JP2014039633A - Magnetic resonance imaging apparatus - Google Patents

Magnetic resonance imaging apparatus Download PDF

Info

Publication number
JP2014039633A
JP2014039633A JP2012182868A JP2012182868A JP2014039633A JP 2014039633 A JP2014039633 A JP 2014039633A JP 2012182868 A JP2012182868 A JP 2012182868A JP 2012182868 A JP2012182868 A JP 2012182868A JP 2014039633 A JP2014039633 A JP 2014039633A
Authority
JP
Japan
Prior art keywords
conductive member
magnetic field
magnetic resonance
resonance imaging
exterior cover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012182868A
Other languages
Japanese (ja)
Inventor
Yukinobu Imamura
幸信 今村
Mitsuji Abe
充志 阿部
Masanao Terada
将直 寺田
Takeshi Kawamura
武 川村
Akira Kurome
明 黒目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2012182868A priority Critical patent/JP2014039633A/en
Publication of JP2014039633A publication Critical patent/JP2014039633A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a low-noise magnetic resonance imaging apparatus 100.SOLUTION: The magnetic resonance apparatus comprises: a magnet 1 for generating a static magnetic field 6 on an imaging region 9; a gradient magnetic field coil 2 for generating a gradient magnetic field 10 with inclined intensity distribution on the imaging region 9; an exterior cover 13 for covering the magnet 1 and the gradient magnetic field coil 2; a first conductive member 16 provided on the exterior cover 13; and a second conductive member 15 that is provided on the magnet 1 or the exterior cover 13, electrically insulated from the first conductive member 16, and is relatively independently movable, with approximated to the first conductive member. The surface of the first conductive member 16 and the surface of the second conductive member 15 face in parallel with each other. A spacer may be partially provided or a spacer with elasticity lower than that of the exterior cover may be provided between the first conductive member 16 and the second conductive member 15 such that the first conductive member 16 and the second conductive member 15 vibrate mutually independently.

Description

本発明は、静磁場を発生させる磁石と傾斜磁場コイルを備えた磁気共鳴イメージング(以下、MRI;Magnetic Resonance Imagingと称す)装置に関する。   The present invention relates to a magnetic resonance imaging (hereinafter referred to as MRI; Magnetic Resonance Imaging) apparatus including a magnet for generating a static magnetic field and a gradient magnetic field coil.

MRI装置は、均一な方向と強度の静磁場(撮像領域)中に置かれた被検体に高周波パルスを照射したときに生じる核磁気共鳴現象を利用して、被検体の物理的、化学的性質を示す断面画像を得る装置であり、特に、医療用として用いられている。MRI装置は、主に、被検者が挿入される撮像領域に前記静磁場を生成する磁石装置と、撮像領域に位置情報を付与するために空間的に強度が勾配した磁場(傾斜磁場)をパルス状に発生させる傾斜磁場コイルと、被検者に前記高周波パルスを照射するRFコイルと、被検者からの磁気共鳴信号を受信する受信コイルと、受信した磁気共鳴信号を処理して画像を表示するコンピュータシステムとを有している。   The MRI apparatus utilizes the nuclear magnetic resonance phenomenon that occurs when a high-frequency pulse is irradiated to a subject placed in a static magnetic field (imaging region) having a uniform direction and intensity, and the physical and chemical properties of the subject. Is a device for obtaining a cross-sectional image showing, particularly for medical use. The MRI apparatus mainly includes a magnet device that generates the static magnetic field in an imaging region in which a subject is inserted, and a magnetic field (gradient magnetic field) that has a spatially gradient intensity to give positional information to the imaging region. A gradient magnetic field coil to be generated in a pulse form, an RF coil that irradiates the subject with the high-frequency pulse, a receiving coil that receives a magnetic resonance signal from the subject, and an image obtained by processing the received magnetic resonance signal And a computer system for displaying.

MRI装置の性能向上のために、前記静磁場の磁場強度が高められている。静磁場の磁場強度が高い程、より鮮明で多様な断面画像を得ることができる。このため、MRI装置では、静磁場の磁場強度をより高くすることを指向して開発が続けられている。また、MRI装置の性能向上のために、傾斜磁場の磁場強度が高められ、傾斜磁場のパルスの発生頻度が高められている(高速駆動)。これらは、撮像時間の短縮と断面画像の画質の向上に寄与し、これらによって、近年盛んに使用されている高速撮像法が実現した。なお、これらは、傾斜磁場コイルの駆動電源の性能向上により、高速なスイッチングと大電流の通電が可能になったことで実現した。   In order to improve the performance of the MRI apparatus, the magnetic field strength of the static magnetic field is increased. The higher the magnetic field strength of the static magnetic field, the clearer and various cross-sectional images can be obtained. For this reason, the MRI apparatus has been continuously developed with the aim of increasing the magnetic field strength of the static magnetic field. Further, in order to improve the performance of the MRI apparatus, the magnetic field strength of the gradient magnetic field is increased and the frequency of generation of the gradient magnetic field pulses is increased (high-speed driving). These contribute to shortening the imaging time and improving the image quality of the cross-sectional image, thereby realizing a high-speed imaging method that has been actively used in recent years. These were realized by improving the performance of the gradient coil drive power supply and enabling high-speed switching and energization with a large current.

傾斜磁場コイルには、パルス状の傾斜磁場を発生させるために、パルス状の電流が流れる。また、傾斜磁場コイルは、前記撮像領域ではないが前記磁石装置が作る静磁場に置かれる。このため、傾斜磁場コイルには、時間変動する電磁力が作用し、傾斜磁場コイルは振動する。また、この振動によって傾斜磁場コイルを支持する磁石装置も振動する。傾斜磁場コイルと磁石装置の振動は、被検者やMRI装置の操作者に騒音として伝わる。この騒音(振動)は、傾斜磁場コイルの電流と、磁石装置の静磁場の磁場強度が、それぞれ大きくなるにしたがい大きくなる傾向にある。このため、MRI装置の性能を向上させようとすると、前記騒音が大きくなった。   A pulsed current flows through the gradient coil in order to generate a pulsed gradient magnetic field. The gradient magnetic field coil is placed not in the imaging region but in a static magnetic field created by the magnet device. For this reason, time-varying electromagnetic force acts on the gradient magnetic field coil, and the gradient magnetic field coil vibrates. Moreover, the magnet apparatus which supports a gradient magnetic field coil also vibrates by this vibration. The vibration of the gradient coil and the magnet device is transmitted as noise to the subject and the operator of the MRI apparatus. This noise (vibration) tends to increase as the current of the gradient magnetic field coil and the magnetic field strength of the static magnetic field of the magnet device increase. For this reason, the noise increased when trying to improve the performance of the MRI apparatus.

このため、この騒音を低減する技術が提案されている。例えば、穿孔された渦電流スクリーンを磁石装置に取り付ける技術が提案されている(例えば、特許文献1参照)。前記磁石装置が振動すると、渦電流スクリーンも振動し、渦電流スクリーンに渦電流が流れる。渦電流スクリーンでこの渦電流を減衰させることで、騒音を低減する。また、磁石装置と外部装飾カバー(外装カバー)の間の空間を固体発泡体層で充填し、磁石装置の初期振動を抑制することで、騒音を低減する技術が提案されている(例えば、特許文献2参照)。   For this reason, techniques for reducing this noise have been proposed. For example, a technique for attaching a perforated eddy current screen to a magnet device has been proposed (see, for example, Patent Document 1). When the magnet device vibrates, the eddy current screen also vibrates, and eddy current flows through the eddy current screen. Noise is reduced by attenuating this eddy current with an eddy current screen. In addition, a technique for reducing noise by filling a space between a magnet device and an external decorative cover (exterior cover) with a solid foam layer and suppressing initial vibration of the magnet device has been proposed (for example, patents). Reference 2).

特表2007−529259号公報Special table 2007-529259 特開2009−261940号公報JP 2009-261940 A

騒音(振動)は空気を伝播して被検者等に届くので、その伝播経路に外装カバーをおいて伝播を遮断することは、騒音の低減に有効である。さらに、特許文献2では、固体発泡体層によって、空気を微細に分割し、騒音が空気を伝播するのを阻止している。このように、外装カバーによって、騒音(振動)は低減するが、外装カバー自身も、空気や固体発泡体層を伝播した騒音(振動)によって、振動する。そして、この外装カバーの振動が新たな騒音の音源となる。外装カバーは、自身の振動を減衰させるようになっており、これにより、騒音の低減が可能になっているわけであるが、外装カバーにおけるこの振動を減衰させる能力(減衰力)が高められれば、騒音を一層低減でき、有用である。   Since noise (vibration) propagates through the air and reaches the subject or the like, it is effective to reduce the noise by blocking the propagation by placing an exterior cover on the propagation path. Furthermore, in patent document 2, the solid foam layer divides air finely and prevents noise from propagating through the air. Thus, although the noise (vibration) is reduced by the exterior cover, the exterior cover itself vibrates due to the noise (vibration) propagated through the air or the solid foam layer. The vibration of the exterior cover becomes a new noise source. The exterior cover is designed to attenuate its own vibration, which makes it possible to reduce noise. However, if the ability of the exterior cover to attenuate this vibration (damping force) can be increased. Noise can be further reduced and is useful.

そこで、本発明が解決しようとする課題は、低騒音のMRI(磁気共鳴イメージング)装置を提供することにある。   Therefore, the problem to be solved by the present invention is to provide a low noise MRI (magnetic resonance imaging) apparatus.

前記課題を解決するために、本発明は、
撮像領域に静磁場を発生させる磁石と、
前記撮像領域に傾斜した強度分布を持つ傾斜磁場を発生させる傾斜磁場コイルと、
前記磁石と前記傾斜磁場コイルを覆う外装カバーを備えた磁気共鳴イメージング装置において、
前記外装カバーに設けられた第1導電性部材と、
前記磁石又は前記外装カバーに設けられ、前記第1導電性部材とは電気的に絶縁され、前記第1導電性部材に近接したまま相対的に独立して移動しうる第2導電性部材とを有することを特徴としている。
In order to solve the above problems, the present invention provides:
A magnet that generates a static magnetic field in the imaging region;
A gradient coil for generating a gradient magnetic field having a gradient intensity distribution in the imaging region;
In a magnetic resonance imaging apparatus comprising an exterior cover that covers the magnet and the gradient coil,
A first conductive member provided on the exterior cover;
A second conductive member provided on the magnet or the exterior cover, electrically insulated from the first conductive member, and capable of moving relatively independently while staying close to the first conductive member; It is characterized by having.

本発明によれば、低騒音のMRI(磁気共鳴イメージング)装置を提供できる。   According to the present invention, a low noise MRI (magnetic resonance imaging) apparatus can be provided.

本発明の第1の実施形態に係る磁気共鳴イメージング(MRI)装置(水平磁場型)の縦断面図である。1 is a longitudinal sectional view of a magnetic resonance imaging (MRI) apparatus (horizontal magnetic field type) according to a first embodiment of the present invention. 本発明の第1の実施形態に係るMRI装置の模式的な斜視図である。1 is a schematic perspective view of an MRI apparatus according to a first embodiment of the present invention. 近接導電性部材の振動低減効果の原理を示す摸式図であり、(a)は静磁場で第1導電性部材が振動している様子を示し、(b)は第1導電性部材と第2導電性部材に渦電流が生じている様子を示し、(c)は第1導電性部材と第2導電性部材に電磁力が作用している様子を示している。It is a model diagram which shows the principle of the vibration reduction effect of a proximity | contact conductive member, (a) shows a mode that the 1st conductive member vibrates with a static magnetic field, (b) shows a 1st conductive member and 1st conductive member. 2 shows a state in which eddy current is generated in the two conductive members, and FIG. 3C shows a state in which electromagnetic force is acting on the first conductive member and the second conductive member. (a)は第1の実施形態の近接導電性部材とその周辺の部分拡大断面図であり、(b)はその変形例1であり、(c)はその変形例2である。(A) is the adjacent electroconductive member of 1st Embodiment, and the partial expanded sectional view of the periphery of it, (b) is the modification 1, (c) is the modification 2. (a)は本発明の第2の実施形態に係るMRI装置における近接導電性部材とその周辺の部分拡大断面図であり、(b)はその変形例である。(A) is an adjacent electroconductive member in the MRI apparatus which concerns on the 2nd Embodiment of this invention, and its partial expanded sectional view of the periphery, (b) is the modification. (a)は本発明の第3の実施形態に係るMRI装置における近接導電性部材とその周辺の部分拡大断面図であり、(b)はその変形例である。(A) is an adjacent electroconductive member in the MRI apparatus which concerns on the 3rd Embodiment of this invention, and its partial expanded sectional view of the periphery, (b) is the modification. 本発明の第4の実施形態に係るMRI装置における近接導電性部材とその周辺の部分拡大断面図である。It is a partial expanded sectional view of a proximity conductive member and its circumference in an MRI apparatus concerning a 4th embodiment of the present invention. 本発明の第5の実施形態に係るMRI装置(垂直磁場型)の縦断面図である。It is a longitudinal cross-sectional view of the MRI apparatus (vertical magnetic field type) which concerns on the 5th Embodiment of this invention. 本発明の第5の実施形態に係るMRI装置の模式的な斜視図である。It is a typical perspective view of the MRI apparatus which concerns on the 5th Embodiment of this invention.

次に、本発明の実施形態について、適宜図面を参照しながら詳細に説明する。なお、各図において、共通する部分には同一の符号を付し重複した説明を省略する。   Next, embodiments of the present invention will be described in detail with reference to the drawings as appropriate. In each figure, common portions are denoted by the same reference numerals, and redundant description is omitted.

(第1の実施形態)
図1に、本発明の第1の実施形態に係る磁気共鳴イメージング(MRI)装置(水平磁場型)100の縦断面図を示し、図2に、その模式的な斜視図を示す。MRI装置100は、被検者7が挿入される撮像領域9に静磁場6を生成する静磁場磁石装置(磁石)1と、撮像領域9に位置情報を付与するために空間的に強度が勾配した磁場(傾斜磁場)10をパルス状に発生させる傾斜磁場コイル2と、被検者7に高周波パルスを照射するRFコイル12と、被検者7からの磁気共鳴信号を受信する受信コイル(図示省略)と、受信した磁気共鳴信号を処理して画像を表示するコンピュータシステム(図示省略)と、被検者7を寝かせたまま撮像領域9へ移動させる移動式ベッド25と、静磁場磁石装置1と傾斜磁場コイル2を覆う外装カバー13と、外装カバー13と静磁場磁石装置1に設けられる近接導電性部材11を有している。これにより、MRI装置100は、撮像領域9において、均一な方向と強度の静磁場6中に置かれた被検者7に高周波パルスを照射したときに生じる核磁気共鳴現象を利用して、被検者7の物理的、化学的性質を示す断面画像を、低騒音下で得ることができる。また、MRI装置100には、図示を省略したが、静磁場磁石装置1、傾斜磁場コイル2やRFコイル12を駆動するための電源装置が設けられている。これらの電源装置は、前記コンピュータシステムによって制御されている。
(First embodiment)
FIG. 1 shows a longitudinal sectional view of a magnetic resonance imaging (MRI) apparatus (horizontal magnetic field type) 100 according to the first embodiment of the present invention, and FIG. 2 shows a schematic perspective view thereof. The MRI apparatus 100 has a static magnetic field magnet device (magnet) 1 that generates a static magnetic field 6 in an imaging region 9 in which a subject 7 is inserted, and a spatially gradient intensity in order to give positional information to the imaging region 9. Gradient magnetic field coil 2 for generating a pulsed magnetic field (gradient magnetic field) 10, an RF coil 12 for irradiating a subject 7 with a high frequency pulse, and a receiving coil for receiving a magnetic resonance signal from the subject 7 (illustrated) (Not shown), a computer system (not shown) that processes the received magnetic resonance signal and displays an image, a movable bed 25 that moves the subject 7 to the imaging region 9 while lying down, and the static magnetic field magnet apparatus 1 And an exterior cover 13 that covers the gradient magnetic field coil 2, and a proximity conductive member 11 provided in the exterior cover 13 and the static magnetic field magnet device 1. As a result, the MRI apparatus 100 uses the nuclear magnetic resonance phenomenon that occurs when the subject 7 placed in the static magnetic field 6 having a uniform direction and intensity in the imaging region 9 is irradiated with a high-frequency pulse. A cross-sectional image showing the physical and chemical properties of the examiner 7 can be obtained under low noise. Although not shown, the MRI apparatus 100 is provided with a power supply device for driving the static magnetic field magnet device 1, the gradient magnetic field coil 2, and the RF coil 12. These power supply devices are controlled by the computer system.

静磁場磁石装置1は、被検者7の生体組織を構成する原子のスピンを配向させるために、撮像領域9に均一な方向と強度の静磁場6を形成する。静磁場磁石装置1は、水平方向に平行なz軸を中心軸とする円筒形状をしている(図2参照)。傾斜磁場コイル2は、静磁場磁石装置1の撮像領域9側に設けられている。傾斜磁場コイル2は、静磁場磁石装置1と中心軸を共通とする(z軸を中心軸とする)円筒形状をしている。RFコイル12は、傾斜磁場コイル2の撮像領域9側に設けられている。RFコイル12は、静磁場磁石装置1と中心軸を共通とする(z軸を中心軸とする)円筒形状をしている。   The static magnetic field magnet device 1 forms a static magnetic field 6 having a uniform direction and intensity in the imaging region 9 in order to orient the spins of atoms constituting the living tissue of the subject 7. The static magnetic field magnet apparatus 1 has a cylindrical shape with a z-axis parallel to the horizontal direction as a central axis (see FIG. 2). The gradient coil 2 is provided on the imaging region 9 side of the static magnetic field magnet device 1. The gradient magnetic field coil 2 has a cylindrical shape having the same central axis as the static magnetic field magnet apparatus 1 (with the z axis as the central axis). The RF coil 12 is provided on the imaging region 9 side of the gradient magnetic field coil 2. The RF coil 12 has a cylindrical shape having the same central axis as the static magnetic field magnet apparatus 1 (with the z axis as the central axis).

静磁場磁石装置1は、複数の超電導コイル3と、超電導コイル3を冷媒と共に収納し冷却する液体ヘリウム容器8と、液体ヘリウム容器8を覆い真空容器4から放射される輻射熱をシールドする輻射シールド5と、液体ヘリウム容器8と輻射シールド5を真空環境下に収納し断熱する真空容器4とを有している。傾斜磁場コイル2は、支持部材14を介して真空容器4に取り付けられている。超電導コイル3を、図示していない液体ヘリウムおよび冷凍機によって極低温に冷却でき、その冷却状態を維持することができる。なお、超電導コイル3に替えて、常温で使用するコイルを用いてもよい。この場合、液体ヘリウム容器8、輻射シールド5、真空容器4を省くことができる。   The static magnetic field magnet apparatus 1 includes a plurality of superconducting coils 3, a liquid helium container 8 that houses and cools the superconducting coils 3 together with a refrigerant, and a radiation shield 5 that covers the liquid helium container 8 and shields radiant heat radiated from the vacuum container 4. And the vacuum container 4 that houses the liquid helium container 8 and the radiation shield 5 in a vacuum environment and insulates them. The gradient coil 2 is attached to the vacuum vessel 4 via a support member 14. The superconducting coil 3 can be cooled to a cryogenic temperature by liquid helium and a refrigerator (not shown), and the cooling state can be maintained. In addition, it replaces with the superconducting coil 3, and the coil used at normal temperature may be used. In this case, the liquid helium container 8, the radiation shield 5, and the vacuum container 4 can be omitted.

