JP2014040582A - Method for manufacturing silicon-containing polymer particulates - Google Patents

Method for manufacturing silicon-containing polymer particulates Download PDF

Info

Publication number
JP2014040582A
JP2014040582A JP2013151958A JP2013151958A JP2014040582A JP 2014040582 A JP2014040582 A JP 2014040582A JP 2013151958 A JP2013151958 A JP 2013151958A JP 2013151958 A JP2013151958 A JP 2013151958A JP 2014040582 A JP2014040582 A JP 2014040582A
Authority
JP
Japan
Prior art keywords
allene
silicon
containing polymer
monomer
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013151958A
Other languages
Japanese (ja)
Other versions
JP6274482B2 (en
Inventor
Ikuyoshi Tomita
育義 冨田
Hiroki Nakanishi
弘貴 中西
Hiroshi Yamauchi
博史 山内
Takahiro Omura
貴宏 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Tokyo Institute of Technology NUC
Original Assignee
Sekisui Chemical Co Ltd
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd, Tokyo Institute of Technology NUC filed Critical Sekisui Chemical Co Ltd
Priority to JP2013151958A priority Critical patent/JP6274482B2/en
Publication of JP2014040582A publication Critical patent/JP2014040582A/en
Application granted granted Critical
Publication of JP6274482B2 publication Critical patent/JP6274482B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing silicon-containing polymer particulates capable of yielding silicon-based polymer composite particles having small diameters, of homogeneously controlling the molecular weight and particle diameter thereof, and of manufacturing heteromorphically structured silicon-containing polymer particulates of non-hollow structures, core-shell structures, and/or hollow structures.SOLUTION: The provided method for manufacturing silicon-containing polymer particulates includes a step of performing living polymerization by using an alkoxysilyl group-substituted allene monomer.

Description

本発明は、粒子径の小さいケイ素系ポリマー複合粒子が得られるとともに、分子量及び粒子径を均一に制御することができ、中実構造、コアシェル構造、中空構造等のケイ素含有ポリマー微粒子を好適に製造することが可能なケイ素含有ポリマー微粒子の製造方法に関する。 The present invention can produce silicon-based polymer composite particles having a small particle diameter, and can uniformly control the molecular weight and particle diameter, and suitably produces silicon-containing polymer fine particles such as a solid structure, a core-shell structure, and a hollow structure. The present invention relates to a method for producing fine silicon-containing polymer particles.

従来、セラミック等の無機粒子は、紫外線吸収、耐摩耗、光学・電磁気特性の付与等様々な用途で単独もしくは有機高分子等と複合して利用されている。
一方、有機樹脂粒子は、ポリマーが持つ特性である柔軟性・密着性・加工性を利用して電子写真用トナーや艶消し、着色剤その他で利用されている。
これに対して、電子部品の接合材料等の分野においては、無機粒子では弾性が足りず、混合時や、圧縮時に割れてしまうのに対して、有機樹脂粒子では耐熱性が足りず、他の材料と混合時や、加熱工程で溶融変形してしまうという問題があることから、無機粒子の耐熱性や硬度と、有機樹脂粒子の弾性や親和性を兼ね備えた微粒子が求められている。
Conventionally, inorganic particles such as ceramics have been used alone or in combination with organic polymers for various purposes such as ultraviolet absorption, wear resistance, and imparting optical / electromagnetic properties.
On the other hand, organic resin particles are used in toners for electrophotography, matting, colorants and the like by utilizing flexibility, adhesion, and processability which are characteristics of polymers.
On the other hand, in the field of electronic component bonding materials and the like, inorganic particles have insufficient elasticity and crack when mixed or compressed, whereas organic resin particles have insufficient heat resistance. Because of the problem of melting and deformation during mixing with a material or in a heating process, there is a demand for fine particles that have both heat resistance and hardness of inorganic particles and elasticity and affinity of organic resin particles.

これに対して、無機材料と有機材料の優れた特性を同時に達成するため、両者の複合材料を用いることが行われているが、一般に無機材料と有機材料の相溶性は充分ではなかった。
また、有機モノマーと無機モノマーとを共重合させる方法や、シランカップリング剤を重合する方法も行われているが、有機成分と無機成分がランダムに配置された構造となり、要求される耐熱性や弾性が得られなかった。
更に、特許文献1には、多価金属アルコキシドを含む膨潤溶媒でシード粒子を膨潤させた後、該多価金属アルコキシド中の不飽和二重結合により重合させ、次いで多価金属アルコキシドのアルコキシ基を加水分解及び縮合させる製造方法が記載されている。
しかしながら、該製造方法において形成される粒子は、分子量が均一では無く、かつ、金属アルコキシドのアルコキシ基がランダムに配置されているために、加水分解重縮合が緻密に進行せず、充分な耐熱性や弾性が得られないという課題があった。
On the other hand, in order to achieve excellent properties of the inorganic material and the organic material at the same time, a composite material of both is used. However, the compatibility between the inorganic material and the organic material is generally not sufficient.
In addition, a method of copolymerizing an organic monomer and an inorganic monomer and a method of polymerizing a silane coupling agent are also performed, but the structure has a structure in which an organic component and an inorganic component are randomly arranged, and the required heat resistance and Elasticity was not obtained.
Furthermore, in Patent Document 1, after swelling seed particles with a swelling solvent containing a polyvalent metal alkoxide, the seed particles are polymerized by an unsaturated double bond in the polyvalent metal alkoxide, and then the alkoxy group of the polyvalent metal alkoxide is changed. A process for hydrolysis and condensation is described.
However, the particles formed in the production method are not uniform in molecular weight, and the alkoxy groups of the metal alkoxide are randomly arranged, so that hydrolysis polycondensation does not proceed densely, and sufficient heat resistance There is a problem that elasticity cannot be obtained.

特開平07−265686号公報Japanese Patent Laid-Open No. 07-265686

本発明は、粒子径の小さいケイ素系ポリマー複合粒子が得られるとともに、分子量及び粒子径を均一に制御することができ、中実構造、コアシェル構造、中空構造等のケイ素含有ポリマー微粒子を好適に製造することが可能なケイ素含有ポリマー微粒子の製造方法を提供することを目的とする。 The present invention can produce silicon-based polymer composite particles having a small particle diameter, and can uniformly control the molecular weight and particle diameter, and suitably produces silicon-containing polymer fine particles such as a solid structure, a core-shell structure, and a hollow structure. It is an object of the present invention to provide a method for producing silicon-containing polymer fine particles that can be produced.

本発明は、アルコキシシリル基置換アレンモノマーを用いてリビング重合を行う工程を有するケイ素含有ポリマー微粒子の製造方法である。
以下に本発明を詳述する。
The present invention is a method for producing silicon-containing polymer fine particles having a step of conducting living polymerization using an alkoxysilyl group-substituted allene monomer.
The present invention is described in detail below.

本発明者らは、鋭意検討の結果、アルコキシシリル基置換アレンモノマーを用いてリビング重合を行うことでケイ素含有ポリマー微粒子を作製することにより、樹脂の分子量及び粒子径を均一に制御することができ、かつ、ケイ素が粒子表面に均一に分布するケイ素含有ポリマー微粒子が作製できることを見出し、本発明を完成させるに至った。 As a result of intensive studies, the inventors of the present invention can uniformly control the molecular weight and particle diameter of the resin by producing silicon-containing polymer fine particles by conducting living polymerization using an alkoxysilyl group-substituted allene monomer. In addition, the inventors have found that silicon-containing polymer fine particles in which silicon is uniformly distributed on the particle surface can be produced, and have completed the present invention.

本発明のケイ素含有ポリマー微粒子の製造方法は、アルコキシシリル基置換アレンモノマーを用いてリビング重合を行う工程を有する。 The method for producing silicon-containing polymer fine particles of the present invention includes a step of performing living polymerization using an alkoxysilyl group-substituted allene monomer.

上記リビング重合とは、開始剤を起点とする重合反応が停止反応や連鎖移動反応などの副反応で妨げられることなく分子鎖が生長していく重合のことをいう。
本発明では、このようなリビング重合を用いることで、重合反応が同時に開始すれば分子量が均一な重合体を得ることができるとともに、粒子径が揃ったケイ素含有ポリマー微粒子を得ることができる。
また、上記リビング重合を用いることで、水系媒体中での重合反応が可能となり、種々の置換基を有するポリマーを得ることが可能となる。
The living polymerization refers to polymerization in which a molecular chain grows without the polymerization reaction starting from an initiator being hindered by a side reaction such as a termination reaction or a chain transfer reaction.
In the present invention, by using such living polymerization, a polymer having a uniform molecular weight can be obtained if the polymerization reaction starts simultaneously, and silicon-containing polymer fine particles having a uniform particle diameter can be obtained.
Further, by using the above living polymerization, a polymerization reaction in an aqueous medium can be performed, and polymers having various substituents can be obtained.

上記リビング重合としては、特に限定されず、例えば、リビングアニオン重合、リビングラジカル重合、リビングカチオン重合、リビング配位重合等を採用することができる。なかでも、リビング配位重合が好ましい。
また、本発明では、リビング重合を分散重合法で行うことが好ましい。また、リビング重合を後工程で行う場合は、リビングブロック共重合を不均一化を伴う条件で行うことが好ましい。これにより、分子量のみならず、粒子径も均一な粒子を得やすくなる。なお、分散重合法とは、モノマーは溶解するがモノマーを重合してなるポリマーは溶解しない溶媒の中でモノマーを重合させ、析出したポリマーを界面張力や静電反発力等の作用により球状化させることを特徴とする重合法のことである。
The living polymerization is not particularly limited, and for example, living anionic polymerization, living radical polymerization, living cation polymerization, living coordination polymerization and the like can be employed. Of these, living coordination polymerization is preferred.
In the present invention, the living polymerization is preferably performed by a dispersion polymerization method. Moreover, when performing living polymerization by a post process, it is preferable to perform living block copolymerization on the conditions accompanied by non-uniform | heterogenous. Thereby, it becomes easy to obtain particles having not only a molecular weight but also a uniform particle diameter. The dispersion polymerization method means that the monomer is polymerized in a solvent in which the monomer is dissolved but the polymer obtained by polymerizing the monomer is not dissolved, and the deposited polymer is spheroidized by the action of interfacial tension, electrostatic repulsion, etc. It is a polymerization method characterized by this.

上記リビング重合において使用する開始剤としては、例えば、π−アリルニッケル触媒をはじめとする各種遷移金属触媒が使用できる。
上記π−アリルニッケル触媒は、ハロゲン化アリル、アリルアセテート等のアリル化合物に、ビス(1,5−シクロオクタジエン)ニッケル(以下Ni(COD)とする)等の有機ニッケル、トリフェニルフォスフィン、トリブチルフォスフィン、トリフェノキシフォスフィン、トリエトキシフォスフィン等のフォスフィンを添加して得られる。
As the initiator used in the living polymerization, for example, various transition metal catalysts including a π-allyl nickel catalyst can be used.
The π-allyl nickel catalyst is composed of allyl compounds such as allyl halide and allyl acetate, organic nickel such as bis (1,5-cyclooctadiene) nickel (hereinafter referred to as Ni (COD) 2 ), triphenylphosphine. And phosphine such as tributylphosphine, triphenoxyphosphine, triethoxyphosphine, and the like.

上記アリル化合物としては、例えば、アリルトリフルオロアセテート、アリルメチルアセテート、アリルシアノメチルアセテート等が挙げられる。なかでも、アリルトリフルオロアセテートが特に好ましい。
また、アリル化合物は、アレンモノマー100重量部に対して、1〜30重量部とすることが好ましい。上記アリル化合物が1重量部未満であると、重合が進行しないことがあり、30重量部を超えると、重合速度が速すぎて、安定な微粒子形状を得られなくなる可能性がある。より好ましくは2〜10重量部である。
Examples of the allyl compound include allyl trifluoroacetate, allyl methyl acetate, allyl cyanomethyl acetate, and the like. Of these, allyl trifluoroacetate is particularly preferable.
Moreover, it is preferable that an allyl compound shall be 1-30 weight part with respect to 100 weight part of allene monomers. If the allyl compound is less than 1 part by weight, the polymerization may not proceed. If it exceeds 30 parts by weight, the polymerization rate may be too high to obtain a stable fine particle shape. More preferably, it is 2 to 10 parts by weight.

上記アリル化合物に有機ニッケルを添加する場合、有機ニッケルはアリル化合物100重量部に対して100〜5000重量部とすることが好ましい。より好ましくは400〜1000重量部である。
また、上記アリル化合物にフォスフィンを添加する場合、フォスフィンはアリル化合物100重量部に対して25〜200重量部とすることが好ましい。より好ましくは50〜150重量部である。
When organic nickel is added to the allyl compound, the organic nickel is preferably 100 to 5000 parts by weight with respect to 100 parts by weight of the allyl compound. More preferably, it is 400-1000 weight part.
Moreover, when adding phosphine to the said allyl compound, it is preferable that phosphine shall be 25-200 weight part with respect to 100 weight part of allyl compounds. More preferably, it is 50-150 weight part.

上記リビング重合は、微粒子形状を安定的に合成するために、アレンモノマーは溶解するが、アレンモノマーを重合してなるポリマーは溶解しない溶媒中で重合する、いわゆる分散重合法で行うことが好ましい。このような溶媒を貧溶媒という。アレンモノマーを溶解しない溶媒を用いると、アレンモノマーが開始剤との反応性が極端に遅くなり、重合が進行しなくなる可能性がある。また、アレンモノマーを重合して成るポリマーを溶解する溶媒を用いると、重合は進行するものの、微粒子形状を得ることが困難になる可能性がある。このような溶媒としては、特に限定されず、例えば、ヘキサン、シクロヘキサン、オクタン、トルエン、キシレン、塩化メチレン等の非極性溶媒のほか、水、メタノール、エタノール、プロパノール、ブタノール、アセトン、メチルエチルケトン、メチルイソブチルケトン、テトラヒドロフラン、ジオキサン、N,N−ジメチルホルムアミド等の高極性溶媒を用いることができる。これらの溶媒は、1種類又は2種類以上用いてもよい。これらの中では、水およびメタノール、エタノールを適宜混合して使用するか、トルエン、塩化メチレンを使用することが好ましい。
また、溶媒の添加量は、上記アレンモノマー100重量部に対し、400〜100000重量部とすることが好ましい。400重量部未満であると、重合過程で凝集や粗大粒子が発生する可能性がある。また、100000重量部を超えると、重合によって得られるポリマーが溶媒に溶けたまま微粒子形状を形成しなくなったり、微粒子形状が得られても、溶媒に対して非常に少量であるために溶媒からの単離が困難となったりする可能性がある。より好ましくは900〜9900重量部である。更に好ましくは1150〜4900重量部である。
The living polymerization is preferably carried out by a so-called dispersion polymerization method in which an allene monomer is dissolved but a polymer obtained by polymerizing the allene monomer is polymerized in a solvent that does not dissolve in order to synthesize the fine particle shape stably. Such a solvent is called a poor solvent. If a solvent that does not dissolve the allene monomer is used, the reactivity of the allene monomer with the initiator becomes extremely slow, and the polymerization may not proceed. In addition, when a solvent that dissolves a polymer obtained by polymerizing an allene monomer is used, although polymerization proceeds, it may be difficult to obtain a fine particle shape. Such a solvent is not particularly limited, for example, non-polar solvents such as hexane, cyclohexane, octane, toluene, xylene, methylene chloride, water, methanol, ethanol, propanol, butanol, acetone, methyl ethyl ketone, methyl isobutyl High polar solvents such as ketone, tetrahydrofuran, dioxane, N, N-dimethylformamide can be used. These solvents may be used alone or in combination of two or more. In these, it is preferable to mix water, methanol, and ethanol suitably, or to use toluene and a methylene chloride.
Moreover, it is preferable that the addition amount of a solvent shall be 400-100000 weight part with respect to 100 weight part of said allene monomers. If the amount is less than 400 parts by weight, aggregation or coarse particles may occur in the polymerization process. On the other hand, if it exceeds 100,000 parts by weight, the polymer obtained by polymerization will not form a fine particle shape while being dissolved in the solvent, or even if a fine particle shape is obtained, the amount from the solvent is very small. Isolation may be difficult. More preferably, it is 900-9900 weight part. More preferably, it is 1150-4900 weight part.

上記リビング重合において、微粒子形状を安定的に合成するために、分散安定剤を用いることが好ましい。分散安定剤を用いると、重合により形成された微粒子同士が合一して凝集体を形成したり、粗大な粒子を形成したりすることを防ぐことができる。このような分散安定剤としては、例えば、ポリ(N−ビニルピロリドン)、ポリビニルアルコール、メチルセルロース、エチルセルロース、ポリ(メタ)アクリル酸、ポリ(メタ)アクリル酸エステル、ポリエチレングリコール等が挙げられる。特にポリ(N−ビニルピロリドン)、ポリメチルメタクリレート等が好ましい。
上記分散安定剤は、アレンモノマー100重量部に対して、1〜100重量部とすることが好ましい。1重量部未満であると、重合により形成された微粒子同士が合一して凝集体を形成したり、粗大な粒子を形成したりする可能性がある。100重量部を超えると、溶媒の粘度が高くなり、攪拌が均一に行われなくなり、これまた凝集体を形成する可能性がある。より好ましくは5〜50重量部である。更に好ましくは10〜40重量部である。
In the living polymerization, a dispersion stabilizer is preferably used in order to stably synthesize the fine particle shape. When a dispersion stabilizer is used, it is possible to prevent fine particles formed by polymerization from forming an aggregate or forming coarse particles. Examples of such a dispersion stabilizer include poly (N-vinylpyrrolidone), polyvinyl alcohol, methyl cellulose, ethyl cellulose, poly (meth) acrylic acid, poly (meth) acrylic acid ester, polyethylene glycol, and the like. In particular, poly (N-vinylpyrrolidone), polymethyl methacrylate and the like are preferable.
The dispersion stabilizer is preferably 1 to 100 parts by weight with respect to 100 parts by weight of the allene monomer. If the amount is less than 1 part by weight, fine particles formed by polymerization may be united to form an aggregate or coarse particles may be formed. When the amount exceeds 100 parts by weight, the viscosity of the solvent becomes high, stirring is not performed uniformly, and there is a possibility that aggregates are formed. More preferably, it is 5 to 50 parts by weight. More preferably, it is 10-40 weight part.

上記リビング重合の具体的方法としては、例えば、窒素置換した重合容器に予め調製したπ−アリルニッケル触媒に溶媒、アルコキシシリル基置換アレンモノマーを添加し、室温で数時間攪拌する方法が挙げられる。また、重合温度は、反応速度の観点から0〜90℃が好ましい。 Specific examples of the living polymerization include a method in which a solvent and an alkoxysilyl group-substituted allene monomer are added to a previously prepared π-allylnickel catalyst in a nitrogen-substituted polymerization vessel and stirred for several hours at room temperature. The polymerization temperature is preferably 0 to 90 ° C. from the viewpoint of the reaction rate.

上記アルコキシシリル基置換アレンモノマーとは、アレン基及びアルコキシシリル基を有するモノマーである。
本発明では、リビング重合において、上記アルコキシシリル基置換アレンモノマーを用いることで、アルコキシシリル基及びその加水分解体であるシラノール基が分子内で均一に配列し、その結果、重縮合が効率よく行われ、強固なシロキサン結合ができあがる。よって、非常に高耐熱で硬いケイ素含有ポリマー微粒子が得られる。また、この状態で有機部位を焼成すればシリカ微粒子へと変換が可能である。
また、分子内での反応が優先的に行われるために、ケイ素含有ポリマー微粒子間での反応が少なく、凝集の少ない微粒子が得られる。
The alkoxysilyl group-substituted allene monomer is a monomer having an allene group and an alkoxysilyl group.
In the present invention, by using the above alkoxysilyl group-substituted allene monomer in living polymerization, the alkoxysilyl group and the silanol group hydrolyzate thereof are uniformly arranged in the molecule, and as a result, polycondensation is efficiently performed. As a result, a strong siloxane bond is formed. Therefore, silicon-containing polymer fine particles that are extremely heat-resistant and hard are obtained. In addition, if the organic part is baked in this state, it can be converted into silica fine particles.
Further, since the reaction in the molecule is preferentially performed, the reaction between the silicon-containing polymer fine particles is small, and fine particles with little aggregation are obtained.

上記アルコキシシシリル基置換アレンモノマーとは、下記式(1)で示すような構造を有する化合物である。 The alkoxysilyl group-substituted allene monomer is a compound having a structure represented by the following formula (1).

式(1)中、Rはアルコキシ基である。 In formula (1), R 1 is an alkoxy group.

式(1)に示す化合物中の「CH=C=CH−」に示す構造はアレン基である。
また、「−Si−R」に示す構造がアルコキシシリル基である。
The structure represented by “CH 2 ═C═CH—” in the compound represented by the formula (1) is an allene group.
The structure represented by “—Si—R 1 ” is an alkoxysilyl group.

上記アルコキシシリル基としては例えば、メトキシシリル基、エトキシシリル基、2−メトキシエトキシシリル基、アセトキシメチルシリル基、プロポキシシリル基、ブトキシシリル基等が挙げられるが、反応性の高さからメトキシシリル基またはエトキシシリル基が好ましい。 Examples of the alkoxysilyl group include a methoxysilyl group, an ethoxysilyl group, a 2-methoxyethoxysilyl group, an acetoxymethylsilyl group, a propoxysilyl group, and a butoxysilyl group. Or an ethoxysilyl group is preferable.

「−Si−R」に示す部分は、特に限定されないが、高耐熱化、高硬度化の観点から、より反応点が多くなるように、アルコキシシリル基であることが好ましい。
また、「−Si−R」に示す部分についても特に限定されないが、高耐熱化、高硬度化の観点から、より反応点が多くなるように、アルコキシシリル基であることが好ましい。
更なる高耐熱化、高硬度化の観点から、「−Si−R」及び「−Si−R」はともにアルコキシシリル基であることがさらに好ましい。
更に、「−Si−R」、「−Si−R」、「−Si−R」はそれぞれ異なっていてもよいが、均一性の観点から、同一組成であることがより好ましい。即ち、アルコキシシリル基を3個有するものであることが好ましい。さらに好ましくは、全てがメトキシシリル基、エトキシシリル基である。
The portion represented by “—Si—R 2 ” is not particularly limited, but is preferably an alkoxysilyl group so as to increase the number of reaction points from the viewpoint of high heat resistance and high hardness.
Moreover, - although there is no particular limitation on the portion indicated by "Si-R 3", high heat resistance, from the viewpoint of high hardness, as more reactive sites is increased, it is preferable that the alkoxysilyl group.
From the viewpoint of further increasing heat resistance and hardness, it is more preferable that both “—Si—R 2 ” and “—Si—R 3 ” are alkoxysilyl groups.
Furthermore, “—Si—R 1 ”, “—Si—R 2 ”, and “—Si—R 3 ” may be different from each other, but are preferably the same composition from the viewpoint of uniformity. That is, it is preferable to have three alkoxysilyl groups. More preferably, all are methoxysilyl groups and ethoxysilyl groups.

については特に限定されず、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等のアルコキシ基、フェノキシ基、メチル基、エチル基、プロピル基、ブチル基、フェニル基、ベンジル基等が挙げられる。
中でも、アレンモノマー作成の行いやすさから、メトキシ基、エトキシ基が好ましい。
R 4 is not particularly limited, and examples thereof include alkoxy groups such as methoxy group, ethoxy group, propoxy group, and butoxy group, phenoxy group, methyl group, ethyl group, propyl group, butyl group, phenyl group, and benzyl group. It is done.
Of these, a methoxy group and an ethoxy group are preferred because of the ease of preparing an allene monomer.

上記アルコキシシリル基置換アレンモノマーとしては、例えば、1−トリエトキシシリル−1−メトキシアレン、1−トリメトキシシリル−1−メトキシアレン、1−トリエトキシシリル−1−エトキシアレン、1−トリメトキシシリル−1−エトキシアレン、1−トリエトキシシリルアレン、1−トリメトキシシリルアレン、1−トリエトキシシリル−1−メチルアレン、1−トリメトキシシリル−1−メチルアレン、1−トリエトキシシリル−1−フェノキシアレン、1−トリメトキシシリル−1−フェノキシアレン、1−トリエトキシシリル−1−フェニルアレン、1−トリメトキシシリル−1−フェニルアレン等が挙げられる。
なかでも、1−トリエトキシシリル−1−メトキシアレンが好ましい。
Examples of the alkoxysilyl group-substituted allene monomer include 1-triethoxysilyl-1-methoxyallene, 1-trimethoxysilyl-1-methoxyallene, 1-triethoxysilyl-1-ethoxyallene, and 1-trimethoxysilyl. -1-ethoxyallene, 1-triethoxysilylallene, 1-trimethoxysilylallene, 1-triethoxysilyl-1-methylallene, 1-trimethoxysilyl-1-methylallene, 1-triethoxysilyl-1- Phenoxy allene, 1-trimethoxysilyl-1-phenoxy allene, 1-triethoxysilyl-1-phenyl allene, 1-trimethoxysilyl-1-phenyl allene and the like can be mentioned.
Of these, 1-triethoxysilyl-1-methoxyallene is preferable.

上記アルコキシシリル基置換アレンモノマーを作製する方法としては、例えば、アレンモノマーと、クロロシラン類を強塩基性条件で反応させる方法等が挙げられる。 Examples of the method for producing the alkoxysilyl group-substituted allene monomer include a method of reacting an allene monomer with chlorosilanes under strongly basic conditions.

本発明では、必要に応じて、炭化水素系アレンモノマーや官能基含有アレンモノマーのような他のアレンモノマーを共重合させても良い。
上記炭化水素系アレンモノマーとしては、例えば、フェノキシアレン、アレン(1,2−プロパジエン)、メチルアレン、エチルアレン、プロピルアレン、ブチルアレン、イソプロピルアレン、ヘキシルアレン、フェニルアレン、ベンジルアレン、ジメチルアレン、ジエチルアレン、ジヘキシルアレン、ジフェニルアレン、置換アルキルブタジニエルエーテル、アレン酸エステル、ポリオキシエチレンアレニルアルキルエーテル等が挙げられる。
上記フェノキシアレンとしては、例えば、フェノキシアレン、(4−tert−ブチルフェノキシ)アレン、(4−ニトロフェノキシ)アレン、(4−アセチルフェノキシ)アレン等が挙げられる。中でも反応性に優れ、粒子径の均一性の観点から、フェノキシアレンが好ましい。
In the present invention, if necessary, other allene monomers such as hydrocarbon-based allene monomers and functional group-containing allene monomers may be copolymerized.
Examples of the hydrocarbon-based allene monomer include phenoxyallene, allene (1,2-propadiene), methylallene, ethylallene, propylallene, butylallene, isopropylallene, hexylallene, phenylallene, benzylallene, dimethylallene, and diethyl. Examples include allene, dihexyl allene, diphenyl allene, substituted alkyl butadiene ether, arenic acid ester, polyoxyethylene allenyl alkyl ether, and the like.
Examples of the phenoxyallene include phenoxyallene, (4-tert-butylphenoxy) allene, (4-nitrophenoxy) allene, and (4-acetylphenoxy) allene. Among these, phenoxyallene is preferable from the viewpoint of excellent reactivity and uniformity of particle diameter.

上記官能基含有アレンモノマーとしては、例えば、カルボキシメチルアレン、2−カルボキシエチルアレン、ジカルボキシルメチルアレン、2,2−ジカルボキシエチルアレン、アミノメチルアレン、2−アミノエチルアレン、シアノメチルアレン、2−シアノエチルアレン、ヒドロキシエチルアレン等が挙げられる。
中でも反応性に優れ、粒子径の均一性の観点から、ヒドロキシエチルアレンが好ましい。
Examples of the functional group-containing allene monomer include carboxymethyl allene, 2-carboxyethyl allene, dicarboxymethyl allene, 2,2-dicarboxyethyl allene, aminomethyl allene, 2-aminoethyl allene, cyanomethyl allene, 2 -Cyanoethyl allene, hydroxyethyl allene, etc. are mentioned.
Of these, hydroxyethylallene is preferred from the viewpoint of excellent reactivity and uniformity of particle diameter.

上記アルコキシリル基置換アレンモノマーの添加量は、上記アルコキシリル基置換アレンモノマーと他のアレンモノマーとを合わせた全アレンモノマーを100モル当量とした場合に、1〜100モル当量であることが好ましい。上記範囲内とすることで、凝集の無い均一なケイ素含有ポリマー微粒子を得ることが可能となる。より好ましくは、10〜90モル当量である。 The addition amount of the alkoxylyl group-substituted allene monomer is preferably 1 to 100 molar equivalents when the total allenic monomer including the alkoxylyl group-substituted allene monomer and the other allenic monomer is 100 molar equivalents. . By setting it within the above range, uniform silicon-containing polymer fine particles having no aggregation can be obtained. More preferably, it is 10-90 molar equivalent.

上記アルコキシシリル基置換アレンモノマーと他のアレンモノマーを合わせたアレンモノマー全体の添加量は、開始剤1モル当量に対して好ましい下限は5モル当量、好ましい上限は1000モル当量である。上記アレンモノマー全体の添加量が5モル当量未満であるとケイ素含有ポリマー微粒子が生成しにくくなることがあり、1000モル当量を超えると、ケイ素含有ポリマー微粒子同士の凝集を招くことがある。
上記アレンモノマー全体の添加量のより好ましい下限は15モル当量、より好ましい上限は200モル当量である。
As for the addition amount of the whole allene monomer which combined the said alkoxy silyl group substituted allene monomer and other allene monomers, a preferable minimum is 5 molar equivalent with respect to 1 molar equivalent of an initiator, and a preferable upper limit is 1000 molar equivalent. When the addition amount of the whole allene monomer is less than 5 molar equivalents, it may be difficult to form silicon-containing polymer fine particles, and when it exceeds 1000 molar equivalents, aggregation of silicon-containing polymer fine particles may be caused.
The more preferable lower limit of the addition amount of the entire allene monomer is 15 molar equivalents, and the more preferable upper limit is 200 molar equivalents.

本発明のケイ素含有ポリマー微粒子の製造方法によって得られるケイ素含有ポリマー微粒子の形状としては、例えば、中実形状、中空形状、コアシェル形状、ネットワーク形状、ベシクル形状等が挙げられる。特に、本発明では、高中空度で、粒子径の小さい中空粒子を好適に製造することができる。 Examples of the shape of the silicon-containing polymer fine particles obtained by the method for producing silicon-containing polymer fine particles of the present invention include a solid shape, a hollow shape, a core-shell shape, a network shape, and a vesicle shape. In particular, in the present invention, hollow particles having a high hollowness and a small particle diameter can be suitably produced.

本発明のケイ素含有ポリマー微粒子の製造方法としては、上記アルコキシシリル基置換アレンモノマーを用いてリビング重合を行う工程を有するものであれば、特に限定されないが、
上記アルコキシシリル基置換アレンモノマーを用いてリビング重合を行う工程のみを行う方法(X)、
上記アルコキシシリル基置換アレンモノマーを用いてリビング重合を行う工程1を行った後に、他のアレンモノマーを用いて重合する工程2を行う方法(A)、
上記他のアレンモノマーを重合する工程1を行った後に、上記アルコキシシリル基置換アレンモノマーを用いてリビング重合を行う工程2を行う方法(B)
が挙げられる。
The method for producing silicon-containing polymer fine particles of the present invention is not particularly limited as long as it has a step of performing living polymerization using the above alkoxysilyl group-substituted allene monomer.
Method (X) for performing only the step of conducting living polymerization using the alkoxysilyl group-substituted allene monomer,
Method (A) of performing Step 2 of performing polymerization using another allene monomer after performing Step 1 of performing living polymerization using the alkoxysilyl group-substituted allene monomer.
Method (B) of performing Step 2 of performing living polymerization using the alkoxysilyl group-substituted allene monomer after performing Step 1 of polymerizing the other allene monomer.
Is mentioned.

上記方法Xは、アルコキシシリル基置換アレンモノマーの重合体からなる中実構造の粒子を得るのに適した方法である。
また、上記方法Aや方法Bでは、アルコキシシリル基置換アレンモノマーによる無機成分と、他のアレンモノマーによる有機成分の量が調整できることから、粒子内の無機成分と有機成分の比率を正確に制御することができるという利点がある。
The method X is a method suitable for obtaining particles having a solid structure made of a polymer of an alkoxysilyl group-substituted allene monomer.
In the method A and method B, since the amount of the inorganic component by the alkoxysilyl group-substituted allene monomer and the amount of the organic component by the other allene monomer can be adjusted, the ratio of the inorganic component to the organic component in the particles is accurately controlled. There is an advantage that you can.

上記方法Aでは、アルコキシシリル基置換アレンモノマーが多い場合は、他のアレンモノマーの重合体がコア、アルコキシシリル基置換アレンモノマーの重合体がシェルとなったコアシェル粒子が得られ、アルコキシシリル基置換アレンモノマーが少ない場合は、内部が中空で最外層がアルコキシシリル基置換アレンモノマーの重合体、中間層が他のアレンモノマーの重合体であるベシクル粒子が得られる。
また、方法Bでは、アルコキシシリル基置換アレンモノマーが多い場合は、アルコキシシリル基置換アレンモノマーの重合体がコア、他のアレンモノマーの重合体がシェルとなったコアシェル粒子が得られ、アルコキシシリル基置換アレンモノマーが少ない場合は、内部が中空で最外層が他のアレンモノマーの重合体、中間層がアルコキシシリル基置換アレンモノマーの重合体であるベシクル粒子が得られる。
In the method A, when there are many alkoxysilyl group-substituted allene monomers, core-shell particles in which the polymer of the other allene monomer is the core and the polymer of the alkoxysilyl group-substituted allene monomer is the shell are obtained. When the amount of allene monomer is small, vesicle particles are obtained in which the inside is hollow, the outermost layer is a polymer of an alkoxysilyl group-substituted allene monomer, and the intermediate layer is a polymer of another allene monomer.
In the method B, when there are many alkoxysilyl group-substituted allene monomers, core-shell particles in which the polymer of the alkoxysilyl group-substituted allene monomer is the core and the polymer of the other allene monomer is the shell are obtained. When the amount of substituted allene monomers is small, vesicle particles are obtained in which the inside is hollow, the outermost layer is a polymer of another allene monomer, and the intermediate layer is a polymer of an alkoxysilyl group-substituted allene monomer.

上記方法Aでは、工程1を行う際のリビング重合をリビング配位重合で行うことが好ましい。即ち、アルコキシシリル基置換アレンモノマーを用いて、リビング配位重合する工程1と、上記アルコキシシリル基置換アレンモノマーの重合体に、上記アルコキシシリル基置換アレンモノマー以外の他のアレンモノマーを共重合させる工程2を有する方法を行うことが好ましい。 In the above method A, it is preferable that the living polymerization at the time of performing step 1 is performed by living coordination polymerization. That is, Step 1 of living coordination polymerization using an alkoxysilyl group-substituted allene monomer, and a copolymer of the alkoxysilyl group-substituted allene monomer are copolymerized with other allene monomers other than the alkoxysilyl group-substituted allene monomer. It is preferable to carry out the method having step 2.

本発明のケイ素含有ポリマー微粒子の製造方法によって得られるケイ素含有ポリマー微粒子は、平均粒子径の好ましい下限が0.001μm、好ましい上限が5μmである。平均粒子径が0.001μm未満であると、小さすぎてポリマーとしての硬さや弾性が得られないことがある。平均粒子径が5μmを超えると、重合中に粒子が凝集することがある。上記平均粒子径のより好ましい下限は0.002μm、より好ましい上限は3μmである。
なお、上記ケイ素含有ポリマー微粒子の平均粒子径は、光学顕微鏡、又は、電子顕微鏡を用いて無作為に選んだ50個のケイ素含有ポリマー微粒子を観察して得られた直径の平均値を意味する。
The silicon-containing polymer fine particles obtained by the method for producing silicon-containing polymer fine particles of the present invention have a preferred lower limit of the average particle diameter of 0.001 μm and a preferred upper limit of 5 μm. If the average particle size is less than 0.001 μm, the polymer may be too small to obtain hardness or elasticity as a polymer. When the average particle diameter exceeds 5 μm, the particles may aggregate during polymerization. A more preferable lower limit of the average particle diameter is 0.002 μm, and a more preferable upper limit is 3 μm.
The average particle diameter of the silicon-containing polymer fine particles means an average value of diameters obtained by observing 50 silicon-containing polymer fine particles randomly selected using an optical microscope or an electron microscope.

また、上記ケイ素含有ポリマー微粒子の平均粒子径は、CV値の好ましい上限が80%である。CV値が80%を超えると、粒子径分布が広くなり過ぎる。CV値のより好ましい上限は50%である。なお、CV値は、標準偏差を平均粒子径で割った値の百分率(%)で示される数値である。 The average upper limit of the CV value of the average particle size of the silicon-containing polymer fine particles is 80%. When the CV value exceeds 80%, the particle size distribution becomes too wide. A more preferable upper limit of the CV value is 50%. The CV value is a numerical value indicated by a percentage (%) of a value obtained by dividing the standard deviation by the average particle diameter.

本発明で得られるケイ素含有ポリマー微粒子は、電子部品の接合材料用フィラーや、屈折率制御剤、断熱材、誘電率制御剤等として好適に用いることができる。 The silicon-containing polymer fine particles obtained in the present invention can be suitably used as a filler for bonding materials for electronic parts, a refractive index control agent, a heat insulating material, a dielectric constant control agent, and the like.

本発明によれば、粒子径の小さいケイ素系ポリマー複合粒子が得られるとともに、分子量及び粒子径を均一に制御することができ、中実構造、コアシェル構造、中空構造等のケイ素含有ポリマー微粒子を好適に製造することが可能なケイ素含有ポリマー微粒子の製造方法を提供できる。 According to the present invention, silicon-based polymer composite particles having a small particle diameter can be obtained, and the molecular weight and particle diameter can be controlled uniformly, and silicon-containing polymer fine particles such as a solid structure, a core-shell structure, and a hollow structure are suitable. It is possible to provide a method for producing silicon-containing polymer fine particles that can be produced easily.

実施例2で得られた粒子を、透過型電子顕微鏡を用いて観察した顕微鏡写真である。It is the microscope picture which observed the particle | grains obtained in Example 2 using the transmission electron microscope. 実施例3で得られた粒子を、透過型電子顕微鏡を用いて観察した顕微鏡写真である。It is the microscope picture which observed the particle | grains obtained in Example 3 using the transmission electron microscope. 実施例4で得られた粒子を、透過型電子顕微鏡を用いて観察した顕微鏡写真である。It is the microscope picture which observed the particle | grains obtained in Example 4 using the transmission electron microscope. 実施例5で得られた粒子を、透過型電子顕微鏡を用いて観察した顕微鏡写真である。It is the microscope picture which observed the particle | grains obtained in Example 5 using the transmission electron microscope. 実施例6で得られた粒子を、透過型電子顕微鏡を用いて観察した顕微鏡写真である。It is the microscope picture which observed the particle | grains obtained in Example 6 using the transmission electron microscope. 実施例7で得られた粒子を、透過型電子顕微鏡を用いて観察した顕微鏡写真である。It is the microscope picture which observed the particle | grains obtained in Example 7 using the transmission electron microscope.

以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。なお、製法が、上述した方法X、方法A、方法Bの何れに当てはまるかを表1に示した。また、方法A、方法Bにおいて、工程1で使用するモノマーを第1モノマー、工程2で使用するモノマーを第2モノマーとした。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples. Table 1 shows whether the production method is applicable to the above-described method X, method A, or method B. In Method A and Method B, the monomer used in Step 1 was the first monomer, and the monomer used in Step 2 was the second monomer.

(実施例1)
5mLの試験管に、攪拌子を入れ、窒素置換した。その後、ビス(1,5−シクロオクタジエン)ニッケル0.01mmol(0.00275g)、トリフェニルフォスフィン0.012mmol(0.00314g)、アリルトリフルオロアセテート0.012mmol(0.00185g)、エタノール1mL(1.2500g)、ポリビニルピロリドン10%エタノール溶液0.1mL(0.125g)、1−トリエトキシシリル−1−メトキシアレン0.5mmol(0.1175g)を加え、24時間重合を行い、ケイ素含有ポリマー微粒子を得た。
Example 1
A stir bar was placed in a 5 mL test tube and purged with nitrogen. Thereafter, 0.01 mmol (0.00275 g) of bis (1,5-cyclooctadiene) nickel, 0.012 mmol (0.00314 g) of triphenylphosphine, 0.012 mmol (0.00185 g) of allyl trifluoroacetate, 1 mL of ethanol (1.2500 g), polyvinylpyrrolidone 10% ethanol solution 0.1 mL (0.125 g), 1-triethoxysilyl-1-methoxyallene 0.5 mmol (0.1175 g) is added, polymerization is performed for 24 hours, and silicon is contained. Polymer fine particles were obtained.

(実施例2)
5mLの試験管に、攪拌子を入れ、窒素置換した。その後、ビス(1,5−シクロオクタジエン)ニッケル0.01mmol(0.00275g)、アリルブロミド0.012mmol(0.00145g)、トルエン1mL(1.16g)、1−トリエトキシシリル−1−メトキシアレン0.2mmol(0.0470g)を加え、24時間重合を行い、ケイ素含有ポリマーが均一に溶解した溶液を得た。
その後、トリフェニルフォスフィン0.012mmol(0.00314g)、ヒドロキシエチルアレン0.2mmol(0.0168g)を加えてさらに24時間重合を行い、ケイ素含有ポリマー微粒子を得た。
(Example 2)
A stir bar was placed in a 5 mL test tube and purged with nitrogen. Thereafter, 0.01 mmol (0.00275 g) of bis (1,5-cyclooctadiene) nickel, 0.012 mmol (0.00145 g) of allyl bromide, 1 mL (1.16 g) of toluene, 1-triethoxysilyl-1-methoxy Allene (0.2 mmol, 0.0470 g) was added and polymerization was performed for 24 hours to obtain a solution in which the silicon-containing polymer was uniformly dissolved.
Thereafter, 0.012 mmol (0.00314 g) of triphenylphosphine and 0.2 mmol (0.0168 g) of hydroxyethyl allene were added, and polymerization was further performed for 24 hours to obtain silicon-containing polymer fine particles.

(実施例3)
ヒドロキシエチルアレンの添加量を0.3mmol(0.0252g)とした以外は実施例2と同様にしてケイ素含有ポリマー微粒子を得た。
(Example 3)
Silicon-containing polymer fine particles were obtained in the same manner as in Example 2 except that the amount of hydroxyethylallene added was 0.3 mmol (0.0252 g).

(実施例4)
ヒドロキシエチルアレンの添加量を0.6mmol(0.0504g)とした以外は実施例2と同様にしてケイ素含有ポリマー微粒子を得た。
Example 4
Silicon-containing polymer fine particles were obtained in the same manner as in Example 2 except that the amount of hydroxyethylallene added was 0.6 mmol (0.0504 g).

(実施例5)
5mLの試験管に、攪拌子を入れ、窒素置換した。その後、ビス(1,5−シクロオクタジエン)ニッケル0.01mmol(0.00275g)、トリフェニルフォスフィン0.012mmol(0.00314g)、アリルブロミド0.012mmol(0.00145g)、エタノール1mL(1.25g)、ヒドロキシエチルアレン0.2mmol(0.0168g)を加え、24時間重合を行い、ポリマーが均一に溶解した溶液を得た。
その後、ヨウ化銅0.015mmol(0.00285g)、1−トリエトキシシリル−1−メトキシアレン0.2mmol(0.0470g)を加えてさらに24時間重合を行い、ケイ素含有ポリマー微粒子を得た。
(Example 5)
A stir bar was placed in a 5 mL test tube and purged with nitrogen. Thereafter, 0.01 mmol (0.00275 g) of bis (1,5-cyclooctadiene) nickel, 0.012 mmol (0.00314 g) of triphenylphosphine, 0.012 mmol (0.00145 g) of allyl bromide, 1 mL of ethanol (1 .25 g) and 0.2 mmol (0.0168 g) of hydroxyethyl allene were added, and polymerization was performed for 24 hours to obtain a solution in which the polymer was uniformly dissolved.
Thereafter, 0.015 mmol (0.00285 g) of copper iodide and 0.2 mmol (0.0470 g) of 1-triethoxysilyl-1-methoxyallene were added and polymerization was further performed for 24 hours to obtain silicon-containing polymer fine particles.

(実施例6)
トルエンを塩化メチレンとした以外は実施例2と同様にしてケイ素含有ポリマー微粒子を得た。
(Example 6)
Silicon-containing polymer fine particles were obtained in the same manner as in Example 2 except that toluene was changed to methylene chloride.

(実施例7)
ヒドロキシエチルアレンを2−(パーフルオロオクチル)エチル−2,3−ブタジエニルエーテルとした以外は実施例2と同様にしてケイ素含有ポリマー微粒子を得た。
(Example 7)
Silicon-containing polymer fine particles were obtained in the same manner as in Example 2 except that hydroxyethylallene was changed to 2- (perfluorooctyl) ethyl-2,3-butadienyl ether.

(実施例8)
1−トリエトキシシリル−1−メトキシアレンに代えて、1−トリメトキシシリル−1−メトキシアレン0.5mmol(0.0950g)を用いた以外は実施例1と同様にしてケイ素含有ポリマー微粒子を得た。
(Example 8)
Silicon-containing polymer fine particles were obtained in the same manner as in Example 1 except that 0.5 mmol (0.0950 g) of 1-trimethoxysilyl-1-methoxyallene was used instead of 1-triethoxysilyl-1-methoxyallene. It was.

(実施例9)
1−トリエトキシシリル−1−メトキシアレンに代えて、1−トリエトキシシリル−1−エトキシアレン0.5mmol(0.1250g)を用いた以外は実施例1と同様にしてケイ素含有ポリマー微粒子を得た。
Example 9
Silicon-containing polymer fine particles were obtained in the same manner as in Example 1, except that 0.5 mmol (0.1250 g) of 1-triethoxysilyl-1-ethoxyallene was used instead of 1-triethoxysilyl-1-methoxyallene. It was.

(実施例10)
1−トリエトキシシリル−1−メトキシアレンに代えて、1−トリエトキシシリル−1−フェノキシアレン0.5mmol(0.1485g)を用いた以外は実施例1と同様にしてケイ素含有ポリマー微粒子を得た。
(Example 10)
Silicon-containing polymer fine particles were obtained in the same manner as in Example 1 except that 0.5 mmol (0.1485 g) of 1-triethoxysilyl-1-phenoxyallene was used instead of 1-triethoxysilyl-1-methoxyallene. It was.

(実施例11)
1−トリエトキシシリル−1−メトキシアレンの添加量を0.25mmol(0.0588g)とした以外は実施例1と同様にしてケイ素含有ポリマー微粒子を得た。
(Example 11)
Silicon-containing polymer fine particles were obtained in the same manner as in Example 1 except that the addition amount of 1-triethoxysilyl-1-methoxyallene was changed to 0.25 mmol (0.0588 g).

(実施例12)
1−トリエトキシシリル−1−メトキシアレンの添加量を0.75mmol(0.1763g)とした以外は実施例1と同様にしてケイ素含有ポリマー微粒子を得た。
(Example 12)
Silicon-containing polymer fine particles were obtained in the same manner as in Example 1 except that the addition amount of 1-triethoxysilyl-1-methoxyallene was changed to 0.75 mmol (0.1763 g).

(実施例13)
エタノールの添加量を12.5g(10mL)とした以外は実施例1と同様にしてケイ素含有ポリマー微粒子を得た。
(Example 13)
Silicon-containing polymer fine particles were obtained in the same manner as in Example 1 except that the amount of ethanol added was 12.5 g (10 mL).

(実施例14)
エタノール1.25g(1mL)に代えて、メタノール12.5g(10mL)を添加した以外は実施例1と同様にしてケイ素含有ポリマー微粒子を得た。
(Example 14)
Silicon-containing polymer fine particles were obtained in the same manner as in Example 1 except that 12.5 g (10 mL) of methanol was added instead of 1.25 g (1 mL) of ethanol.

(比較例1)
5mLの試験管に、攪拌子を入れ、窒素置換した。その後、3−メタクリロキシプロピルトリメトキシシラン0.01mmol(0.0025g)、エタノール1mL(1.25g)、1Nのアンモニア水溶液0.01mL(0.01g)を加え、24時間反応を行った。その後、アゾビスイソブチロニトリル0.001mmol(0.00016g)を加え、70℃に加熱して24時間重合反応を行い、ケイ素含有ポリマー微粒子を得た。
(Comparative Example 1)
A stir bar was placed in a 5 mL test tube and purged with nitrogen. Thereafter, 0.01 mmol (0.0025 g) of 3-methacryloxypropyltrimethoxysilane, 1 mL (1.25 g) of ethanol, and 0.01 mL (0.01 g) of 1N aqueous ammonia were added, and the reaction was performed for 24 hours. Thereafter, 0.001 mmol (0.00016 g) of azobisisobutyronitrile was added, heated to 70 ° C., and subjected to a polymerization reaction for 24 hours to obtain silicon-containing polymer fine particles.

(比較例2)
0.83mL(0.83g)の純水にシード粒子としてソープフリー重合で合成した1.3μmのポリスチレン粒子20mgを分散させ、ジブチルフタレート46.5μL(46.5μg)及びベンゾイルパーオキサイド5mgを含む0.36%水溶液ラウリル硫酸ナトリウム4.2gを加え、30℃で3時間攪拌した。さらにメタクリル酸メチル6mL(5.64g)及び3−メタクリロキシプロピルトリメトキシシラン6mL(6.24g)を含む0.8%ポリビニルアルコール水溶液の62mL(62g)を加え、30℃で3時間攪拌し、膨潤させた。次いで、80℃で15時間、ラジカル重合させた。反応終了後、室温まで冷却し、0.01N塩酸5mL(5g)加え、70℃で3時間、上記で用いた3−メタクリロキシプロピルトリメトキシシラン中のメトキシ基を加水分解させた後、28%アンモニア水0.5mL(0.5g)を加え、再び70℃で3時間縮合させて、ケイ素含有ポリマー微粒子を得た。
(Comparative Example 2)
20 mg of 1.3 μm polystyrene particles synthesized by soap-free polymerization as seed particles are dispersed in 0.83 mL (0.83 g) of pure water, and 0 containing dibutyl phthalate 46.5 μL (46.5 μg) and benzoyl peroxide 5 mg. A 36% aqueous sodium lauryl sulfate solution (4.2 g) was added, and the mixture was stirred at 30 ° C. for 3 hours. Furthermore, 62 mL (62 g) of 0.8% polyvinyl alcohol aqueous solution containing 6 mL (5.64 g) of methyl methacrylate and 6 mL (6.24 g) of 3-methacryloxypropyltrimethoxysilane was added, and the mixture was stirred at 30 ° C. for 3 hours. Swelled. Subsequently, radical polymerization was performed at 80 ° C. for 15 hours. After completion of the reaction, the reaction mixture was cooled to room temperature, 5 mL (5 g) of 0.01N hydrochloric acid was added, and the methoxy group in 3-methacryloxypropyltrimethoxysilane used above was hydrolyzed at 70 ° C. for 3 hours. Aqueous ammonia 0.5 mL (0.5 g) was added and condensed again at 70 ° C. for 3 hours to obtain silicon-containing polymer fine particles.

(比較例3)
1−トリエトキシシリル−1−メトキシアレンに代えて、ヒドロキシエチルアレン0.5mmol(0.042g)を用いた以外は実施例1と同様にしてケイ素を含まないポリマー微粒子を得た。
(Comparative Example 3)
Polymer fine particles not containing silicon were obtained in the same manner as in Example 1 except that 0.5 mmol (0.042 g) of hydroxyethylallene was used instead of 1-triethoxysilyl-1-methoxyallene.

(比較例4)
三方コックをつけたすり付き試験管中に、分散安定剤としてポリ(N−ビニルピロリドン)0.30g、重合触媒としてブチルリチウム(6.4mg、0.10mmol)を加え、窒素置換を行った。
ここに重合媒体として乾燥トルエン(10.0mL、8.6g)を加え、ブチルリチウム触媒溶液を得た。
得られたブチルリチウム触媒溶液に対して、ヒドロキシエチルアレン(SP値10.4(cal/cm0.5、0.84g、10mmol)を加え23℃にて1時間、350rpmで攪拌しつつ重合を行うことにより、親水性樹脂粒子を得た。
(Comparative Example 4)
In a rubbed test tube with a three-way cock, 0.30 g of poly (N-vinylpyrrolidone) as a dispersion stabilizer and butyl lithium (6.4 mg, 0.10 mmol) as a polymerization catalyst were added, and nitrogen substitution was performed.
Dry toluene (10.0 mL, 8.6 g) was added as a polymerization medium to obtain a butyllithium catalyst solution.
To the resulting butyllithium catalyst solution, hydroxyethylallene (SP value 10.4 (cal / cm 3 ) 0.5 , 0.84 g, 10 mmol) was added and stirred at 23 ° C. for 1 hour at 350 rpm. By carrying out polymerization, hydrophilic resin particles were obtained.

(評価)
(1)平均粒子径の測定
透過型電子顕微鏡により、任意の50個の粒子を観察し、ノギスにより計測した値の数平均粒子径及び粒子径のCV値を測定した。また、目視による観察によって得られた粒子の構造を判定した。
なお、実施例2〜7で得られた粒子について、透過型電子顕微鏡を用いて撮影した写真を図1〜6に示す。
(Evaluation)
(1) Measurement of average particle diameter Arbitrary 50 particles were observed with a transmission electron microscope, and the number average particle diameter and the CV value of the particle diameter measured with a caliper were measured. Moreover, the structure of the particle | grains obtained by observation by visual observation was determined.
In addition, about the particle | grains obtained in Examples 2-7, the photograph image | photographed using the transmission electron microscope is shown in FIGS.

(2)分子量分布の測定
粒子を構成する樹脂の重量平均分子量及び分子量分布は下記の方法により測定した。カラムとしてSHOKO社製カラムLF−804を用い、ゲルパーミエーションクロマトグラフィーによる分析を行い、ポリスチレン換算による重量平均分子量(Mw)及び分子量分布(重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn))を測定した。
(2) Measurement of molecular weight distribution The weight average molecular weight and molecular weight distribution of the resin constituting the particles were measured by the following methods. Using column LF-804 manufactured by SHOKO as a column, analysis by gel permeation chromatography is performed, and weight average molecular weight (Mw) and molecular weight distribution (weight average molecular weight (Mw) and number average molecular weight (Mn) in terms of polystyrene are calculated. Ratio (Mw / Mn)) was measured.

(3)耐熱性の測定
得られた粒子0.1gを計量してるつぼに入れ、マッフル炉で500℃6時間加熱した後に取り出し、再度計量を行い、加熱前の粒子重量(a)及び加熱後の粒子重量(b)から、下記式を用いて残存灰分率を測定した。
残存灰分率=b/a×100(%)
得られた残存灰分率について、以下の基準で評価した。
(3) Measurement of heat resistance 0.1 g of the obtained particles are weighed and put into a crucible, taken out after heating at 500 ° C. for 6 hours in a muffle furnace, weighed again, the weight of particles before heating (a) and after heating From the particle weight (b), the residual ash content was measured using the following formula.
Residual ash content = b / a × 100 (%)
The obtained residual ash content was evaluated according to the following criteria.

○○○:20%以上
○○ :5%以上20%未満
○ :1%以上5%未満
× :1%未満
XX: 20% or more XX: 5% or more and less than 20% ◯: 1% or more and less than 5% ×: less than 1%

本発明によれば、粒子径の小さいケイ素系ポリマー複合粒子が得られると共に、分子量及び粒子径を均一に制御することができ、さらに、中実構造やコアシェル構造、中空構造のような異形構造のケイ素含有ポリマー微粒子を製造することが可能なケイ素含有ポリマー微粒子の製造方法を提供できる。 According to the present invention, a silicon-based polymer composite particle having a small particle diameter can be obtained, the molecular weight and the particle diameter can be controlled uniformly, and a deformed structure such as a solid structure, a core-shell structure, or a hollow structure can be obtained. A method for producing silicon-containing polymer particles capable of producing silicon-containing polymer particles can be provided.

Claims (5)

アルコキシシリル基置換アレンモノマーを用いてリビング重合を行う工程を有する
ことを特徴とするケイ素含有ポリマー微粒子の製造方法。
A method for producing silicon-containing polymer fine particles, comprising a step of conducting living polymerization using an alkoxysilyl group-substituted allene monomer.
アルコキシシリル基置換アレンモノマーは、アルコキシシリル基を3個有することを特徴とする請求項1記載のケイ素含有ポリマー微粒子の製造方法。 The method for producing fine silicon-containing polymer particles according to claim 1, wherein the alkoxysilyl group-substituted allene monomer has three alkoxysilyl groups. アルコキシシリル基置換アレンモノマーは、1−トリエトキシシリル−1−メトキシアレン、1−トリメトキシシリル−1−メトキシアレン、1−トリエトキシシリル−1−エトキシアレン、1−トリメトキシシリル−1−エトキシアレン、1−トリエトキシシリルアレン、1−トリメトキシシリルアレン、1−トリエトキシシリル−1−メチルアレン、1−トリメトキシシリル−1−メチルアレン、1−トリエトキシシリル−1−フェノキシアレン、1−トリメトキシシリル−1−フェノキシアレン、1−トリエトキシシリル−1−フェニルアレン、及び、1−トリメトキシシリル−1−フェニルアレンからなる群より選択される少なくとも1種であることを特徴とする請求項1記載のケイ素含有ポリマー微粒子の製造方法。 Alkoxysilyl group-substituted allene monomers are 1-triethoxysilyl-1-methoxyallene, 1-trimethoxysilyl-1-methoxyallene, 1-triethoxysilyl-1-ethoxyallene, 1-trimethoxysilyl-1-ethoxy Allene, 1-triethoxysilyl allene, 1-trimethoxysilyl allene, 1-triethoxysilyl-1-methyl allene, 1-trimethoxysilyl-1-methyl allene, 1-triethoxysilyl-1-phenoxy allene, 1 It is at least one selected from the group consisting of -trimethoxysilyl-1-phenoxyallene, 1-triethoxysilyl-1-phenylallene, and 1-trimethoxysilyl-1-phenylallene The method for producing silicon-containing fine polymer particles according to claim 1. リビング重合を分散重合法で行うことを特徴とする請求項1記載のケイ素含有ポリマー微粒子の製造方法。 2. The method for producing silicon-containing polymer fine particles according to claim 1, wherein the living polymerization is carried out by a dispersion polymerization method. アルコキシシリル基置換アレンモノマーを用いて、リビング配位重合する工程1と、
前記アルコキシシリル基置換アレンモノマーの重合体に、前記アルコキシシリル基置換アレンモノマー以外の他のアレンモノマーを共重合させる工程2
を有することを特徴とする請求項1記載のケイ素含有ポリマー微粒子の製造方法。
Step 1 of living coordination polymerization using an alkoxysilyl group-substituted allene monomer;
Step 2 of copolymerizing the polymer of the alkoxysilyl group-substituted allene monomer with another allene monomer other than the alkoxysilyl group-substituted allene monomer
The method for producing silicon-containing fine polymer particles according to claim 1, wherein:
JP2013151958A 2012-07-23 2013-07-22 Method for producing silicon-containing polymer fine particles Active JP6274482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013151958A JP6274482B2 (en) 2012-07-23 2013-07-22 Method for producing silicon-containing polymer fine particles

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012162986 2012-07-23
JP2012162986 2012-07-23
JP2013151958A JP6274482B2 (en) 2012-07-23 2013-07-22 Method for producing silicon-containing polymer fine particles

Publications (2)

Publication Number Publication Date
JP2014040582A true JP2014040582A (en) 2014-03-06
JP6274482B2 JP6274482B2 (en) 2018-02-07

Family

ID=50393087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013151958A Active JP6274482B2 (en) 2012-07-23 2013-07-22 Method for producing silicon-containing polymer fine particles

Country Status (1)

Country Link
JP (1) JP6274482B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58217942A (en) * 1982-06-01 1983-12-19 ゼロツクス・コ−ポレ−シヨン Manufacture of electrophotographic image formation material
JP2001131139A (en) * 1999-11-02 2001-05-15 Daicel Chem Ind Ltd New optically active allene compound, its polymer and method for producing the same
JP2001247628A (en) * 2000-03-07 2001-09-11 Daicel Chem Ind Ltd New optically active allene compound containing asymmetric carbon, its polymer and its production method
JP2005139341A (en) * 2003-11-07 2005-06-02 Kuraray Co Ltd New polymer and method for producing the same
JP2005247901A (en) * 2004-03-01 2005-09-15 Institute Of Physical & Chemical Research 4-silyl-1-butene-3-yne polymer, copolymer with conjugated diene, and methods for producing them
JP2012031378A (en) * 2010-07-01 2012-02-16 Tokyo Institute Of Technology Method of producing fluorine-based polymer composite particle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58217942A (en) * 1982-06-01 1983-12-19 ゼロツクス・コ−ポレ−シヨン Manufacture of electrophotographic image formation material
US4439509A (en) * 1982-06-01 1984-03-27 Xerox Corporation Process for preparing overcoated electrophotographic imaging members
JP2001131139A (en) * 1999-11-02 2001-05-15 Daicel Chem Ind Ltd New optically active allene compound, its polymer and method for producing the same
JP2001247628A (en) * 2000-03-07 2001-09-11 Daicel Chem Ind Ltd New optically active allene compound containing asymmetric carbon, its polymer and its production method
JP2005139341A (en) * 2003-11-07 2005-06-02 Kuraray Co Ltd New polymer and method for producing the same
JP2005247901A (en) * 2004-03-01 2005-09-15 Institute Of Physical & Chemical Research 4-silyl-1-butene-3-yne polymer, copolymer with conjugated diene, and methods for producing them
JP2012031378A (en) * 2010-07-01 2012-02-16 Tokyo Institute Of Technology Method of producing fluorine-based polymer composite particle

Also Published As

Publication number Publication date
JP6274482B2 (en) 2018-02-07

Similar Documents

Publication Publication Date Title
Du et al. Atom-transfer radical polymerization of a reactive monomer: 3-(trimethoxysilyl) propyl methacrylate
CN102369226B (en) Method of forming non-random copolymer
Canché-Escamilla et al. Synthesis and characterization of hybrid silica/PMMA nanoparticles and their use as filler in dental composites
CN102007187B (en) Anorganic nanoparticles and polymer composites created with same
US20130102733A1 (en) Method of Manufacturing Core-Shell Submicron Spheres
CN102753618B (en) The hybrid particulates be made up of polymkeric substance and nano particle
CN103073724A (en) Long-chain siloxy ethenyl siloxane, modified (methyl) acrylic ester polymer emulsion thereof, and preparation method
JP5465525B2 (en) Organic-inorganic composite composition and method for producing the same
CN110167993B (en) Emulsion particles, emulsion comprising same and preparation method of emulsion
JP5548971B2 (en) Thermoplastic organic-inorganic hybrid material
Zeng et al. Organic–inorganic hybrid hydrogels involving poly (N‐isopropylacrylamide) and polyhedral oligomeric silsesquioxane: Preparation and rapid thermoresponsive properties
JPH03212451A (en) Transparent uniform material of organic-inorganic complex and its production
CN105524551B (en) Optical coating, the manufacture method of optical coating and antireflection film
JP6274482B2 (en) Method for producing silicon-containing polymer fine particles
CN102167879B (en) Block copolymer/nano-SiO2 composite material and preparation method thereof
JP2004018556A (en) Polymer particle having living initiating species and method for producing the same
JP2003277507A (en) Manufacturing method of polysilane copolymer
CN103443156B (en) Filamentous polymer particles and method for preparing same by means of controlled radical polymerisation in emulsion
CN107312138A (en) A kind of preparation method for the response type latex film for possessing Microphase Structure
Aldakheel et al. In Situ Formation of Silica Nanoparticles Decorated with Well-Defined Homopolymers and Block Copolymers
JP7354293B2 (en) Viscosity index improver comprising conjugated diene graft polymer and oil composition
CN110818861B (en) Toughening reinforcing agent for PC filling system and preparation method thereof
CN112831050B (en) Single-end-capped organic siloxane macromonomer, silicon hydrogel, corneal contact lens and preparation method
Ge et al. Stability and optimum polymerized condition of polysiloxane–polyacrylate core/shell polymer
WO2014134889A1 (en) Polymerisable oligomer and photoresist composition containing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171227

R150 Certificate of patent or registration of utility model

Ref document number: 6274482

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250