JP2014038040A - Anti-scratch performance evaluating method and evaluating apparatus - Google Patents

Anti-scratch performance evaluating method and evaluating apparatus Download PDF

Info

Publication number
JP2014038040A
JP2014038040A JP2012180766A JP2012180766A JP2014038040A JP 2014038040 A JP2014038040 A JP 2014038040A JP 2012180766 A JP2012180766 A JP 2012180766A JP 2012180766 A JP2012180766 A JP 2012180766A JP 2014038040 A JP2014038040 A JP 2014038040A
Authority
JP
Japan
Prior art keywords
scratch
evaluation
lightness
brightness
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012180766A
Other languages
Japanese (ja)
Inventor
Masaya Kotaki
雅也 小滝
Kazuhiro Morita
和宏 森田
Tadayoshi Kadoya
忠義 角谷
Shuji Nakagawa
修士 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto Institute of Technology NUC
Toyota Motor Corp
Original Assignee
Kyoto Institute of Technology NUC
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto Institute of Technology NUC, Toyota Motor Corp filed Critical Kyoto Institute of Technology NUC
Priority to JP2012180766A priority Critical patent/JP2014038040A/en
Publication of JP2014038040A publication Critical patent/JP2014038040A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an anti-scratch performance evaluating method and evaluating apparatus enabling the anti-scratch performance of an evaluation object when it is scratched while a pressing load is increased to be objectively and quantitatively evaluated and making possible accurate evaluation of the anti-scratch performance, with the extent of the scratch thereby made into consideration.SOLUTION: An anti-scratch performance evaluating method for a resin-made evaluation object P whose surface is textured comprises: a scratch making step of making a linear scratch K by scanning a chip 22 over a prescribed distance X while increasing a pressing load; a scratch luminosity measuring step of measuring luminosity Ln of light reflected from the scratch K irradiated with light; an evaluated value calculating step of calculating an evaluated luminosity value of the scratch K; a scratch making initial load calculating step of calculating the scratch making initial load; and an evaluation step of evaluating the anti-scratch performance of the evaluation object P on the basis of the evaluated luminosity value and the scratch making initial load.

Description

本発明は、表面にシボ加工が施された樹脂製の評価対象物の耐傷つき性評価方法及び評価装置に関する。   The present invention relates to a scratch resistance evaluation method and an evaluation apparatus for an evaluation object made of a resin whose surface is textured.

樹脂製の評価対象物の耐傷つき性(耐受傷性)を評価する評価方法として、例えば特許文献1には、JIS L0849に準拠した学振型染色物摩耗堅ろう度試験に関する技術が記載されている。この特許文献1に記載の技術は、所定形状の表面皮シボ加工品試験片についてJIS L0849記載の摩擦試験機II型(学振型)を用いて所定の条件で試験を実施し、試験前後の変色度合いを分光式色差計で測定して試験片の耐傷つき性(耐受傷性)を評価するものである。   As an evaluation method for evaluating the scratch resistance (scratch resistance) of an evaluation object made of resin, for example, Patent Document 1 describes a technique related to a Gakushoku type dyeing wear fastness test based on JIS L0849. . In the technique described in Patent Document 1, a test piece of a surface-textured textured product having a predetermined shape is subjected to a test under a predetermined condition using a friction tester type II (Gakushin type) described in JIS L0849. The degree of discoloration is measured with a spectroscopic color difference meter to evaluate the scratch resistance (scratch resistance) of the test piece.

また、表面にシボ加工が施された樹脂製の被測定物の傷を検査する表面検査装置及び表面検査方法として、例えば特許文献2には、長方形のスリットを通過した光のみを光検出手段に導いて、光検出手段により検出した明度から被測定物の外観の表面状態(白化傷やテカリ傷など)を検出する技術が記載されている。この特許文献2に記載の技術は、被測定物の表面における反射光の光検出範囲をスリットによって制限して被測定物の外観の表面状態を厳密かつ高精度に定量化するものである。   Further, as a surface inspection apparatus and a surface inspection method for inspecting scratches on a resin-made object whose surface is textured, for example, in Patent Document 2, only light that has passed through a rectangular slit is used as a light detection means. A technique for guiding and detecting the surface state of the appearance of the object to be measured (such as whitening scratches and shine cracks) from the brightness detected by the light detection means is described. The technique described in Patent Document 2 quantifies the surface state of the appearance of the measurement object strictly and with high accuracy by limiting the light detection range of the reflected light on the surface of the measurement object with a slit.

特開2011−79924号公報(特に、段落「0103」参照)JP 2011-79924 A (refer to paragraph “0103” in particular) 特開2000−283931号公報(特に、図8参照)JP 2000-283931 A (refer to FIG. 8 in particular)

上述した特許文献1に記載の技術は、摩擦試験機II型(学振型)を用いて所定の荷重を付加しながら摩擦子に固定した白綿布を試験片に摩擦作用させるものであるため、荷重を増加させながら試験片に傷をつけた場合の評価対象物の耐傷つき性について評価することができなかった。また、特許文献1に記載の技術は、シボ面の変色度合いを測定するものであるため、傷がどのように形成され始めるのかを評価することはできず、また、傷がその長手方向にどのように形成されるのかを評価することはできなかった。そのため、荷重を増加させながら試験片に傷をつけた場合の客観的且つ定量的な耐傷つき性の評価を可能にし、傷がどのように形成され始めるのか、傷がその長手方向にどのように形成されるのかを考慮した精度のよい耐傷つき性の評価を行えるようにする観点から改善の余地があった。特に、シボ加工が施された樹脂製の評価対象物の耐傷つき性を評価する場合、シボ加工による凹凸が目視による客観的かつ定量的な評価の妨げになり易いため、耐傷つき性の客観的且つ定量的な評価方法の確立が望まれていた。   Since the technique described in Patent Document 1 described above is to apply a white cotton cloth fixed to a friction element while applying a predetermined load using a friction tester type II (Gakushin type) to a test piece, It was not possible to evaluate the scratch resistance of the evaluation object when the specimen was damaged while increasing the load. In addition, since the technique described in Patent Document 1 measures the degree of discoloration of the embossed surface, it is impossible to evaluate how the scratches start to be formed, and in which longitudinal direction the scratches are It was not possible to evaluate how it was formed. Therefore, it is possible to objectively and quantitatively evaluate the scratch resistance when the test piece is scratched while increasing the load, how the scratch starts to be formed, and how the scratch is in the longitudinal direction. There was room for improvement from the viewpoint of enabling accurate evaluation of scratch resistance considering whether it was formed. In particular, when evaluating the scratch resistance of an evaluation object made of resin that has been subjected to graining processing, the unevenness due to graining process tends to hinder the objective and quantitative evaluation by visual inspection. In addition, establishment of a quantitative evaluation method has been desired.

また、特許文献2に記載の技術は、被測定物に既に形成された傷を検査するものであるため、被測定物の耐傷つき性を評価することはできず、また、その検査方法も、スリットを傷の長手方向に直交する方向に走査させるものであるため、上述した特許文献1に記載の技術と同様に、傷がどのように形成され始めるのかを検査することはできず、傷がその長手方向にどのように形成されているのかを検査することはできなかった。   In addition, since the technique described in Patent Document 2 is for inspecting scratches already formed on the object to be measured, it is not possible to evaluate the scratch resistance of the object to be measured. Since the slit is scanned in a direction perpendicular to the longitudinal direction of the scratch, it is not possible to inspect how the scratch starts to be formed as in the technique described in Patent Document 1 described above. It was not possible to inspect how it was formed in the longitudinal direction.

本発明の目的は、押し付け荷重を増加させながら評価対象物に傷をつけた場合の客観的且つ定量的な耐傷つき性の評価が可能になり、傷の形成具合を考慮した精度のよい耐傷つき性の評価を行うことができる耐傷つき性評価方法及び評価装置を提供することにある。   The object of the present invention is to enable an objective and quantitative evaluation of scratch resistance when an object to be evaluated is scratched while increasing the pressing load. An object of the present invention is to provide a scratch resistance evaluation method and an evaluation apparatus capable of evaluating the property.

第1の発明は、表面にシボ加工が施された樹脂製の評価対象物の耐傷つき性評価方法であって、押し付け荷重を増加させながらチップを所定距離走査して前記評価対象物の表面に直線状の傷を作成する傷作成ステップと、前記傷に光を照射して反射した光の明度を、前記傷の長手方向に沿って所定の測定ピッチ毎に測定する傷明度測定ステップと、前記測定ピッチ毎に測定された明度に基づいて前記傷の明度評価値を演算する評価値演算ステップと、前記傷が実際に作成され始めた傷作成開始荷重を演算する傷作成開始荷重演算ステップと、前記明度評価値と前記傷作成開始荷重とに基づいて前記評価対象物の耐傷つき性を評価する評価ステップとを有する。   A first invention is a scratch resistance evaluation method for an evaluation object made of a resin whose surface has been subjected to embossing, and the chip is scanned a predetermined distance while increasing the pressing load on the surface of the evaluation object. A wound creating step for creating a straight wound, a wound lightness measuring step for measuring the brightness of light reflected by irradiating the wound with light at a predetermined measurement pitch along the longitudinal direction of the wound, and An evaluation value calculation step for calculating the lightness evaluation value of the scratch based on the lightness measured for each measurement pitch, a scratch creation start load calculation step for calculating a scratch creation start load at which the scratch actually started to be created, An evaluation step of evaluating the scratch resistance of the evaluation object based on the brightness evaluation value and the scratch creation start load.

上記構成によると、押し付け荷重を増加させながら評価対象物に傷をつけた場合の客観的且つ定量的な耐傷つき性の評価が可能になるとともに、傷の形成具合、すなわち、傷がどのように形成され始めるのか、傷がその長手方向にどのように形成されるのかを考慮した精度のよい耐傷つき性の評価を行うことができる。したがって、自動車やトラック等の車両の内装部品をはじめOA機器、家電製品、住設機器、家庭雑貨などに用いられるシボ加工が施された樹脂製材料として、傷つき難く且つ傷ついたとしても目立ち難い耐傷つき性のバランスが優れた樹脂製材料を選定することが可能になる。   According to the above configuration, it is possible to objectively and quantitatively evaluate the scratch resistance when the evaluation target is scratched while increasing the pressing load, and how the scratch is formed, that is, how the scratch is formed. It is possible to evaluate the scratch resistance with high accuracy in consideration of whether the scratch starts to be formed or how the scratch is formed in the longitudinal direction. Therefore, it is a resin material that has been subjected to embossing used for interior parts of automobiles such as automobiles and trucks, office automation equipment, home appliances, housing equipment, and household goods. It is possible to select a resin material having a good balance of scratching properties.

