102A JP 2014040859 A JP2014040859 A JP 2014040859A
Authority
JP
Japan
Prior art keywords
bearing
primary
build
welding
weld
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012183102A
Other languages
Japanese (ja)
Other versions
JP5984578B2 (en
Inventor
Takaaki Kaikogi
高明 貝漕
Chihiro Yoshimine
千尋 吉峰
Naoto Tochitani
直人 杼谷
Yuki Sumi
侑樹 角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2012183102A priority Critical patent/JP5984578B2/en
Publication of JP2014040859A publication Critical patent/JP2014040859A/en
Application granted granted Critical
Publication of JP5984578B2 publication Critical patent/JP5984578B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/14Special methods of manufacture; Running-in
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2223/00Surface treatments; Hardening; Coating
    • F16C2223/30Coating surfaces
    • F16C2223/46Coating surfaces by welding, e.g. by using a laser to build a layer

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a bearing lining method capable of easily preventing a reduction in strength of a lining layer formed by welding.SOLUTION: A bearing lining method comprises: a primary welding step S1 of sequentially forming primary overlay welding portions 1 extending in a first direction along a bearing surface 5 of a bearing at intervals toward a second direction perpendicular to the first direction with respect to the bearing surface 5; and a secondary welding step S2 of sequentially forming secondary overlay welding portions 2 extending in the first direction among the primary overlay welding portions 1 adjacent to one another on the bearing surface 5 such that each of the primary overlay welding portions 1 is interposed between each pair of the secondary overlay welding portions from the second direction.

Description

本発明は、軸受に対する肉盛溶接を用いた軸受ライニング方法に関する。   The present invention relates to a bearing lining method using overlay welding on a bearing.

様々な分野で使用されている軸受には、筒体状に形成された軸受本体(裏金)の内周面にホワイトメタルなどの低融点金属からなる軸受材料をライニングし、そのライニング層を規定厚まで切削研磨加工して製造されるものがある。ホワイトメタルを裏金にライニングするためには、予め裏金に錫あるいは半田メッキを施工し、遠心鋳造法等によって裏金の内周面にホワイトメタルをライニングする。遠心鋳造法は、筒体状の裏金を軸周りに回転させながら、その内周面に軸受材料を注ぎ込み、軸受材料を遠心力によって裏金の内周面に張り付けた状態で冷却凝固させ、ライニング層を得るものである。   For bearings used in various fields, a bearing material made of a low melting point metal such as white metal is lined on the inner peripheral surface of a cylindrical bearing body (back metal), and the lining layer has a specified thickness. Some are manufactured by cutting and polishing. In order to line the white metal on the back metal, tin or solder plating is applied to the back metal in advance, and the white metal is lined on the inner peripheral surface of the back metal by a centrifugal casting method or the like. In the centrifugal casting method, while rotating the cylindrical back metal around the axis, the bearing material is poured into the inner peripheral surface, and the bearing material is cooled and solidified while being attached to the inner peripheral surface of the back metal by centrifugal force. Is what you get.

ライニング層の成形に不良がある場合、即ち、ライニング層に欠陥や組織の粗大がある場合、軸受を使用中にライニング層が剥離などを起こし使用している自動車やタービン等に致命的な不具合を生じる可能性がある。   If there is a defect in the molding of the lining layer, that is, if there is a defect or coarse structure in the lining layer, the lining layer may peel off during use of the bearing, causing a fatal problem to the automobile or turbine that is being used. It can happen.

このような状態を回避するため、一般に自動車用軸受等の小物軸受は比較的安価であることから、長期間使用し使用不能となる前に新しいものと交換される。しかし、火力発電等に用いられるタービン等に用いられる大型軸受は高価であるため、使用不能な軸受を補修する方法が用いられる。補修方法は、裏金にライニングされたホワイトメタルを機械加工で削除した後、再び新規製造時と同様に遠心鋳造方法等を用いる方法がある。ただし、この方法では、鋳造を再び行うために鋳造設備等が備えられている作業可能な場所まで軸受を持ち帰る必要があり、現地での補修作業は難しく、さらに、補修を行っても裏金に変形を生じるという問題がある。   In order to avoid such a state, small bearings such as automobile bearings are generally relatively inexpensive, and are used for a long time and replaced with new ones before they become unusable. However, since a large bearing used for a turbine or the like used for thermal power generation is expensive, a method of repairing an unusable bearing is used. As a repair method, there is a method in which the white metal lined on the back metal is deleted by machining, and then the centrifugal casting method or the like is used again in the same manner as in the new production. However, with this method, it is necessary to bring the bearing back to a workable place where casting equipment is provided in order to perform casting again, and it is difficult to perform on-site repair work. There is a problem of producing.

そこで、肉盛溶接によって裏金にライニングを施す軸受製造・補修方法が用いられている。例えば、特許文献1では、溶接ワイヤを用いる代りに低融点金属からなる板を内周面に嵌合するように成型して溶接し、偏析のない微細組織を得ることにより、軸受の耐久性向上を図る方法がある。   Therefore, a bearing manufacturing / repair method in which the back metal is lined by overlay welding is used. For example, in Patent Document 1, instead of using a welding wire, a low-melting-point metal plate is molded and welded so as to be fitted to the inner peripheral surface, thereby obtaining a microstructure without segregation, thereby improving the durability of the bearing. There is a way to plan.

特開平3−79115号公報JP-A-3-79115

しかしながら、肉盛溶接を用いる方法では、入熱が大きくなることによって溶接部の冷却速度が低下することや、繰り返し入熱されることにより溶接部が局所的に高温となることによって結晶組織の成分に偏析が生じ、ライニング層の強度の低下を招く可能性がある。   However, in the method using overlay welding, the cooling rate of the welded portion decreases due to an increase in heat input, or the welded portion locally becomes high temperature due to repeated heat input, resulting in a component of crystal structure. Segregation may occur, leading to a decrease in the strength of the lining layer.

本発明は、上記課題を解決するためになされたものであって、溶接によって形成されるライニング層の強度の低下を抑えることが容易にできる軸受ライニング方法を提供するものである。   The present invention has been made to solve the above-described problems, and provides a bearing lining method that can easily suppress a decrease in strength of a lining layer formed by welding.

上記課題を解決するために、本発明は以下の手段を提案している。
本発明の一態様に係る軸受ライニング方法は、軸受の軸受面に対して、該軸受面に沿った第一方向に延在する一次肉盛溶接部を、前記第一方向に直交する第二方向に向かって間隔をあけて順次形成する一次溶接工程と、前記軸受面において隣り合う前記一次肉盛溶接部の間に、前記第一方向に延在する二次肉盛溶接部を、前記一次肉盛溶接部を前記第二方向から挟むように順次形成する二次溶接工程と、を備えることを特徴とする。
In order to solve the above problems, the present invention proposes the following means.
The bearing lining method which concerns on 1 aspect of this invention is the 2nd direction orthogonal to the said 1st direction for the primary build-up weld part extended in the 1st direction along this bearing surface with respect to the bearing surface of a bearing. A secondary build-up weld that extends in the first direction between a primary welding step that is sequentially formed with an interval toward the surface and the primary build-up weld that is adjacent to the bearing surface. And a secondary welding step of sequentially forming the welded portion so as to sandwich the second welded portion from the second direction.

このような構成によれば、間をあけて一次肉盛溶接部を形成することで隣り合って形成される一次肉盛溶接部の入熱からの影響を抑えることができる。さらに、一次肉盛溶接部を形成した後に、前記第二方向から二次肉盛溶接部で一次肉盛溶接部を挟むように形成することで、一次肉盛溶接部を形成した後、時間を空けて二次肉盛溶接部を形成することになる。したがって、一次肉盛溶接部が冷却された後に二次肉盛溶接部を形成することができるため、局所的に与える入熱を小さくすることができる。これらによって,冷却速度の低下を抑えることができ、ライニング層の結晶組織を均一に形成できる。   According to such a structure, it can suppress the influence from the heat input of the primary build-up weld part formed adjacently by forming a primary build-up weld part at intervals. Furthermore, after forming the primary build-up weld, after forming the primary build-up weld by forming the primary build-up weld with the secondary build-up weld from the second direction, A secondary build-up weld is formed by emptying. Therefore, since the secondary build-up weld can be formed after the primary build-up weld is cooled, the locally applied heat input can be reduced. By these, the fall of a cooling rate can be suppressed and the crystal structure of a lining layer can be formed uniformly.

また、本発明の他の態様に係る軸受ライニング方法は、前記軸受面が、円筒形状をなす軸受の内周面であって、前記第一方向が、前記軸受面の軸方向に向かうにしたがって該軸受面の周方向に捩じれる螺旋方向であり、前記第二方向が、前記軸方向であることを特徴とする。   In the bearing lining method according to another aspect of the present invention, the bearing surface is an inner peripheral surface of a bearing having a cylindrical shape, and the first direction is directed toward the axial direction of the bearing surface. The spiral direction is twisted in the circumferential direction of the bearing surface, and the second direction is the axial direction.