複数の超電導コイル3は、z軸を互いに共通の中心軸とするリング形状をしている。複数の超電導コイル3は、撮像領域9に、均一な方向と強度の静磁場6を生成する。複数の超電導コイル3は、撮像領域9以外にも、特には、外装カバー13とその周辺にも、静磁場6を生成する。撮像領域9は、円筒形状の静磁場磁石装置1で取り囲まれている。静磁場磁石装置1は、磁性体を有していてもよく、超電導コイル3に替えて磁性体を有してもよい。   The plurality of superconducting coils 3 have a ring shape having the z axis as a common central axis. The plurality of superconducting coils 3 generate a static magnetic field 6 having a uniform direction and strength in the imaging region 9. The plurality of superconducting coils 3 generate the static magnetic field 6 in addition to the imaging region 9, particularly also in the exterior cover 13 and its periphery. The imaging region 9 is surrounded by a cylindrical static magnetic field magnet device 1. The static magnetic field magnet device 1 may have a magnetic material, and may have a magnetic material instead of the superconducting coil 3.

静磁場磁石装置1には、傾斜磁場コイル2が支持部材14を介して支持されている。傾斜磁場コイル2は、撮像領域9に、空間的には任意の方向に磁束密度(磁場強度分布)が傾斜し、時間的にはパルス状に変動する磁場(傾斜磁場)10を発生させる。通常、撮像領域9における静磁場6の方向をz軸として、z軸と直交する2方向にx軸(水平方向)とy軸(垂直方向)を取っているが、傾斜磁場コイル2は、これらx軸、y軸、z軸の3方向に、互いに独立な、傾斜磁場10を発生させる。なお、図1の紙面左右方向をz軸、紙面上下方向をy軸、紙面に垂直な方向をx軸(図1では図示せず)としている。例えば、図1に示した傾斜磁場10は、y軸方向に磁場強度が傾斜し、磁場の方向がz軸方向の傾斜磁場である。傾斜磁場コイル2には、図示していないシムと呼ばれる磁性体の小片が複数個配置されている。このシムは、MRI装置100の外部装置が発生させる磁場の影響を含めて撮像領域9で静磁場6の磁場強度が均一となるように調整するための機構である。   In the static magnetic field magnet apparatus 1, the gradient magnetic field coil 2 is supported via a support member 14. The gradient magnetic field coil 2 generates a magnetic field (gradient magnetic field) 10 in which the magnetic flux density (magnetic field strength distribution) is inclined in an arbitrary direction spatially and fluctuates in a pulse shape in the imaging region 9 in time. Normally, the direction of the static magnetic field 6 in the imaging region 9 is taken as the z-axis, and the x-axis (horizontal direction) and the y-axis (vertical direction) are taken in two directions orthogonal to the z-axis. Gradient magnetic fields 10 that are independent from each other are generated in the three directions of the x-axis, y-axis, and z-axis. In FIG. 1, the left-right direction of the paper surface is the z axis, the vertical direction of the paper surface is the y axis, and the direction perpendicular to the paper surface is the x axis (not shown in FIG. 1). For example, the gradient magnetic field 10 shown in FIG. 1 is a gradient magnetic field in which the magnetic field strength is inclined in the y-axis direction and the magnetic field direction is in the z-axis direction. The gradient coil 2 is provided with a plurality of small pieces of magnetic material called shims (not shown). This shim is a mechanism for adjusting the magnetic field strength of the static magnetic field 6 to be uniform in the imaging region 9 including the influence of the magnetic field generated by the external device of the MRI apparatus 100.

静磁場磁石装置1、傾斜磁場コイル2およびRFコイル12は、FRP等の非導電性で非磁性の部材で作られた外装カバー13によって覆われている。RFコイル12は、外装カバー13上に設置されたり、外装カバー13の一部を兼ねたりしてもよい。   The static magnetic field magnet device 1, the gradient magnetic field coil 2, and the RF coil 12 are covered with an exterior cover 13 made of a nonconductive and nonmagnetic member such as FRP. The RF coil 12 may be installed on the exterior cover 13 or may also serve as a part of the exterior cover 13.

静磁場磁石装置1を構成する外側の容器である真空容器4と、外装カバー13には、近接導電性部材(導電性部材)11が設置されている。近接導電性部材11は、外装カバー13に設けられる外装カバー13側の導電性部材(第1導電性部材)16と、導電性部材16とは電気的に絶縁され、導電性部材16に近接したまま相対的に独立して移動しうる静磁場磁石装置1側の導電性部材(第2導電性部材)15とを有している。近接導電性部材11(15、16)は、静磁場磁石装置1のz軸方向の両端面とその付近に設けられている。また、近接導電性部材11(15、16)は、静磁場磁石装置1の円筒形状の外筒壁とその付近に設けられている。なお、静磁場磁石装置1が床に設置され、静磁場磁石装置1の床側が振動しないのであれば、静磁場磁石装置1の床側では、近接導電性部材11(15、16)の配置を省くことができる。導電性部材(第1導電性部材)16の面と、導電性部材(第2導電性部材)15の面とは、互いに離れ、平行で対向している。導電性部材(第1導電性部材)16と、導電性部材(第2導電性部材)15とは、互いに近接しているが、機械的には接続しておらず、電気的には絶縁された状態となっている。すなわち、導電性部材15と導電性部材16は、例えばアルミニウム材や銅材の箔、板、網、または導電性塗料を塗布した塗布膜で形成され、機械的には振動を互いに伝えないような構造で、電気的には互いに導通が生じないようになっている。このような構造は、静磁場磁石装置1の真空容器4と、外装カバー13が接触しないように、かつ、互いに独立に保持されることで実現される。あるいは、静磁場磁石装置1の真空容器4と外装カバー13が、ゴムなどの弾性部材などの柔構造を介して互いに結合されることによっても実現可能である。真空容器4が金属材料で構成されている場合、真空容器4は導電性部材15を兼ね、導電性部材15を省くことができる。静磁場磁石装置1が、導電性の真空容器4を持たない場合や、真空容器4がステンレススチール材などの比抵抗の大きい材質で構成されている場合は、銅材やアルミニウム材などの比抵抗の低い部材の箔、板、網、または、導電性塗料の塗布膜を、導電性部材15として、真空容器4上に設置する。   A proximity conductive member (conductive member) 11 is installed in the vacuum container 4 which is an outer container constituting the static magnetic field magnet device 1 and the exterior cover 13. The proximity conductive member 11 is electrically insulated from the conductive member (first conductive member) 16 on the exterior cover 13 side provided on the exterior cover 13 and the conductive member 16, and is close to the conductive member 16. It has the electroconductive member (2nd electroconductive member) 15 by the side of the static magnetic field magnet apparatus 1 which can move relatively independently. The proximity conductive members 11 (15, 16) are provided on both end surfaces in the z-axis direction of the static magnetic field magnet device 1 and the vicinity thereof. The proximity conductive member 11 (15, 16) is provided on the cylindrical outer cylinder wall of the static magnetic field magnet apparatus 1 and its vicinity. If the static magnetic field magnet device 1 is installed on the floor and the floor side of the static magnetic field magnet device 1 does not vibrate, the proximity conductive member 11 (15, 16) is arranged on the floor side of the static magnetic field magnet device 1. It can be omitted. The surface of the conductive member (first conductive member) 16 and the surface of the conductive member (second conductive member) 15 are separated from each other and face each other in parallel. The conductive member (first conductive member) 16 and the conductive member (second conductive member) 15 are close to each other, but are not mechanically connected and are electrically insulated. It is in the state. That is, the conductive member 15 and the conductive member 16 are formed of, for example, an aluminum or copper foil, a plate, a net, or a coating film coated with a conductive paint, and mechanically do not transmit vibration to each other. The structure is such that electrical continuity does not occur. Such a structure is realized by holding the vacuum vessel 4 of the static magnetic field magnet device 1 and the outer cover 13 so as not to contact each other and independently of each other. Or it is also realizable by mutually connecting the vacuum vessel 4 and the exterior cover 13 of the static magnetic field magnet apparatus 1 via flexible structures, such as elastic members, such as rubber | gum. When the vacuum vessel 4 is made of a metal material, the vacuum vessel 4 also serves as the conductive member 15 and the conductive member 15 can be omitted. When the static magnetic field magnet device 1 does not have the conductive vacuum container 4 or when the vacuum container 4 is made of a material having a large specific resistance such as a stainless steel material, the specific resistance such as a copper material or an aluminum material is used. A foil, a plate, a net, or a coating film of a conductive paint is installed on the vacuum vessel 4 as the conductive member 15.

このように、導電性部材16と15とが、近接して、かつ、機械的および電気的に接続せずに設置されること(近接導電性部材11)により、静磁場磁石装置1による静磁場6中で、大きな振動抑制効果が得られる。このため、傾斜磁場コイル2の振動が支持部材14を介して静磁場磁石装置1の真空容器4等に伝搬し、さらに、真空容器4から空気や床を伝播して外装カバー13が振動しても、導電性部材16の取り付けられた外装カバー13は、大きな振動抑制効果により、騒音の発生源となることを抑制する。また、傾斜磁場コイル2または真空容器4が振動して発生する放射音は、外装カバー13を透過して被検者7または、MRI装置100の操作者に到達するが、放射音により傾斜磁場コイル2や真空容器4の周りの空気が振動し、これにより外装カバー13が振動すると外装カバー13を透過する騒音は大きくなる。この場合でも、近接導電性部材11は外装カバー13の振動を低減するので、透過する騒音を小さくすることができる。   As described above, the conductive members 16 and 15 are installed close to each other without being mechanically and electrically connected (proximity conductive member 11), so that the static magnetic field generated by the static magnetic field magnet apparatus 1 is obtained. 6, a great vibration suppressing effect is obtained. For this reason, the vibration of the gradient magnetic field coil 2 propagates through the support member 14 to the vacuum vessel 4 of the static magnetic field magnet apparatus 1 and further propagates from the vacuum vessel 4 through the air and the floor, and the exterior cover 13 vibrates. However, the exterior cover 13 to which the conductive member 16 is attached suppresses the generation of noise due to a large vibration suppressing effect. The radiated sound generated by the vibration of the gradient magnetic field coil 2 or the vacuum vessel 4 passes through the outer cover 13 and reaches the subject 7 or the operator of the MRI apparatus 100. 2 and the air around the vacuum vessel 4 vibrate, and when the outer cover 13 vibrates, noise transmitted through the outer cover 13 increases. Even in this case, the proximity conductive member 11 reduces the vibration of the exterior cover 13, so that the transmitted noise can be reduced.

図3に、近接導電性部材11の振動低減効果の原理を説明するための摸式図を示す。図3(a)に示すように、近接導電性部材11の導電性部材16と15は、磁場の方向が矢印の方向に一致する静磁場6中に置かれていると考えることができる。静磁場6の磁場の方向は、導電性部材16と15の互いに対向する面のそれぞれと、略平行になっている。静磁場6中で、外装カバー13の振動に伴って、導電性部材16が振動20のように運動(移動)すると、図3(b)に示すような渦電流21が、導電性部材16に発生する。なお、渦電流21の方向は、一方向でなく振動の変位の方向に応じて反転する。図3(c)に示すように、渦電流21には静磁場6との間にローレンツ力(電磁力)23が生じ、この電磁力23の方向は、前記振動の変位の方向と反対方向になる。これにより、振動減衰効果が得られる。また、渦電流21が流れることで、導電性部材16には電気抵抗によるジュール発熱が生じる。導電性部材16の振動20の運動エネルギが、電気エネルギを介して、熱エネルギに変換され、放熱することで消費されることで、振動減衰効果が得られる。   FIG. 3 is a schematic diagram for explaining the principle of the vibration reducing effect of the proximity conductive member 11. As shown in FIG. 3A, it can be considered that the conductive members 16 and 15 of the proximity conductive member 11 are placed in a static magnetic field 6 in which the direction of the magnetic field coincides with the direction of the arrow. The direction of the magnetic field of the static magnetic field 6 is substantially parallel to each of the opposing surfaces of the conductive members 16 and 15. When the conductive member 16 moves (moves) like the vibration 20 in the static magnetic field 6 along with the vibration of the exterior cover 13, an eddy current 21 as shown in FIG. 3B is applied to the conductive member 16. Occur. Note that the direction of the eddy current 21 is reversed according to the direction of vibration displacement instead of one direction. As shown in FIG. 3C, a Lorentz force (electromagnetic force) 23 is generated between the eddy current 21 and the static magnetic field 6, and the direction of the electromagnetic force 23 is opposite to the direction of displacement of the vibration. Become. Thereby, a vibration damping effect is obtained. Further, the eddy current 21 flows, so that the conductive member 16 generates Joule heat due to electric resistance. The kinetic energy of the vibration 20 of the conductive member 16 is converted into thermal energy via electric energy and consumed by radiating heat, thereby obtaining a vibration damping effect.

このように、静磁場6中での導電性部材16の振動は、導電性部材16単独でも振動低減の効果が得られるが、導電性部材15が近接して配置されることにより、この振動低減の効果を高めることができる。渦電流21による誘導起電力のために、導電性部材15には、渦電流22が生じる。渦電流22は渦電流21と方向が反対になる。また、導電性部材16と15が近接していて、導電性部材15の抵抗値が小さいと、渦電流22は渦電流21とほぼ同じ大きさになる。このとき、渦電流21と渦電流22は互いに打ち消し合う方向であるため、導電性部材16が振動によって静磁場6から受ける磁場(磁束)変化を打ち消そうと、導電性部材16には、単独の場合よりも大きな渦電流21が生じる。すなわち、導電性部材16と15の間の相互インダクタンス分だけ導電性部材16の見かけ上のインダクタンスが低減するために、渦電流21は増大する。これにより、渦電流21によって発生する振動変位と反対方向の前記電磁力23と前記ジュール発熱が大きくなるため、導電性部材16の振動低減の効果も大きくなる。また、渦電流22は、渦電流21の反対の方向に流れ、これにより、振動による導電性部材16と15の間の距離の変位と反対方向の電磁力23と24が導電性部材16と15に作用し、導電性部材16の振動低減の効果が大きくなる。   As described above, the vibration of the conductive member 16 in the static magnetic field 6 can be reduced by the conductive member 16 alone. However, the vibration is reduced by the proximity of the conductive member 15. Can enhance the effect. Due to the induced electromotive force due to the eddy current 21, an eddy current 22 is generated in the conductive member 15. The direction of the eddy current 22 is opposite to that of the eddy current 21. Further, when the conductive members 16 and 15 are close to each other and the resistance value of the conductive member 15 is small, the eddy current 22 becomes almost the same size as the eddy current 21. At this time, since the eddy current 21 and the eddy current 22 are in the direction of canceling each other, the conductive member 16 has only a single component to cancel the magnetic field (magnetic flux) change received from the static magnetic field 6 by the vibration. An eddy current 21 larger than that in the case is generated. That is, since the apparent inductance of the conductive member 16 is reduced by the mutual inductance between the conductive members 16 and 15, the eddy current 21 increases. As a result, the electromagnetic force 23 and the Joule heat generation in the direction opposite to the vibration displacement generated by the eddy current 21 are increased, so that the effect of reducing the vibration of the conductive member 16 is also increased. In addition, the eddy current 22 flows in the opposite direction of the eddy current 21, whereby electromagnetic forces 23 and 24 in the opposite direction to the displacement of the distance between the conductive members 16 and 15 due to vibration are applied to the conductive members 16 and 15. The effect of reducing the vibration of the conductive member 16 is increased.

MRI装置100において近接導電性部材11の好ましい位置は、静磁場磁石装置1が発生する静磁場6中にあって、傾斜磁場コイル2やRFコイル12からの磁場(漏れ磁場)の影響が小さな部分である。具体的な例としては、図1、図2に示すように、静磁場磁石装置1のz軸方向の前後面、および、それに近接する外装カバー13である。他の好ましい設置位置として、静磁場磁石装置1の円筒形状の外周側面とそれに近接する外装カバー13である。   In the MRI apparatus 100, the preferred position of the proximity conductive member 11 is in the static magnetic field 6 generated by the static magnetic field magnet apparatus 1, and a portion where the influence of the magnetic field (leakage magnetic field) from the gradient magnetic field coil 2 and the RF coil 12 is small. It is. As a specific example, as shown in FIG. 1 and FIG. 2, the front and rear surfaces in the z-axis direction of the static magnetic field magnet device 1 and the exterior cover 13 close to the front and rear surfaces. Other preferable installation positions are the outer peripheral side surface of the cylindrical shape of the static magnetic field magnet device 1 and the exterior cover 13 adjacent thereto.

導電性部材15と16は同じ大きさで有る必要は無く、騒音を伴う振動に対して渦電流が発生するに充分な面積があれば良い。騒音として特に低減が求められる振動周波数は、500[Hz]以上であって5k[Hz]以下である。この騒音が空気を伝搬する際の音の波長は5〜50[cm](音の波長が5[cm]以上であって50[cm]以下のもの)である。一般に板状の材料では、音の板面への入射角度θに依存するが、音の波長λの1〜3倍の波長λBで振動すると遮音効果が低下する(コインシデンス効果、正確にはλB=λ/sinθの場合)。板面では、音の波長の1〜3倍の距離で振動振幅が最大の範囲を含むので、導電性部材15と16の幅が共にこれ以上の寸法であれば、振動に伴う渦電流が充分発生し、板材の振動を低減でき、遮音効果の低下を避けることができる。すなわち、導電性部材15と16のいずれか一方の面内方向の最小寸法が50[cm]以上となるように構成することで、振動周波数が500[Hz]以上の振動を低減でき、導電性部材15と16のいずれか一方の面内方向の最小寸法が25[cm]以上となるように構成することで、振動周波数が1k[Hz]以上の振動を低減でき、遮音効果の低下を防ぎ騒音低減に効果がある。また、MRI装置100または外装カバー13の外周全面を覆うように、すなわち導電性部材15または16の面内方向の最大寸法を300[cm]とすれば、外装カバー13の振動が抑えられ、騒音低下に効果がある。   The conductive members 15 and 16 do not have to be the same size as long as the conductive members 15 and 16 have a sufficient area for generating an eddy current against vibration accompanied by noise. The vibration frequency particularly required to be reduced as noise is 500 [Hz] or more and 5 k [Hz] or less. The wavelength of sound when this noise propagates through air is 5 to 50 [cm] (the sound wavelength is 5 [cm] or more and 50 [cm] or less). In general, a plate-like material depends on the incident angle θ of sound to the plate surface, but when it vibrates at a wavelength λB that is 1 to 3 times the wavelength λ of the sound, the sound insulation effect decreases (coincidence effect, more precisely λB = for λ / sinθ). On the plate surface, the vibration amplitude includes the maximum range at a distance of 1 to 3 times the wavelength of the sound. Therefore, if both the widths of the conductive members 15 and 16 are larger than this, the eddy current associated with the vibration is sufficient. It can generate | occur | produce and can reduce the vibration of a board | plate material and can avoid the fall of the sound-insulation effect. That is, by configuring so that the minimum dimension in the in-plane direction of either one of the conductive members 15 and 16 is 50 [cm] or more, vibration having a vibration frequency of 500 [Hz] or more can be reduced. By configuring so that the minimum dimension in the in-plane direction of either one of the members 15 and 16 is 25 [cm] or more, vibrations with a vibration frequency of 1 k [Hz] or more can be reduced, and a decrease in the sound insulation effect can be prevented. Effective for noise reduction. Further, if the maximum dimension in the in-plane direction of the conductive member 15 or 16 is set to 300 [cm] so as to cover the entire outer periphery of the MRI apparatus 100 or the outer cover 13, vibration of the outer cover 13 can be suppressed and noise can be reduced. It is effective in reducing.

さらに、導電性部材15と16は板厚と導電率によっても騒音低減効果のある周波数が変化する。導電性部材15又は16の導電率が小さいか板厚が薄い場合は高い周波数での騒音低減効果が大きく、導電性部材15と16の双方の導電率が大きいか板厚が厚い場合は低い周波数からの騒音低減効果が期待できる。導電性部材の板厚d[m]と導電率σ[シーメンス/m]の騒音低減効果が期待できる最小値は、それらの積σdでも制限され、500[Hz]ないし1k[Hz]以上の騒音に低減効果を期待する場合、前記の最小寸法を満たした上で、積σdは1000[シーメンス]以上あればよい。例えば、導電性部材15と16に導電率σ=5×10[シーメンス/m]の銅材を使用する場合には、板厚dが0.02[mm]以上、導電率σ=2×10[シーメンス]のステンレス材を使用する場合には、板厚dが0.5[mm]以上あれば外装カバー13の振動は抑えられ騒音低減に効果がある。一方、導電性部材15または16の板厚dの最大値は、銅材の場合2[mm]程度であるので、積σdが100000[シーメンス]以下であれば外装カバー13の振動を低減でき、騒音低減に効果がある。 Further, the frequency of the conductive members 15 and 16 having a noise reduction effect varies depending on the plate thickness and conductivity. When the conductivity of the conductive member 15 or 16 is small or the plate thickness is thin, the noise reduction effect at a high frequency is large, and when both the conductivity of the conductive members 15 and 16 is large or the plate thickness is large, the low frequency. The noise reduction effect from can be expected. The minimum value at which the noise reduction effect of the plate thickness d [m] and the conductivity σ [Siemens / m] of the conductive member can be expected is also limited by the product σd, and noise of 500 [Hz] to 1 k [Hz] or more. When the reduction effect is expected, the product σd only needs to be 1000 [Siemens] or more after satisfying the minimum dimension. For example, when a copper material having a conductivity σ = 5 × 10 7 [Siemens / m] is used for the conductive members 15 and 16, the plate thickness d is 0.02 [mm] or more, and the conductivity σ = 2 × When a stainless steel material of 10 6 [Siemens] is used, if the plate thickness d is 0.5 [mm] or more, the vibration of the exterior cover 13 is suppressed, which is effective in reducing noise. On the other hand, since the maximum value of the plate thickness d of the conductive member 15 or 16 is about 2 [mm] in the case of a copper material, if the product σd is 100000 [Siemens] or less, vibration of the exterior cover 13 can be reduced. Effective for noise reduction.

図4(a)に、第1の実施形態の近接導電性部材11とその周辺の部分拡大断面図を示す。近接導電性部材11は、真空容器4と外装カバー13の対向する面に設置されている。近接導電性部材11の導電性部材16は、外装カバー13に設けられている。近接導電性部材11の導電性部材15は、真空容器4に設けられている。導電性部材15と導電性部材16とは、機械的・電気的に接続(接触)することを避けるために、導電性部材15と導電性部材16の間には、スペース18が設けられている。また、導電性部材15と16の少なくとも一方の面に、塗布等により薄い絶縁性の膜を設け、導電性部材15と16間の絶縁性を確保してもよい。また、導電性部材15と16間の間隔が広くなるが、導電性部材16を外装カバー13の静磁場磁石装置1の反対側の表面に設置してもよい。また、真空容器4が絶縁性部材で形成されている場合には、導電性部材15を静磁場磁石装置1の外装カバー13の反対側の表面に設置してもよい。真空容器4が導電性部材で形成されている場合には、導電性部材15を省いてもよい。   FIG. 4A shows a partially enlarged cross-sectional view of the proximity conductive member 11 of the first embodiment and its periphery. The proximity conductive member 11 is installed on the opposing surfaces of the vacuum vessel 4 and the outer cover 13. The conductive member 16 of the proximity conductive member 11 is provided on the exterior cover 13. The conductive member 15 of the proximity conductive member 11 is provided in the vacuum container 4. In order to avoid mechanically and electrically connecting (contacting) the conductive member 15 and the conductive member 16, a space 18 is provided between the conductive member 15 and the conductive member 16. . Alternatively, a thin insulating film may be provided on at least one surface of the conductive members 15 and 16 by coating or the like to ensure insulation between the conductive members 15 and 16. Moreover, although the space | interval between the electroconductive members 15 and 16 becomes wide, you may install the electroconductive member 16 in the surface on the opposite side of the static magnetic field magnet apparatus 1 of the exterior cover 13. FIG. When the vacuum vessel 4 is formed of an insulating member, the conductive member 15 may be installed on the surface on the opposite side of the outer cover 13 of the static magnetic field magnet device 1. When the vacuum vessel 4 is formed of a conductive member, the conductive member 15 may be omitted.

図4(b)に、第1の実施形態の変形例1の近接導電性部材11とその周辺の部分拡大断面図を示す。近接導電性部材11の導電性部材15と16が互いに独立に振動(移動)しうるように、導電性部材15と16の間には、スペーサ(支持構造物)26が部分的に設けられている。部分的なスペーサ26によって、真空容器4(導電性部材15)に対して、外装カバー13(導電性部材16)が支持されている。スペーサ(支持構造物)26によって、導電性部材15と16の間のスペース18が保たれている。導電性部材15と16は、機械的に接続されていないことにはならないが、外装カバー13が薄いFRP材などの柔軟な材質であれば、スペーサ26があっても、外装カバー13(導電性部材16)は真空容器4(導電性部材15)に対して概ね独立に振動が可能であり、近接導電性部材11による振動低減効果を得ることができる。外装カバー13と導電性部材16の振動では、スペーサ26の設けられている箇所が、振動の節となり、隣り合うスペーサ26の間に、振動の腹が生じる。また、導電性部材15と16間の間隔が広くなるが、導電性部材16を外装カバー13の静磁場磁石装置1の反対側の表面に設置してもよい。また、真空容器4が絶縁性部材で形成されている場合には、導電性部材15を静磁場磁石装置1の外装カバー13の反対側の表面に設置してもよい。真空容器4が導電性部材で形成されている場合には、導電性部材15を省いてもよい。   FIG. 4B shows a partially enlarged cross-sectional view of the proximity conductive member 11 of the first modification of the first embodiment and the periphery thereof. A spacer (support structure) 26 is partially provided between the conductive members 15 and 16 so that the conductive members 15 and 16 of the adjacent conductive member 11 can vibrate (move) independently of each other. Yes. The outer cover 13 (conductive member 16) is supported by the partial spacer 26 with respect to the vacuum vessel 4 (conductive member 15). Space 18 between the conductive members 15 and 16 is maintained by the spacer (support structure) 26. The conductive members 15 and 16 are not mechanically connected. However, if the outer cover 13 is a flexible material such as a thin FRP material, the outer cover 13 (conductive The member 16) can vibrate substantially independently of the vacuum vessel 4 (conductive member 15), and the vibration reducing effect by the proximity conductive member 11 can be obtained. In the vibration of the exterior cover 13 and the conductive member 16, the portion where the spacer 26 is provided becomes a vibration node, and an antinode of vibration occurs between the adjacent spacers 26. Moreover, although the space | interval between the electroconductive members 15 and 16 becomes wide, you may install the electroconductive member 16 in the surface on the opposite side of the static magnetic field magnet apparatus 1 of the exterior cover 13. FIG. When the vacuum vessel 4 is formed of an insulating member, the conductive member 15 may be installed on the surface on the opposite side of the outer cover 13 of the static magnetic field magnet device 1. When the vacuum vessel 4 is formed of a conductive member, the conductive member 15 may be omitted.

図4(c)に、第1の実施形態の変形例2の近接導電性部材11とその周辺の部分拡大断面図を示す。近接導電性部材11の導電性部材15と16が互いに独立に振動(移動)するように、導電性部材15と16の間には、外装カバー13より低弾性のスペーサ27が設けられている。導電性部材15と16の間のスペース18には、例えばゴムなどの柔軟性のある弾性部材(低弾性スペーサ)27が充填されている。弾性部材27によって、真空容器4(導電性部材15)に対して、外装カバー13(導電性部材16)が支持されている。弾性部材27によって、導電性部材15と16の間のスペース18が保たれている。導電性部材15と16は、機械的に接続されていないことにはならないが、外装カバー13が薄いFRP材などの柔軟な材質であれば、弾性部材27があっても、外装カバー13(導電性部材16)は真空容器4(導電性部材15)に対して概ね独立に振動が可能であり、近接導電性部材11による振動低減効果を得ることができる。また、第1の実施形態の変形例1と2を組み合わせて、変形例1の部分的なスペーサ26に弾性部材27を用いてもよい。   FIG. 4C shows a partially enlarged cross-sectional view of the proximity conductive member 11 of the second modification of the first embodiment and its periphery. A spacer 27 having lower elasticity than the outer cover 13 is provided between the conductive members 15 and 16 so that the conductive members 15 and 16 of the close conductive member 11 vibrate (move) independently of each other. A space 18 between the conductive members 15 and 16 is filled with a flexible elastic member (low elastic spacer) 27 such as rubber. The outer cover 13 (conductive member 16) is supported by the elastic member 27 with respect to the vacuum vessel 4 (conductive member 15). A space 18 between the conductive members 15 and 16 is maintained by the elastic member 27. The conductive members 15 and 16 are not mechanically connected. However, if the outer cover 13 is a flexible material such as a thin FRP material, the outer cover 13 (conductive The conductive member 16) can vibrate substantially independently of the vacuum vessel 4 (conductive member 15), and the vibration reducing effect of the proximity conductive member 11 can be obtained. In addition, the elastic members 27 may be used for the partial spacers 26 of the first modification by combining the first and second modifications of the first embodiment.

(第2の実施形態)
図5(a)に、本発明の第2の実施形態に係るMRI装置における近接導電性部材11とその周辺の部分拡大断面図を示す。第2の実施形態が、第1の実施形態の変形例2と異なっている点は、近接導電性部材11の導電性部材15と16の両方が、外装カバー13に設けられている点である。外装カバー13は、外側層13aと内側層13bの表裏2層にわかれており、その間にゴムなどの柔軟性のある弾性部材27を挟み込んだ構造をしている。導電性部材16は、外装カバー13の外側層13aの外側に設けられている。導電性部材15は、外装カバー13の内側層13bの真空容器4側に設けられている。第2の実施形態でも、第1の実施形態の変形例2と同様に、導電性部材16と15が互いに独立に振動(移動)するように、導電性部材16と15の間には、外装カバー13より低弾性の弾性部材(低弾性スペーサ)27が設けられている。外装カバー13が振動すると、弾性部材27のために、外装カバー13の外側層13a(導電性部材16)と内側層13b(導電性部材15)が独立に振動し、導電性部材15と16は近接したままその間隔が変化し、導電性部材15と16に大きな渦電流が生じて外装カバー13の振動が減衰する。なお、図5(a)では、外装カバー13の外側層13aの外側に、導電性部材16を設置したが、これに限らず、弾性部材27の側に設置してもよい。また、外装カバー13の内側層13bの真空容器4側に、導電性部材15を設置したが、これに限らず、弾性部材27の側に設置してもよい。すなわち、導電性部材15と16は、弾性部材27を挟んで対向するように設置してもよい。また、弾性部材27と外装カバー13と導電性部材16(又は15)の3層を更に増して、導電性部材16(又は15)を2つ以上とすることで、振動減衰効果をさらに高めることができる。
(Second Embodiment)
FIG. 5A shows a partially enlarged cross-sectional view of the proximity conductive member 11 and its periphery in the MRI apparatus according to the second embodiment of the present invention. The second embodiment is different from Modification 2 of the first embodiment in that both the conductive members 15 and 16 of the proximity conductive member 11 are provided on the exterior cover 13. . The exterior cover 13 is divided into two layers, an outer layer 13a and an inner layer 13b, and has a structure in which a flexible elastic member 27 such as rubber is sandwiched therebetween. The conductive member 16 is provided outside the outer layer 13 a of the exterior cover 13. The conductive member 15 is provided on the vacuum container 4 side of the inner layer 13 b of the exterior cover 13. In the second embodiment as well, as in the second modification of the first embodiment, there is an exterior between the conductive members 16 and 15 so that the conductive members 16 and 15 vibrate (move) independently of each other. An elastic member (low elastic spacer) 27 having a lower elasticity than the cover 13 is provided. When the exterior cover 13 vibrates, due to the elastic member 27, the outer layer 13a (conductive member 16) and the inner layer 13b (conductive member 15) of the exterior cover 13 vibrate independently, and the conductive members 15 and 16 The distance changes while staying close to each other, a large eddy current is generated in the conductive members 15 and 16, and the vibration of the outer cover 13 is attenuated. In FIG. 5A, the conductive member 16 is installed outside the outer layer 13a of the exterior cover 13. However, the conductive member 16 is not limited to this and may be installed on the elastic member 27 side. Further, although the conductive member 15 is installed on the vacuum container 4 side of the inner layer 13b of the outer cover 13, it is not limited to this and may be installed on the elastic member 27 side. That is, the conductive members 15 and 16 may be installed so as to face each other with the elastic member 27 interposed therebetween. Further, the vibration damping effect can be further enhanced by further increasing the three layers of the elastic member 27, the exterior cover 13, and the conductive member 16 (or 15) to have two or more conductive members 16 (or 15). Can do.

図5(b)に、本発明の第2の実施形態の変形例に係るMRI装置における近接導電性部材11とその周辺の部分拡大断面図を示す。第2の実施形態の変形例が、第2の実施形態と異なっている点は、導電性部材16と15とは電気的に絶縁され、導電性部材16と15に近接したまま相対的に独立して振動(移動)しうる導電性部材(第3導電性部材)17(近接導電性部材11)が、真空容器4に設けられている点である。これによれば、外装カバー13の振動低減効果を更に増すことができる。なお、導電性部材17(真空容器4)と導電性部材15(外装カバー13)の間には、弾性部材27を設けてもよい。また、真空容器4が導電性部材の場合には、導電性部材17を省くことができる。   FIG. 5B shows a partially enlarged cross-sectional view of the proximity conductive member 11 and its periphery in an MRI apparatus according to a modification of the second embodiment of the present invention. The modification of the second embodiment is different from the second embodiment in that the conductive members 16 and 15 are electrically insulated and are relatively independent while being close to the conductive members 16 and 15. Thus, a conductive member (third conductive member) 17 (proximity conductive member 11) that can vibrate (move) is provided in the vacuum container 4. According to this, the vibration reduction effect of the exterior cover 13 can be further increased. An elastic member 27 may be provided between the conductive member 17 (vacuum container 4) and the conductive member 15 (exterior cover 13). Further, when the vacuum vessel 4 is a conductive member, the conductive member 17 can be omitted.

(第3の実施形態)
図6(a)に、本発明の第3の実施形態に係るMRI装置における近接導電性部材11とその周辺の部分拡大断面図を示す。第3の実施形態が、第1の実施形態の変形例1と異なっている点は、近接導電性部材11の導電性部材15と16の両方が、外装カバー13に設けられている点である。外装カバー13は、外側層13aと内側層13bの表裏2層にわかれており、その間にスペーサ(部分スペーサ)26を部分的に挟み込んだ構造をしている。導電性部材16は、外装カバー13の外側層13aの外側に設けられている。導電性部材15は、外装カバー13の内側層13bの真空容器4側に設けられている。第3の実施形態でも、第1の実施形態の変形例1と同様に、導電性部材16と15が互いに独立に振動(移動)するように、導電性部材16と15の間には、スペーサ26が部分的に設けられている。外装カバー13が振動すると、スペーサ26のために、外装カバー13の外側層13a(導電性部材16)と内側層13b(導電性部材15)が独立に振動し、導電性部材15と16は近接したままその間隔が変化し、導電性部材15と16に大きな渦電流が生じて外装カバー13の振動が減衰する。なお、図6(a)では、外装カバー13の外側層13aの外側に、導電性部材16を設置したが、これに限らず、スペーサ26の側に設置してもよい。また、外装カバー13の内側層13bの真空容器4側に、導電性部材15を設置したが、これに限らず、スペーサ26の側に設置してもよい。すなわち、導電性部材15と16は、スペーサ26を挟んで対向するように設置してもよい。また、スペーサ26と外装カバー13と導電性部材16(又は15)の3層を更に増して、導電性部材16(又は15)を2つ以上とすることで、振動減衰効果をさらに高めることができる。
(Third embodiment)
FIG. 6A shows a partially enlarged cross-sectional view of the proximity conductive member 11 and its periphery in the MRI apparatus according to the third embodiment of the present invention. The third embodiment is different from Modification 1 of the first embodiment in that both the conductive members 15 and 16 of the proximity conductive member 11 are provided on the exterior cover 13. . The exterior cover 13 is divided into two layers, an outer layer 13a and an inner layer 13b, and a spacer (partial spacer) 26 is partially sandwiched therebetween. The conductive member 16 is provided outside the outer layer 13 a of the exterior cover 13. The conductive member 15 is provided on the vacuum container 4 side of the inner layer 13 b of the exterior cover 13. Also in the third embodiment, as in the first modification of the first embodiment, a spacer is provided between the conductive members 16 and 15 so that the conductive members 16 and 15 vibrate (move) independently of each other. 26 is partially provided. When the outer cover 13 vibrates, the outer layer 13a (conductive member 16) and the inner layer 13b (conductive member 15) of the outer cover 13 vibrate independently due to the spacer 26, and the conductive members 15 and 16 are close to each other. As the distance changes, a large eddy current is generated in the conductive members 15 and 16, and the vibration of the outer cover 13 is attenuated. In FIG. 6A, the conductive member 16 is installed outside the outer layer 13 a of the exterior cover 13. However, the conductive member 16 is not limited to this and may be installed on the spacer 26 side. Further, although the conductive member 15 is installed on the vacuum container 4 side of the inner layer 13b of the outer cover 13, it is not limited to this and may be installed on the spacer 26 side. That is, the conductive members 15 and 16 may be installed so as to face each other with the spacer 26 interposed therebetween. Further, the vibration damping effect can be further enhanced by further increasing the three layers of the spacer 26, the exterior cover 13, and the conductive member 16 (or 15) to have two or more conductive members 16 (or 15). it can.

図6(b)に、本発明の第3の実施形態の変形例に係るMRI装置における近接導電性部材11とその周辺の部分拡大断面図を示す。第3の実施形態の変形例が、第3の実施形態と異なっている点は、導電性部材16と15とは電気的に絶縁され、導電性部材16と15に近接したまま相対的に独立して振動(移動)しうる導電性部材17(近接導電性部材11)が、真空容器4に設けられている点である。これによれば、外装カバー13の振動低減効果を更に増すことができる。なお、導電性部材17(真空容器4)と導電性部材15(外装カバー13)の間には、スペーサ26を設けてもよい。また、真空容器4が導電性部材の場合には、導電性部材17を省くことができる。   FIG. 6B shows a partially enlarged cross-sectional view of the proximity conductive member 11 and its periphery in an MRI apparatus according to a modification of the third embodiment of the present invention. The modification of the third embodiment is different from the third embodiment in that the conductive members 16 and 15 are electrically insulated and are relatively independent while being close to the conductive members 16 and 15. Thus, a conductive member 17 (proximity conductive member 11) that can vibrate (move) is provided in the vacuum container 4. According to this, the vibration reduction effect of the exterior cover 13 can be further increased. A spacer 26 may be provided between the conductive member 17 (vacuum container 4) and the conductive member 15 (exterior cover 13). Further, when the vacuum vessel 4 is a conductive member, the conductive member 17 can be omitted.

(第4の実施形態)
図7に、本発明の第4の実施形態に係るMRI装置における近接導電性部材11とその周辺の部分拡大断面図を示す。第4の実施形態が、第1〜3の実施形態と異なっている点は、導電性部材15と16の互いに対向する面(相手側の面)の内の少なくとも一方は凹凸形状を有している点である。これによれば、導電性部材15と16の互いに対向する面の対向面積を、外装カバー13と真空容器4の対向面積よりも大きくすることが可能となり、外装カバー13が振動した場合に発生する渦電流をより大きくすることができる。そして、外装カバー13の振動低減効果をさらに増すことができる。凹凸形状は必ずしも導電性部材15と16の双方に必要ではなく、どちらか一方でもよい。また、第4の実施形態は、第1の実施形態だけでなく、第2、3の実施形態にも適用することができる。また、導電性部材15と16の凹凸形状のピッチは互いに一致していることが好ましい。これによれば、凹凸形状の凹凸の高さによらず、導電性部材15と16の凹凸形状の面を互いに近づけることができる。
(Fourth embodiment)
FIG. 7 shows a partially enlarged cross-sectional view of the proximity conductive member 11 and its periphery in an MRI apparatus according to the fourth embodiment of the present invention. The fourth embodiment is different from the first to third embodiments in that at least one of the conductive members 15 and 16 facing each other (the other surface) has an uneven shape. It is a point. According to this, it becomes possible to make the opposing area of the mutually opposing surfaces of the conductive members 15 and 16 larger than the opposing area of the exterior cover 13 and the vacuum vessel 4, which occurs when the exterior cover 13 vibrates. Eddy current can be increased. And the vibration reduction effect of the exterior cover 13 can further be increased. The uneven shape is not necessarily required for both of the conductive members 15 and 16, and either one may be used. The fourth embodiment can be applied not only to the first embodiment but also to the second and third embodiments. Moreover, it is preferable that the uneven | corrugated shaped pitch of the electroconductive members 15 and 16 corresponds mutually. According to this, the uneven surface of the conductive members 15 and 16 can be brought close to each other regardless of the height of the uneven surface.

(第5の実施形態)
図8に、本発明の第5の実施形態に係るMRI装置(垂直磁場型)100の縦断面図を示し、図9に、その模式的な斜視図を示す。第5の実施形態が、第1〜4の実施形態と異なっている点は、撮像領域9における静磁場6の方向が、水平方向から替わって、垂直方向である点である。これに伴い、z軸方向が静磁場6の方向に合わせて垂直方向になっている。y軸方向とx軸方向は水平方向になっている。静磁場6を発生する静磁場磁石装置1は、円環形状の上下で対をなす複数の超電導コイル3と、円盤形状の上下で対をなす磁性体28で構成された上下一対の磁極からなり、その上下一対の磁極が、支持柱29(図9参照)によって互いに支持され、離れて配置されている。なお、静磁場磁石装置1は、図5に示すように、超電導コイル3と磁性体28の両方で構成してもよいし、どちらか一方で構成してもよい。
(Fifth embodiment)
FIG. 8 shows a longitudinal sectional view of an MRI apparatus (vertical magnetic field type) 100 according to the fifth embodiment of the present invention, and FIG. 9 shows a schematic perspective view thereof. The fifth embodiment is different from the first to fourth embodiments in that the direction of the static magnetic field 6 in the imaging region 9 is changed from the horizontal direction to the vertical direction. Along with this, the z-axis direction is perpendicular to the direction of the static magnetic field 6. The y-axis direction and the x-axis direction are horizontal. A static magnetic field magnet device 1 that generates a static magnetic field 6 includes a plurality of superconducting coils 3 that are paired in an upper and lower ring shape and a pair of upper and lower magnetic poles that are formed in a pair of magnetic bodies 28 that are paired in a disk shape. The pair of upper and lower magnetic poles are supported by a support column 29 (see FIG. 9) and are spaced apart from each other. As shown in FIG. 5, the static magnetic field magnet apparatus 1 may be configured by both the superconducting coil 3 and the magnetic body 28, or may be configured by either one.

静磁場磁石装置1の上下一対の磁極それぞれの撮像領域9側には、円板形状の上下一対の傾斜磁場コイル2が設けられている。傾斜磁場コイル2は、静磁場磁石装置1の磁性体28から支持部材14を介して支持されている。傾斜磁場コイル2は、第1の実施形態と同様に、x軸、y軸、z軸の3方向に独立な傾斜磁場を発生することができる。図8に示した傾斜磁場10は、磁場の方向がz軸方向であり、y軸方向に磁場強度分布が傾斜した傾斜磁場の例を示している。上下一対の傾斜磁場コイル2それぞれの撮像領域9側には、円板形状の上下一対のRFコイル12が設けられている。上下一対の外装カバー13は、静磁場磁石装置1の上下一対の磁極と、上下一対の傾斜磁場コイル2を覆っている。上下一対の外装カバー13のそれぞれの撮像領域9側の面には、RFコイル12が設置されている。   A pair of disk-shaped upper and lower gradient magnetic field coils 2 is provided on the imaging region 9 side of each of the upper and lower magnetic poles of the static magnetic field magnet device 1. The gradient coil 2 is supported from the magnetic body 28 of the static magnetic field magnet apparatus 1 via the support member 14. Similar to the first embodiment, the gradient coil 2 can generate independent gradient magnetic fields in the three directions of the x-axis, the y-axis, and the z-axis. The gradient magnetic field 10 shown in FIG. 8 shows an example of a gradient magnetic field in which the magnetic field direction is the z-axis direction and the magnetic field strength distribution is inclined in the y-axis direction. A pair of disk-shaped upper and lower RF coils 12 are provided on the imaging region 9 side of each of the upper and lower pair of gradient magnetic field coils 2. The pair of upper and lower exterior covers 13 cover the pair of upper and lower magnetic poles of the static magnetic field magnet device 1 and the pair of upper and lower gradient magnetic field coils 2. RF coils 12 are installed on the surfaces of the pair of upper and lower exterior covers 13 on the imaging area 9 side.

本第5の実施形態においても、近接導電性部材11は、静磁場磁石装置1による静磁場6中にあって、傾斜磁場コイル2およびRFコイル12が発生する磁場(漏れ磁場)の影響が小さな場所に配置することが望ましい。近接導電性部材11は、静磁場磁石装置1の円板形状の磁性体28の側面と、撮像領域9と反対側の面と、それらに対向する外装カバー13の面に設けられる。また、近接導電性部材11は、静磁場磁石装置1の円環形状の真空容器4の側面と、撮像領域9側の面と、それらに対向する外装カバー13の面に設けられる。真空容器4および磁性体28が導電性部材で形成されている場合は、真空容器4および磁性体28に設けられる近接導電性部材11の導電性部材15は省略することができる。本第5の実施形態においても、第2の実施形態のスペーサ26や、第3の実施形態の弾性部材27や、第4の実施形態の凹凸形状を適用できる。本第5の実施形態においては、導電性部材11の対向し近接する導電性部材15と16は互いに同じ大きさ、形状ではないが、導電性部材15と16の大きさと導電率および板厚が、第1の実施形態で説明した条件を満たせば、騒音低減に充分な効果が期待できる。   Also in the fifth embodiment, the proximity conductive member 11 is in the static magnetic field 6 by the static magnetic field magnet apparatus 1 and is less affected by the magnetic field (leakage magnetic field) generated by the gradient magnetic field coil 2 and the RF coil 12. It is desirable to place it at the place. The proximity conductive member 11 is provided on the side surface of the disk-shaped magnetic body 28 of the static magnetic field magnet apparatus 1, the surface opposite to the imaging region 9, and the surface of the exterior cover 13 facing them. Further, the proximity conductive member 11 is provided on the side surface of the annular vacuum vessel 4 of the static magnetic field magnet apparatus 1, the surface on the imaging region 9 side, and the surface of the exterior cover 13 facing them. When the vacuum vessel 4 and the magnetic body 28 are formed of conductive members, the conductive member 15 of the proximity conductive member 11 provided on the vacuum vessel 4 and the magnetic body 28 can be omitted. Also in the fifth embodiment, the spacer 26 of the second embodiment, the elastic member 27 of the third embodiment, and the uneven shape of the fourth embodiment can be applied. In the fifth embodiment, the conductive members 15 and 16 facing and adjacent to the conductive member 11 are not the same size and shape as each other, but the size, conductivity and plate thickness of the conductive members 15 and 16 are different. If the conditions described in the first embodiment are satisfied, a sufficient effect for noise reduction can be expected.

なお、前記した第1〜5の実施形態では、静磁場磁石装置1に超電導コイル3を用いたが、これに限らず、常電導コイルや永久磁石(磁性体28)を用いてもよい。   In the first to fifth embodiments described above, the superconducting coil 3 is used in the static magnetic field magnet apparatus 1, but the present invention is not limited thereto, and a normal conducting coil or a permanent magnet (magnetic body 28) may be used.

1 静磁場磁石装置(磁石)
2 傾斜磁場コイル
3 超電導コイル
4 真空容器(磁石を構成する外側の容器)
5 輻射シールド
6 静磁場(の方向)
7 被検者
8 液体ヘリウム容器
9 撮像領域
10 傾斜磁場(変動磁場)
11 (近接)導電性部材
12 RFコイル
13 外装カバー
14 支持部材
15 静磁場磁石装置側の導電性部材(第2導電性部材)
16 外装カバー側の導電性部材(第1導電性部材)
17 第3導電性部材
18 スペース
20 振動を表す矢印
21、22 渦電流
23、24 電磁力
25 移動式ベッド
26 支持構造物((部分)スペーサ)
27 弾性部材((低弾性)スペーサ)
28 磁性体
29 支持柱
100 磁気共鳴イメージング装置
1 Static magnetic field magnet device (magnet)
2 Gradient magnetic field coil 3 Superconducting coil 4 Vacuum container (outer container constituting the magnet)
5 Radiation shield 6 Static magnetic field (direction)
7 Subject 8 Liquid helium container 9 Imaging area 10 Gradient magnetic field (variable magnetic field)
11 (Proximity) Conductive Member 12 RF Coil 13 Exterior Cover 14 Support Member 15 Static Magnetic Field Magnet Device Side Conductive Member (Second Conductive Member)
16 Conductive member on the exterior cover side (first conductive member)
17 Third conductive member 18 Space 20 Arrow representing vibration 21, 22 Eddy current 23, 24 Electromagnetic force 25 Mobile bed 26 Support structure ((partial) spacer)
27 Elastic member ((low elasticity) spacer)
28 Magnetic material 29 Support column 100 Magnetic resonance imaging apparatus

Claims (12)

撮像領域に静磁場を発生させる磁石と、
前記撮像領域に傾斜した強度分布を持つ傾斜磁場を発生させる傾斜磁場コイルと、
前記磁石と前記傾斜磁場コイルを覆う外装カバーを備えた磁気共鳴イメージング装置において、
前記外装カバーに設けられた第1導電性部材と、
前記磁石又は前記外装カバーに設けられ、前記第1導電性部材とは電気的に絶縁され、前記第1導電性部材に近接したまま相対的に独立して移動しうる第2導電性部材とを有することを特徴とする磁気共鳴イメージング装置。
A magnet that generates a static magnetic field in the imaging region;
A gradient coil for generating a gradient magnetic field having a gradient intensity distribution in the imaging region;
In a magnetic resonance imaging apparatus comprising an exterior cover that covers the magnet and the gradient coil,
A first conductive member provided on the exterior cover;
A second conductive member provided on the magnet or the exterior cover, electrically insulated from the first conductive member, and capable of moving relatively independently while staying close to the first conductive member; A magnetic resonance imaging apparatus comprising:
前記第1導電性部材の面と、前記第2導電性部材の面は、平行で対向していることを特徴とする請求項1に記載の磁気共鳴イメージング装置。   2. The magnetic resonance imaging apparatus according to claim 1, wherein a surface of the first conductive member and a surface of the second conductive member are parallel and face each other. 前記第2導電性部材は、前記磁石に設けられ、前記磁石を構成する外側の容器の一部になっていることを特徴とする請求項1又は請求項2に記載の磁気共鳴イメージング装置。   3. The magnetic resonance imaging apparatus according to claim 1, wherein the second conductive member is provided on the magnet and is a part of an outer container constituting the magnet. 4. 前記第2導電性部材は、前記磁石を構成する外側の面に設けられていることを特徴とする請求項1又は請求項2に記載の磁気共鳴イメージング装置。   The magnetic resonance imaging apparatus according to claim 1, wherein the second conductive member is provided on an outer surface constituting the magnet. 前記第1導電性部材と前記第2導電性部材が互いに独立に振動するように、前記第1導電性部材と前記第2導電性部材の間には、スペーサが部分的に設けられていることを特徴とする請求項1乃至請求項4のいずれか1項に記載の磁気共鳴イメージング装置。   Spacers are partially provided between the first conductive member and the second conductive member so that the first conductive member and the second conductive member vibrate independently of each other. The magnetic resonance imaging apparatus according to claim 1, wherein: 前記第1導電性部材と前記第2導電性部材が互いに独立に振動するように、前記第1導電性部材と前記第2導電性部材の間には、前記外装カバーより低弾性のスペーサが設けられていることを特徴とする請求項1乃至請求項5のいずれか1項に記載の磁気共鳴イメージング装置。   A spacer having lower elasticity than the exterior cover is provided between the first conductive member and the second conductive member so that the first conductive member and the second conductive member vibrate independently of each other. The magnetic resonance imaging apparatus according to claim 1, wherein the magnetic resonance imaging apparatus is a magnetic resonance imaging apparatus. 前記外装カバーは二層構造であり、前記二層構造の各々に導電性部材が配置されていることを特徴とする請求項6に記載の磁気共鳴イメージング装置。 The magnetic resonance imaging apparatus according to claim 6, wherein the outer cover has a two-layer structure, and a conductive member is disposed in each of the two-layer structures. 前記第1導電性部材と前記第2導電性部材の互いに対向する面の内の少なくとも一方は凹凸形状を有することを特徴とする請求項1乃至請求項7のいずれか1項に記載の磁気共鳴イメージング装置。   8. The magnetic resonance according to claim 1, wherein at least one of the opposing surfaces of the first conductive member and the second conductive member has an uneven shape. Imaging device. 前記第1導電性部材と前記第2導電性部材はそれぞれ、板、箔、網、塗布膜のいずれかであることを特徴とする請求項1乃至請求項8のいずれか1項に記載の磁気共鳴イメージング装置。   9. The magnetism according to claim 1, wherein each of the first conductive member and the second conductive member is one of a plate, a foil, a net, and a coating film. Resonance imaging device. 前記第1導電性部材と前記第2導電性部材の少なくともどちらか一方の面内方向の最小寸法は、25cm以上であって300cm以下であることを特徴とする請求項1乃至請求項9のいずれか1項に記載の磁気共鳴イメージング装置。   10. The minimum dimension in the in-plane direction of at least one of the first conductive member and the second conductive member is 25 cm or more and 300 cm or less. 2. A magnetic resonance imaging apparatus according to claim 1. 前記第1導電性部材と前記第2導電性部材の少なくともどちらか一方では、その導電率とその厚さの積が1000シーメンス以上であって100000シーメンス以下であることを特徴とする請求項1乃至請求項10のいずれか1項に記載の磁気共鳴イメージング装置。   The product of the conductivity and the thickness of at least one of the first conductive member and the second conductive member is 1000 Siemens or more and 100,000 Siemens or less. The magnetic resonance imaging apparatus according to claim 10. 撮像領域に静磁場を発生させる磁石と、
前記撮像領域に傾斜した強度分布を持つ変動磁場を発生させる傾斜磁場コイルと、
前記磁石と前記傾斜磁場コイルを覆う外装カバーを備えた磁気共鳴イメージング装置において、
前記外装カバーに設けられた第1導電性部材と、
前記外装カバーに設けられ、前記第1導電性部材とは電気的に絶縁され、前記第1導電性部材に近接したまま相対的に独立して移動しうる第2導電性部材と、
前記磁石に設けられ、前記第1導電性部材と前記第2導電性部材とは電気的に絶縁され、前記第2導電性部材に近接したまま相対的に独立して移動しうる第3導電性部材とを有することを特徴とする磁気共鳴イメージング装置。
A magnet that generates a static magnetic field in the imaging region;
A gradient coil that generates a varying magnetic field with a gradient intensity distribution in the imaging region;
In a magnetic resonance imaging apparatus comprising an exterior cover that covers the magnet and the gradient coil,
A first conductive member provided on the exterior cover;
A second conductive member provided on the exterior cover, electrically insulated from the first conductive member, and capable of moving relatively independently while remaining close to the first conductive member;
Third conductivity provided on the magnet, wherein the first conductive member and the second conductive member are electrically insulated, and can move relatively independently while being close to the second conductive member. And a magnetic resonance imaging apparatus.
JP2012182868A 2012-08-22 2012-08-22 Magnetic resonance imaging apparatus Pending JP2014039633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012182868A JP2014039633A (en) 2012-08-22 2012-08-22 Magnetic resonance imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012182868A JP2014039633A (en) 2012-08-22 2012-08-22 Magnetic resonance imaging apparatus

Publications (1)

Publication Number Publication Date
JP2014039633A true JP2014039633A (en) 2014-03-06

Family

ID=50392448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012182868A Pending JP2014039633A (en) 2012-08-22 2012-08-22 Magnetic resonance imaging apparatus

Country Status (1)

Country Link
JP (1) JP2014039633A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016013371A (en) * 2014-07-03 2016-01-28 株式会社東芝 Medical image capturing device
US10527694B2 (en) 2015-11-12 2020-01-07 General Electric Company Magnetic resonance imaging system and an associated method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016013371A (en) * 2014-07-03 2016-01-28 株式会社東芝 Medical image capturing device
US10527694B2 (en) 2015-11-12 2020-01-07 General Electric Company Magnetic resonance imaging system and an associated method thereof

Similar Documents

Publication Publication Date Title
JP5427604B2 (en) Open magnetic resonance imaging system
JP2002219112A5 (en)
WO2009099001A1 (en) Inclined magnetic field coil device and magnetic resonance imaging device
JP5932815B2 (en) Magnetic resonance imaging system
JP2014039633A (en) Magnetic resonance imaging apparatus
JP3897958B2 (en) Magnetic resonance imaging system
JP6296631B2 (en) Magnetic resonance imaging system
JP4988385B2 (en) Magnetic resonance imaging system
WO2008062599A1 (en) Electromagnet device and magnetic resonance imaging device
JP5931612B2 (en) Magnetic resonance imaging system
JP2000333929A (en) Magnetostatic field generator for mri device and mri device using the same
JP6296576B2 (en) Magnetic resonance imaging system
JP5015392B2 (en) Thermal diffusion device and magnetic resonance imaging apparatus
JP5891063B2 (en) Magnetic resonance imaging system
JP6663821B2 (en) Magnetic resonance imaging equipment
JP5901561B2 (en) Magnetic resonance imaging system
JP6454789B2 (en) Magnetic resonance imaging system
JP2014151151A (en) Gradient magnetic field coil device and magnetic resonance imaging device
JP2015053982A (en) Magnetic resonance imaging apparatus
WO2017169132A1 (en) Acoustic generator for mri devices, and mri device provided with same
WO2016114198A1 (en) Magnetic resonance imaging device
JP2008125895A (en) Magnetic resonance imaging apparatus
JP2005065752A (en) Magnetic field generator for mri
JP2023165622A (en) Systems, assemblies, and methods of suppressing magnet-gradient interaction in magnetic resonance systems
JP5298056B2 (en) Superconducting magnet apparatus and magnetic resonance imaging apparatus