第2の発明は、上記第1の発明の耐傷つき性評価方法において、前記傷を作成する前の前記評価対象物の表面又は前記傷が作成されていない前記評価対象物の表面に光を照射して受光した光の表面明度を、前記測定ピッチ毎に測定する表面明度測定ステップを有し、前記評価値演算ステップは、前記測定ピッチ毎に測定された表面明度に基づいて前記表面明度の平均値を演算し、さらに、前記測定ピッチ毎に測定された傷の明度と前記平均値との差を前記平均値で割った明度変化率の積算値を演算して、該積算値を前記所定距離で割った値又は該積算値を前記所定距離で割った値の逆数を前記明度評価値として演算する。   According to a second invention, in the scratch resistance evaluation method according to the first invention, light is irradiated to the surface of the evaluation object before the scratch is created or the surface of the evaluation object on which the scratch is not created. A surface brightness measurement step of measuring the surface brightness of the received light for each of the measurement pitches, and the evaluation value calculating step includes averaging the surface brightness based on the surface brightness measured for each of the measurement pitches And calculating an integrated value of the rate of change in brightness obtained by dividing the difference between the average value and the brightness of the scratch measured at each measurement pitch, and calculating the integrated value by the predetermined distance. Or the reciprocal of the value obtained by dividing the integrated value by the predetermined distance is calculated as the brightness evaluation value.

上記構成によると、傷を作成する前の評価対象物の表面状態又は傷が形成されていない評価対象物の表面状態を考慮した明度評価値を用いて、つまり、シボ加工の凹凸が傷の明度測定値に与える影響を考慮した明度評価値を用いて、評価対象物の耐傷つき性を更に精度よく評価することができる。   According to the above configuration, using the brightness evaluation value in consideration of the surface state of the evaluation object before creating the scratch or the surface state of the evaluation object on which the scratch is not formed, that is, the roughness of the embossing is the lightness of the scratch. Using the lightness evaluation value in consideration of the influence on the measurement value, the scratch resistance of the evaluation object can be evaluated more accurately.

第3の発明は、上記第1又は第2の発明の耐傷つき性評価方法において、前記傷作成ステップは、前記評価対象物の表面に直線状の白化傷を作成し、前記傷明度測定ステップは、前記白化傷に光を暗視野照射して受光した光の明度を前記測定ピッチ毎に測定する。   According to a third aspect of the present invention, in the scratch resistance evaluation method of the first or second aspect of the invention, the flaw creation step creates a straight whitening flaw on the surface of the evaluation object, and the flaw lightness measurement step comprises The brightness of the light received by irradiating the whitening scratch with light in a dark field is measured for each measurement pitch.

上記構成によると、傷自体に応力白化現象が生じ易い傾向にあり、かつ、斜めからの入射光を拡散光として反射する傾向が強い白化傷の明度を、暗視野照射して受光した光から精度よく検出することが可能になる。これにより、白化傷について精度のよい耐傷つき性の評価を行うことができる。   According to the above configuration, the stress whitening phenomenon tends to occur in the scratches themselves, and the brightness of the whitening scratches that have a strong tendency to reflect incident light from an oblique angle as diffused light can be accurately detected from the light received by irradiating the dark field. It becomes possible to detect well. Thereby, it is possible to evaluate the scratch resistance with high accuracy for the whitening scratch.

第4の発明は、上記第1又は第2の発明の耐傷つき性評価方法において、前記傷作成ステップは、前記評価対象物の表面に直線状の光沢傷を作成し、前記傷明度測定ステップは、前記光沢傷に光を明視野照射して受光した光の明度を前記測定ピッチ毎に測定する。   According to a fourth aspect of the present invention, in the scratch resistance evaluation method of the first or second aspect of the invention, the flaw creation step creates a linear gloss flaw on the surface of the evaluation object, and the flaw lightness measurement step comprises The brightness of the received light by irradiating the glossy scratch with bright field is measured for each measurement pitch.

上記構成によると、傷により評価対象物の表面の凹凸が平坦化され易い傾向にあり、かつ、入射光をそのまま反射する傾向が強い光沢傷の明度を、明視野照射して受光した光から精度よく検出することが可能になる。これにより、光沢傷について精度のよい耐傷つき性の評価を行うことができる。   According to the above configuration, the roughness of the surface of the evaluation object tends to be flattened due to scratches, and the brightness of glossy scratches that tend to reflect incident light as it is is accurately measured from light received by bright field irradiation. It becomes possible to detect well. Thereby, it is possible to accurately evaluate the scratch resistance with respect to the glossy scratch.

第5の発明は、上記第1〜第4の発明のいずれか一つの耐傷つき性評価方法に用いる耐傷つき性評価装置であって、押し付け荷重を増加させながらチップを所定距離走査して前記評価対象物の表面に直線状の傷を作成する傷作成手段と、照射部から傷に光を照射して反射した光の明度を、前記傷の長手方向に沿って前記測定ピッチ毎に測定する明度測定手段と、前記傷作成開始荷重及び前記明度評価値を演算する演算手段と、前記傷作成開始荷重及び前記明度評価値を表示する表示手段とを有する。   A fifth invention is a scratch resistance evaluation apparatus used in the scratch resistance evaluation method according to any one of the first to fourth inventions, wherein the evaluation is performed by scanning the chip for a predetermined distance while increasing the pressing load. Scratch creating means for creating a linear scratch on the surface of the object, and a brightness for measuring the brightness of light reflected by irradiating the scratch from the irradiation unit at each measurement pitch along the longitudinal direction of the scratch Measuring means, calculation means for calculating the scratch creation start load and the brightness evaluation value, and display means for displaying the scratch creation start load and the brightness evaluation value.

上記構成によると、傷作成手段、明度測定手段及び演算手段によって評価方法に用いるデータの取得や演算を簡単に行うことができるとともに、表示手段に表示された傷作成開始荷重及び明度評価値から耐傷つき性の評価を簡単に行うことができる。   According to the above configuration, the scratch creation means, the brightness measurement means, and the calculation means can easily acquire and calculate data used in the evaluation method, and can withstand resistance from the scratch creation start load and the brightness evaluation value displayed on the display means. It is possible to easily evaluate the damage property.

第6の発明は、上記第5の発明の耐傷つき性評価装置において、前記明度測定手段は、前記照射部から光を照射して反射した光を、前記傷の短手方向に細長いスリットを介して受光して、前記傷の明度を前記測定ピッチ毎に測定する。   According to a sixth aspect of the present invention, in the scratch resistance evaluation apparatus of the fifth aspect, the lightness measuring means transmits light reflected by irradiating light from the irradiation section through a slit elongated in the short direction of the scratch. Then, the lightness of the scratch is measured at each measurement pitch.

上記構成によると、傷から反射した光の検出範囲を傷の短手方向に細長いスリットによって制限して、傷の長手方向に細分化された測定ピッチで傷の明度を測定することが可能となり、傷の明度を精度よく定量化しながら検出できる。   According to the above configuration, it becomes possible to limit the detection range of the light reflected from the scratch by the elongated slit in the short direction of the scratch, and to measure the lightness of the scratch with the measurement pitch subdivided in the longitudinal direction of the scratch, It is possible to detect the lightness of the wound while quantifying it with high accuracy.

本発明に係る耐傷つき性評価装置の全体構成を示すブロック図The block diagram which shows the whole structure of the damage resistance evaluation apparatus which concerns on this invention 傷作成装置の詳細構造を示す斜視図Perspective view showing the detailed structure of the wound creating device 明度測定装置の詳細構造を示す斜視図Perspective view showing the detailed structure of the brightness measuring device 本発明に係る耐傷つき性評価方法の具体的な内容を説明する説明図Explanatory drawing explaining the specific content of the scratch resistance evaluation method according to the present invention 傷明度及び表面明度の測定結果を示すグラフGraph showing the measurement results of scratch lightness and surface lightness 明度変化率の演算結果を示すグラフGraph showing the calculation result of brightness change rate 傷作成開始荷重と明度評価値との相関関係を示すグラフGraph showing the correlation between scratch creation start load and brightness evaluation value

〔耐傷つき性評価装置の全体構成〕
図1〜図3に基づいて耐傷つき性評価装置1の全体構成について説明する。図1に示すように、耐傷つき性評価装置1は、評価対象物Pの表面に直線状の傷Kを作成する傷作成装置2と、傷作成装置2によって作成した傷Kの明度を測定する明度測定装置3と、明度測定装置3を制御する制御装置4と、制御装置4によって演算処理された明度測定値Mや明度評価値H等のデータを表示する表示部5と、制御装置4に各種制御指令を入力する入力部6とを備える。
[Overall configuration of the scratch resistance evaluation apparatus]
The overall configuration of the scratch resistance evaluation apparatus 1 will be described with reference to FIGS. As shown in FIG. 1, the scratch resistance evaluation apparatus 1 measures the lightness of a scratch creating apparatus 2 that creates a linear scratch K on the surface of the evaluation object P and the scratch K created by the scratch creating apparatus 2. The brightness measurement device 3, the control device 4 that controls the brightness measurement device 3, the display unit 5 that displays data such as the brightness measurement value M and the brightness evaluation value H calculated by the control device 4, and the control device 4 And an input unit 6 for inputting various control commands.

傷作成装置2は、評価対象物Pを載置固定して支持するテーブル21と、テーブル21に対して評価対象物Pの長手方向に相対移動可能なチップ22と、チップ22を評価対象物Pに押し付けるとともにテーブル21に対して相対移動させるチップ移動機構23と、チップ移動機構23を制御するチップ制御部24と、チップ移動機構23の作動指令の入力や作動条件の設定を行う入力設定部25と、チップ移動機構23の作動条件や作動状態を表示する出力表示部26とを備える。本実施形態の傷作成装置2は、上述した各構成要素が図示しない装置本体に付属するように一体化されている。   The wound creation device 2 includes a table 21 on which the evaluation object P is placed and fixed and supported, a chip 22 that can be moved relative to the table 21 in the longitudinal direction of the evaluation object P, and the chip 22 as the evaluation object P. A chip moving mechanism 23 that presses against the table 21 and moves relative to the table 21; a chip control unit 24 that controls the chip moving mechanism 23; and an input setting unit 25 that inputs operation commands and sets operating conditions for the chip moving mechanism 23. And an output display unit 26 for displaying the operating conditions and operating state of the tip moving mechanism 23. The scratch creating apparatus 2 of the present embodiment is integrated so that each component described above is attached to an apparatus main body (not shown).

図2に示すように、チップ22は、チップ移動機構23の保持部23Aに着脱自在に保持されており、保持部23Aを操作することで、形状等の異なるチップ、例えば白化傷作成用のチップ、光沢傷作成用のチップ、うろこ傷作成用のチップ、切削傷作成用のチップ等に交換できる。チップ移動機構23は、保持部23Aを評価対象物Pの表面に向かって垂直に押す方向に荷重を付加するとともに、保持部23Aを評価対象物Pの長手方向に相対移動させて、荷重を付加しながら移動するチップ22によって評価対象物Pの表面に傷Kをつける。傷Kは、評価対象物Pの長手方向の一端側から他端側に向かって、その深さ及び幅が増大する傾斜性を有する傷となる。テーブル21には、図示しないが、評価対象物Pを所定位置に位置決めする位置決め機構と、テーブル21に載置された評価対象物Pを所定位置に固定する固定機構が備えられている。傷作成装置2を操作する作業者は、これらの位置決め機構及び固定機構を用いて、傷つけ作業開始前の準備作業として評価対象物Pをテーブル21上の所定位置に位置決め固定する。   As shown in FIG. 2, the chip 22 is detachably held by a holding part 23A of the chip moving mechanism 23, and by operating the holding part 23A, a chip having a different shape or the like, for example, a chip for creating a whitening wound. It can be replaced with a chip for creating a glossy flaw, a chip for creating a scaly flaw, a chip for creating a cut flaw, and the like. The tip moving mechanism 23 applies a load in a direction in which the holding unit 23A is pushed vertically toward the surface of the evaluation target P, and relatively moves the holding unit 23A in the longitudinal direction of the evaluation target P to apply the load. The surface 22 of the evaluation object P is scratched by the tip 22 that moves while moving. The wound K is a wound having an inclination that increases in depth and width from one end side in the longitudinal direction of the evaluation object P toward the other end side. Although not shown, the table 21 includes a positioning mechanism that positions the evaluation object P at a predetermined position and a fixing mechanism that fixes the evaluation object P placed on the table 21 at a predetermined position. An operator who operates the flaw creating apparatus 2 uses these positioning mechanism and fixing mechanism to position and fix the evaluation object P at a predetermined position on the table 21 as a preparatory work before the scratching work starts.

図1に示すように、作業者による傷作成装置2の操作は、チップ制御部24に接続された入力設定部25によって行う。入力設定部25では、評価対象物Pに作用させる荷重の大きさや、評価対象物Pに対して荷重を付加しながらチップ22を走査させるチップ移動距離X等の荷重付加条件を手動操作により入力できる。入力設定部25での荷重の大きさの設定は、例えばチップ移動距離Xに比例して初期荷重から最大荷重まで荷重を増加させる形態や、例えばチップ移動距離Xが増加するほど増加率が大きくなるように初期荷重から最大荷重まで荷重を増加させる形態等の様々な形態を設定でき、また、上述した初期荷重や最大荷重の大きさも任意に設定できる。チップ制御部24は、これらの荷重付加条件で評価対象物Pに傷Kをつけるようにチップ移動機構23を制御する。   As shown in FIG. 1, the operator operates the flaw creation device 2 by an input setting unit 25 connected to the chip control unit 24. In the input setting unit 25, the load application conditions such as the magnitude of the load to be applied to the evaluation target P and the tip moving distance X for scanning the tip 22 while applying the load to the evaluation target P can be input manually. . The setting of the load size in the input setting unit 25 is, for example, a mode in which the load is increased from the initial load to the maximum load in proportion to the chip movement distance X, or the increase rate increases as the chip movement distance X increases, for example. As described above, various forms such as a form for increasing the load from the initial load to the maximum load can be set, and the above-described initial load and the maximum load can be arbitrarily set. The chip control unit 24 controls the chip moving mechanism 23 so as to scratch the evaluation object P under these load application conditions.

入力設定部25には、図示しない各種スイッチ類が装備されている。傷つけ作業を行う作業者は、上述した準備作業を行った後に入力設定部25の起動スイッチを操作することで、入力設定部25によって設定された荷重付加条件となるようにチップ制御部24によってチップ移動機構23が制御されて、評価対象物Pの表面に傷Kがつけられる。なお、チップ制御部24には、出力表示部26が接続されており、入力設定部25によって設定された荷重付加条件や、傷つけ作業中、傷つけ作業完了等のチップ移動機構23の運転状態が出力表示部26に適宜表示される。   The input setting unit 25 is equipped with various switches not shown. The worker who performs the scratching operation operates the start switch of the input setting unit 25 after performing the above-described preparatory work, so that the chip control unit 24 inserts the chip so that the load addition condition set by the input setting unit 25 is satisfied. The moving mechanism 23 is controlled to scratch the surface of the evaluation object P. Note that an output display unit 26 is connected to the chip control unit 24, and the load application conditions set by the input setting unit 25 and the operation state of the chip moving mechanism 23 such as during the damage work and completion of the damage work are output. Displayed appropriately on the display unit 26.

明度測定装置3は、評価対象物Pを載置固定して支持する移動式テーブル31と、移動式デーブル31に支持された評価対象物Pの表面に光を照射する照射部Aと、照射部Aにより評価対象物Pの表面に照射して反射した光を検出する検出部Bとを備えた光学顕微鏡で構成されている。   The lightness measuring device 3 includes a movable table 31 on which the evaluation object P is placed and fixed and supported, an irradiation unit A that irradiates light onto the surface of the evaluation object P supported by the mobile table 31, and an irradiation unit. It is comprised with the optical microscope provided with the detection part B which detects the light which irradiated and reflected the surface of the evaluation target P by A.

図3に示すように、移動式テーブル31は、基台31Aと、評価対象物Pを載置する載置台31Bと、基台31A上に載置台31Bをスライド自在に支持するスライド部材31Cと、基台31Aに対して載置台31Bをスライド操作するアクチュエータ31Dとを備える。アクチュエータ31Dは、基台31Aに固定されており、図示しない送りネジ機構等を介して載置台31Bに接続されている。載置台31Bには、図示しないが、評価対象物Pを所定位置に位置決めする位置決め機構と、載置台31Bに載置された評価対象物Pを所定位置に固定する固定機構が備えられている。明度測定装置3を操作する作業者は、これらの位置決め機構及び固定機構を用いて、明度測定作業開始前の準備作業として評価対象物Pを載置台31Bの所定位置に位置決め固定する。   As shown in FIG. 3, the mobile table 31 includes a base 31A, a mounting base 31B on which the evaluation target P is placed, a slide member 31C that slidably supports the mounting base 31B on the base 31A, An actuator 31D that slides the mounting table 31B with respect to the base 31A. The actuator 31D is fixed to the base 31A, and is connected to the mounting table 31B via a feed screw mechanism or the like (not shown). Although not shown, the mounting table 31B includes a positioning mechanism that positions the evaluation object P at a predetermined position and a fixing mechanism that fixes the evaluation object P mounted on the mounting table 31B at a predetermined position. An operator who operates the lightness measuring apparatus 3 uses these positioning mechanisms and fixing mechanisms to position and fix the evaluation object P at a predetermined position on the mounting table 31B as a preparatory work before starting the lightness measuring work.

図1に示すように、照射部Aは、ハロゲンランプ等により構成された光源32と、光源32からの光を平行光に変更するレンズ33と、レンズ33からの平行光を暗視野照明又は明視野照明に切り換えて評価対象物Pに照射する切換機構34と、切換機構34を暗視野照明に切り換えた状態で円環状の暗視野照明を屈曲させて評価対象物Pの表面に斜め方向から照射光A1を照射する暗視野用レンズ35とを備える。切換機構34を暗視野照明に切り換えることで、レンズ33からの光を評価対象物Pの表面に対して斜めの照射角度(例えば45°)となる照射光A1として照射することができ、切換機構35を明視野照明に切り換えることで、レンズ33からの光を評価対象物Pの表面に対して垂直な照射角度となる照射光A2として照射することができる。切換機構34は、作業者による手動操作で暗視野照明又は明視野照明に切り換える手動切換式に構成してもよいし、評価対象物Pの傷Kの種類等によって制御装置4からの出力により自動的に暗視野照明又は明視野照明に切り換える自動切換式に構成してもよい。   As shown in FIG. 1, the irradiation unit A includes a light source 32 configured by a halogen lamp, a lens 33 that changes light from the light source 32 to parallel light, and parallel light from the lens 33 for dark field illumination or bright light. The switching mechanism 34 that switches to the field illumination and irradiates the evaluation object P, and the annular dark field illumination is bent while the switching mechanism 34 is switched to the dark field illumination, and the surface of the evaluation object P is irradiated from the oblique direction. A dark field lens 35 that emits the light A1. By switching the switching mechanism 34 to dark field illumination, the light from the lens 33 can be irradiated as irradiation light A1 having an oblique irradiation angle (for example, 45 °) with respect to the surface of the evaluation object P. By switching 35 to bright field illumination, light from the lens 33 can be irradiated as irradiation light A2 having an irradiation angle perpendicular to the surface of the evaluation object P. The switching mechanism 34 may be configured as a manual switching type that is switched to dark field illumination or bright field illumination by manual operation by an operator, or automatically by an output from the control device 4 depending on the type of the scratch K of the evaluation object P or the like. Alternatively, it may be configured to automatically switch to dark field illumination or bright field illumination.

検出部Bは、評価対象物Pの表面に対向配置された対物レンズ36と、対物レンズ36の光軸B1上に下側から順に配置されたyフィルタ37、スリット部材38及び受光素子39を備える。yフィルタ37は、緑の波長域に通過帯をもつフィルタであり、このyフィルタ37によって赤や青の波長域ではなく主に緑の波長域の光を通過させる。yフィルタ37を通過した光は、スリット部材38に形成されたスリット38Aを通過する。スリット38Aを通過した光は、受光素子39によって受光される。スリット38Aは、評価対象物Pの表面に形成された傷Kの長手方向に直交する短手方向に細長い矩形状のスリットで構成されている(図3参照)。スリット部材38は、図示しないが、サイズの異なる複数のスリット38Aを手動操作又は自動操作で切り換え可能な切り換え式に構成されている。   The detection unit B includes an objective lens 36 disposed opposite to the surface of the evaluation object P, and a y filter 37, a slit member 38, and a light receiving element 39 disposed in order from the lower side on the optical axis B1 of the objective lens 36. . The y filter 37 is a filter having a pass band in the green wavelength range, and the y filter 37 allows light in the green wavelength range to pass mainly instead of the red and blue wavelength ranges. The light that has passed through the y filter 37 passes through a slit 38 </ b> A formed in the slit member 38. The light that has passed through the slit 38A is received by the light receiving element 39. The slit 38A is formed of a rectangular slit that is elongated in the short direction perpendicular to the longitudinal direction of the wound K formed on the surface of the evaluation object P (see FIG. 3). Although not shown, the slit member 38 is configured to be switchable so that a plurality of slits 38A having different sizes can be switched manually or automatically.

制御装置4は、受光素子39の出力信号に基づいて明度を測定する測定部41と、測定部41により測定された明度を演算処理する演算部42と、測定部41により測定された明度及び演算部42により演算処理された演算データをディスプレイ等の表示部5に出力する出力部43と、照明部Aの光源32に電源を供給するとともに、移動式テーブル31のアクチュエータ31Dを制御する制御部44とを備える。   The control device 4 includes a measurement unit 41 that measures the brightness based on the output signal of the light receiving element 39, a calculation unit 42 that performs arithmetic processing on the brightness measured by the measurement unit 41, and the brightness and calculation measured by the measurement unit 41. An output unit 43 that outputs the calculation data calculated by the unit 42 to the display unit 5 such as a display, and a control unit 44 that supplies power to the light source 32 of the illumination unit A and controls the actuator 31D of the mobile table 31. With.

作業者による明度測定装置3の操作は、制御装置4に接続された入力部6で行う。入力部6は、キーボードやスイッチ類等によって構成されている。入力部6では、傷作成装置2の入力設定部25で設定した荷重付加条件や明度測定装置3による明度測定条件を手動操作により入力できる。入力部6では、明度測定条件として、評価対象物Pに対して照射部A及び検出部Bを走査させる走査距離と、走査距離中で実際に明度を測定する明度測定ピッチaとを設定する。本実施形態では、明度測定条件の走査距離と荷重付加条件のチップ移動距離Xとを対応させてあり、入力部6で荷重付加条件のチップ移動距離Xを入力すれば、入力したチップ移動距離Xが走査距離として自動的に設定されるように構成されている。以下の説明では、走査距離もチップ移動距離と同様の符号Xを付して説明する。制御部44は、ドライバ45を介してアクチュエータ31Dに出力して、載置台31Bに載置された評価対象物Pが照射部A及び検出部Bに対して上述した明度測定条件で相対移動するように制御する。   The operator operates the brightness measuring device 3 with the input unit 6 connected to the control device 4. The input unit 6 includes a keyboard, switches, and the like. In the input unit 6, the load addition condition set by the input setting unit 25 of the flaw creation device 2 and the lightness measurement condition by the lightness measurement device 3 can be input manually. In the input unit 6, as a lightness measurement condition, a scanning distance for scanning the irradiation unit A and the detection unit B with respect to the evaluation object P and a lightness measurement pitch a for actually measuring the lightness within the scanning distance are set. In the present embodiment, the scanning distance of the lightness measurement condition is associated with the chip movement distance X of the load addition condition. If the chip movement distance X of the load addition condition is input by the input unit 6, the input chip movement distance X is input. Is automatically set as the scanning distance. In the following description, the scanning distance will be described with the same symbol X as the tip moving distance. The control unit 44 outputs to the actuator 31D via the driver 45 so that the evaluation object P placed on the placement table 31B moves relative to the irradiation unit A and the detection unit B under the above-described brightness measurement conditions. To control.

制御部44は、測定部41に接続されており、上述した明度測定条件と測定部41による明度の測定タイミングとが同期するように制御されている。つまり、制御部44は、評価対象物Pの移動開始タイミングに合わせて測定部41が受光素子39の出力信号から明度の測定を開始するように測定部41を制御し、明度測定条件として設定された測定ピッチa毎に測定部41が受光素子39の出力信号から明度を測定するように測定部41を制御し、評価対象物Pの移動終了タイミングに合わせて測定部41が受光素子39の出力信号からの明度の測定を終了するように測定部41を制御する。測定部41で測定された明度のデータは、測定部41でA/D変換器によりデジタル化されてから、演算部42に出力されるとともに、出力部43に出力されて表示部5に表示される。演算部42は、評価対象物Pの明度のデータを測定部41から取得し、後述する各種演算処理を実行する。演算部42による演算処理結果は、出力部43に出力されて表示部5に表示される。   The control unit 44 is connected to the measurement unit 41 and is controlled so that the above-described brightness measurement condition and the measurement timing of the brightness by the measurement unit 41 are synchronized. That is, the control unit 44 controls the measurement unit 41 so that the measurement unit 41 starts measuring the brightness from the output signal of the light receiving element 39 in accordance with the movement start timing of the evaluation object P, and is set as the brightness measurement condition. The measurement unit 41 controls the measurement unit 41 so that the measurement unit 41 measures the lightness from the output signal of the light receiving element 39 for each measurement pitch a, and the measurement unit 41 outputs the output of the light receiving element 39 in accordance with the movement end timing of the evaluation object P. The measurement unit 41 is controlled to end the measurement of the brightness from the signal. The brightness data measured by the measurement unit 41 is digitized by the A / D converter by the measurement unit 41 and then output to the calculation unit 42 and also output to the output unit 43 and displayed on the display unit 5. The The calculation unit 42 acquires brightness data of the evaluation object P from the measurement unit 41 and executes various calculation processes described later. The calculation processing result by the calculation unit 42 is output to the output unit 43 and displayed on the display unit 5.

〔耐傷つき性評価方法の具体的な内容〕
図4に基づいて本発明に係る耐傷つき性評価方法の具体的な内容を耐傷つき性評価装置1の操作手順を交えながら説明する。耐傷つき性評価装置1の操作は、主に傷作成装置2の操作と明度測定装置3の操作とに分けられる。先ず、傷作成装置2の操作の準備作業として、評価対象物Pとして所定形状に加工された帯板状の樹脂材料を用意し、上述した位置決め機構及び固定機構を用いて評価対象物Pをテーブル21上の所定位置に位置決め固定する。この準備作業に前後して、入力設定部25を操作して、荷重付加条件、すなわち、評価対象物Pに作用させる荷重の大きさと、チップ22を走査させるチップ移動距離Xを設定する。そして、図4の「傷作成ステップ」に示すように、入力設定部25の起動スイッチを操作することで、入力設定部25で設定した荷重付加条件で評価対象物Pに表面に傷がつけられる。なお、図4では、荷重付加条件のうちの荷重の大きさの設定例として、チップ移動距離Xに比例して初期荷重(0)から最大荷重(F)まで荷重を増加させる形態に設定した場合を示している。
[Specific contents of the scratch resistance evaluation method]
The specific content of the scratch resistance evaluation method according to the present invention will be described with reference to FIG. 4 along with the operation procedure of the scratch resistance evaluation apparatus 1. The operation of the scratch resistance evaluation apparatus 1 is mainly divided into an operation of the scratch creating apparatus 2 and an operation of the brightness measuring apparatus 3. First, as a preparatory work for the operation of the scratch creating apparatus 2, a belt-plate-shaped resin material processed into a predetermined shape is prepared as the evaluation object P, and the evaluation object P is tabled using the positioning mechanism and the fixing mechanism described above. Positioning and fixing at a predetermined position on 21. Before and after this preparatory work, the input setting unit 25 is operated to set the load application condition, that is, the magnitude of the load to be applied to the evaluation object P and the tip movement distance X for scanning the tip 22. Then, as shown in the “scratch creation step” in FIG. 4, by operating the start switch of the input setting unit 25, the surface of the evaluation object P is scratched under the load addition condition set by the input setting unit 25. . In FIG. 4, as an example of setting the magnitude of the load in the load addition condition, the load is increased from the initial load (0) to the maximum load (F) in proportion to the tip moving distance X. Is shown.

「傷作成ステップ」が完了すると、先ず、明度測定装置3の操作の準備作業として、傷Kが作成された評価対象物Pを傷作成装置2から取り外し、上述した位置決め機構及び固定機構を用いて評価対象物Pを載置台31Bの所定位置に位置決め固定する。この準備作業に前後して、入力部6を操作して、明度測定条件、すなわち、荷重付加条件のチップ移動距離X(走査距離X)と、明度測定条件の測定ピッチaを設定する。そして、図4の「傷明度測定ステップ」に示すように、入力部6を操作することで、入力部6で設定した走査距離X及び測定ピッチaで評価対象物Pの表面に作成された傷Kの明度L1,L2,L3・・・Ln(以下、傷明度という)が測定される。なお、本実施形態でいう「明度」とは、CIE−L*a*b*表色系で表される明度であり、実際に明度を測定する前に、白色基準版(Y:95.76)を用いて校正を行う。   When the “scratch creation step” is completed, first, as a preparatory work for the operation of the brightness measuring device 3, the evaluation object P on which the scratch K is created is removed from the scratch creation device 2, and the positioning mechanism and the fixing mechanism described above are used. The evaluation object P is positioned and fixed at a predetermined position on the mounting table 31B. Before and after this preparatory work, the input unit 6 is operated to set the lightness measurement conditions, that is, the tip movement distance X (scanning distance X) as a load application condition and the measurement pitch a as a lightness measurement condition. Then, as shown in the “scratch lightness measurement step” in FIG. 4, scratches created on the surface of the evaluation object P with the scanning distance X and the measurement pitch a set by the input unit 6 by operating the input unit 6. K lightness L1, L2, L3... Ln (hereinafter referred to as scratch lightness) is measured. The “lightness” in the present embodiment is the lightness expressed in the CIE-L * a * b * color system, and before actually measuring the lightness, the white reference plate (Y: 95.76). ) To calibrate.

傷作成ステップ及び傷明度測定ステップとは別に、傷作成ステップにおいて傷Kを作成する前の評価対象物Pの表面の明度(以下、表面明度という)を測定する。明度測定装置3の操作手順は、傷明度測定ステップで説明した操作手順と同様であり、評価対象物Pとして傷Kの作成されていないものを載置台31Bの所定位置に位置決め固定する。そして、図4の「表面明度測定ステップ」に示すように、入力部6を操作することで、入力部6で設定した走査距離X及び測定ピッチaで評価対象物Pの表面明度S1,S2,S3・・・・Snが測定される。   Separately from the scratch creation step and the scratch brightness measurement step, the surface brightness (hereinafter referred to as surface brightness) of the evaluation object P before the scratch K is created in the scratch creation step is measured. The operation procedure of the lightness measuring apparatus 3 is the same as the operation procedure described in the scratch lightness measurement step, and an evaluation object P on which no scratch K is created is positioned and fixed at a predetermined position on the mounting table 31B. Then, as shown in the “surface brightness measurement step” in FIG. 4, by operating the input unit 6, the surface brightness S 1, S 2, and S 2 of the evaluation object P at the scanning distance X and the measurement pitch a set by the input unit 6. S3... Sn is measured.

この場合、傷作成ステップにおいて傷Kを付ける位置と同じ位置の評価対象物Pの表面明度を測定するように構成してもよく、傷作成ステップにおいて傷Kを付ける位置と異なる位置の評価対象物Pの表面明度を測定するように構成してもよい。傷作成ステップにおいて傷Kを付ける位置と同じ位置の評価対象物Pの表面明度を測定するように構成すると、評価対象物Pの位置決め等の手間が省けかつ耐傷つき性の評価を精度よく行えるという利点がある。また、傷作成ステップにおいて傷Kを作成する前ではなく、傷作成ステップが完了した後に、傷Kが作成されていない評価対象物Pの部分の表面の表面明度を測定するように構成してもよい。この場合には、表面明度測定ステップにおいて、傷明度測定ステップで評価対象物Pを位置決め固定する位置とは異なる位置に評価対象物Pを位置決め固定すればよい。   In this case, it may be configured to measure the surface brightness of the evaluation object P at the same position as the position where the scratch K is applied in the scratch creation step, and the evaluation object at a position different from the position where the scratch K is applied in the scratch creation step. You may comprise so that the surface brightness of P may be measured. If it is configured to measure the surface brightness of the evaluation object P at the same position as the position where the scratch K is applied in the scratch creation step, it is possible to save time and trouble of positioning the evaluation object P and to accurately evaluate the scratch resistance. There are advantages. Further, it is possible to measure the surface brightness of the surface of the part of the evaluation object P where the scratch K is not created after the scratch creating step is completed, not before the scratch K is created in the scratch creating step. Good. In this case, in the surface lightness measurement step, the evaluation object P may be positioned and fixed at a position different from the position where the evaluation object P is positioned and fixed in the scratch lightness measurement step.

次に、演算部42は、傷明度測定ステップで測定された傷明度Ln及び表面明度測定ステップで測定された表面明度Snを用いて以下に示す「評価値演算ステップ」を実行する。   Next, the calculation unit 42 performs the following “evaluation value calculation step” using the surface lightness Sn measured in the surface lightness measurement step and the surface lightness Sn measured in the surface lightness measurement step.

先ず、演算部42は、表面明度測定ステップで測定された表面明度Snの平均値L0を下記「式1」により演算する。   First, the calculation unit 42 calculates the average value L0 of the surface brightness Sn measured in the surface brightness measurement step according to the following “Equation 1”.

Figure 2014038040
Figure 2014038040

次に、演算部42は、演算した表面明度の平均値L0と、傷明度測定ステップで測定された傷明度Lnとから、明度変化率M1,M2・・・・Mnを下記「式2」により演算する。「明度変化率Mn」は、傷明度測定ステップで測定された各傷明度L1・・・・Lnが、平均値L0に対してどの程度変化したかを示すものである。   Next, the calculation unit 42 calculates the lightness change rates M1, M2,... Mn according to the following “Formula 2” from the calculated average value L0 of the surface lightness and the lightness Ln measured in the lightness measurement step. Calculate. The “lightness change rate Mn” indicates how much the respective lightness L1... Ln measured in the lightness measurement step has changed with respect to the average value L0.

Figure 2014038040
Figure 2014038040

次に、演算部42は、演算した明度変化率Mnと走査距離Xとから、明度評価値Hを下記「式3」により演算する。これにより、耐傷つき性評価の一方のパラメータである明度評価値Hが自動的に演算される。「明度評価値H」は、傷K全体の目立ち難さを評価するための指標として本発明者が試行錯誤の上設定したものであり、明度変化率Mnの積算値を走査距離Xで割った値の逆数を演算したものである。なお、明度評価値Hとして、明度変化率Mnの積算値を走査距離Xで割った値の逆数を演算したものではなく、明度変化率Mnの積算値を走査距離Xで割った値としてもよい。逆数を演算した場合には、演算した明度変化率が大きいほど傷K全体が目立ち難い(小さいほど目立ち易い)と評価でき、逆に、逆数を演算しない場合には、演算した明度変化率が大きいほど傷K全体が目立ち易い(小さいほど目立ち難い)と評価できる。   Next, the calculation unit 42 calculates a brightness evaluation value H from the calculated brightness change rate Mn and the scanning distance X according to the following “Equation 3”. Thereby, the brightness evaluation value H, which is one parameter of the scratch resistance evaluation, is automatically calculated. The “lightness evaluation value H” is set by the inventor after trial and error as an index for evaluating the conspicuousness of the entire wound K, and the integrated value of the lightness change rate Mn is divided by the scanning distance X. The reciprocal of the value is calculated. The brightness evaluation value H is not calculated by calculating the reciprocal of the value obtained by dividing the integrated value of the brightness change rate Mn by the scanning distance X, but may be a value obtained by dividing the integrated value of the brightness change rate Mn by the scanning distance X. . When the reciprocal is calculated, it can be evaluated that the larger the calculated lightness change rate is, the less noticeable the entire wound K is (ie, the smaller the value is, the more conspicuous) is. It can be evaluated that the entire wound K is more conspicuous (the smaller it is, the less conspicuous it is).

Figure 2014038040
Figure 2014038040

耐傷つき性評価の他方のパラメータである傷つき開始荷重の演算は、次のように行われる。図4の「傷作成開始荷重演算ステップ」に示すように、先ず、傷Kの作成を開始した開始点X0から目視にて実際に傷Kの作成が開始したと判断できる傷作成開始箇所までの距離Xaを、測定具等を用いて測定する。そして、この測定距離Xaから、下記の「式4」を用いて、傷作成開始箇所で評価対象物Pに付加された荷重の大きさ、すなわち、傷作成開始荷重Faを演算する。この場合、手計算で傷作成開始荷重Faを演算して演算結果を入力部6から演算部42に手動で入力するように構成してもよく、入力部6から測定距離Xaを手動で入力して演算部42にて傷作成開始荷重Faを自動的に演算するように構成してもよい。なお、「式4」のFは、荷重付加条件の最大荷重である。   The calculation of the scratch start load, which is the other parameter of the scratch resistance evaluation, is performed as follows. As shown in the “scratch creation start load calculation step” in FIG. 4, first, from the start point X0 at which the creation of the scratch K is started to the scratch creation start location where it can be determined that the creation of the scratch K has actually started visually. The distance Xa is measured using a measuring tool or the like. Then, from this measurement distance Xa, the magnitude of the load applied to the evaluation object P at the scratch creation start location, that is, the scratch creation start load Fa is calculated using the following “Formula 4”. In this case, the flaw creation start load Fa may be calculated manually and the calculation result may be manually input from the input unit 6 to the calculation unit 42. The measurement distance Xa is manually input from the input unit 6. The calculation unit 42 may be configured to automatically calculate the flaw creation start load Fa. Note that F in “Expression 4” is the maximum load under the load addition condition.

Figure 2014038040
Figure 2014038040

この場合、演算部42が、傷明度測定ステップで測定された傷明度L1・・・Lnを用いて自動的に傷作成開始荷重Faを演算するように構成してもよい。具体的には、例えば、傷Kの作成が開始されたと判断できる傷明度の閾値を演算部42において予め設定しておき、演算部42が、傷明度L1・・・Lnが閾値を超えた箇所を傷作成開始箇所として自動的に特定し、開始点X0から傷作成開始箇所までの距離Xaを測定ピッチaから自動的に逆算し、上述した「式4」を用いて傷作成開始荷重Faを自動的に演算するように構成してもよい。また、演算部42が、評価値演算ステップで測定された明度変化率Mnを用いて自動的に傷作成開始荷重Faを演算するように構成してもよい。具体的には、例えば、傷Kの作成が開始されたと判断できる明度変化率Mnの閾値を演算部42において予め設定しておき、演算部42が、明度変化率Mnが閾値を超えた箇所を傷作成開始箇所として自動的に特定し、開始点X0から傷作成開始箇所までの距離Xaを測定ピッチaから自動的に逆算し、上述した「式4」を用いて傷作成開始荷重Faを自動的に演算するように構成してもよい。   In this case, the calculation unit 42 may be configured to automatically calculate the wound creation start load Fa using the wound lightness L1... Ln measured in the wound lightness measurement step. Specifically, for example, a threshold value of the lightness level that can be determined that the creation of the wound K has been started is set in advance in the calculation unit 42, and the calculation unit 42 is a portion where the lightness level L1... Ln exceeds the threshold value. Is automatically specified as a scratch creation start location, and the distance Xa from the start point X0 to the scratch creation start location is automatically calculated backward from the measurement pitch a, and the scratch creation start load Fa is calculated using the above-described "Expression 4". You may comprise so that it may calculate automatically. Further, the calculation unit 42 may be configured to automatically calculate the flaw creation start load Fa using the brightness change rate Mn measured in the evaluation value calculation step. Specifically, for example, a threshold value of the lightness change rate Mn that can be determined that the creation of the scratch K has been started is set in advance in the calculation unit 42, and the calculation unit 42 determines a location where the lightness change rate Mn exceeds the threshold value. Automatically identified as a scratch creation start location, automatically calculates the distance Xa from the start point X0 to the scratch creation start location from the measurement pitch a, and automatically calculates the scratch creation start load Fa using the above-described “Equation 4”. You may comprise so that it may calculate automatically.

図4の「評価ステップ」に示すように、評価値演算ステップで演算された明度評価値H及び傷作成開始荷重演算ステップで演算された傷作成開始荷重Faは、出力部43に出力されて、表やグラフ等として表示部5に表示される。そして、作業者は、表示部5に表示された表やグラフ等から評価対象物Pの耐傷つき性を評価することになる。   As shown in “Evaluation step” in FIG. 4, the brightness evaluation value H calculated in the evaluation value calculation step and the scratch creation start load Fa calculated in the scratch creation start load calculation step are output to the output unit 43. It is displayed on the display unit 5 as a table or a graph. Then, the worker evaluates the scratch resistance of the evaluation object P from the table or graph displayed on the display unit 5.

上述した耐傷つき性評価方法を用いて、下記の条件で複数の評価対象物P1〜P4の耐傷つき性の評価を行った。複数の評価対象物P1〜P4は、タルクを含有していない黒色の樹脂材料の表面に異なるシボ加工を施したものであり、樹脂材料の材質は同じポリプロピレン製のものを用いている。なお、本実施例は、複数の評価対象物P1〜P4の表面に白化傷を作成した場合の評価例を示すものであり、傷作成装置2のチップ22として「白化傷作成用のチップ」を取り付け、明度測定装置3の切換機構34を「暗視野照明」に切り換え、明度測定装置3のスリット38Aの大きさを「15mm×0.5mm」に設定した状態で、下記[1]及び[2]の条件で耐傷つき性の評価を行ったものである。なお、白化傷(擦り傷や切削傷等)の場合、傷自体に応力白化現象が生じ易い傾向にあり、斜めからの入射光を拡散光として反射する傾向が強いため、切換機構34を「暗視野照明」に切り換えることで白化傷の明度を検出部Bにて精度よく検出できる。
[1]「荷重付加条件」;チップ移動距離X=70mm,荷重の大きさ:チップ移動距離Xに比例して初期荷重(0)から最大荷重(F=180N(ニュートン))まで荷重を増加させる形態
[2]「明度測定条件」;走査距離X=70mm,測定ピッチa=0.1mm
Using the scratch resistance evaluation method described above, the scratch resistance of a plurality of evaluation objects P1 to P4 was evaluated under the following conditions. The plurality of evaluation objects P <b> 1 to P <b> 4 are obtained by applying different embossing to the surface of a black resin material that does not contain talc, and the material of the resin material is the same made of polypropylene. In addition, a present Example shows the evaluation example at the time of creating the whitening wound on the surface of several evaluation object P1-P4, and "the chip | tip for whitening wound preparation" is used as the chip | tip 22 of the wound preparation apparatus 2. FIG. In the state where the switching mechanism 34 of the lightness measuring device 3 is switched to “dark field illumination” and the size of the slit 38A of the lightness measuring device 3 is set to “15 mm × 0.5 mm”, the following [1] and [2] ] Was evaluated for scratch resistance under the conditions. In the case of whitening scratches (scratches, cutting scratches, etc.), stress whitening tends to easily occur in the scratches themselves, and since the incident light from an oblique direction tends to be reflected as diffused light, the switching mechanism 34 is referred to as “dark field”. By switching to “illumination”, the brightness of the whitening flaw can be detected with high accuracy by the detection unit B.
[1] “Load addition condition”; tip moving distance X = 70 mm, load size: In proportion to the tip moving distance X, the load is increased from the initial load (0) to the maximum load (F = 180 N (Newton)). Form [2] “Lightness measurement condition”; scanning distance X = 70 mm, measurement pitch a = 0.1 mm

図5(a)〜(d)は、上述した条件で、各評価対象物P1〜P4について傷明度Ln及び表面明度Snを測定した測定結果を示すものであり、制御装置4から出力部43を介して表示部5に表示された表示例を示すものである。これらの図に示すように、評価対象物P1〜P4の傷明度Lnの測定値は、走査距離Xに対して様々な態様で変化することが分かり、同様に、評価対象物P1〜P4の表面明度Snの測定値も、走査距離Xに対して様々な態様で変化することが分かる。つまり、評価対象物P1〜P4のシボ形状の相違によって傷明度Ln及び表面明度Snの測定値が様々な態様で変化することが分かる。   FIGS. 5A to 5D show measurement results obtained by measuring the scratch lightness Ln and the surface lightness Sn for each of the evaluation objects P1 to P4 under the above-described conditions. The example of a display displayed on the display part 5 via is shown. As shown in these drawings, it can be seen that the measurement values of the lightness Ln of the evaluation objects P1 to P4 vary in various ways with respect to the scanning distance X, and similarly, the surface of the evaluation objects P1 to P4. It can be seen that the measured value of the brightness Sn also changes in various ways with respect to the scanning distance X. That is, it can be seen that the measurement values of the flaw lightness Ln and the surface lightness Sn change in various ways depending on the difference in the embossed shapes of the evaluation objects P1 to P4.

図6(a)〜(d)は、図5に示した傷明度Ln及び表面明度Snの測定値から各評価対象物P1〜P4について明度変化率Mnを演算した演算結果を示したものであり、制御装置4から出力部43を介して表示部5に表示された表示例を示すものである。これらの図に示すように、評価対象物P1〜P4の明度変化率Mnの演算値には、傷明度Lnの測定値の特徴と、表面明度Snの測定値の特徴とが共に反映されていることが分かる。   6A to 6D show calculation results obtained by calculating the lightness change rate Mn for each of the evaluation objects P1 to P4 from the measurement values of the scratch lightness Ln and the surface lightness Sn shown in FIG. 3 shows a display example displayed on the display unit 5 from the control device 4 via the output unit 43. As shown in these figures, the calculated value of the lightness change rate Mn of the evaluation objects P1 to P4 reflects both the characteristics of the measurement value of the flaw lightness Ln and the characteristics of the measurement value of the surface lightness Sn. I understand that.

以下に示す「表1」は、図6に示した明度変化率Mnから各評価対象物P1〜P4について明度評価値Hを演算した演算結果と、各評価対象物P1〜P4の傷作成開始荷重Faを目視にて測定した距離Xaから演算した演算結果を示したものである。図7は、これらの「表1」に示した演算結果を、一方のパラメータである明度評価値Hを縦軸とし、他方のパラメータである傷作成開始荷重Faを横軸として、グラフ化したものであり、制御装置4から出力部43を介して表示部5に表示された表示例を示すものである。   "Table 1" shown below is a calculation result obtained by calculating the lightness evaluation value H for each evaluation object P1 to P4 from the lightness change rate Mn shown in FIG. 6, and the scratch creation start load of each evaluation object P1 to P4. The calculation result which computed Fa from the distance Xa which measured visually is shown. FIG. 7 is a graph of the calculation results shown in “Table 1” with the brightness evaluation value H as one parameter as the vertical axis and the flaw creation start load Fa as the other parameter as the horizontal axis. This shows a display example displayed on the display unit 5 from the control device 4 via the output unit 43.

Figure 2014038040
Figure 2014038040

表1に示すように、明度評価値Hと傷作成開始荷重Faとでは、評価対象物P1〜P4毎に異なる傾向があることが分かる。具体的には、例えば、明度評価値Hは評価対象物P2よりも評価対象物P3の方が大きいのに対し、傷作成開始荷重Faは評価対象物P3よりも評価対象物P2の方が大きいなど、評価対象物P1〜P4毎の明度評価値Hの傾向と評価対象物P1〜P4毎の傷作成開始荷重Faの傾向とが互いに異なることが分かる。   As shown in Table 1, it can be seen that the brightness evaluation value H and the scratch creation start load Fa tend to be different for each of the evaluation objects P1 to P4. Specifically, for example, the lightness evaluation value H is larger for the evaluation object P3 than the evaluation object P2, while the scratch creation start load Fa is larger for the evaluation object P2 than the evaluation object P3. It can be seen that the tendency of the brightness evaluation value H for each of the evaluation objects P1 to P4 is different from the tendency of the flaw creation start load Fa for each of the evaluation objects P1 to P4.

これらの傾向は、図7に示すグラフからも明らかであり、各評価対象物P1〜P4の明度評価値H及び傷作成開始荷重Faの演算データをプロットした丸印がグラフ中に分散していることが分かる。なお、図7のP1〜P4以外の丸印は、他の評価対象物について同様の条件で評価を行った場合の明度評価値H及び傷作成開始荷重Faの演算データをプロットしたものである。   These tendencies are also apparent from the graph shown in FIG. 7, and circles in which the calculation data of the brightness evaluation value H and the flaw creation start load Fa of each of the evaluation objects P1 to P4 are dispersed in the graph. I understand that. Note that the circles other than P1 to P4 in FIG. 7 plot the calculation data of the brightness evaluation value H and the flaw creation start load Fa when the other evaluation objects are evaluated under the same conditions.

図7に示すように、明度評価値Hは、明度変化率Mnの積算値を走査距離Xで割った値の逆数を演算したものであるため、明度評価値Hが大であるほど評価対象物Pの傷全体が目立ち難いといえる。また、傷作成開始荷重Faは、傷作成開始箇所までの距離Xaから算出した荷重であるため、傷作成開始荷重Faが大であるほど評価対象物Pに傷がつき難いといえる。したがって、明度評価値H及び傷作成開始荷重Faが共に大となる図7のグラフの右上に至るほど評価対象物Pが傷つき難く且つ傷ついたとしても目立ち難い耐傷つき性のバランスが優れたものであると評価でき、逆に、明度評価値H及び傷作成開始荷重Faが共に小となる図7のグラフの左下に至るほど評価対象物Pが傷つき易く且つ傷ついたら目立ち易い耐傷つき性のバランスが劣ったものであると評価できる。なお、耐傷つき性の具体的な評価方法として、例えば図7のYで示したような評価基準線をグラフ上に設定し、評価の対象となる評価対象物Pの演算データが評価基準線Yに対してどの位置に位置するかで耐傷つき性の具体的な評価を行ってもよく、図示しないが、例えば図7のグラフを複数の領域に区分して、どの領域に評価の対象となる評価対象物Pの演算データが位置するかで耐傷つき性の具体的な評価を行ってもよい。また、図7に示したグラフ等を用いて明度評価値Hと傷作成開始荷重Faとの相関関係から耐傷つき性を評価するのではなく、明度評価値Hと傷作成開始荷重Faとをそれぞれ別々に評価し、それらの評価結果から総合的に耐傷つき性を評価するように構成してもよい。具体的には、例えば、明度評価値Hの評価閾値と傷作成開始荷重Faの荷重閾値を設定し、評価対象物Pの明度評価値Hが評価閾値を上回ったか否か、評価対象物Pの傷作成開始荷重Faが荷重閾値を上回ったか否かを評価し、これらの評価結果から耐傷つき性を総合的に評価するように構成してもよい。   As shown in FIG. 7, the lightness evaluation value H is obtained by calculating the reciprocal of the value obtained by dividing the integrated value of the lightness change rate Mn by the scanning distance X. Therefore, the evaluation object becomes larger as the lightness evaluation value H is larger. It can be said that the entire scratch of P is inconspicuous. Further, since the scratch creation start load Fa is a load calculated from the distance Xa to the scratch creation start location, it can be said that the evaluation object P is less likely to be scratched as the scratch creation start load Fa is larger. Accordingly, as the brightness evaluation value H and the scratch creation start load Fa both increase to the upper right of the graph of FIG. 7, the evaluation object P is less likely to be damaged, and even if it is damaged, the balance of scratch resistance is excellent. On the contrary, the balance of the scratch resistance that the evaluation object P is likely to be damaged and conspicuous when it is damaged as it reaches the lower left of the graph of FIG. 7 where both the lightness evaluation value H and the scratch creation start load Fa are small. It can be evaluated as inferior. As a specific evaluation method for scratch resistance, for example, an evaluation reference line as indicated by Y in FIG. 7 is set on the graph, and the operation data of the evaluation object P to be evaluated is the evaluation reference line Y. However, although not shown, for example, the graph of FIG. 7 is divided into a plurality of regions, and in which region the evaluation is made. A specific evaluation of scratch resistance may be performed based on whether the calculation data of the evaluation object P is located. Further, the scratch resistance is not evaluated from the correlation between the lightness evaluation value H and the flaw creation start load Fa using the graph shown in FIG. 7 or the like, but the lightness evaluation value H and the flaw creation start load Fa are respectively determined. You may comprise separately, and you may comprise so that damage resistance may be evaluated comprehensively from those evaluation results. Specifically, for example, an evaluation threshold value for the lightness evaluation value H and a load threshold value for the flaw creation start load Fa are set, and whether or not the lightness evaluation value H of the evaluation object P exceeds the evaluation threshold value, It may be configured to evaluate whether the scratch creation start load Fa exceeds a load threshold and to comprehensively evaluate the scratch resistance from these evaluation results.

なお、本実施例では、評価対象物P1〜P4として、タルクを含有していない黒色の樹脂材料の表面に異なるシボ加工を施したものを用いた評価例を示したが、本発明者の実験結果によると、タルクを含有した樹脂材料や、黒色以外の赤色や青色の樹脂材料においても同様に、耐傷つき性の評価が行えることが確認できた。したがって、タルクを含有している評価対象物同士の耐傷つき性の評価、タルクを含有している評価対象物と含有していない評価対象物との間の耐傷つき性の評価、黒色以外の同じ色の評価対象物同士での耐傷つき性の評価、色違いの評価対象物の間の耐傷つき性の評価などにおいても、本発明の耐傷つき性評価方法を同様に適用できる。また、本実施例では、評価対象物P1〜P4として、ポリプロピレン製のものを用いた評価例を示したが、本発明者の実験結果によると、ポリプロピレン製以外の樹脂材料においても同様に耐傷つき性の評価が行えることが確認できた。したがって、ポリプロピレン製以外の樹脂材料同士の耐傷つき性の評価、異なる材質の評価対象物の間の耐傷つき性の評価などにおいても、本発明の耐傷つき性評価方法を同様に適用できる。要するに、表面にシボ加工が施された樹脂製の評価対象物であれば、どのような評価対象物であっても、本発明の耐傷つき性評価方法で評価することが可能である。   In addition, although the present Example showed the evaluation example using what gave the surface of the black resin material which does not contain a talc as an evaluation object P1-P4 which gave different embossing, experiment of this inventor was shown. According to the results, it was confirmed that scratch resistance could be similarly evaluated for resin materials containing talc and red and blue resin materials other than black. Therefore, evaluation of scratch resistance between evaluation objects containing talc, evaluation of scratch resistance between evaluation objects containing talc and evaluation objects not containing, the same except for black The scratch resistance evaluation method of the present invention can be similarly applied to evaluation of scratch resistance between color evaluation objects and evaluation of scratch resistance between evaluation objects of different colors. Moreover, in the present Example, although the evaluation example using the thing made from a polypropylene was shown as evaluation object P1-P4, according to the experiment result of this inventor, it is similarly scratch-resistant also in resin materials other than a product made from a polypropylene. It was confirmed that the sex could be evaluated. Therefore, the scratch resistance evaluation method of the present invention can be similarly applied to the evaluation of scratch resistance between resin materials other than polypropylene and the evaluation of scratch resistance between evaluation objects of different materials. In short, any evaluation object can be evaluated by the scratch resistance evaluation method of the present invention as long as it is an evaluation object made of a resin having a textured surface.

また、本実施例では、傷作成装置2のチップ22として「白化傷作成用のチップ」を取り付け、明度測定装置3の切換機構34を「暗視野照明」に切り換えた状態で耐傷つき性の評価を行った例を示したが、傷作成装置2で作成する傷Kの種類と暗視野照明及び明視野照明との組み合わせとして異なる組み合わせを採用してもよい。具体的には、例えば、チップ22として「光沢傷作成用のチップ」を取り付け、切換機構34を「明視野照明」に切り換えた状態で耐傷つき性の評価を行ってもよい。光沢傷の場合、傷により評価対象物Pの表面の凹凸が平坦化され易い傾向にあり、入射光をそのまま反射する傾向が強いため、切換機構34を「明視野照明」に切り換えることで光沢傷の明度を検出部Bにて精度よく検出できるという利点がある。また、本実施例で示したスリット38Aの大きさや、上記[1]及び[2]の荷重付加条件及び明度測定条件は、一例として示したものであり、異なる大きさのスリット38Aや、異なる荷重付加条件及び明度測定条件を採用してもよい。   Further, in this embodiment, evaluation of scratch resistance is performed in a state in which “a chip for creating a whitening wound” is attached as the chip 22 of the scratch creating apparatus 2 and the switching mechanism 34 of the brightness measuring apparatus 3 is switched to “dark field illumination”. Although the example which performed this was shown, you may employ | adopt a different combination as a combination of the kind of the wound K created with the wound preparation apparatus 2, dark field illumination, and bright field illumination. Specifically, for example, the evaluation of scratch resistance may be performed in a state where a “chip for creating a glossy scratch” is attached as the chip 22 and the switching mechanism 34 is switched to “bright field illumination”. In the case of a glossy flaw, the unevenness on the surface of the evaluation object P tends to be flattened easily by the flaw, and the tendency to reflect incident light as it is is strong. Therefore, the glossy flaw is obtained by switching the switching mechanism 34 to “bright field illumination”. There is an advantage that the lightness of can be accurately detected by the detection unit B. Further, the size of the slit 38A shown in the present embodiment, the load addition condition and the lightness measurement condition of the above [1] and [2] are shown as an example, and the slit 38A having a different size or a different load is shown. Additional conditions and lightness measurement conditions may be employed.

〔別実施形態〕
(1)上記実施形態では、耐傷つき性評価装置1を用いて本発明に係る耐傷つき性評価方法を行った例を示したが、耐傷つき性評価装置1の全部又は一部を作業者が手作業で行うように構成してもよい。具体的には、例えば傷作成装置2を用いずに荷重付加器具等を用いて作業者が手作業で評価対象物Pの表面に傷をつけるように構成してもよく、例えば明度測定装置3の移動式テーブル31や制御装置4の制御部44などを用いずに作業者が手作業で評価対象物Pを移動させるように構成してもよい。また、例えば制御装置4の演算部42などを用いずに作業者が手作業で各種演算を行うように構成してもよく、例えば表示部5を用いずに所定の記録用紙などに各種演算結果等を記載して評価するように構成してもよい。
[Another embodiment]
(1) In the above-described embodiment, an example in which the scratch resistance evaluation method according to the present invention is performed using the scratch resistance evaluation apparatus 1 has been described. You may comprise so that it may carry out by hand. Specifically, for example, it may be configured such that the operator scratches the surface of the evaluation object P manually by using a load applying device or the like without using the scratch creating device 2, for example, the brightness measuring device 3 Instead of using the movable table 31 or the control unit 44 of the control device 4, the operator may manually move the evaluation object P. Further, for example, the operator may perform various calculations manually without using the calculation unit 42 of the control device 4, for example, various calculation results on a predetermined recording sheet without using the display unit 5. Or the like may be described and evaluated.

(2)上記(1)とは逆に、上記実施形態で作業者が手作業で行っていたものの全部又は一部を自動的に行うように構成してもよい。具体的には、例えば、傷作成装置2、明度測定装置3、制御装置4、表示部5及び入力部6が図示しない装置本体に付属するように耐傷つき性評価装置1を一体化し、傷が作成されていない評価対象物Pを耐傷つき性評価装置1にセットして入力部6を操作するだけで傷作成ステップから演算結果の表示までの一連のステップが自動的に行われるように構成してもよい。 (2) Contrary to said (1), you may comprise so that all or one part of what the operator performed manually by the said embodiment may be performed automatically. Specifically, for example, the scratch resistance evaluation apparatus 1 is integrated so that the scratch creating device 2, the lightness measuring device 3, the control device 4, the display unit 5, and the input unit 6 are attached to a device main body (not shown), A series of steps from the scratch creation step to the calculation result display is automatically performed by simply setting the evaluation object P that has not been created in the scratch resistance evaluation apparatus 1 and operating the input unit 6. May be.

(3)上記実施形態では、評価ステップにおいて、耐傷つき性評価のパラメータである明度評価値H及び傷作成開始荷重Faを表やグラフ等として表示部5に表示し、作業者が表示部5に表示された表やグラフ等から評価対象物Pの耐傷つき性を評価するように構成した例を示したが、制御装置4が自動的に評価対象物Pの耐傷つき性を評価し、評価結果を表示部5に表示するように構成してもよい。具体的には、例えば、単一又は複数の明度評価値Hの評価閾値と、単一又は複数の傷作成開始荷重Faの荷重閾値を設定し、これらの評価閾値及び荷重閾値に基づいて制御装置4で自動的に明度評価値H及び傷作成開始荷重Faを評価し、その評価結果を段階的(例えば、優・良・普・劣など)に表示部5に表示するように構成してもよい。 (3) In the above embodiment, in the evaluation step, the lightness evaluation value H and the scratch creation start load Fa, which are parameters for evaluating scratch resistance, are displayed on the display unit 5 as a table, a graph, or the like. Although the example comprised so that the damage resistance of the evaluation target object P might be evaluated from the displayed table | surface, graph, etc. was shown, the control apparatus 4 automatically evaluated the damage resistance of the evaluation target object P, and the evaluation result May be displayed on the display unit 5. Specifically, for example, an evaluation threshold value for a single or a plurality of lightness evaluation values H and a load threshold value for a single or a plurality of scratch creation start loads Fa are set, and the control device is based on the evaluation threshold value and the load threshold value. The brightness evaluation value H and the scratch creation start load Fa are automatically evaluated in step 4, and the evaluation result is displayed on the display unit 5 in a stepwise manner (for example, excellent, good, normal, inferior, etc.). Good.

(4)上記実施形態では、チップ移動距離Xを走査距離として設定し、傷Kの全長に亘って傷明度Ln及び表面明度Snを測定した例を示したが、走査距離をチップ移動距離Xよりも短く設定して、傷Kの一部の傷明度Ln及び表面明度Snを測定するように構成してもよく、走査距離をチップ移動距離Xよりも長く設定して、傷明度Lnと表面明度Snとを連続的に測定するように構成してもよい。この場合であっても、傷Kの一部や傷Kを含む部分から評価対象物Pの耐傷つき性を評価することが可能となる。 (4) In the above embodiment, an example in which the chip movement distance X is set as the scanning distance and the flaw lightness Ln and the surface lightness Sn are measured over the entire length of the scratch K has been shown. May be configured to measure a part of the lightness Ln and the surface lightness Sn of the scratch K, and set the scanning distance longer than the chip movement distance X so that the lightness Ln and the surface lightness are measured. You may comprise so that Sn may be measured continuously. Even in this case, it is possible to evaluate the scratch resistance of the evaluation object P from a part of the scratch K or a portion including the scratch K.

本発明の耐傷つき性評価方法及び評価装置は、自動車やトラック等の車両の内装部品をはじめOA機器、家電製品、住設機器、家庭雑貨などに用いられるシボ加工が施された樹脂製の材料の耐傷つき性の評価に利用可能である。   The scratch resistance evaluation method and evaluation apparatus of the present invention is a resin material that has been subjected to embossing used for interior parts of vehicles such as automobiles and trucks, as well as OA equipment, home appliances, residential equipment, and household goods. It can be used for evaluation of scratch resistance.

1 耐傷つき性評価装置
2 傷作成装置(傷作成手段)
3 明度測定装置(明度測定手段)
5 表示部(表示手段)
22 チップ
38A スリット
41 測定部(明度測定手段)
42 演算部(演算手段)
A 照射部
Fa 傷作成開始荷重
H 明度評価値
K 傷
Ln 傷明度
Mn 明度変化率
P 評価対象物
Sn 表面明度
X 走査距離(所定距離)
a 所定ピッチ
1 Scratch resistance evaluation device 2 Scratch creation device (scratch creation means)
3 Lightness measuring device (lightness measuring means)
5 Display section (display means)
22 chip 38A slit 41 measuring part (lightness measuring means)
42 Calculation unit (calculation means)
A Irradiation part Fa Scratch creation start load H Lightness evaluation value K Scratch Ln Scratch lightness Mn Lightness change rate P Evaluation object Sn Surface lightness X Scanning distance (predetermined distance)
a Predetermined pitch

Claims (6)

表面にシボ加工が施された樹脂製の評価対象物の耐傷つき性評価方法であって、
押し付け荷重を増加させながらチップを所定距離走査して前記評価対象物の表面に直線状の傷を作成する傷作成ステップと、
前記傷に光を照射して反射した光の明度を、前記傷の長手方向に沿って所定の測定ピッチ毎に測定する傷明度測定ステップと、
前記測定ピッチ毎に測定された明度に基づいて前記傷の明度評価値を演算する評価値演算ステップと、
前記傷が実際に作成され始めた傷作成開始荷重を演算する傷作成開始荷重演算ステップと、
前記明度評価値と前記傷作成開始荷重とに基づいて前記評価対象物の耐傷つき性を評価する評価ステップとを有する耐傷つき性評価方法。
It is a scratch resistance evaluation method for an evaluation object made of resin whose surface has been subjected to graining,
A scratch creating step for creating a linear scratch on the surface of the evaluation object by scanning the chip for a predetermined distance while increasing the pressing load;
A wound lightness measurement step for measuring the lightness of the light reflected by irradiating the wound with light at a predetermined measurement pitch along the longitudinal direction of the wound;
An evaluation value calculating step for calculating the lightness evaluation value of the scratch based on the lightness measured for each measurement pitch;
Scratch creation start load calculating step for calculating a scratch creation start load at which the scratch is actually created,
A scratch resistance evaluation method comprising: an evaluation step of evaluating scratch resistance of the evaluation object based on the lightness evaluation value and the scratch creation start load.
前記傷を作成する前の前記評価対象物の表面又は前記傷が作成されていない前記評価対象物の表面に光を照射して受光した光の表面明度を、前記測定ピッチ毎に測定する表面明度測定ステップを有し、
前記評価値演算ステップは、前記測定ピッチ毎に測定された表面明度に基づいて前記表面明度の平均値を演算し、さらに、前記測定ピッチ毎に測定された傷の明度と前記平均値との差を前記平均値で割った明度変化率の積算値を演算して、該積算値を前記所定距離で割った値又は該積算値を前記所定距離で割った値の逆数を前記明度評価値として演算する請求項1記載の耐傷つき性評価方法。
Surface brightness for measuring the surface brightness of light received by irradiating light on the surface of the evaluation object before creating the scratch or the surface of the evaluation object on which the scratch has not been created, for each measurement pitch Measuring step,
The evaluation value calculating step calculates an average value of the surface brightness based on the surface brightness measured for each measurement pitch, and further, a difference between the brightness of the scratch measured for each measurement pitch and the average value. The integrated value of the brightness change rate obtained by dividing the integrated value by the average value is calculated, and the value obtained by dividing the integrated value by the predetermined distance or the inverse of the value obtained by dividing the integrated value by the predetermined distance is calculated as the lightness evaluation value. The scratch resistance evaluation method according to claim 1.
前記傷作成ステップは、前記評価対象物の表面に直線状の白化傷を作成し、
前記傷明度測定ステップは、前記白化傷に光を暗視野照射して受光した光の明度を前記測定ピッチ毎に測定する請求項1又は2記載の耐傷つき性評価方法。
The scratch creating step creates a straight whitening scar on the surface of the evaluation object,
3. The scratch resistance evaluation method according to claim 1, wherein the lightness measurement step measures the lightness of light received by irradiating light to the whitened scratch with a dark field for each measurement pitch. 4.
前記傷作成ステップは、前記評価対象物の表面に直線状の光沢傷を作成し、
前記傷明度測定ステップは、前記光沢傷に光を明視野照射して受光した光の明度を前記測定ピッチ毎に測定する請求項1又は2記載の耐傷つき性評価方法。
The scratch creating step creates a linear gloss scratch on the surface of the evaluation object,
3. The scratch resistance evaluation method according to claim 1, wherein the lightness measurement step measures the lightness of light received by irradiating the glossy light with bright field at each measurement pitch. 4.
請求項1〜4のいずれか一項に記載の耐傷つき性評価方法に用いる耐傷つき性評価装置であって、
押し付け荷重を増加させながらチップを所定距離走査して前記評価対象物の表面に直線状の傷を作成する傷作成手段と、
照射部から傷に光を照射して反射した光の明度を、前記傷の長手方向に沿って前記測定ピッチ毎に測定する明度測定手段と、
前記傷作成開始荷重及び前記明度評価値を演算する演算手段と、
前記傷作成開始荷重及び前記明度評価値を表示する表示手段とを有する耐傷つき性評価装置。
A scratch resistance evaluation apparatus used in the scratch resistance evaluation method according to any one of claims 1 to 4,
A flaw creating means for creating a straight flaw on the surface of the evaluation object by scanning the chip for a predetermined distance while increasing the pressing load;
Lightness measurement means for measuring the lightness of light reflected by irradiating the wound from the irradiation unit for each measurement pitch along the longitudinal direction of the wound;
Calculation means for calculating the scratch creation start load and the brightness evaluation value;
A scratch resistance evaluation apparatus having display means for displaying the scratch creation start load and the brightness evaluation value.
前記明度測定手段は、前記照射部から光を照射して反射した光を、前記傷の短手方向に細長いスリットを介して受光して、前記傷の明度を前記測定ピッチ毎に測定する請求項5記載の耐傷つき性評価装置。   The lightness measuring means receives light reflected by irradiating light from the irradiating unit through a slit elongated in a short direction of the scratch, and measures the lightness of the scratch for each measurement pitch. 5. The scratch resistance evaluation apparatus according to 5.
JP2012180766A 2012-08-17 2012-08-17 Anti-scratch performance evaluating method and evaluating apparatus Pending JP2014038040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012180766A JP2014038040A (en) 2012-08-17 2012-08-17 Anti-scratch performance evaluating method and evaluating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012180766A JP2014038040A (en) 2012-08-17 2012-08-17 Anti-scratch performance evaluating method and evaluating apparatus

Publications (1)

Publication Number Publication Date
JP2014038040A true JP2014038040A (en) 2014-02-27

Family

ID=50286292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012180766A Pending JP2014038040A (en) 2012-08-17 2012-08-17 Anti-scratch performance evaluating method and evaluating apparatus

Country Status (1)

Country Link
JP (1) JP2014038040A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI700486B (en) * 2014-12-18 2020-08-01 大陸商蘇州康代智能科技股份有限公司 System and method for inspecting object

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10318935A (en) * 1997-05-14 1998-12-04 Idemitsu Petrochem Co Ltd Surface inspection device and method
JP2000249660A (en) * 1999-02-26 2000-09-14 Idemitsu Petrochem Co Ltd Apparatus and method for inspection of surface
JP2009128368A (en) * 2007-11-27 2009-06-11 Csm Instruments Sa Technique for analyzing scratch test

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10318935A (en) * 1997-05-14 1998-12-04 Idemitsu Petrochem Co Ltd Surface inspection device and method
US20020015148A1 (en) * 1997-05-14 2002-02-07 Ryuzou Tomomatsu Surface inspection instrument and surface inspection method
JP2000249660A (en) * 1999-02-26 2000-09-14 Idemitsu Petrochem Co Ltd Apparatus and method for inspection of surface
JP2009128368A (en) * 2007-11-27 2009-06-11 Csm Instruments Sa Technique for analyzing scratch test

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6015032268; 森田 和宏 他: '"シボを有するポリプロピレン成形品の耐傷つき性評価法"' 成形加工シンポジア '11 , 20111013, 127〜128頁 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI700486B (en) * 2014-12-18 2020-08-01 大陸商蘇州康代智能科技股份有限公司 System and method for inspecting object

Similar Documents

Publication Publication Date Title
US8687858B2 (en) Method and device for producing thin sections of a sample by means of an image recognition system
EP1762850A3 (en) Automatic analyzer
CA2633253C (en) Apparatus and method for illuminator-independent color measurements
JP5119602B2 (en) Periodic pattern defect inspection method and defect inspection apparatus
JP3445722B2 (en) Surface inspection device and surface inspection method
JP6053506B2 (en) Reflection characteristic measuring device
US20200103352A1 (en) Adaptive diffuse illumination systems and methods
JP2006266763A5 (en)
JP2011220995A (en) Quantization method for scratch-induced surface damage on polymeric and coating materials
CN108548840B (en) Film mounting fixture and automatic measuring device for film heat shrinkage rate
JP4588070B2 (en) Color inspection device
Chrisman et al. Testing and evaluation of mar visibility resistance for polymer films
JP2014038040A (en) Anti-scratch performance evaluating method and evaluating apparatus
KR101224477B1 (en) Quantitative evaluation of scratch-induced damages on polymeric and coating materials
KR20160058152A (en) Method and device for determining the abrasion properties of a coated flat product
WO2022202198A1 (en) Evaluation method and evaluation device for surface roughening of metal surface
JP6031821B2 (en) Displacement measuring method and material testing machine
JP2017207288A (en) Surface inspection device-purpose calibration plate and surface inspection device calibration method
KR101224476B1 (en) Quantitative determination of scratch visibility for polymeric and coating materials
US5943127A (en) Coined line analyzer
JP7411155B2 (en) Color unevenness inspection device and color unevenness inspection method
KR20140065500A (en) Apparatus for measuring remain scale and the method thereof
JP2007506072A (en) Sheet surface analyzer and analysis method
JP2000249660A (en) Apparatus and method for inspection of surface
JP2001305051A (en) Method and device for measuring visibility and glossiness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150818

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151222