このような構成によれば、円筒形状の内周面である軸受面に対して、軸方向に向かうにしたがって該軸受面の周方向に捩じれる螺旋方向に一次肉盛溶接部を形成することで、螺旋状に軸方向に間隔をあけて連続して形成でき、同様に、二次肉盛溶接部も一次肉盛溶接部に沿うように螺旋状に形成することで連続して形成できる。つまり、一次肉盛溶接部と二次肉盛溶接部とをそれぞれ一回で形成することで、溶接によるライニング層を軸受面に対して容易に形成することができる。   According to such a configuration, the primary build-up weld is formed in the spiral direction that is twisted in the circumferential direction of the bearing surface as it goes in the axial direction with respect to the bearing surface that is the cylindrical inner peripheral surface. Further, it can be continuously formed in a spiral manner with an interval in the axial direction, and similarly, the secondary build-up weld can also be formed continuously by forming a spiral along the primary build-up weld. That is, the lining layer by welding can be easily formed with respect to the bearing surface by forming the primary build-up welded portion and the secondary build-up welded portion at a time.

さらに、本発明の他の態様に係る軸受ライニング方法は、前記軸受面が、円筒形状をなす軸受の内周面であって、前記第一方向が、前記軸受面の周方向であり、前記第二方向が、前記軸受面の軸方向であることを特徴とする。   Furthermore, in the bearing lining method according to another aspect of the present invention, the bearing surface is an inner circumferential surface of a cylindrical bearing, and the first direction is a circumferential direction of the bearing surface, The two directions are axial directions of the bearing surface.

このような構成によれば、円筒形状の内周面である軸受面に対して、一次肉盛溶接部を周方向にリング状をなし軸方向に間隔をあけて複数形成した後に、二次肉盛溶接部も同様に、一次肉盛溶接部を挟むようにリング状に形成する。これにより、入熱の影響を抑えながら、局所的に与える入熱も小さくするような溶接によるライニング層を円筒形状の内周面に対して周方向に容易に形成することができる。   According to such a configuration, after forming a plurality of primary build-up welds in a ring shape in the circumferential direction at intervals in the axial direction with respect to the bearing surface which is a cylindrical inner peripheral surface, a secondary wall is formed. Similarly, the build-up weld is formed in a ring shape so as to sandwich the primary build-up weld. Accordingly, it is possible to easily form a lining layer by welding in a circumferential direction with respect to the cylindrical inner peripheral surface so as to reduce the locally applied heat while suppressing the influence of heat input.

また、本発明の他の態様に係る軸受ライニング方法は、前記軸受面が、円筒形状をなす軸受の内周面であって、前記第一方向が、前記軸受面の軸方向であり、前記第二方向が、前記軸受面の周方向であることを特徴とする。   Further, in the bearing lining method according to another aspect of the present invention, the bearing surface is an inner peripheral surface of a cylindrical bearing, and the first direction is an axial direction of the bearing surface, The two directions are circumferential directions of the bearing surface.

このような構成によれば、円筒形状の内周面である軸受面に対して、一次肉盛溶接部を軸方向に直線状をなし周方向に間隔をあけて複数形成した後に、二次肉盛溶接部も同様に、一次肉盛溶接部を挟むように直線状に形成する。これにより、入熱の影響を抑えながら、局所的に与える入熱も小さくするような溶接によるライニング層を円筒形状の内周面に対して軸方向に容易に形成することができる。さらに、軸方向に直線状に形成することで、一次肉盛溶接部及び二次肉盛溶接部の一つ一つを形成する際に軸方向の往復に距離があり、次に溶接部を形成するまでに時間がかかるため、冷却を十分に行うことができる。   According to such a configuration, after forming a plurality of primary build-up welds in the axial direction on the bearing surface, which is a cylindrical inner peripheral surface, with a plurality of intervals in the circumferential direction, Similarly, the build-up weld is formed in a straight line so as to sandwich the primary build-up weld. Accordingly, it is possible to easily form a lining layer by welding in the axial direction with respect to the cylindrical inner peripheral surface so as to reduce the locally applied heat while suppressing the influence of heat input. Furthermore, by forming a straight line in the axial direction, there is a distance in the reciprocation in the axial direction when forming each of the primary and secondary welds, and then forming the weld. Since it takes time to do so, cooling can be sufficiently performed.

さらに、本発明の他の態様に係る軸受ライニング方法は、前記軸受面が、平面形状をなすことを特徴とする。   Furthermore, the bearing lining method according to another aspect of the present invention is characterized in that the bearing surface has a planar shape.

このような構成によれば、平面形状をなす軸受面に対して一次肉盛溶接部を第一方向に直線状をなして延在させ、第二方向に間隔をあけて形成した後に、二次肉盛溶接部も同様に、一次肉盛溶接部を挟むように直線状に形成する。これにより、入熱の影響を抑えながら、局所的に与える入熱も小さくするような溶接によるライニング層を平面形状の軸受面に対して容易に形成することができる。   According to such a configuration, the primary build-up welded portion extends linearly in the first direction with respect to the bearing surface having a planar shape, and is formed with an interval in the second direction. Similarly, the build-up weld is formed in a straight line so as to sandwich the primary build-up weld. Thereby, it is possible to easily form a lining layer by welding on the planar bearing surface so as to reduce the locally applied heat while suppressing the influence of heat input.

また、本発明の他の態様に係る軸受ライニング方法は、前記二次溶接工程の後に、前記軸受面における前記一次肉盛溶接部と前記二次肉盛溶接部との間に、前記第一方向に延在する追加肉盛溶接部を、前記第二方向に間隔をあけて順次形成する追加溶接工程を少なくとも一回備えることを特徴とする。   Moreover, the bearing lining method which concerns on the other aspect of this invention is a said 1st direction between the said primary build-up weld part and the said secondary build-up weld part in the said bearing surface after the said secondary welding process. And an additional welding step of sequentially forming additional build-up welds extending in the second direction at intervals in the second direction.

このような構成によれば、二次肉盛溶接部形成後に、二次肉盛溶接部と一次肉盛溶接部との間に、さらに追加肉盛溶接部を形成するため、一次肉盛溶接部同士及び二次肉盛溶接部同士の間隔さらに広げて溶接を行うことができ、一次肉盛溶接部や二次肉盛溶接部を形成する際の入熱からの影響をより抑えることができる。これにより、冷却速度の低下をより抑えることができ、ライニング層の結晶組織をより均一に形成できる   According to such a configuration, after the secondary build-up weld is formed, an additional build-up weld is formed between the secondary build-up weld and the primary build-up weld. It is possible to perform welding by further widening the distance between each other and the secondary build-up welds, and it is possible to further suppress the influence from heat input when forming the primary build-up welds and the secondary build-up welds. Thereby, the fall of a cooling rate can be suppressed more and the crystal structure of a lining layer can be formed more uniformly.

さらに、本発明の他の態様に係る軸受ライニング方法は、前記一次肉盛溶接部と前記二次肉盛溶接部とが、前記第二方向の幅を2mm以上3mm以下の範囲として形成されることを特徴とする。   Furthermore, in the bearing lining method according to another aspect of the present invention, the primary build-up weld and the secondary build-up weld are formed with a width in the second direction of 2 mm or more and 3 mm or less. It is characterized by.

このような構成によれば、各肉盛溶接部の幅を狭くすることで一つ一つの肉盛溶接部の入熱をさらに小さくすることが可能となる。これにより、冷却速度の低下をさらに抑えることができ、ライニング層の結晶組織をさらに均一に形成できる。   According to such a configuration, it becomes possible to further reduce the heat input of each build-up welded portion by narrowing the width of each build-up weld. Thereby, the fall of a cooling rate can further be suppressed and the crystal structure of a lining layer can be formed more uniformly.

また、本発明の他の態様に係る軸受ライニング方法は、前記一次溶接工程と前記二次溶接工程における溶接速度が、溶接速度と溶接品質とを関係づけた評価データと、予め設定される溶接速度許容限度と、予め設定される溶接品質許容限度と、に基づいて決定されることをさらに有することを特徴とする。   In the bearing lining method according to another aspect of the present invention, the welding speed in the primary welding process and the secondary welding process is the evaluation data relating the welding speed and the welding quality, and the welding speed set in advance. It is further characterized in that it is determined based on an allowable limit and a preset welding quality allowable limit.

このような構成によれば、実際に溶接を行う際に許容できる時間から算出される溶接速度許容限度と、必要とされる強度から算出される溶接品質限度とから、溶接速度を決定することで、必要な強度を有した溶接部を最適な溶接速度で形成することができ、溶接時間を短縮することができる。   According to such a configuration, the welding speed is determined from the welding speed allowable limit calculated from the allowable time when welding is actually performed and the welding quality limit calculated from the required strength. The welded portion having the required strength can be formed at the optimum welding speed, and the welding time can be shortened.

本発明の軸受ライニング方法によれば、隣に形成される溶接部による入熱の影響を抑えたり、局所的に与える入熱を抑えたりすることで、冷却速度の低下を抑えてライニング層の結晶組織を均一に形成し、溶接によって形成されるライニング層の強度の低下を抑えることが容易にできる。   According to the bearing lining method of the present invention, the effect of heat input by the welded portion formed next is suppressed, or the heat input given locally is suppressed, so that the cooling rate is reduced and the lining layer crystals are suppressed. A structure can be formed uniformly, and a decrease in strength of the lining layer formed by welding can be easily suppressed.

本発明の第一実施形態に係る軸受ライニング方法の行程を説明する模式図で、同図(a)は溶接工程完了後の側面図、同図(b)は一次溶接工程後の横断面図、同図(c)は二次溶接工程後の横断面図である。The schematic diagram explaining the process of the bearing lining method which concerns on 1st embodiment of this invention, The figure (a) is a side view after completion of a welding process, The figure (b) is a cross-sectional view after a primary welding process, FIG. 2C is a cross-sectional view after the secondary welding process. 本発明の第二実施形態に係る軸受ライニング方法の行程を説明する模式図で、同図(a)は溶接工程完了後の側面図、同図(b)は一次溶接工程後の横断面図、同図(c)は二次溶接工程後の横断面図である。The schematic diagram explaining the process of the bearing lining method which concerns on 2nd embodiment of this invention, The figure (a) is a side view after completion of a welding process, The figure (b) is a cross-sectional view after a primary welding process, FIG. 2C is a cross-sectional view after the secondary welding process. 本発明の第三実施形態に係る軸受ライニング方法の行程を説明する模式図で、同図(a)は一次溶接工程後の側面図、同図(b)は二次溶接工程後の側面図、同図(b)は一次溶接工程後の横断面図、同図(c)は二次溶接工程後の横断面図である。The schematic diagram explaining the process of the bearing lining method which concerns on 3rd embodiment of this invention, The figure (a) is a side view after a primary welding process, The figure (b) is the side view after a secondary welding process, FIG. 4B is a cross-sectional view after the primary welding process, and FIG. 4C is a cross-sectional view after the secondary welding process. 本発明の第四実施形態に係る軸受ライニング方法の行程を説明する模式図で、同図(a)は一次溶接工程後の斜視図、同図(b)は二次溶接工程後の斜視図である。The schematic diagram explaining the process of the bearing lining method which concerns on 4th embodiment of this invention, The figure (a) is a perspective view after a primary welding process, The figure (b) is a perspective view after a secondary welding process. is there. 本発明の第五実施形態に係る軸受ライニング方法の行程を説明する模式図で、同図(a)は一次溶接工程後の横断面図、同図(b)は二次溶接工程後の横断面図、同図(c)は追加溶接工程後の横断面図である。It is a schematic diagram explaining the process of the bearing lining method which concerns on 5th embodiment of this invention, The figure (a) is a cross-sectional view after a primary welding process, The figure (b) is a cross-section after a secondary welding process. The figure and the figure (c) are the cross-sectional views after an additional welding process. 本発明の変形例に係る軸受ライニング方法の行程を説明する模式図で、同図(a)は一次平面渦溶接工程後の斜視図、同図(b)は二次平面渦溶接工程後の斜視図である。FIG. 5 is a schematic diagram for explaining a process of a bearing lining method according to a modification of the present invention, in which FIG. (A) is a perspective view after a primary plane vortex welding process, and (b) is a perspective view after a secondary plane vortex welding process. FIG. 本発明の第六実施形態に係る軸受ライニング方法における溶接速度と溶接品質の関係を表すグラフである。It is a graph showing the relationship between the welding speed and the welding quality in the bearing lining method which concerns on 6th embodiment of this invention.

以下、本発明に係る第一実施形態について図1を参照して説明する。
図1(a)に示すように、第一実施形態の軸受ライニング方法は、軸受4の軸受面5に対して、肉盛溶接によって一次肉盛溶接部1を形成する一次溶接工程S1と、一次溶接工程S1後に二次肉盛溶接部2を形成する二次溶接工程S2とを備える。
軸受4は、例えば、すべり軸受があり、軸線Oを中心とする円筒形状をなし、円筒形状の内周面である軸受面5を有している。
Hereinafter, a first embodiment according to the present invention will be described with reference to FIG.
As shown to Fig.1 (a), the bearing lining method of 1st embodiment is the primary welding process S1 which forms the primary build-up weld part 1 by build-up welding with respect to the bearing surface 5 of the bearing 4, and a primary A secondary welding step S2 for forming the secondary build-up weld 2 after the welding step S1.
The bearing 4 is, for example, a plain bearing, has a cylindrical shape centered on the axis O, and has a bearing surface 5 that is a cylindrical inner peripheral surface.

図1(b)に示すように、一次溶接工程S1は、円筒形状の内周面である軸受面5上に螺旋形状をなす一次肉盛溶接部1を形成する。一次肉盛溶接部1は、第一実施形態における第二方向である軸方向へ進みながら軸受面5上を第一実施形態における第一方向である軸方向に向かうに従って軸受面5の周方向に捩じれる螺旋方向へ旋回して、螺旋形状を描きながら一条ごとに間隔をあけて連続して複数条が順次形成される。   As shown in FIG.1 (b), primary welding process S1 forms the primary build-up welding part 1 which makes spiral shape on the bearing surface 5 which is a cylindrical internal peripheral surface. The primary build-up weld 1 proceeds in the circumferential direction of the bearing surface 5 toward the axial direction that is the first direction in the first embodiment on the bearing surface 5 while proceeding in the axial direction that is the second direction in the first embodiment. A plurality of strips are successively formed at intervals of one strip while drawing in a spiral shape by turning in a spiral direction to be twisted.

図1(c)に示すように、二次溶接工程S2は、一次溶接工程S1によって形成された一次肉盛溶接部1が充分に冷却された後に、螺旋形状をなす一次肉盛溶接部1の一条一条を軸方向から挟むように、二次肉盛溶接部2を形成する。二次肉盛溶接部2は、軸方向へ進みながら軸受面5上を螺旋方向へ旋回して、軸方向に向かうに従って軸受面5の周方向に捩じれる螺旋方向へ旋回して螺旋形状を描きながら一次肉盛溶接部1を二次肉盛溶接部2で挟むように一次肉盛溶接部1に沿って連続して複数条が順次形成される。   As shown in FIG.1 (c), secondary welding process S2 of primary build-up welding part 1 which makes spiral shape after primary build-up welding part 1 formed by primary welding process S1 is fully cooled. The secondary build-up weld 2 is formed so as to sandwich one line and one line from the axial direction. The secondary build-up weld 2 turns in a spiral direction on the bearing surface 5 while moving in the axial direction, and turns in a spiral direction that twists in the circumferential direction of the bearing surface 5 toward the axial direction to draw a spiral shape. However, a plurality of strips are successively formed along the primary build-up weld 1 so that the primary build-up weld 1 is sandwiched between the secondary build-up welds 2.

次に、上記構成の軸受ライニング方法の作用について説明する。
上記のような軸受ライニング方法によれば、一条ごとに間をあけて一次肉盛溶接部1を形成することで隣り合って形成される一次肉盛溶接部1の入熱からの影響を抑えることができる。さらに、一次肉盛溶接部1を形成した後に、一次肉盛溶接部1の一条一条の間に二次肉盛溶接部2を一次肉盛溶接部1で挟むように形成することで、一次肉盛溶接部1形成した後、時間を空けて二次肉盛溶接部2を形成することになる。したがって、一次肉盛溶接部1が冷却された後に二次肉盛溶接部2を形成することができるため、局所的に与える入熱を小さくすることができる。これらによって,冷却速度の低下を抑えることができ、ライニング層の結晶組織を均一に形成でき、ライニング層の強度の低下を抑えることができる。
Next, the operation of the bearing lining method having the above configuration will be described.
According to the above bearing lining method, the influence from the heat input of the primary build-up weld 1 formed adjacent to each other is formed by forming the primary build-up weld 1 with a gap for each line. Can do. Furthermore, after forming the primary build-up weld 1, the primary build-up weld 2 is formed so that the secondary build-up weld 2 is sandwiched between the primary build-up welds 1. After forming the build-up weld 1, the secondary build-up weld 2 is formed with a time interval. Therefore, since the secondary build-up weld 2 can be formed after the primary build-up weld 1 is cooled, the locally applied heat input can be reduced. As a result, a decrease in cooling rate can be suppressed, a crystal structure of the lining layer can be formed uniformly, and a decrease in strength of the lining layer can be suppressed.

また、円筒形状の内周面である軸受面5に対して、一次肉盛溶接部1を螺旋状に軸方向に一条ずつ間隔をあけて連続して形成でき、同様に、二次肉盛溶接部2も一次肉盛溶接部1に沿うように螺旋状に形成することで連続して形成できる。つまり、螺旋形状のため、間隔あけつつも一次肉盛溶接部1と二次肉盛溶接部2とをそれぞれ連続して一回で形成することで、溶接によるライニング層を軸受面5に対して容易に形成することができる。   Further, the primary build-up weld 1 can be continuously formed on the bearing surface 5 that is a cylindrical inner peripheral surface at intervals in the axial direction in a spiral manner, and similarly, secondary build-up welding is performed. The part 2 can also be formed continuously by forming a spiral shape along the primary build-up weld 1. In other words, because of the spiral shape, the primary build-up weld 1 and the secondary build-up weld 2 are formed in succession once in a space while being spaced apart, so that the lining layer by welding is formed on the bearing surface 5. It can be formed easily.

次に、図2を参照して第二実施形態の軸受ライニング方法について説明する。
第二実施形態においては第一実施形態と同様の構成要素には同一の符号を伏して詳細な説明を省略する。この第二実施形態の軸受ライニング方法は、一次溶接工程S1と二次溶接工程S2について第一実施形態と相違する。
Next, the bearing lining method of the second embodiment will be described with reference to FIG.
In the second embodiment, the same components as those in the first embodiment are given the same reference numerals, and detailed description thereof is omitted. The bearing lining method of the second embodiment is different from the first embodiment with respect to the primary welding step S1 and the secondary welding step S2.

即ち、第二実施形態では、円筒形状の内周面である軸受面5に対して、肉盛溶接によって一次リング肉盛溶接部11を形成する一次リング溶接工程S11と、一次リング溶接工程S11後に二次リング肉盛溶接部21を形成する二次リング溶接工程S21とを備える。   That is, in 2nd embodiment, after the primary ring welding process S11 which forms the primary ring build-up welding part 11 by overlay welding with respect to the bearing surface 5 which is a cylindrical internal peripheral surface, and primary ring welding process S11 A secondary ring welding step S21 for forming the secondary ring build-up weld 21.

図2(a)及び(b)に示すように、一次リング溶接工程S11は、円筒形状の内周面である軸受面5上にリング形状に一次リング肉盛溶接部11を形成した後に、第二実施形態における第二方向である軸方向に間隔をあけて一次リング肉盛溶接部11を複数形成する。一次リング肉盛溶接部11は、軸受面5上を第二実施形態における第一方向である軸線Oを中心とする周方向に延在してリング形状をなして形成される。   As shown in FIGS. 2A and 2B, the primary ring welding step S11 is performed after the primary ring build-up weld 11 is formed in a ring shape on the bearing surface 5 which is a cylindrical inner peripheral surface. A plurality of primary ring build-up welds 11 are formed at intervals in the axial direction that is the second direction in the second embodiment. The primary ring build-up weld 11 is formed in a ring shape extending on the bearing surface 5 in the circumferential direction centering on the axis O that is the first direction in the second embodiment.

図2(c)に示すように、二次リング溶接工程S21は、一次リング溶接工程S11で形成された一次リング肉盛溶接部11が充分に冷却された後に、一次リング溶接肉盛部と同様の方法で、一次リング肉盛溶接部11を軸方向から挟むように、一次リング肉盛溶接部11に沿って二次リング溶接肉盛部を複数形成する。二次リング肉盛溶接部21は、軸線Oを中心とする周方向に軸受面5上を延在してリング形状をなして形成される。   As shown in FIG. 2 (c), the secondary ring welding step S21 is the same as the primary ring welding build-up portion after the primary ring build-up weld portion 11 formed in the primary ring welding step S11 is sufficiently cooled. By this method, a plurality of secondary ring weld overlays are formed along the primary ring overlay weld 11 so as to sandwich the primary ring overlay weld 11 from the axial direction. The secondary ring build-up welded portion 21 is formed in a ring shape extending on the bearing surface 5 in the circumferential direction around the axis O.

上記のような第二実施形態の軸受ライニング方法によれば、円筒形状の内周面である軸受面5に対して、一次リング肉盛溶接部11を周方向にリング形状をなすように軸方向に間隔をあけて複数形成し、二次リング肉盛溶接部21も同様に、周方向にリング形状になすように、一次肉盛溶接部1を挟むように形成する。これによって、一次リング肉盛溶接部11と二次リング肉盛溶接部21とが互いに及ぼす入熱の影響を抑え、さらに、局所的に与える入熱も小さくするような溶接によるライニング層を、円筒形状の内周面に対して周方向に容易に形成することができる。   According to the bearing lining method of the second embodiment as described above, the axial direction so that the primary ring build-up welded portion 11 forms a ring shape in the circumferential direction with respect to the bearing surface 5 which is a cylindrical inner peripheral surface. The secondary ring build-up welds 21 are similarly formed so as to sandwich the primary build-up weld 1 so as to form a ring shape in the circumferential direction. As a result, a lining layer formed by welding that suppresses the influence of heat input exerted on the primary ring build-up welded portion 11 and the secondary ring build-up welded portion 21 with each other and also reduces the locally applied heat is formed into a cylindrical shape. It can be easily formed in the circumferential direction with respect to the inner peripheral surface of the shape.

次に、図3を参照して第三実施形態の軸受ライニング方法について説明する。
第三実施形態においては第一実施形態と同様の構成要素には同一の符号を伏して詳細な説明を省略する。この第三実施形態の軸受4補修方法は、一次肉盛溶接部1と二次肉盛溶接部2の形状について第一実施形態と相違する。
Next, the bearing lining method of the third embodiment will be described with reference to FIG.
In the third embodiment, the same components as those in the first embodiment are given the same reference numerals, and detailed description thereof is omitted. The bearing 4 repair method of the third embodiment is different from the first embodiment with respect to the shapes of the primary build-up weld 1 and the secondary build-up weld 2.

即ち、第三実施形態では、円筒形状の内周面である軸受面5に対して、肉盛溶接によって一次直線肉盛溶接部12を形成する一次直線溶接工程S12と、一次直線溶接工程S12後に二次直線肉盛溶接部22を形成する二次直線溶接工程S22とを備える。   That is, in the third embodiment, after the primary linear welding process S12 and the primary linear welding process S12 in which the primary linear overlay welding part 12 is formed by overlay welding on the bearing surface 5 which is a cylindrical inner peripheral surface. A secondary linear welding step S22 for forming the secondary linear build-up welded portion 22.

図3(a)及び(b)に示すように、一次直線溶接工程S12は、円筒形状の内周面である軸受面5上に対して、直線状に一次直線肉盛溶接部12を形成した後に、第三実施形態における第二方向である軸線Oを中心とする周方向を時計回りに間隔をあけて一次直線肉盛溶接部12を複数形成する。一次直線肉盛溶接部12は、軸受面5上を第三実施形態における第一方向である軸方向に延在して直線状をなすように形成される。   As shown in FIGS. 3A and 3B, in the primary linear welding step S <b> 12, the primary linear build-up weld 12 is linearly formed on the bearing surface 5 that is a cylindrical inner peripheral surface. After that, a plurality of primary linear build-up welds 12 are formed at intervals in the clockwise direction around the axis O that is the second direction in the third embodiment. The primary linear build-up welded portion 12 is formed so as to extend linearly on the bearing surface 5 in the axial direction that is the first direction in the third embodiment.

図3(c)及び(d)に示すように、二次直線溶接工程S22は、一次直線溶接工程S12で形成された一次直線肉盛溶接部12が充分に冷却された後に、一次直線肉盛溶接部12と同様の方法で、一次直線肉盛溶接部12に沿って周方向から挟むように、二次直線肉盛溶接部22を形成する。二次直線肉盛溶接部22は、軸受面5上を軸方向に延在して直線状をなすように形成される。   As shown in FIGS. 3C and 3D, the secondary linear welding process S22 is performed after the primary linear overlay welding part 12 formed in the primary linear welding process S12 is sufficiently cooled. In the same manner as the welded portion 12, the secondary straight overlay welded portion 22 is formed so as to be sandwiched from the circumferential direction along the primary straight overlay welded portion 12. The secondary straight built-up welded portion 22 is formed so as to extend linearly on the bearing surface 5 in the axial direction.

上記のような第三実施形態の軸受ライニング方法によれば、円筒形状の内周面である軸受面5に対して、一次直線肉盛溶接部12を軸方向に直線状をなし、軸線Oを中心とする周方向に間隔をあけて複数形成した後に、二次直線肉盛溶接部22も同様に、一次直線肉盛溶接部12を挟むように直線状に形成する。これによって、一次直線肉盛溶接部12と二次直線肉盛溶接部22とが互いに及ぼす入熱の影響を抑え、さらに、局所的に与える入熱も小さくするような溶接によるライニング層を、円筒形状の内周面に対して軸方向に容易に形成することができる。また、軸方向に直線状に形成することで、一次直線肉盛溶接部12及び二次直線肉盛溶接部22の一つ一つを形成する際に軸方向の往復に距離があり、次に溶接部を形成するまでに時間がかかるため、冷却を十分に行うことができ、ライニング層の強度の低下を効果的に抑えることができる。   According to the bearing lining method of the third embodiment as described above, with respect to the bearing surface 5 which is a cylindrical inner peripheral surface, the primary linear overlay welding portion 12 is linearly formed in the axial direction, and the axis O is After forming a plurality at intervals in the circumferential direction as the center, the secondary linear build-up welds 22 are similarly formed linearly so as to sandwich the primary straight build-up welds 12. As a result, a lining layer formed by welding which suppresses the influence of heat input exerted on the primary linear build-up welded portion 12 and the secondary linear build-up welded portion 22 and reduces the locally applied heat is formed into a cylindrical shape. It can be easily formed in the axial direction with respect to the inner peripheral surface of the shape. In addition, by forming linearly in the axial direction, there is a distance in the axial reciprocation when forming each of the primary linear build-up weld 12 and the secondary straight build-up weld 22. Since it takes time to form the welded portion, the cooling can be sufficiently performed, and the decrease in the strength of the lining layer can be effectively suppressed.

次に、図4を参照して第四実施形態の軸受ライニング方法について説明する。
第四実施形態においては第一実施形態と同様の構成要素には同一の符号を伏して詳細な説明を省略する。この第四実施形態の軸受ライニング方法は、軸受面5の形状及び一次溶接工程S1と二次溶接工程S2について第一実施形態と相違する。
Next, a bearing lining method according to a fourth embodiment will be described with reference to FIG.
In the fourth embodiment, the same components as those in the first embodiment are given the same reference numerals, and detailed description thereof is omitted. The bearing lining method of the fourth embodiment is different from that of the first embodiment with respect to the shape of the bearing surface 5 and the primary welding step S1 and the secondary welding step S2.

即ち、第四実施形態では、図4(a)、(b)に示すように、円筒形状の頂面をなす平面である平面軸受面51に対して、肉盛溶接によって一次平面肉盛溶接部13を形成する一次平面溶接工程S13と、一次平面溶接工程S13後に二次平面肉盛溶接部23を形成する二次平面溶接工程S23とを備える。
軸受4は、例えば、スラスト軸受があり、軸線Oを中心とする円筒形状をなし、円筒形状の頂面であり軸線Oと直交する平面である平面軸受面51を有している。
That is, in the fourth embodiment, as shown in FIGS. 4 (a) and 4 (b), a primary planar overlay welded portion is formed by overlay welding on a planar bearing surface 51 that is a flat surface forming a cylindrical top surface. The primary plane welding process S13 which forms 13 and the secondary plane welding process S23 which forms the secondary plane overlay welding part 23 after the primary plane welding process S13 are provided.
The bearing 4 is, for example, a thrust bearing, has a cylindrical shape centered on the axis O, and has a flat bearing surface 51 that is a top surface of the cylinder and is a plane orthogonal to the axis O.

図4(a)に示すように、一次平面溶接工程S13は、平面軸受面51に沿った第四実施形態における第一方向である第一平面方向X(図4紙面奥行方向)に向かって直線状に一次平面肉盛溶接部13を形成した後に、第四実施形態における第一方向であり、軸受面5に沿って第一平面方向Xと直交する第二平面方向Y(図4紙面左右方向)に間隔をあけて一次平面肉盛溶接部13を複数形成する。一次平面肉盛溶接部13は、平面軸受面51上を第一平面方向Xに延在して直線状になすように形成される。   As shown to Fig.4 (a), primary plane welding process S13 is straight line toward 1st plane direction X (FIG. 4 paper surface depth direction) which is the 1st direction in 4th embodiment along the plane bearing surface 51. As shown in FIG. After forming the primary plane build-up weld 13 in the shape, the second plane direction Y in the fourth embodiment and perpendicular to the first plane direction X along the bearing surface 5 (left and right direction in FIG. 4). A plurality of primary plane build-up welds 13 are formed at intervals. The primary planar overlay welded portion 13 is formed so as to extend in the first planar direction X on the planar bearing surface 51 and form a linear shape.

図4(b)に示すように、二次平面溶接工程S23は、一次平面溶接工程S13で形成された一次平面肉盛溶接部13が充分に冷却された後に、一次平面肉盛溶接部13と同様の方法で、一次平面肉盛溶接部13に沿って第二平面方向Yから挟むように、二次平面肉盛溶接部23を形成する。二次平面肉盛溶接部23は、第一平面方向Xに延在して直線状になすように形成される。   As shown in FIG. 4B, the secondary flat surface welding step S23 is performed after the primary flat surface buildup welded portion 13 formed in the primary flat surface weld step S13 is sufficiently cooled. In the same manner, the secondary planar overlay welded portion 23 is formed so as to be sandwiched from the second planar direction Y along the primary planar overlay welded portion 13. The secondary plane build-up welded portion 23 is formed to extend in the first plane direction X to be linear.

上記のような第四実施形態の軸受ライニング方法によれば、スラスト軸受のような平面形状をなす軸受面5に対して、一次平面肉盛溶接部13を第一平面方向Xに直線状をなして延在させ、第二平面方向Yに間隔をあけて形成した後に、二次平面肉盛溶接部23も同様に、一次平面肉盛溶接部13を挟むように直線状に形成する。これによって、一次平面肉盛溶接部13と二次平面肉盛溶接部23とが互いに及ぼす入熱の影響を抑え、さらに、局所的に与える入熱も小さくするような溶接によるライニング層を、平面形状をなす平面軸受面51に対して容易に溶接を行うことができる。   According to the bearing lining method of the fourth embodiment as described above, the primary planar overlay weld portion 13 is linearly formed in the first plane direction X with respect to the bearing surface 5 having a planar shape such as a thrust bearing. Then, the secondary plane build-up welded portion 23 is similarly formed in a straight line so as to sandwich the primary plane build-up welded portion 13. As a result, a lining layer formed by welding that suppresses the influence of heat input exerted on the primary plane build-up welded portion 13 and the secondary plane build-up welded portion 23 to each other and further reduces the locally applied heat input, It is possible to easily weld the planar bearing surface 51 having a shape.

次に、図5を参照して第五実施形態の軸受ライニング方法について説明する。
第五実施形態においては第一実施形態と同様の構成要素には同一の符号を伏して詳細な説明を省略する。この第五実施形態の軸受ライニング方法は、一次溶接工程S1と二次溶接工程S2について第一実施形態と相違する。
Next, a bearing lining method according to a fifth embodiment will be described with reference to FIG.
In the fifth embodiment, the same components as those in the first embodiment are given the same reference numerals, and detailed description thereof is omitted. The bearing lining method of the fifth embodiment is different from the first embodiment with respect to the primary welding step S1 and the secondary welding step S2.

即ち、第五実施形態では、図5(a)〜(c)に示すように、円筒形状をなす軸受4の内周面である軸受面5に対して、肉盛溶接によって一次肉盛細溶接部14を形成する一次細溶接工程S14と、一次細溶接工程S14後に二次細肉盛溶接部を形成する二次細溶接工程S24と、さらに二次細溶接工程S24後に追加肉盛溶接部34を形成する追加溶接0工程S34を備える。   That is, in the fifth embodiment, as shown in FIGS. 5A to 5C, primary overlay welding is performed by overlay welding on the bearing surface 5 which is the inner peripheral surface of the cylindrical bearing 4. A primary fine welding step S14 for forming the portion 14, a secondary fine welding step S24 for forming a secondary thin overlay weld after the primary fine weld step S14, and an additional overlay weld 34 after the secondary fine weld step S24. The additional welding 0 process S34 which forms is provided.

図5(a)に示すように、一次細溶接工程S14は、円筒形状の内周面である軸受面5上に、螺旋形状をなす一次肉盛細溶接部14を形成する。一次肉盛細溶接部14は、幅2〜3mmをなし、第五実施形態における第二方向である軸方向に進みながら軸受面5上を第五実施形態における第一方向である螺旋方向へ旋回して螺旋形状を描きながら、一条ごとに略二条分の間隔をあけて連続して複数条が順次形成される。   As shown in FIG. 5A, in the primary fine welding step S14, a primary build-up thin welded portion 14 having a spiral shape is formed on the bearing surface 5 which is a cylindrical inner peripheral surface. The primary build-up thin welded portion 14 has a width of 2 to 3 mm and swivels on the bearing surface 5 in the spiral direction that is the first direction in the fifth embodiment while proceeding in the axial direction that is the second direction in the fifth embodiment. Then, while drawing a spiral shape, a plurality of strips are successively formed at intervals of approximately two strips for each strip.

図5(b)に示すように、二次細溶接工程S24は、一次細溶接工程S14によって形成された一次肉盛細溶接部14が充分に冷却された後に、螺旋形状をなす一次肉盛細溶接部14の一条一条に重ならずに隣接するように、二次肉盛細溶接部24を形成する。二次肉盛細溶接部24は、幅2〜3mmをなし、軸方向に進みながら軸受面5上を螺旋方向へ旋回して螺旋形状を描きながら、軸方向に間隔をあけて連続して複数条が順次形成される。   As shown in FIG. 5 (b), the secondary fine welding process S24 includes a primary build-up process that forms a spiral shape after the primary build-up weld part 14 formed in the primary thin weld process S14 is sufficiently cooled. The secondary build-up welded portion 24 is formed so as to be adjacent to one line of the welded portion 14 without overlapping. The secondary built-up thin welded portion 24 has a width of 2 to 3 mm, and while rotating in the axial direction, swivels on the bearing surface 5 in a spiral direction to draw a spiral shape, and continuously plurally spaced in the axial direction. Articles are formed sequentially.

図5(c)に示すように、追加溶接工程S34は、二次細溶接工程S24によって形成された二次肉盛細溶接部24が充分に冷却された後に、二次肉盛細溶接部24と一次肉盛細溶接部14のそれぞれが形成する螺旋の一条一条に隣接するように、追加肉盛溶接部34を形成する。追加肉盛溶接部34は、幅2〜3mmをなし、軸方向に進みながら軸受面5上を螺旋方向に旋回して螺旋形状で形成され、軸方向に間隔をあけて、二次肉盛細溶接部24と一次肉盛溶接部1との間に挟まれるように連続して複数条が順次形成される。   As shown in FIG. 5C, in the additional welding step S34, after the secondary build-up welded portion 24 formed by the secondary fine weld step S24 is sufficiently cooled, the secondary build-up welded portion 24 is obtained. The additional build-up weld 34 is formed so as to be adjacent to one line of the spiral formed by each of the primary build-up welds 14. The additional build-up weld 34 has a width of 2 to 3 mm and is formed in a spiral shape by turning on the bearing surface 5 in the spiral direction while proceeding in the axial direction. A plurality of strips are successively formed so as to be sandwiched between the welded portion 24 and the primary build-up welded portion 1.

上記のような第五実施形態の軸受ライニング方法によれば、二次肉盛細溶接部24を形成後に、二次肉盛細溶接部24と一次肉盛細溶接部14との間に、さらに追加肉盛溶接部34を形成するため、一次肉盛細溶接部14同士及び二次肉盛細溶接部24同士の間隔さらに広げて溶接を行うことができ、隣接する一次肉盛細溶接部14や二次肉盛細溶接部24を形成する際の入熱からの影響をより抑えることができる。これにより、冷却速度の低下をより抑え、ライニング層の結晶組織をより均一に形成でき、ライニング層の強度の低下をより効率的に抑えることができる。   According to the bearing lining method of the fifth embodiment as described above, after the secondary build-up welded portion 24 is formed, between the secondary build-up welded portion 24 and the primary build-up welded portion 14, In order to form the additional build-up weld 34, the primary build-up welds 14 and the secondary build-up welds 24 can be further widened and welded, and the adjacent primary build-up welds 14 are adjacent to each other. And the influence from the heat input at the time of forming the secondary overlay welding part 24 can be suppressed more. Thereby, the fall of a cooling rate can be suppressed more, the crystal structure of a lining layer can be formed more uniformly, and the fall of the intensity | strength of a lining layer can be suppressed more efficiently.

また、一次肉盛細溶接部14、二次肉盛細溶接部24、及び、追加肉盛溶接部34の幅を2mm以上3mm以下の範囲に、狭く設定することで一つ一つの溶接の入熱をさらに小さくすることが可能となる。これにより、冷却速度の低下をさらに抑え、ライニング層の結晶組織をさらに均一に形成でき、ライニング層の強度の低下をより一層効率的に抑えることができる。   Further, by setting the width of the primary build-up welded portion 14, the secondary build-up welded portion 24, and the additional build-up welded portion 34 narrowly within a range of 2 mm or more and 3 mm or less, each welding can be entered. Heat can be further reduced. Thereby, the fall of a cooling rate can further be suppressed, the crystal structure of a lining layer can be formed more uniformly, and the fall of the intensity | strength of a lining layer can be suppressed much more efficiently.

なお、一次肉盛細溶接部14、二次肉盛細溶接部24及び追加肉盛溶接部34は互いに間隔をあけて形成されてもよい。
また、さらに追加して溶接工程を行ってもよい。これにより、各溶接工程において形成される肉盛溶接部の間隔はさらに広がるため、入熱の影響をより抑えることができる。
In addition, the primary build-up welded part 14, the secondary build-up welded part 24, and the additional build-up welded part 34 may be formed at intervals.
Further, a welding process may be additionally performed. Thereby, since the space | interval of the build-up welding part formed in each welding process further spreads, the influence of heat input can be suppressed more.

次に、図6を参照して軸受ライニング方法の変形例について説明する。
変形例においては第四実施形態と同様の構成要素には同一の符号を伏して詳細な説明を省略する。この変形例の軸受ライニング方法は、一次平面渦溶接工程S15と二次平面渦溶接工程S25について第一実施形態と相違する。
Next, a modified example of the bearing lining method will be described with reference to FIG.
In the modification, the same reference numerals are given to the same components as those in the fourth embodiment, and detailed description thereof is omitted. The bearing lining method of this modification is different from the first embodiment in the primary plane vortex welding step S15 and the secondary plane vortex welding step S25.

即ち、変形例では、図6(a)、(b)に示すように、第四実施形態と同様に円筒形状の頂面をなす平面である平面軸受面51に対して、肉盛溶接によって一次平面渦肉盛溶接部15を形成する一次平面渦溶接工程S15と、一次平面渦溶接工程S15後に二次平面渦肉盛溶接部25を形成する二次平面渦溶接工程S25とを備える。   That is, in the modified example, as shown in FIGS. 6A and 6B, primary welding is performed on the flat bearing surface 51 that is a flat surface forming a cylindrical top surface by overlay welding as in the fourth embodiment. A primary plane vortex welding process S15 for forming the planar vortex buildup weld 15 and a secondary plane vortex welding process S25 for forming the secondary plane vortex buildup weld 25 after the primary plane vortex welding process S15 are provided.

図6(a)に示すように、一次平面渦溶接工程S15は、平面軸受面51上の径方向を第二方向として、径方向へ向かうに従って平面軸受面51の周方向に捩じれる方向を第一方向として、渦形状を描きながら一条ごとに間隔をあけて連続して一次平面渦溶接部が複数条順次形成される。   As shown in FIG. 6A, in the primary plane vortex welding step S15, the radial direction on the planar bearing surface 51 is set as the second direction, and the direction twisted in the circumferential direction of the planar bearing surface 51 as the radial direction is increased. As one direction, a plurality of primary plane vortex welds are successively formed at intervals for each line while drawing a vortex shape.

図6(b)に示すように、二次平面渦溶接工程S25は、一次平面渦溶接工程S15で形成された一次平面渦肉盛溶接部15が充分冷却された後に、一次平面渦肉盛溶接部15と同様の方法で、一次平面渦肉盛溶接部15に沿って渦形状を描きながら二次平面渦肉盛溶接部25を形成する。   As shown in FIG. 6 (b), the secondary plane vortex welding step S25 is performed after the primary plane vortex overlay welding portion 15 formed in the primary plane vortex welding step S15 is sufficiently cooled. The secondary plane vortex buildup weld 25 is formed while drawing a vortex shape along the primary plane vortex buildup weld 15 in the same manner as the section 15.

上記のような変形例の軸受ライニング方法によれば、スラスト軸受のような平面形状をなす軸受面5に対して、第一実施形態と同様の効果を得ることができる。即ち、平面形状をなす平面軸受面51に対して、一次平面渦肉盛溶接部15を渦状に一条ずつ間隔をあけて連続して形成でき、同様に、二次平面渦肉盛溶接部25も一次平面渦肉盛溶接部15に沿うように渦状に形成することで連続して形成できる。つまり、渦形状のため、間隔あけつつも一次平面渦肉盛溶接部15と二次平面渦肉盛溶接部25とをそれぞれ連続して一回で形成することで、溶接によるライニング層を平面軸受面51に対して容易に形成することができる。   According to the bearing lining method of the modification as described above, the same effect as that of the first embodiment can be obtained for the bearing surface 5 having a planar shape such as a thrust bearing. That is, the primary plane vortex build-up welded portion 15 can be continuously formed in a spiral shape with a single gap spaced apart from the planar bearing surface 51 having a planar shape. It can form continuously by forming in a vortex shape along the primary plane eddy overlay welding part 15. That is, because of the vortex shape, the primary plane vortex buildup welded portion 15 and the secondary plane vortex buildup welded portion 25 are continuously formed in one time while being spaced apart, so that the lining layer formed by welding is a flat bearing. The surface 51 can be easily formed.

次に、第六実施形態の軸受ライニング方法について説明する。
第五実施形態においては第一実施形態と同様の構成要素には同一の符号を伏して詳細な説明を省略する。この第六実施形態の軸受ライニング方法は、一次溶接工程S1及び二次溶接工程S2に対し溶接速度Vを定めて行う点について第一実施形態と相違する。
Next, the bearing lining method of 6th embodiment is demonstrated.
In the fifth embodiment, the same components as those in the first embodiment are given the same reference numerals, and detailed description thereof is omitted. The bearing lining method of the sixth embodiment is different from the first embodiment in that the welding speed V is determined for the primary welding step S1 and the secondary welding step S2.

即ち、第六実施形態では、軸受4が固定され回転しつつ、肉盛溶接を行う溶接トーチが軸方向に移動しながら一次溶接工程S1と二次溶接工程S2が行われ、溶接時の溶接速度Vが、予め得られている評価データベースと、予め設定される溶接速度許容限度V1と、予め設定される溶接品質許容限度Q1とによって決定される。なお、一次溶接工程S1及び二次溶接工程S2で形成される溶接部は、第一実施形態と同様に、螺旋形状をなす一次肉盛溶接部1及び二次肉盛溶接部2である。   That is, in the sixth embodiment, the primary welding step S1 and the secondary welding step S2 are performed while the welding torch performing overlay welding moves in the axial direction while the bearing 4 is fixed and rotated, and the welding speed during welding is performed. V is determined by an evaluation database obtained in advance, a welding speed allowable limit V1 set in advance, and a welding quality allowable limit Q1 set in advance. In addition, the welding part formed by primary welding process S1 and secondary welding process S2 is the primary build-up weld part 1 and the secondary build-up weld part 2 which make spiral shape similarly to 1st embodiment.

溶接速度Vは、軸受4が軸線Oを中心に周方向に回転する回転速度Vと、肉盛溶接を行う溶接トーチを軸線Oに沿って軸方向へ移動する速度である送り速度Vとによって定められる。評価データベースは、溶接速度Vと溶接品質Qとの関係を軸受4のサイズ毎によって事前にまとめた評価データの集合である。評価データは、例えば、図6に示すグラフなどで表される。溶接品質Qは、溶接部の強度であり、溶接部を電子顕微鏡等で組織の均一化レベルを観察することや引張試験等を行うことによって得られる。溶接速度許容限度Vlは、実際に溶接を行う際に、軸受4へ溶接を行える時間から事前に算出される。溶接品質許容限度Qlは、ライニング層を形成される軸受4に必要な強度等の機械的特性から事前に算出される。 The welding speed V includes a rotational speed V r at which the bearing 4 rotates in the circumferential direction around the axis O, and a feed speed V f that is a speed at which the welding torch performing overlay welding moves in the axial direction along the axis O. Determined by. The evaluation database is a set of evaluation data in which the relationship between the welding speed V and the welding quality Q is summarized in advance for each size of the bearing 4. The evaluation data is represented by, for example, a graph shown in FIG. The weld quality Q is the strength of the welded portion, and can be obtained by observing the homogenization level of the welded portion with an electron microscope or the like, or performing a tensile test or the like. The welding speed allowable limit Vl is calculated in advance from the time during which welding can be performed on the bearing 4 when actual welding is performed. The welding quality tolerance limit Ql is calculated in advance from mechanical characteristics such as strength required for the bearing 4 on which the lining layer is formed.

図7に示すように、溶接速度Vは、軸受4のサイズを決定後に事前にまとめられた評価データベースから対象となる軸受4の評価データを選択する。その後、評価データに溶接速度許容限度V1と溶接品質許容限度Q1とを入力することで、評価データから溶接速度許容限度V1以下の溶接速度Vであって、溶接品質許容限度Q1以上の溶接品質Qを得られるポイントが導き出されることで、最適な溶接速度Vを決定することができる。   As shown in FIG. 7, the welding speed V selects the evaluation data of the target bearing 4 from the evaluation database compiled in advance after the size of the bearing 4 is determined. Thereafter, by inputting the welding speed allowable limit V1 and the welding quality allowable limit Q1 into the evaluation data, the welding quality Q is equal to or lower than the welding speed allowable limit Q1 and is equal to or lower than the welding speed allowable limit V1 from the evaluation data. The optimum welding speed V can be determined by deriving the points that can be obtained.

上記のような第六実施形態の軸受ライニング方法によれば、実際に一次溶接工程S1及び二次溶接工程S2を行う際に許容できる時間から算出される溶接速度許容限度V1と、必要な強度から算出される溶接品質許容限度Q1とに基づいて、溶接速度Vを決定することで、必要な強度を有した一次肉盛溶接部1と二次肉盛溶接部2を最適な溶接速度Vで形成することができ、溶接時間を短縮することができる。
なお、溶接速度Vは、人によって必要なデータから算出して決定されてもよいし、プログラム等を用いて必要なデータを入力し機械的に決定されてもよい。
According to the bearing lining method of the sixth embodiment as described above, the welding speed allowable limit V1 calculated from the allowable time when the primary welding step S1 and the secondary welding step S2 are actually performed and the necessary strength. By determining the welding speed V based on the calculated welding quality tolerance limit Q1, the primary build-up weld 1 and the secondary build-up weld 2 having the required strength are formed at the optimum welding speed V. This can shorten the welding time.
The welding speed V may be determined by calculation from necessary data by a person, or may be determined mechanically by inputting necessary data using a program or the like.

以上、本発明の実施形態について図面を参照して詳述したが、各実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換、およびその他の変更が可能である。また、本発明は実施形態によって限定されることはなく、クレームの範囲によってのみ限定される。   Although the embodiments of the present invention have been described in detail with reference to the drawings, the configurations and combinations of the embodiments in the embodiments are examples, and the addition and omission of configurations are within the scope not departing from the gist of the present invention. , Substitutions, and other changes are possible. Further, the present invention is not limited by the embodiments, and is limited only by the scope of the claims.

また、各実施形態において、一次肉盛溶接部1や二次肉盛溶接部2などの別の溶接工程で形成される溶接部は互いに隣接していてもよく、離間して形成されてもよい。
さらに、本発明の軸受ライニング方法については、軸受のライニング層を補修時する場合に各実施形態の方法を適用することができるだけでなく、新規製品製造時にも適用されてもよい。
Moreover, in each embodiment, the weld parts formed by another welding processes, such as the primary build-up weld part 1 and the secondary build-up weld part 2, may mutually adjoin and may be formed apart. .
Further, the bearing lining method of the present invention may be applied not only to the method of each embodiment when repairing the lining layer of the bearing, but also to the manufacture of a new product.

O…軸線 4…軸受 5…軸受面 S1…一次溶接工程 S2…二次溶接工程 1…一次肉盛溶接部 2…二次肉盛溶接部 S11…一次リング溶接工程 S21…二次リング溶接工程 11…一次リング肉盛溶接部 21…二次リング肉盛溶接部 S12…一次直線溶接工程 S22…二次直線溶接工程 12…一次直線肉盛溶接部 22…二次直線肉盛溶接部 X…第一平面方向 Y…第二平面方向 51…平面軸受面 S13…一次平面溶接工程 S23…二次平面溶接工程 13…一次平面肉盛溶接部 23…二次平面肉盛溶接部 S14…一次細溶接工程 S24…二次細溶接工程 S34…追加溶接工程 14…一次肉盛細溶接部 24…二次肉盛細溶接部 34…追加肉盛溶接部 S15…一次平面渦溶接工程 S25…二次平面渦溶接工程 15…一次平面渦肉盛溶接部 25…二次平面渦肉盛溶接部 V…溶接速度 Q…溶接品質 V…回転速度 V…送り速度 V1…溶接速度許容限度 Q1…溶接品質許容限度 O ... Axis 4 ... Bearing 5 ... Bearing surface S1 ... Primary welding process S2 ... Secondary welding process 1 ... Primary built-up weld 2 ... Secondary built-up weld S11 ... Primary ring welding process S21 ... Secondary ring welding process 11 ... Primary ring build-up weld 21 ... Secondary ring build-up weld S12 ... Primary straight weld process S22 ... Secondary straight weld process 12 ... Primary straight build-up weld 22 ... Secondary straight build-up weld X X ... First Planar direction Y ... Second plane direction 51 ... Plane bearing surface S13 ... Primary plane welding process S23 ... Secondary plane welding process 13 ... Primary plane overlay welding part 23 ... Secondary plane overlay welding part S14 ... Primary fine welding process S24 ... secondary fine welding process S34 ... additional welding process 14 ... primary overlay welding part 24 ... secondary overlay welding part 34 ... addition welding part S15 ... primary plane vortex welding process S25 ... secondary plane vortex welding process 15 ... Primary plane vortex overlay welding 25 ... secondary plane vortices overlay weld part V ... welding speed Q ... weld quality V r ... rotational speed V f ... feedrate V1 ... welding speed permissible limit Q1 ... welding quality allowable limit

Claims (8)

軸受の軸受面に対して、該軸受面に沿った第一方向に延在する一次肉盛溶接部を、前記第一方向に直交する第二方向に向かって間隔をあけて順次形成する一次溶接工程と、
前記軸受面において隣り合う前記一次肉盛溶接部の間に、前記第一方向に延在する二次肉盛溶接部を、前記一次肉盛溶接部を前記第二方向から挟むように順次形成する二次溶接工程と、を備えることを特徴とする軸受ライニング方法。
Primary welding that sequentially forms primary build-up welds extending in the first direction along the bearing surface at intervals in the second direction perpendicular to the first direction with respect to the bearing surface of the bearing. Process,
A secondary build-up weld extending in the first direction is sequentially formed between the primary build-up welds adjacent on the bearing surface so as to sandwich the primary build-up weld from the second direction. And a secondary welding step. A bearing lining method comprising:
前記軸受面が、円筒形状をなす軸受の内周面であって、
前記第一方向が、前記軸受面の軸方向に向かうにしたがって該軸受面の周方向に捩じれる螺旋方向であり、
前記第二方向が、前記軸方向であることを特徴とする請求項1に記載の軸受ライニング方法。
The bearing surface is an inner peripheral surface of a cylindrical bearing,
The first direction is a spiral direction twisted in the circumferential direction of the bearing surface as it goes in the axial direction of the bearing surface;
The bearing lining method according to claim 1, wherein the second direction is the axial direction.
前記軸受面が、円筒形状をなす軸受の内周面であって、
前記第一方向が、前記軸受面の周方向であり、
前記第二方向が、前記軸受面の軸方向であることを特徴とする請求項1に記載の軸受ライニング方法。
The bearing surface is an inner peripheral surface of a cylindrical bearing,
The first direction is a circumferential direction of the bearing surface;
The bearing lining method according to claim 1, wherein the second direction is an axial direction of the bearing surface.
前記軸受面が、円筒形状をなす軸受の内周面であって、
前記第一方向が、前記軸受面の軸方向であり、
前記第二方向が、前記軸受面の周方向であることを特徴とする請求項1に記載の軸受ライニング方法。
The bearing surface is an inner peripheral surface of a cylindrical bearing,
The first direction is an axial direction of the bearing surface;
The bearing lining method according to claim 1, wherein the second direction is a circumferential direction of the bearing surface.
前記軸受面が、平面形状をなすことを特徴とする請求項1に記載の軸受ライニング方法。   The bearing lining method according to claim 1, wherein the bearing surface has a planar shape. 前記二次溶接工程の後に、前記軸受面における前記一次肉盛溶接部と前記二次肉盛溶接部との間に、前記第一方向に延在する追加肉盛溶接部を、前記第二方向に間隔をあけて順次形成する追加溶接工程を少なくとも一回備えることを特徴とする請求項1から5のいずれか一項に記載の軸受ライニング方法。   After the secondary welding step, an additional build-up weld extending in the first direction is provided between the primary build-up weld and the secondary build-up weld on the bearing surface in the second direction. The bearing lining method according to any one of claims 1 to 5, further comprising an additional welding step of sequentially forming at an interval. 前記一次肉盛溶接部と前記二次肉盛溶接部とが、前記第二方向の幅を2mm以上3mm以下の範囲として形成されることを特徴とする請求項1から6のいずれか一項に記載の軸受ライニング方法。   The said primary build-up weld part and the said secondary build-up weld part are formed as a range whose said 2nd direction width is 2 mm or more and 3 mm or less, It is any one of Claim 1 to 6 characterized by the above-mentioned. The bearing lining method as described. 前記一次溶接工程と前記二次溶接工程における溶接速度が、
溶接速度と溶接品質とを関係づけた評価データと、
予め設定される溶接速度許容限度と、
予め設定される溶接品質許容限度と、
に基づいて決定されることをさらに有することを特徴とする請求項1から7のいずれか一項に記載の軸受ライニング方法。
The welding speed in the primary welding process and the secondary welding process is:
Evaluation data relating welding speed and welding quality,
Preset welding speed tolerance limits;
Preset welding quality tolerance limits;
The bearing lining method according to any one of claims 1 to 7, further comprising: determining based on the equation (1).
JP2012183102A 2012-08-22 2012-08-22 Bearing lining method Expired - Fee Related JP5984578B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012183102A JP5984578B2 (en) 2012-08-22 2012-08-22 Bearing lining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012183102A JP5984578B2 (en) 2012-08-22 2012-08-22 Bearing lining method

Publications (2)

Publication Number Publication Date
JP2014040859A true JP2014040859A (en) 2014-03-06
JP5984578B2 JP5984578B2 (en) 2016-09-06

Family

ID=50393278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012183102A Expired - Fee Related JP5984578B2 (en) 2012-08-22 2012-08-22 Bearing lining method

Country Status (1)

Country Link
JP (1) JP5984578B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5783718A (en) * 1980-11-11 1982-05-25 Toshiba Corp Lining method for bearing
JP2000254791A (en) * 1999-03-05 2000-09-19 Agency Of Ind Science & Technol Device and method for cladding by welding for white metal for bearing
JP2005152918A (en) * 2003-11-21 2005-06-16 Mitsubishi Heavy Ind Ltd Welding method
JP2009228480A (en) * 2008-03-19 2009-10-08 Toshiba Corp Repairing method of gas turbine parts and gas turbine parts
JP2010007852A (en) * 2008-05-27 2010-01-14 Toshiba Corp Soft alloy layer-forming device and soft alloy layer-forming method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5783718A (en) * 1980-11-11 1982-05-25 Toshiba Corp Lining method for bearing
JP2000254791A (en) * 1999-03-05 2000-09-19 Agency Of Ind Science & Technol Device and method for cladding by welding for white metal for bearing
JP2005152918A (en) * 2003-11-21 2005-06-16 Mitsubishi Heavy Ind Ltd Welding method
JP2009228480A (en) * 2008-03-19 2009-10-08 Toshiba Corp Repairing method of gas turbine parts and gas turbine parts
JP2010007852A (en) * 2008-05-27 2010-01-14 Toshiba Corp Soft alloy layer-forming device and soft alloy layer-forming method

Also Published As

Publication number Publication date
JP5984578B2 (en) 2016-09-06

Similar Documents

Publication Publication Date Title
US10807191B2 (en) Laser welding method, laser welding conditions determining method, and laser welding system
US20110256416A1 (en) Method of forming an article using a powder layer manufacturing process
JP5687577B2 (en) Welded structure and welding method
US11813695B2 (en) Method for forming large-diameter special-shaped cross section thin-wall tubular part
JP5895111B1 (en) Method for producing ring molded body
JP6207635B2 (en) Gear box housing and manufacturing method of gear box housing
US20190344386A1 (en) Build-up device, method of manufacturing screw shaft, screw shaft, and screw device
JP2013154359A (en) Method for manufacturing water-cooling wall panel
US20100329849A1 (en) Turbine rotor
JPWO2006016417A1 (en) Structure having tubular portion, manufacturing method and manufacturing apparatus thereof
JP5984578B2 (en) Bearing lining method
Nikam et al. Laser-based repair of damaged dies, molds, and gears
US20190330798A1 (en) Refiner bar plate including micro-fine bar and method for manufacturing same
JP2004181480A (en) Method of repairing rotor for turbine
JP6704584B2 (en) Flow forming method and flow forming apparatus
JP2007321576A (en) Cylinder liner
JP6159352B2 (en) Production method of expansion
JP2014155959A (en) Method and apparatus for producing mold material
WO2013098965A1 (en) Welding method, welding device, and welding product
JP2017217684A (en) Repair method of continuous casting mold
JP2017170490A (en) Welding steel pipe and feed oil pipe
JP6677902B2 (en) Method of manufacturing material for turbine blade
CN103857492B (en) Produce the bellows-welding air ring of a small amount of metallic dust
JP6130552B2 (en) Method for producing ring molded body
CN112958887A (en) Automobile mold surfacing method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20150129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150202

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20150206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160802

R150 Certificate of patent or registration of utility model

Ref document number: 5984578

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees