JP2014038765A - Light condensing device - Google Patents

Light condensing device Download PDF

Info

Publication number
JP2014038765A
JP2014038765A JP2012180412A JP2012180412A JP2014038765A JP 2014038765 A JP2014038765 A JP 2014038765A JP 2012180412 A JP2012180412 A JP 2012180412A JP 2012180412 A JP2012180412 A JP 2012180412A JP 2014038765 A JP2014038765 A JP 2014038765A
Authority
JP
Japan
Prior art keywords
light
incident
forced
reflection
condensing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012180412A
Other languages
Japanese (ja)
Other versions
JP6057452B2 (en
Inventor
Hideo Arai
秀雄 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Material House KK
Original Assignee
Material House KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Material House KK filed Critical Material House KK
Priority to JP2012180412A priority Critical patent/JP6057452B2/en
Publication of JP2014038765A publication Critical patent/JP2014038765A/en
Application granted granted Critical
Publication of JP6057452B2 publication Critical patent/JP6057452B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve simplification of the production and great increase of the light condensing capacity of a light condensing device which utilizes a total reflection action in an inside region of a light transmission material.SOLUTION: A light condensing device 1, which comprises a light transmission material showing a refractive index larger than air, includes: an incidence surface 1a; a forced reflection surface 1b opposing to this; an emission surface 1c of reflection light which internally propagates while reflecting between the incidence surface and the forced reflection surface. The forced reflection surface 1b is made to be a mirror surface specification, and the internal propagation light reflected at the mirror specification part reflects totally at the incidence surface 1a. A natural light daylighting structure which comprises a light condensing device having a double side mirror structure in which a rear side outer part of the forced reflection surface 1b is also made to be a mirror surface specification is also disclosed.

Description

本発明は、アクリル,ポリカーボネート,ガラス,ダイヤモンド,サファイアなどの各種光透過材の内部領域での全反射作用を利用した集光装置に関する。   The present invention relates to a condensing device that utilizes the total reflection action in the internal region of various light transmitting materials such as acrylic, polycarbonate, glass, diamond, and sapphire.

空気中などの外部媒質から光透過材への入射光が、その入射面と、これに対向した先開きの外部媒質境界面の内側部分(以下、必要に応じて「対向反射面」という。)との間の反射作用により、光透過材内部領域にいわば閉じ込められた状態で出射面へ伝播するようにしたものである。   Incident light from an external medium such as air enters the light transmitting material, and an inner part of the boundary surface of the front-opening external medium facing the incident surface (hereinafter referred to as “opposing reflection surface” as necessary). The light is transmitted to the exit surface in a state of being confined in the inner region of the light transmitting material by the reflection action between the light transmitting material and the light transmitting material.

特に、対向反射面を鏡面仕様のいわば強制反射面に設定し、光透過材内部領域への入射光がこの強制反射面における鏡面反射後に入射面で全反射を起こしえるときの、当該入射光の最小入射角をより小さい方(=後述の伝播限界角βがより大きくなる方)へシフトさせたものである。   In particular, when the opposing reflection surface is set to a so-called forced reflection surface in the specular specification, the incident light to the inner area of the light transmitting material can cause total reflection on the incident surface after specular reflection on the forced reflection surface. The minimum incident angle is shifted to a smaller one (= a direction in which a propagation limit angle β described later becomes larger).

すなわち光透過材内部領域への小入射角自然光などについても、強制反射面と入射面との間での鏡面反射および全反射を繰り返しながら例えば下方の出射面へと伝播させることにより、集光能力を大幅に高めた集光装置に関する。   In other words, natural light with a small incident angle to the inner area of the light-transmitting material can be collected by, for example, propagating to the lower exit surface while repeating specular reflection and total reflection between the forced reflection surface and the incident surface. It is related with the condensing device which raised significantly.

本明細書では、入射面への入射角として、〔「90.0°」−(入射面から入射光への図示反時計回りの角度:伝播限界角βの角度表示に対応)〕の計算で求まる正負の値を用いている。   In this specification, the incident angle to the incident surface is obtained by calculation of [“90.0 °” − (the counterclockwise angle from the incident surface to the incident light: corresponding to the angle display of the propagation limit angle β)]. The value of is used.

例えば図2〜図5で示す各βに対応した入射光の入射角はそれぞれ「+34.3°」,「+18.4°」,「0.0°」,「−12.1°」と順次小さくなっている。このように入射角の大小関係は正負の数列上で判断し、「0.0°」よりも「−12.1°」の方が小入射角となる。   For example, the incident angles of incident light corresponding to each β shown in FIGS. 2 to 5 are sequentially reduced to “+ 34.3 °”, “+ 18.4 °”, “0.0 °”, and “−12.1 °”. . Thus, the magnitude relation of the incident angle is determined on the positive and negative numerical sequences, and “−12.1 °” is smaller than “0.0 °”.

本発明の集光装置は、一方の対向側面を構成する入射面およびその対向反射面の他に、少なくとも他方の対向側面および出射面を備えている。   The condensing device of the present invention includes at least the other opposing side surface and the emitting surface in addition to the incident surface and the opposing reflecting surface constituting one opposing side surface.

本明細書では、上述したように対向反射面およびその鏡面仕様の強制反射面を、いずれも入射面と対向する内側面部分、すなわちその外側を捨象した形の面部分の意で用いる。   In the present specification, as described above, the opposing reflection surface and the specular reflection surface of the specular specification are both used as an inner surface portion opposed to the incident surface, that is, a surface portion in which the outside thereof is discarded.

また、この対向反射面,強制反射面とは別の側面である他方の対向側面(図示1e)に関しては、それぞれの内側,外側の両面を含む意で用いる。   Further, the other opposing side surface (1e in the figure), which is a side surface different from the opposing reflection surface and the forced reflection surface, is used to include both inner and outer surfaces.

本明細書では集光装置の、一方の対向側面である入射面および対向反射面それぞれの側を「左」,「右」と記し、他方の対向側面それぞれの側を「前」,「後」と記し、出射面の側を「下」と記す(図1参照)。   In this specification, one side of each of the incident surface and the opposite reflection surface of the light collecting device is referred to as “left” and “right”, and each side of the other opposite side is referred to as “front” and “rear”. And the side of the exit surface is denoted as “below” (see FIG. 1).

また、必要に応じて、左右方向を「横」、上下方向を「縦」とそれぞれ記し、入射面と出射面との境界線と直交する上下方向の断面を「縦断面」と記す。   Further, as necessary, the horizontal direction is referred to as “horizontal”, the vertical direction is referred to as “vertical”, and the vertical cross section perpendicular to the boundary line between the incident surface and the output surface is referred to as “vertical cross section”.

集光装置の全体形状は、例えば左右の入射面および強制反射面が出射面の方ほど、より外方へと広がった下広がり態様で、前後の対向側面が例えば線対称台形または線対称三角形からなるいわば略堰形状(堤防形状)である。   The overall shape of the condensing device is, for example, a downwardly spreading aspect in which the left and right entrance surfaces and the forced reflection surface are more outwardly spread toward the exit surface, and the front and back opposing side surfaces are, for example, from a line-symmetric trapezoid or a line-symmetric triangle In other words, it has a substantially weir shape (bank shape).

なお、東西南北はそれぞれ、北半球においてこの集光装置を採光部などに配設したときの方角を示している。南半球においては勿論「南北」の関係が逆になる。   Note that east, west, south, and north indicate directions when the light collecting device is disposed in a daylighting unit or the like in the northern hemisphere. In the southern hemisphere, of course, the “north-south” relationship is reversed.

従来、入射角の大きい入射光については一つの多角錐プリズムの中で全反射を繰り返しながら底面へ到達させ、入射角の小さい入射光については複数の多角錐プリズムを通過させることにより方向調整してから一つの多角錐プリズムの中で全反射を繰り返しながら底面へ到達させる、ようにした集光装置が提案されている(特許文献1参照)。   Conventionally, incident light having a large incident angle is caused to reach the bottom while repeating total reflection in one polygonal pyramid prism, and incident light having a small incident angle is adjusted in direction by passing through a plurality of polygonal pyramid prisms. A condensing device has been proposed that allows the light to reach the bottom while repeating total reflection in one polygonal pyramid prism (see Patent Document 1).

特開2001−84817号公報JP 2001-84817 A

本発明では、この従来例のように複数の多角錐プリズムを使うことなしに、空気中などから光透過材内部領域への入射光を、その入射面と、これに対向した先開きで鏡面仕様の強制反射面との間で順に生じる鏡面反射,全反射の作用により出射面へ伝播するといった構成の集光装置を提供している。   In the present invention, without using a plurality of polygonal pyramid prisms as in the conventional example, the incident light from the air or the like to the inner region of the light transmission material is specularly specular with its incident surface and a front opening facing it. The condensing device is configured to propagate to the exit surface by the action of specular reflection and total reflection that occur in sequence with the forced reflection surface.

これにより、光透過材内部領域に入射した低仰角自然光についても、強制反射面と入射面との間での鏡面反射および全反射を繰り返しながら出射面へと伝播するようにして、集光装置製造の簡単化および集光能力の大幅アップ化を図ることを目的とする。   As a result, the low elevation angle natural light incident on the inner region of the light transmitting material is propagated to the exit surface while repeating specular reflection and total reflection between the forced reflection surface and the incident surface, thereby producing the condensing device. The purpose is to simplify the process and to greatly increase the light collecting ability.

また、強制反射面の裏側外部分も鏡面仕様にし、これにより集光装置の内部伝播光のみならず外面反射光についても採光化を図ることを目的とする。   Another object of the present invention is to make the outer part of the back side of the forced reflection surface into a specular specification, thereby making it possible to daylight not only the internally propagated light but also the externally reflected light.

また、入射面および強制反射面をいわば連結する対向側面の内側部分なども鏡面仕様にし、これにより出射面以外からの光洩れの防止化を図ることを目的とする。   Another object of the present invention is to make the inner surface of the opposite side surface connecting the entrance surface and the forced reflection surface specularly, thereby preventing light leakage from other than the exit surface.

また、強制反射面からの反射光が入射面と出射面との境界部分に到達する場合の強制反射面における最終反射位置より下側部分を入射面の方に変位させて出射面の面積を小さくし、これにより集光密度(入射面と出射面との面積比)のアップ化を図ることを目的とする。   In addition, when the reflected light from the forced reflection surface reaches the boundary between the incident surface and the exit surface, the area below the final reflection position on the forced reflection surface is displaced toward the entrance surface to reduce the area of the exit surface. Thus, an object is to increase the light collection density (area ratio between the incident surface and the exit surface).

また、出射面に続く部分に空気よりも屈折率が大きい媒質を配設して、出射面での全反射臨界角を大きくし、これにより出射面まで伝播した入射反射光の当該媒質への有効利用化を図ることを目的とする。   In addition, a medium having a refractive index greater than that of air is arranged at the part following the exit surface, and the total reflection critical angle at the exit surface is increased, so that the incident reflected light propagated to the exit surface is effectively applied to the medium. It aims at utilization.

また、入射面と強制反射面とを先開きの対向構造とし、これにより集光装置への入射光の広がり角度を出射面で狭くする、すなわち出射光の整列化を図ることを目的とする。   Another object of the present invention is to make the incident surface and the forced reflection surface opposite to each other so that the spread angle of the incident light to the condensing device is narrowed at the exit surface, that is, the emitted light is aligned.

本発明は、以上の課題を次のようにして解決する。
(1)外部媒質よりも大きな屈折率を示す光透過材からなり、入射面(例えば後述の入射面1a)と、先開きの形でこれに対向する強制反射面(例えば後述の強制反射面1b)と、当該入射面および当該強制反射面の間で反射しながら内部伝播する反射光の出射面(例えば後述の出射面1c,1c')と、を備えた集光装置(例えば後述の集光装置1,1',1'')において、
前記強制反射面は、
鏡面仕様に設定され、
前記鏡面仕様の部分で反射した内部伝播光が前記入射面で全反射する、
構成態様のものを用いる。
(2)上記(1)において、
前記強制反射面は、
その裏側外部分(例えば後述の裏側外部分1g)が鏡面仕様に設定されている、
構成態様のものを用いる。
(3)上記(1),(2)において、
前記入射面,前記強制反射面および前記出射面のそれぞれに連続する形の一対の対向側面(例えば後述の側面1e)を備え、
前記対向側面は、
その内側部分が鏡面仕様に設定されている、
構成態様のものを用いる。
(4)上記(1)〜(3)において
前記鏡面仕様の強制反射面は、
その反射光が前記出射面に到達して全反射する場合の当該強制反射面での反射位置より下側の部分(例えば後述の下側部分1f)を、当該反射位置より上側の強制反射面部分の延長面よりも内側に変位させて、
当該出射面の面積を小さくする形に設定されている、
構成態様のものを用いる。
(5)上記(4)において、
前記反射位置は、
前記反射光が、前記入射面に対して、臨界角で当該入射面と前記出射面との境界部分に到達する場合の反射位置である、
構成態様のものを用いる。
(6)上記(1)〜(5)において、
前記出射面(例えば後述の出射面1c')は、
空気よりも屈折率が大きい媒質領域(例えば後述の水領域1h)と接して、
当該出射面での臨界角を大きくする形に設定されている、
構成態様のものを用いる。
The present invention solves the above problems as follows.
(1) It is made of a light transmitting material having a refractive index larger than that of the external medium, and has an incident surface (for example, an incident surface 1a described later) and a forced reflection surface (for example, a later described forced reflection surface 1b) opposed to the front surface in the form of a front opening. ) And an exit surface (for example, exit surfaces 1c and 1c ′ described later) of reflected light that propagates internally while reflecting between the incident surface and the forced reflection surface (for example, collect light described later). In the device 1, 1 ′, 1 ″)
The forced reflection surface is
Set to specular spec,
Internally propagated light reflected by the specular spec part is totally reflected by the incident surface,
The thing of a structure aspect is used.
(2) In (1) above,
The forced reflection surface is
The back side outside part (for example, back side outside part 1g described later) is set to a mirror surface specification.
The thing of a structure aspect is used.
(3) In the above (1) and (2),
A pair of opposing side surfaces (for example, a side surface 1e to be described later) that are continuous with each of the entrance surface, the forced reflection surface, and the exit surface;
The opposing side surface is
Its inner part is set to specular specification,
The thing of a structure aspect is used.
(4) In the above (1) to (3), the forced reflection surface of the specular specification is
When the reflected light reaches the emission surface and is totally reflected, a portion below the reflection position on the forced reflection surface (for example, a lower portion 1f described later) is a forced reflection surface portion above the reflection position. Displace inside the extended surface of
Set to reduce the area of the exit surface,
The thing of a structure aspect is used.
(5) In (4) above,
The reflection position is
The reflected light is a reflection position when reaching the boundary portion between the incident surface and the exit surface at a critical angle with respect to the incident surface.
The thing of a structure aspect is used.
(6) In the above (1) to (5),
The exit surface (eg, exit surface 1c ′ described later) is
In contact with a medium region (for example, a water region 1h described later) having a higher refractive index than air,
It is set to increase the critical angle at the exit surface,
The thing of a structure aspect is used.

以上の構成からなる集光装置を本発明の対象としている。   The condensing device having the above configuration is an object of the present invention.

本発明は以上の課題解決手段により、
(11)集光装置製造の簡単化および集光能力の大幅アップ化を図る、
(12)集光装置の内部伝播光のみならず外面反射光についても採光化を図る、
(13)出射面以外からの光洩れの防止化を図る、
(14)集光密度(入射面と出射面との面積比)のアップ化を図る、
(15)出射面に続く部分に配設された空気よりも大きい屈折率の媒質への、入射反射光の有効利用化を図る、
(16)集光装置への入射光の広がり角度が出射面で狭くなり、出射光の整列化を図る、
ことなどができる。
The present invention is based on the above problem solving means.
(11) Simplify the manufacturing of the condensing device and greatly increase the condensing capacity.
(12) Daylighting of not only the internally propagating light of the light collecting device but also the externally reflected light,
(13) To prevent light leakage from other than the exit surface.
(14) Increasing the light collection density (area ratio between the entrance surface and the exit surface)
(15) To make effective use of incident reflected light to a medium having a refractive index larger than that of air disposed in a portion following the exit surface.
(16) The spread angle of the incident light to the condensing device is narrowed on the exit surface, and alignment of the exit light is attempted.
You can do that.

集光装置の全体形状を示す説明図である。It is explanatory drawing which shows the whole shape of a condensing device. 入射面と強制反射面との開き角度αが10.0°の場合の伝播限界角β(10.0)を示す説明図である。It is explanatory drawing which shows propagation limit angle (beta) (10.0) in case the opening angle (alpha) of an incident surface and a forced reflective surface is 10.0 degrees. 入射面と強制反射面との開き角度αが15.0°の場合の伝播限界角β(15.0)を示す説明図である。It is explanatory drawing which shows propagation limit angle (beta) (15.0) in case the opening angle (alpha) of an incident surface and a forced reflective surface is 15.0 degrees. 入射面と強制反射面との開き角度αが臨界角の半分に相当する21.1°の場合の伝播限界角β(21.1)を示す説明図である。FIG. 6 is an explanatory diagram showing a propagation limit angle β (21.1) when the opening angle α between the incident surface and the forced reflection surface is 21.1 ° corresponding to half the critical angle. 入射面と強制反射面との開き角度αが25.0°の場合の伝播限界角β(25.0)を示す説明図である。It is explanatory drawing which shows propagation limit angle (beta) (25.0) in case the opening angle (alpha) of an incident surface and a forced reflective surface is 25.0 degrees. 強制反射面付加にともなう、図2〜図5それぞれの開き角度αにおける伝播限界角βの拡大化(対向反射面の鏡面化による変化)を示す説明図である。FIG. 6 is an explanatory diagram showing enlargement of the propagation limit angle β at each opening angle α in FIG. 2 to FIG. 5 (change due to mirroring of the opposing reflection surface) accompanying the forced reflection surface addition. 図4と同じ開き角度「21.1°」で、横幅が異なる幅狭および幅広の各出射面からなる二種類の集光装置縦断面を対比した説明図である。FIG. 5 is an explanatory diagram comparing two types of vertical concentrator cross-sections of narrow and wide exit surfaces with different opening widths at the same opening angle “21.1 °” as in FIG. 4. 図4と同じ開き角度「21.1°」で、強制反射面下端側の所定部分について入射面との下端側開き角度が開き角度の1/2に設定された(当該所定部分が出射面と直交する)集光装置縦断面を示す説明図である。At the same opening angle “21.1 °” as in FIG. 4, the opening angle at the lower end side with respect to the incident surface is set to ½ of the opening angle for the predetermined portion on the lower end side of the forced reflection surface (the predetermined portion is orthogonal to the exit surface). ) It is explanatory drawing which shows the condensing device longitudinal section. 図4と同じ開き角度「21.1°」で、出射面直下部分に外部媒質の空気よりも屈折率が大きい縦断面方形状の水領域を設けた集光装置縦断面を示す説明図である。FIG. 5 is an explanatory view showing a concentrating device longitudinal section in which an opening angle “21.1 °” as in FIG. 4 is provided, and a water region having a longitudinal section rectangular shape having a refractive index larger than that of air of an external medium is provided immediately below the exit surface. 同一形状の二個の集光装置を保持金具に、全体が略面対称となるように取り付けた形の太陽追尾用集光装置を示す説明図である。It is explanatory drawing which shows the concentrating device for solar tracking of the form which attached the two condensing devices of the same shape to the holding | maintenance metal fitting so that the whole may become substantially plane symmetry. 光ダクトなどの採光部の東,西,北の各端部それぞれに集光装置を設けた採光構造を示す説明図である。It is explanatory drawing which shows the lighting structure which provided the condensing device in each east, west, and each end part of the lighting part, such as a light duct. 図11の採光構造の低仰角太陽光の取込み状態を示す説明図である。It is explanatory drawing which shows the taking-in state of the low elevation angle sunlight of the lighting structure of FIG. 図11の採光構造の高仰角太陽光の取込み状態を示す説明図である。It is explanatory drawing which shows the taking-in state of the high elevation angle sunlight of the lighting structure of FIG.

図1〜図13を用いて本発明を実施するための形態を説明する。   The form for implementing this invention is demonstrated using FIGS.

図1〜図13で用いるアルファベット付き参照番号の構成要素(例えば入射面1a)は原則として当該参照番号の数字部分の構成要素(例えば集光装置1)の一部である、ことを示している。   The components of the reference numbers with alphabets (for example, the incident surface 1a) used in FIGS. 1 to 13 are in principle part of the components of the numerical portions of the reference numbers (for example, the light collecting device 1). .

図1〜図13において、
1,1'は下方が幅広で、縦断面形状が縦方向線を中心とした左右対称の台形からなるいわば堰形状の集光装置(1'は図11〜図13参照),
1''は下方が幅広で、縦断面形状が縦方向線を中心とした左右対称の台形およびその下の方形の水領域からなるいわば基部付き堰形状の集光装置(図9参照)
1aは方形状の入射面,
1bは入射面1aと対向状態の鏡面からなる方形状の強制反射面(内側部分),
1cは方形状の出射面(下面)
1c'は集光装置1''のいわば仮想的な出射面(図9参照),
1dは出射面1c,1'と対向する方形状の上面,
1eは対向状態で設定された台形状または三角形状の一対の側面、またはこれと平行な面からなる側断面(縦断面),
1fは強制反射面1bからの反射光が入射面1aと出射面1cとの交差直線部分に到達する場合の、当該強制反射面1bにおけるその最終反射位置より下側部分,
1gは集光装置1'の強制反射面1bの裏側に鏡面仕様で形成された裏側外部分(図11〜図13参照),
1hは集光装置1''の出射面1c'と接する直下部分に設定された縦断面方形状の水領域(空気よりも屈折率が大きい媒質領域),
をそれぞれ示している。
1 to 13,
1, 1 ′ is a concentrating device having a so-called weir shape, in which the lower part is wide and the longitudinal section is a symmetrical trapezoid centering on the longitudinal line (see FIGS. 11 to 13 for 1 ′),
1 ″ has a broad bottom and a vertical cross-sectional shape that is a symmetrical trapezoid with a vertical line as the center, and a so-called weir-shaped condensing device with a base water area (see FIG. 9).
1a is a rectangular incident surface,
1b is a square forced reflection surface (inner portion) composed of a mirror surface facing the incident surface 1a,
1c is a square-shaped exit surface (lower surface)
1c ′ is a so-called virtual exit surface of the light collecting device 1 ″ (see FIG. 9),
1d is a rectangular upper surface facing the emission surfaces 1c and 1 ′,
1e is a pair of side surfaces of a trapezoidal shape or a triangular shape set in an opposing state, or a side cross section (longitudinal cross section) composed of a plane parallel thereto
If the reflected light from the forced reflection surface 1b reaches the intersecting straight line portion between the incident surface 1a and the exit surface 1c, the portion below the final reflection position on the forced reflection surface 1b,
1g is a back side outer portion formed in a specular specification on the back side of the forced reflection surface 1b of the light collecting device 1 ′ (see FIGS. 11 to 13),
1h is a water region (medium region having a refractive index larger than that of air) having a rectangular cross section set in a portion immediately below the light exiting surface 1c ′ of the light collecting device 1 ″.
Respectively.

また、
αは集光装置個々の入射面1aと強制反射面1bとの開き角度,
βは入射面1aへの入射光の中、強制反射面1bで鏡面反射した光が当該入射面で全反射して集光装置内部を伝播する入射光範囲の最小入射角に対応した、入射面上側からの入射光角度を示す伝播限界角(=最小入射角に対する余角),
Vpは入射面1aの任意の仮想入射点,
R1は仮想入射点Vpに伝播限界角βで入射する入射光の内部伝播径路,
R2は仮想入射点Vpに垂直に入射する入射光の内部伝播径路,
R3は仮想入射点Vpに一つ前の図における伝播限界角で入射する入射光の内部伝播径路(図3〜図5参照),
Aは仮想入射点Vpへの入射光の中、強制反射面1bからの反射光が対向側の入射面1aで全反射する内部伝播入射光範囲,
をそれぞれ示している。
Also,
α is an opening angle between the incident surface 1a and the forced reflection surface 1b of each condensing device,
β is an incident surface corresponding to the minimum incident angle of the incident light range in which the light that is specularly reflected by the forced reflection surface 1b is reflected by the incident surface and propagates through the condensing device among the incident light on the incident surface 1a. Propagation limit angle indicating the incident light angle from the upper side (= remainder angle with respect to the minimum incident angle),
Vp is an arbitrary virtual incident point on the incident surface 1a,
R1 is an internal propagation path of incident light incident on the virtual incident point Vp at the propagation limit angle β,
R2 is an internal propagation path of incident light that is perpendicularly incident on the virtual incident point Vp,
R3 is an internal propagation path of incident light incident on the virtual incident point Vp at the propagation limit angle in the previous figure (see FIGS. 3 to 5),
A is an internally propagating incident light range in which the reflected light from the forced reflecting surface 1b is totally reflected by the opposite incident surface 1a among the incident light to the virtual incident point Vp,
Respectively.

図11〜図13において、
2は同じ大きさの二台の集光装置1を均等に搭載する保持金具,
2aは太陽への集光装置追尾動作を行なう際の保持金具2の追尾回転軸,
3は建物の屋根,屋上に配設された周知の光ダクトや天窓などの採光部,
3aは採光部3の東側端部に配設された東方集光装置(=集光装置1')
3bは採光部3の西側端部に配設された西方集光装置(=集光装置1')
3cは採光部3の北側端部に配設された北方集光装置(=集光装置1)
をそれぞれ示している
11 to 13,
2 is a holding bracket for evenly mounting two light collecting devices 1 of the same size,
2a is a tracking rotation axis of the holding metal fitting 2 when performing the tracking operation of the condensing device to the sun,
3 is a roof of the building, a well-known light duct and skylights arranged on the rooftop,
3a is an east condensing device (= condensing device 1 ') disposed at the east end of the daylighting unit 3.
3b is a western light collecting device (= light collecting device 1 ') disposed at the west end of the daylighting unit 3.
3c is a northern light collecting device (= light collecting device 1) arranged at the north end of the daylighting unit 3.
Shows each

ここで、光透過部材からなる集光装置1,1',1''としては「臨界角42.2°,屈折率1.49」の特性値を持つアクリル樹脂を用いている。   Here, an acrylic resin having a characteristic value of “critical angle 42.2 °, refractive index 1.49” is used as the light collecting devices 1, 1 ′, 1 ″ made of a light transmitting member.

上述したようにアクリル以外の例えばポリカーボネート,ガラス,ダイヤモンド,サファイアなどの各種光透過材を適宜用いることができるのは勿論である。   Of course, various light transmitting materials such as polycarbonate, glass, diamond, and sapphire other than acrylic can be used as appropriate.

集光装置1,1'の高さは「100mm」である。側面(側断面)1eの斜辺部分の長さはこの高さと開き角度αから算出でき、「α=21.1°」の場合は「101.7mm」である(図7参照)。   The height of the condensing devices 1 and 1 ′ is “100 mm”. The length of the hypotenuse part of the side surface (side section) 1e can be calculated from this height and the opening angle α, and is “101.7 mm” when “α = 21.1 °” (see FIG. 7).

内部伝播径路R1はそれぞれ入射面1aに沿った内部径路を含んでいる。また、集光装置1,1',1''の入射面1aおよび強制反射面1b以外の各内面部分を鏡面仕様にすれば、集光装置への内部入射光が外部へ洩れることを少なくできる。   Each of the internal propagation paths R1 includes an internal path along the incident surface 1a. Further, if each inner surface portion other than the incident surface 1a and the forced reflection surface 1b of the condensing devices 1, 1 ′, 1 ″ is made to have a specular surface specification, it is possible to reduce leakage of internal incident light to the condensing device to the outside. .

本発明の集光装置の基本的特徴は、入射面1aから入射した屈折光の次の反射面(対向反射面)を鏡面としたことである。   The basic feature of the light collecting device of the present invention is that the next reflecting surface (opposing reflecting surface) of the refracted light incident from the incident surface 1a is a mirror surface.

入射面1aの対向反射面を鏡面仕様の強制反射面1bに設定することにより、例えば図2の当該入射面と当該強制反射面との開き角度αが「10.0°」の集光装置1の場合、その伝播限界角βが「37.4°」から「55.7°」へ拡大している。   For example, in the case of the light collecting device 1 in which the opening angle α between the incident surface and the forced reflection surface in FIG. 2 is “10.0 °” by setting the opposite reflection surface of the incident surface 1a to the forced reflection surface 1b having a specular surface specification. The propagation limit angle β is expanded from “37.4 °” to “55.7 °”.

すなわち入射面1aの任意の仮想入射点Vpへの入射光の中で入射角度「34.3°」以上のものが、強制反射面1bでの反射後、入射面1aで全反射する。この「34.3°」の数値は「90.0°」から伝播限界角βの「55.7°」を引いた値である。   That is, light incident on an arbitrary virtual incident point Vp on the incident surface 1a having an incident angle of “34.3 °” or more is totally reflected on the incident surface 1a after being reflected on the forced reflection surface 1b. The numerical value of “34.3 °” is obtained by subtracting “55.7 °” of the propagation limit angle β from “90.0 °”.

このように鏡面仕様の強制反射面1bを設けることにより、集光装置内部を伝播していく入射光の最小入射角度が、「52.6°(90.0−37.4)」から「34.3°」へ小さくなっている。   By providing the specular specular reflection surface 1b in this way, the minimum incident angle of the incident light propagating through the condensing device is reduced from “52.6 ° (90.0-37.4)” to “34.3 °”. Yes.

この入射光の最小入射角度の減少にともない縦置き(出射面が下側)の集光装置1は、より低仰角の自然光を内部に取り込んで出射面へと伝播させることができる。   As the minimum incident angle of the incident light decreases, the concentrating device 1 placed vertically (the emission surface is on the lower side) can take in natural light having a lower elevation angle and propagate it to the emission surface.

図3〜図5で示すように、伝播限界角βは、入射面1aと強制反射面1bとの開き角度αを大きくするほど小さくなっていく。これに応じる形でより低仰角の自然光が縦置き集光装置内部に取り込まれる。   As shown in FIGS. 3 to 5, the propagation limit angle β decreases as the opening angle α between the incident surface 1 a and the forced reflection surface 1 b increases. In response to this, natural light with a lower elevation angle is taken into the vertical light collecting device.

すなわち、開き角度αを大きく設定するのに応じて、仮想入射点Vpに到達する入射自然光のうち、入射面内側での全反射をともなう内部伝播により出射面1cから出射できる光の入射角度範囲が広くなる。   That is, the incident angle range of light that can be emitted from the exit surface 1c by internal propagation with total internal reflection on the inside of the entrance surface among the incident natural light that reaches the virtual entrance point Vp as the opening angle α is set large. Become wider.

図6は、図2〜図5の各集光装置1の入射面1aと強制反射面1bとの開き角度αと、当該強制反射面(鏡面仕様)の設定にともなう伝播限界角βの拡大との関係をまとめた一覧表である。   FIG. 6 shows an opening angle α between the incident surface 1a and the forced reflection surface 1b of each condensing device 1 in FIGS. 2 to 5 and an increase in the propagation limit angle β accompanying the setting of the forced reflection surface (mirror surface specification). It is the list which summarized the relationship of.

すなわち、鏡面仕様の強制反射面(対向反射面)1bを用いることにより、図2〜図5の各開き角度αにおける伝播限界角βは、対向反射面が鏡面仕様でない場合に比べて、
(21)図2の「α=10.0°」のとき、37.4°から55.7°へと拡大し、
(22)図3の「α=15.0°」のとき、47.1°から71.6°へと拡大し、
(23)図4の「α=21.1°」のとき、57.6°から90.0°へと拡大し、
(24)図5の「α=25.0°」のとき、63.9°から102.1°へと拡大している。
That is, by using the forced reflection surface (opposite reflection surface) 1b having a mirror surface specification, the propagation limit angle β at each opening angle α in FIGS. 2 to 5 is compared with the case where the opposite reflection surface is not a mirror surface specification.
(21) When “α = 10.0 °” in Fig. 2, it expands from 37.4 ° to 55.7 °,
(22) When “α = 15.0 °” in FIG. 3, it is expanded from 47.1 ° to 71.6 °,
(23) When “α = 21.1 °” in FIG. 4, it expands from 57.6 ° to 90.0 °,
(24) When “α = 25.0 °” in FIG. 5, the angle increases from 63.9 ° to 102.1 °.

上述したようにこの拡大にともない、強制反射面1bの反射光が入射面1aで全反射するといったことを繰り返しながらの集光装置内部を伝播していく入射光の最小入射角が小さくなる。   As described above, with this enlargement, the minimum incident angle of the incident light propagating through the condensing device while repeating that the reflected light of the forced reflecting surface 1b is totally reflected by the incident surface 1a becomes smaller.

なお、図2〜図5それぞれにおけるこの最小入射角は上述したように、「+34.3°(=90.0−55.7)」,「+18.4°」,「0.0°」,「−12.1°(=90.0−102.1」と順次小さくなっている。「0.0°」よりも「−12.1°」の方が小入射角である。   2 to 5, the minimum incident angles are “+ 34.3 ° (= 90.0−55.7)”, “+ 18.4 °”, “0.0 °”, “−12.1 ° (= 90.0−102.1 ”is smaller, and“ −12.1 ° ”is smaller than“ 0.0 ° ”.

図7は、開き角度αが「21.1°」の図4の集光装置1における、左右方向の幅狭(a)のものと幅広(b)のものとを比較している。   FIG. 7 shows a comparison between the narrow (a) width and the wide (b) light collecting device 1 of FIG. 4 having an opening angle α of “21.1 °”.

図7(a),(b)の集光装置1はいずれも同じ角度の伝播限界角βを持つものの、それぞれの出射光密度(=入射面の面積/出射面の面積)は異なっている。   7 (a) and 7 (b) both have the same propagation limit angle β, but their output light densities (= incident surface area / output surface area) are different.

図7(a),(b)の集光装置それぞれにおける出射光密度は略、(a)の集光装置が「2.6(=101.7/39.7)」で、(b)の集光装置が「1.6(=101.7/62.2)」となる。   In each of the concentrators in FIGS. 7 (a) and 7 (b), the emitted light density is approximately, the concentrator in (a) is “2.6 (= 101.7 / 39.7)”, and the concentrator in (b) is “1.6”. (= 101.7 / 62.2) ”.

集光装置の出射光密度を高めるには、図7(a)のように左右方向の幅を狭くするか、屈折光率がアクリル(1.49)よりも高い光サファイヤ(1.77)やダイヤモンド(2.42)からなる集光装置を用いればよい。   To increase the output light density of the concentrator, narrow the width in the left-right direction as shown in Fig. 7 (a), or light sapphire (1.77) or diamond (2.42) whose refractive index is higher than acrylic (1.49). A condensing device consisting of

図8は、図4の集光装置の強制反射面1bの下側部分1fを、それと当該入射面との間の「開き角度」がもともとの開き角度α「21.1°」の1/2になるように設定した集光装置1である。   FIG. 8 shows that the “opening angle” between the lower reflection portion 1 f of the forced reflection surface 1 b of the light collecting device of FIG. 4 and the incident surface is ½ of the original opening angle α “21.1 °”. It is the condensing apparatus 1 set as follows.

下側部分1fの始まり部分は、図8(b)で示すように、図4の集光装置1の伝播限界角β(90.0°)で入射する入射光の強制反射面1bでの反射光が入射面1aと出射面1cとの境界部分に到達する場合の、当該強制反射面における反射位置である。   As shown in FIG. 8B, the start portion of the lower portion 1f is reflected by the forced reflection surface 1b of incident light incident at the propagation limit angle β (90.0 °) of the light collecting device 1 in FIG. This is the reflection position on the forced reflection surface when it reaches the boundary between the incident surface 1a and the exit surface 1c.

換言すればこの反射位置は、強制反射面1bからの最初の反射光が入射面1aに対するいわば仮想的な臨界角で当該入射面と出射面1cとの境界部分に到達する場合の、反射位置といえる。   In other words, this reflection position is the reflection position when the first reflected light from the forced reflection surface 1b reaches the boundary between the incident surface and the exit surface 1c at a virtual critical angle with respect to the incident surface 1a. I can say that.

なお、図4の台形状の側断面はその縦方向線を中心とした線対称形状であるので、図8の下側部分1fは出射面1cとの直交面形状となる。   Since the trapezoidal side cross-section of FIG. 4 has a line-symmetric shape centered on the vertical direction line, the lower portion 1f of FIG. 8 has a shape orthogonal to the exit surface 1c.

この下側部分1fの形成により、出射面1cからの出射光量減少を抑えた状態で当該出射面での出射光密度を高めている。   By forming the lower portion 1f, the emission light density on the emission surface is increased in a state where a decrease in the amount of light emitted from the emission surface 1c is suppressed.

これは、図8(a)に示すように、強制反射面1bのもともとの開き角度αにおける下側部分1fで反射した光線が出射面1cに届くものの、このときの入射角が臨界角よりも大きくて出射面1cから出射できない、すなわち当該下側部分が入射光の出射面への内部伝播に関与しえないことに着目したものである。   As shown in FIG. 8A, although the light beam reflected by the lower portion 1f at the original opening angle α of the forced reflection surface 1b reaches the output surface 1c, the incident angle at this time is larger than the critical angle. It is focused on the fact that it is so large that it cannot be emitted from the emission surface 1c, that is, the lower portion cannot participate in internal propagation of incident light to the emission surface.

すなわちそこでの反射光が出射面1cへの内部伝播に関与しえない下側部分1fをいわば内側に折り曲げて出射面自体の面積を小さくし、出射光密度を高めている。   In other words, the lower portion 1f where the reflected light is not involved in the internal propagation to the exit surface 1c is bent inward so as to reduce the area of the exit surface itself, thereby increasing the exit light density.

図9(a)は、出射面臨界角を水領域1hの設定により大きくし、そのままでは図8の場合と同様に出射面1cから出射できない図9(b)の全反射光に対する出射面臨界角を大きくした集光装置1''を示している。なお、図示の集光装置1,1''の開き角度αは図4のそれと同一の「21.1°」である。   In FIG. 9 (a), the exit surface critical angle is increased by setting the water region 1h, and the exit surface critical angle for the totally reflected light in FIG. 9 (b) cannot be emitted as it is from FIG. 1 shows a condensing device 1 ″ having a larger diameter. The opening angle α of the light collecting devices 1 and 1 ″ shown in the figure is “21.1 °” which is the same as that in FIG.

図9(b)の伝播限界角β(90.0°)で入射する入射光の強制反射面1bにおける反射光の出射面1cに対する入射角は「58.4°」で、アクリル製集光装置1の臨界角「42.2°」をこえている。そのため当該反射光は出射面1cで全反射をおこし出射できない。   The incident angle of the incident light with respect to the exit surface 1c of the forced reflection surface 1b incident at the propagation limit angle β (90.0 °) in FIG. 9B is “58.4 °”. It exceeds “42.2 °”. Therefore, the reflected light undergoes total reflection at the exit surface 1c and cannot be emitted.

ここでは出射面1c'に接する下側部分に水領域1hを設けることにより出射面臨界角を、アクリル・空気境界面の「42.2°」からアクリル・水境界面の「63.2°」へ拡大している。   Here, by providing a water region 1h in the lower part in contact with the exit surface 1c ′, the critical angle of the exit surface is expanded from “42.2 °” at the acrylic / air interface to “63.2 °” at the acrylic / water interface. Yes.

この出射面臨界角の拡大により、出射面1c'での全反射が抑えられて、強制反射面1bからの内部反射光の一部は水領域1hに出射する。図9(b)の出射面1cに対する入射角「58.4°」の最終反射光も出射面1cから水領域1hに出射できる。水領域1hに出射した伝播光は収容済みの「水」を加熱する。   Due to the enlargement of the emission surface critical angle, total reflection at the emission surface 1c ′ is suppressed, and a part of the internally reflected light from the forced reflection surface 1b is emitted to the water region 1h. The final reflected light having an incident angle “58.4 °” with respect to the emission surface 1c in FIG. 9B can also be emitted from the emission surface 1c to the water region 1h. The propagating light emitted to the water region 1h heats the stored “water”.

図10は、保持金具2に同じ大きさの集光装置1,1を均等に配設して追尾回転軸2aに同じ回転モーメントがかかるようにした太陽光追尾機能を備えた採光構造である。   FIG. 10 shows a daylighting structure having a sunlight tracking function in which the same size of light collecting devices 1 and 1 are equally arranged on the holding metal fitting 2 so that the same rotational moment is applied to the tracking rotation shaft 2a.

図11は、建物の屋根,屋上に配設された光ダクトや天窓などの採光部の東側,西側,北側の各端部に集光装置1,1'を配設した採光構造である。   FIG. 11 shows a daylighting structure in which condensing devices 1 and 1 ′ are arranged at the east, west and north ends of daylighting parts such as light ducts and skylights arranged on the roof of the building and the rooftop.

ここで、東側,西側の各端部に配設された東方集光装置3a(集光装置1')および西方集光装置3b(集光装置1')は、それぞれの強制反射面1bおよびその裏側外部分1gが鏡面仕様で形成された両面ミラー態様になっている。北側端部の北方集光装置3cは、裏側外部分1gの設定なしの集光装置1をそのまま用いたものである。   Here, the east light collecting device 3a (light collecting device 1 ') and the west light collecting device 3b (light collecting device 1') arranged at the end portions on the east side and the west side are respectively forced reflection surfaces 1b and their The back side outer portion 1g is in a double-sided mirror form in which the specular specification is formed. The northern light collecting device 3c at the north end uses the light collecting device 1 without setting the back outer portion 1g as it is.

図12は低仰角からの太陽光(朝陽,夕陽)を東方集光装置3aまたは西方集光装置3bで採光部3へと取り込む状態を示している。   FIG. 12 shows a state in which sunlight (morning sun, sunset) from a low elevation angle is taken into the daylighting unit 3 by the east light collecting device 3a or the west light collecting device 3b.

このときの太陽光は、東方集光装置3aまたは西方集光装置3bの入射面1aを透過してから強制反射面1bと当該入射面との間で反射しながら採光部3へと伝播する。   The sunlight at this time passes through the incident surface 1a of the east light collector 3a or the west light collector 3b and then propagates to the daylighting unit 3 while being reflected between the forced reflection surface 1b and the light incident surface.

図13は比較的高仰角からの太陽光を東方集光装置3aまたは西方集光装置3bで採光部3へと取り込む状態を示している。   FIG. 13 shows a state in which sunlight from a relatively high elevation angle is taken into the daylighting unit 3 by the east collector 3a or the west collector 3b.

このときの太陽光は、
(31)東方集光装置3aおよび西方集光装置3bの入射面1aを透過してから強制反射面1bと当該入射面との間で反射し、
(32)かつ、東方集光装置3aおよび西方集光装置3bの鏡面仕様の裏側外部分1gで反射する、
形で採光部3へと伝播する。
The sunlight at this time is
(31) After passing through the entrance surface 1a of the east collector 3a and the west collector 3b, it is reflected between the forced reflection surface 1b and the entrance surface,
(32) And the light is reflected by the back side outer portion 1g of the specular spec of the east collector 3a and the west collector 3b.
Propagate to the daylighting unit 3 in the form.

図12,図13において太陽光が北方集光装置3c(集光装置1)からも採光部3へ取り込まれるのは勿論である。   Of course, in FIG. 12 and FIG. 13, sunlight is also taken into the daylighting unit 3 from the northern light collecting device 3 c (light collecting device 1).

これら東方集光装置3a,西方集光装置3bおよび北方集光装置3cから採光部3へ取り込まれる太陽光はその進行方向が下向きに変えられている。そのため、採光部の先が光ダクトの場合には当該太陽光のダクト内での反射回数も少なくなって、その伝播損失を抑えることができる。   The sunlight that is taken into the daylighting unit 3 from the east light collecting device 3a, the west light collecting device 3b, and the north light collecting device 3c has its traveling direction changed downward. Therefore, when the tip of the daylighting unit is an optical duct, the number of reflections of the sunlight in the duct is reduced, and the propagation loss can be suppressed.

なお、強制反射面1b,上面1d,側面1eおよび裏側外部分1gの鏡面仕様は、
(41)アルミニウム,ガラス,樹脂フィルムなどの鏡面部材を配置する、
(42)アルミニウム,銀などを真空蒸着する、
などの手法によって形成する。
The specular specifications of the forced reflection surface 1b, the upper surface 1d, the side surface 1e, and the back outer portion 1g are as follows:
(41) Arrange mirror surface members such as aluminum, glass, resin film,
(42) Vacuum deposition of aluminum, silver, etc.
It is formed by such a method.

また、図9の水領域1hを備えた集光装置1''は、例えば堰形状の上部光伝播構造と直方体形状の下部水収容構造とを接着することにより作成する。   Moreover, the condensing device 1 ″ provided with the water region 1h in FIG. 9 is created by bonding, for example, a dam-shaped upper light propagation structure and a rectangular parallelepiped lower water accommodation structure.

本発明が以上の実施形態に限定されないことは勿論であり例えば、
(51)実施形態で示した開き角度αの値は単なる一例であり、このαとして、強制反射面1bでの反射光が入射面で全反射するといた内部伝播光の径路が確保される限りでの任意の値を用いる、
(52)図10〜図13で用いる集光装置1,1'の開き角度αについても上記(51)と同様の任意の値を用いる、
(53)側面1eが三角形状となる集光装置を用いる、
(54)側面1eなどが非対称形状の集光装置を用いる、
(55)強制反射面1bの下側部分1fの全体または下端側部分を図8とは異なる態様で入射面1aの方に変形させる、
(56)強制反射面1bの下側部分1fの始まり部分を、図8(b)の点線で示す反射光の強制反射面1bでの反射位置から上または下にずれた位置とする、
(57)水領域1hに代わる媒質として、シリコーン油,ダウサムA(登録商標)などを用いる、
ようにしてもよい。
Of course, the present invention is not limited to the above embodiments, for example,
(51) The value of the opening angle α shown in the embodiment is merely an example, as long as the path of the internally propagating light that the reflected light from the forced reflection surface 1b totally reflects on the incident surface is secured as α. Use any value of
(52) For the opening angle α of the light collecting devices 1 and 1 ′ used in FIGS. 10 to 13, an arbitrary value similar to the above (51) is used.
(53) A condensing device whose side surface 1e is triangular is used.
(54) A condensing device having asymmetrical side surfaces 1e,
(55) The entire lower side portion 1f or the lower end side portion of the forced reflection surface 1b is deformed toward the incident surface 1a in a manner different from that in FIG.
(56) The starting portion of the lower portion 1f of the forced reflection surface 1b is set to a position shifted upward or downward from the reflection position of the reflected light on the forced reflection surface 1b shown by the dotted line in FIG.
(57) Silicone oil, Dowsum A (registered trademark) or the like is used as a medium to replace the water region 1h.
You may do it.

1:集光装置
1':集光装置(図11〜図13)
1'':集光装置(図9)
1a:入射面
1b:強制反射面
1c:出射面(下面)
1c':出射面(図9)
1d:上面
1e:側面,側断面
1f:強制反射面の最終反射位置より下側部分(図8)
1g:裏側外部分(図11〜図13)
1h:水領域(図9)
1: Condensing device 1 ′: Condensing device (FIGS. 11 to 13)
1 ″: Light collecting device (FIG. 9)
1a: entrance surface 1b: forced reflection surface 1c: exit surface (lower surface)
1c ′: exit surface (FIG. 9)
1d: Upper surface 1e: Side surface, side cross section 1f: Lower portion from the final reflection position of the forced reflection surface (FIG. 8)
1g: Back side outer part (FIGS. 11 to 13)
1h: Water area (Fig. 9)

α:入射面1aと強制反射面1bとの開き角度
β:伝播限界角(=最小入射角に対する余角)
Vp:入射面1aの任意の仮想入射点
R1:仮想入射点Vpに伝播限界角βで入射する入射光の内部伝播径路
R2:仮想入射点Vpに垂直に入射する入射光の内部伝播径路
R3:仮想入射点Vpに前図の伝播限界角で入射する入射光の内部伝播径路
A:強制反射面1bからの反射光が入射面1aで全反射する内部伝播入射光範囲
α: Opening angle between the incident surface 1a and the forced reflection surface 1b β: Propagation limit angle (= coil with respect to the minimum incident angle)
Vp: arbitrary virtual incident point R1 of the incident surface 1a: internal propagation path R2 of incident light incident on the virtual incident point Vp at the propagation limit angle β: internal propagation path R3 of incident light incident perpendicularly to the virtual incident point Vp: Internal propagation path A of incident light incident on the virtual incident point Vp at the propagation limit angle shown in the previous figure: Internal propagation incident light range in which the reflected light from the forced reflection surface 1b is totally reflected by the incident surface 1a

(図10〜図13)
2:保持金具
2a:追尾回転軸
3:採光部
3a:東方集光装置(=集光装置1')
3b:西方集光装置(=集光装置1')
3c:北方集光装置(=集光装置1)
(FIGS. 10 to 13)
2: Holding metal fitting 2a: Tracking rotation shaft 3: Daylighting unit 3a: Touhou light collecting device (= light collecting device 1 ')
3b: West collector (= collector 1 ′)
3c: Northern condensing device (= condensing device 1)

Claims (6)

外部媒質よりも大きな屈折率を示す光透過材からなり、入射面と、先開きの形でこれに対向する強制反射面と、当該入射面および当該強制反射面の間で反射しながら内部伝播する反射光の出射面と、を備えた集光装置において、
前記強制反射面は、
鏡面仕様に設定され、
前記鏡面仕様の部分で反射した内部伝播光が前記入射面で全反射する、
ことを特徴とする集光装置。
It consists of a light-transmitting material having a refractive index larger than that of the external medium, and propagates internally while reflecting between the incident surface, a forcible reflecting surface facing forward in the form of a front opening, and the incident surface and the forced reflecting surface. In a light collecting device including an exit surface of reflected light,
The forced reflection surface is
Set to specular spec,
Internally propagated light reflected by the specular spec part is totally reflected by the incident surface,
A light condensing device.
前記強制反射面は、
その裏側外部分が鏡面仕様に設定されている、
ことを特徴とする請求項1記載の集光装置。
The forced reflection surface is
The back side outside part is set to mirror surface specification,
The condensing device according to claim 1.
前記入射面,前記強制反射面および前記出射面のそれぞれに連続する形の一対の対向側面を備え、
前記対向側面は、
その内側部分が鏡面仕様に設定されている、
ことを特徴とする請求項1または2記載の集光装置。
A pair of opposing side surfaces that are continuous with each of the incident surface, the forced reflection surface, and the exit surface;
The opposing side surface is
Its inner part is set to specular specification,
The condensing device according to claim 1, wherein
前記鏡面仕様の強制反射面は、
その反射光が前記出射面に到達して全反射する場合の当該強制反射面での反射位置より下側の部分を、当該反射位置より上側の強制反射面部分の延長面よりも内側に変位させて、
当該出射面の面積を小さくする形に設定されている、
ことを特徴とする請求項1乃至3のいずれかに記載の集光装置。
The forced reflection surface of the specular specification is
When the reflected light reaches the exit surface and is totally reflected, the portion below the reflection position on the forced reflection surface is displaced inward from the extended surface of the forced reflection surface portion above the reflection position. And
Set to reduce the area of the exit surface,
The condensing device according to any one of claims 1 to 3.
前記反射位置は、
前記反射光が、前記入射面に対して、臨界角で当該入射面と前記出射面との境界部分に到達する場合の反射位置である、
ことを特徴とする請求項4記載の集光装置。
The reflection position is
The reflected light is a reflection position when reaching the boundary portion between the incident surface and the exit surface at a critical angle with respect to the incident surface.
The condensing device according to claim 4.
前記出射面は、
空気よりも屈折率が大きい媒質領域と接して、
当該出射面での臨界角を大きくする形に設定されている、
ことを特徴とする請求項1乃至5のいずれかに記載の集光装置。
The exit surface is
In contact with a medium region having a higher refractive index than air,
It is set to increase the critical angle at the exit surface,
The light collecting device according to claim 1, wherein the light collecting device is a light collecting device.
JP2012180412A 2012-08-16 2012-08-16 Condensing device and daylighting structure using the same Expired - Fee Related JP6057452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012180412A JP6057452B2 (en) 2012-08-16 2012-08-16 Condensing device and daylighting structure using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012180412A JP6057452B2 (en) 2012-08-16 2012-08-16 Condensing device and daylighting structure using the same

Publications (2)

Publication Number Publication Date
JP2014038765A true JP2014038765A (en) 2014-02-27
JP6057452B2 JP6057452B2 (en) 2017-01-11

Family

ID=50286744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012180412A Expired - Fee Related JP6057452B2 (en) 2012-08-16 2012-08-16 Condensing device and daylighting structure using the same

Country Status (1)

Country Link
JP (1) JP6057452B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017103149A (en) * 2015-12-03 2017-06-08 株式会社Lixil Daylighting device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10221528A (en) * 1996-12-05 1998-08-21 Toyota Motor Corp Solar battery device
JP2001229703A (en) * 1999-12-09 2001-08-24 Matsushita Electric Works Ltd Illumination device
JP2011059323A (en) * 2009-09-09 2011-03-24 Leiz Advanced Technology Corp Condensing module and condensing unit using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10221528A (en) * 1996-12-05 1998-08-21 Toyota Motor Corp Solar battery device
JP2001229703A (en) * 1999-12-09 2001-08-24 Matsushita Electric Works Ltd Illumination device
JP2011059323A (en) * 2009-09-09 2011-03-24 Leiz Advanced Technology Corp Condensing module and condensing unit using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017103149A (en) * 2015-12-03 2017-06-08 株式会社Lixil Daylighting device

Also Published As

Publication number Publication date
JP6057452B2 (en) 2017-01-11

Similar Documents

Publication Publication Date Title
RU2014129801A (en) LIGHT REDIRECTION DEVICE
JP2000147262A (en) Converging device and photovoltaic power generation system utilizing the device
US4411493A (en) Seasonal control skylight glazing panel with passive solar energy switching
KR20080038405A (en) Fresnel lens
Baig et al. Trapping light escaping from the edges of the optical element in a Concentrating Photovoltaic system
TW201110386A (en) Non-imaging light concentrator
Malet-Damour et al. Technological review of tubular daylight guide system from 1982 to 2020
JP6057452B2 (en) Condensing device and daylighting structure using the same
TWI467084B (en) Window system and light guiding film therein
CN105278015B (en) A kind of retroreflective structure of two-sided micro- pyramid array
JP2007073774A (en) Solar battery
JP5556938B1 (en) Solar lighting system
WO2021044195A1 (en) Photovoltaic solar collection system and natural illumination apparatus for building integration
CN109140368A (en) A kind of dome skylight with one-way light guide function
JP2005340583A (en) Acceptance surface structure for optical power generating body
CN108301732A (en) A kind of holography internal reflection solar energy glass window
JP6385959B2 (en) Condensing optical element and condensing device provided with the same
CN103117319B (en) Solar cell photovoltaic component system
RU2154778C1 (en) Solar photoelectric module with concentrator
RU2659319C1 (en) Fixed solar radiation concentrator with optical method of alignment
JP2010169981A (en) Solar lens and solar light utilizing device
JP6184429B2 (en) Sunlight incident structure consisting of light incident adjustment member
JPS5987402A (en) Condensing body
TWI693787B (en) Flat-plate light collecting device
TWI497112B (en) Light collecting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161205

R150 Certificate of patent or registration of utility model

Ref document number: 6057452

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees