JP2014038026A - Deposited salt measurement method and deposited salt collection device - Google Patents

Deposited salt measurement method and deposited salt collection device Download PDF

Info

Publication number
JP2014038026A
JP2014038026A JP2012180008A JP2012180008A JP2014038026A JP 2014038026 A JP2014038026 A JP 2014038026A JP 2012180008 A JP2012180008 A JP 2012180008A JP 2012180008 A JP2012180008 A JP 2012180008A JP 2014038026 A JP2014038026 A JP 2014038026A
Authority
JP
Japan
Prior art keywords
salt
liquid
attached
measurement
salt content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012180008A
Other languages
Japanese (ja)
Inventor
Michiyo Nakatsu
美智代 中津
Kazuki Sasahara
一起 笹原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukui Prefecture
Original Assignee
Fukui Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukui Prefecture filed Critical Fukui Prefecture
Priority to JP2012180008A priority Critical patent/JP2014038026A/en
Publication of JP2014038026A publication Critical patent/JP2014038026A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a deposited salt measurement method and a deposited salt collection device capable of easily collecting salt deposited on the surface of metal structure in an optionally specified area and capable of precisely measuring the amount of deposited salt of 1 μg/mor more.SOLUTION: Using the deposited salt collection device, deposited salt of 1 μg/mor more deposited on the surface of a metal structure in an optionally specified area is dissolved into a collection solution. The amount of the deposited salt per unit area is easily and precisely measured based on the concentration of the deposited salt contained in the collection solution.

Description

本発明は、大気中の金属の腐食性因子である付着塩分量の高精度な計測のために、対象物体の表面に付着した塩分を任意に規定される面積で回収液に溶解し、その回収液の付着塩分濃度から単位面積当たりの付着塩分量を簡便且つ高精度で測定する方法およびその付着塩分回収具である。 The present invention dissolves the salt attached to the surface of a target object in a recovery liquid at an arbitrarily defined area for accurate measurement of the amount of attached salt, which is a corrosive factor for metals in the atmosphere, and recovers the recovered salt. A method for measuring the amount of adhering salt per unit area from a concentration of adhering salt in a liquid simply and with high accuracy, and an adhering salt content recovery tool.

近年、橋梁、建築構造材、電車・自動車の搬送車体など、屋外で使用される金属材料が増加している。しかし、大気環境下の金属腐食が課題となる。ステンレス鋼など局部腐食を起こす金属材料は、短期間で多大な損失を招くことがある。そこで、実使用環境における金属材料の腐食性を調査し、金属材料の寿命予測をおこない、最適鋼種の選択、塗装等の表面処理の対策が重要である。 In recent years, metal materials used outdoors such as bridges, building structural materials, and transportation bodies for trains and automobiles are increasing. However, metal corrosion in the atmospheric environment is a problem. Metal materials that cause local corrosion, such as stainless steel, can cause significant losses in a short period of time. Therefore, it is important to investigate the corrosiveness of metal materials in actual use environments, predict the life of metal materials, select the optimal steel type, and take measures for surface treatment such as painting.

大気下の主たる金属の腐食性因子は、空気中飛来する海塩粒子量(以下、飛来海塩粒子量とする)と濡れ時間である。実際の使用環境でのこれらの腐食性因子の分析調査結果を基に、金属材料の寿命予測をおこなうことができる(非特許文献1)。 The corrosive factors of the main metals in the atmosphere are the amount of sea salt particles flying in the air (hereinafter referred to as the amount of flying sea salt particles) and the wetting time. Based on the results of analysis and investigation of these corrosive factors in the actual usage environment, it is possible to predict the lifetime of the metal material (Non-patent Document 1).

飛来海塩粒子量の計測法は、ドライガーゼ法(JIS Z2381 屋外暴露試験方法通則 参考3)やウエットキャンドル法(ISO 9225)がある。しかし、これらの測定法は、風速、風向、地形などの気象因子や地形因子の影響を強く受けるために、測定値のばらつき、また、同一の地点および期間の計測であっても、測定法ごとに得られる飛来海塩粒子量が異なることが課題である。海岸地域以外では、上記法で計測された飛来海塩粒子量と金属材料の腐食速度との相関が低いなどの課題がある。 Methods for measuring the amount of flying sea salt particles include the dry gauze method (JIS Z2381 General Rules for Outdoor Exposure Test Method Reference 3) and the wet candle method (ISO 9225). However, these measurement methods are strongly influenced by weather factors such as wind speed, wind direction, and topography, and topographic factors. The problem is that the amount of incoming sea salt particles is different. Outside the coastal area, there are problems such as low correlation between the amount of incoming sea salt particles measured by the above method and the corrosion rate of the metal material.

よって、屋外において、実際に金属材料の表面に付着する飛来海塩粒子が、直接、金属材料の腐食に関与するため、一定期間、屋外に暴露した実際の金属材料の所定面積に付着した飛来海塩粒子を捕集し、これの組成分析から飛来海塩粒子量を計測することが必要である。 Therefore, since the flying sea salt particles that actually adhere to the surface of the metal material are directly involved in the corrosion of the metallic material outdoors, the flying sea salt that has adhered to the predetermined area of the actual metallic material exposed to the outdoors for a certain period of time. It is necessary to collect salt particles and measure the amount of incoming sea salt particles from the composition analysis.

近年、ガルバニック対を応用した腐食センサが開発され、大気環境の腐食性因子の計測・モニタリングに活用されている。中でも、辻川らによって開発されたACM(Atmospheric Corrosion Monitor)型腐食センサは、濡れ時間、海塩付着量を計測でき、それらが金属材料の腐食速度との相関も高いことが報告(非特許文献1)される。センサにおける海塩付着量は、現在、人為的に所定量の海水を付着させたセンサの腐食電流出力と海塩付着量から作成される較正曲線を基に解析される。しかし、海塩以外の大気汚染物質が腐食速度に影響を与えるために、屋外でセンサ表面に実際に付着する付着塩分量とセンサの腐食電流出力から較正曲線を作成し、腐食性因子の海塩付着量を高精度にモニタリングする技術が社会的に要望される。 In recent years, corrosion sensors using galvanic pairs have been developed and used for measuring and monitoring corrosive factors in the atmospheric environment. Among them, the ACM (Atmospheric Corrosion Monitor) type corrosion sensor developed by Yodogawa et al. Has reported that it can measure the wet time and the amount of sea salt attached, and has a high correlation with the corrosion rate of metal materials (Non-patent Document 1) ) The amount of sea salt attached to the sensor is currently analyzed based on a calibration curve created from the corrosion current output of the sensor to which a predetermined amount of seawater has been artificially attached and the amount of sea salt attached. However, since air pollutants other than sea salt affect the corrosion rate, a calibration curve is created from the amount of salt that actually adheres to the sensor surface outdoors and the corrosion current output of the sensor, and the sea salt of the corrosive factor There is a social demand for technology to monitor the amount of adhesion with high accuracy.

篠原正他:Zairyo−to−Kankyo, 55, 495(2006)Masa Shinohara et al .: Zairyo-to-Kankyo, 55, 495 (2006)

現在おこなわれている金属表面上の付着塩分の回収方法として、金属構造体の表面を清浄なガーゼで拭き取る方法がある。しかし、錆び層が厚く生成した金属表面において、錆び層中に塩分が残り、全量を回収できない。また、金属構造体の付着塩分を水浴中超音波で捕集する方法は、超音波浴槽サイズによって金属構造体の形状、大きさが制限される、また、付着塩分の回収箇所の選択や任意の面積の付着塩分を捕集することは不可能である。長時間の超音波によって、塩分が回収液から空気中へ揮散することがある。 As a method for recovering the attached salt on the metal surface, there is a method of wiping the surface of the metal structure with clean gauze. However, on the metal surface where the rust layer is formed thick, salt remains in the rust layer, and the entire amount cannot be recovered. In addition, the method of collecting the adhered salt content of the metal structure with ultrasonic waves in a water bath is limited in the shape and size of the metal structure depending on the size of the ultrasonic bath. It is impossible to collect the attached salt. Salinity may be volatilized from the collected liquid into the air by long-term ultrasonic waves.

付着塩分量は、回収した塩分の定量値を回収面積で除した単位面積当たりの付着塩分量であり、高精度の計測値を得るためには、回収面積の精密な計測が重要である。しかし、金属構造体の形状が複雑な場合、また、凹凸がある場合、表面積を正確に計測できない。そこで、あらかじめ限定した面積で表面の塩分を回収することが考えられる。回収面積の限定方法は、粘着性シールを使い回収部以外のマスキングなどが考えられるが、粘着剤やシールからのイオン成分の溶出による汚染がある。 The amount of adhering salt is the amount of adhering salt per unit area obtained by dividing the quantitative value of the recovered salinity by the recovery area, and accurate measurement of the recovery area is important in order to obtain a highly accurate measurement value. However, when the shape of the metal structure is complicated or has irregularities, the surface area cannot be measured accurately. Therefore, it is conceivable to recover the surface salinity in a limited area. The method for limiting the recovery area may be masking other than the recovery part using an adhesive seal, but there is contamination due to the elution of ionic components from the adhesive and the seal.

よって、本発明の目的は、金属構造体表面の付着塩分を任意に規定される面積で、且つ、簡便に回収し、1μg/m以上の付着塩分量を高精度で計測できる付着塩分測定方法および付着塩分回収具を提供することにある。実際の使用環境で飛来し付着した付着塩分を回収することができるため、金属材料の腐食速度と付着塩分または腐食環境因子の正確な相関性を調査することが可能となり、寿命予測が可能となる。 Accordingly, an object of the present invention is to provide a method for measuring the amount of adhering salt on the surface of the metal structure which can be easily collected in an arbitrarily defined area and can measure the amount of adhering salt of 1 μg / m 2 or more with high accuracy. And providing an attached salt content recovery tool. Because it is possible to collect the attached salt content that has come and adhered in the actual usage environment, it is possible to investigate the exact correlation between the corrosion rate of the metal material and the attached salt content or the corrosive environmental factors, and it is possible to predict the life. .

本発明者は、前記の問題点を解決するために鋭意研究を行った結果、以下の内容で金属構造体表面の付着塩分を任意に規定される面積で簡便に精度良く、且つ、簡便に回収できることを見出し、本発明を成すに至った。金属の腐食性因子となる塩分が付着した対象物体の測定表面に回収液を接触させ、対象物体の表面に付着した1μg/m以上の付着塩分を回収液に溶解し、前記回収液の付着塩分濃度を測定し、単位面積当たりの付着塩分量を算出することを特徴とする付着塩分測定方法。 As a result of diligent research to solve the above problems, the present inventor easily and accurately collects the adhering salt content on the surface of the metal structure in an arbitrarily defined area with the following contents. The present inventors have found that this can be done and have come to achieve the present invention. The recovered liquid is brought into contact with the measurement surface of the target object to which the salt that is a corrosive factor of the metal adheres, and 1 μg / m 2 or more of the adhered salt adhered to the surface of the target object is dissolved in the recovered liquid, and the recovered liquid is adhered. A method for measuring the amount of adhering salt, characterized by measuring the salinity concentration and calculating the amount of adhering salt per unit area.

本請求項2に係る発明は、測定表面の所定の面積に区画された測定領域に対して回収液を密封状態に設定して接触させ、測定領域に回収液を接触させた状態で超音波振動を3分間以上加えることを特徴とする。 In the invention according to claim 2, the recovery liquid is set in a sealed state and brought into contact with a measurement area partitioned into a predetermined area of the measurement surface, and ultrasonic vibration is performed in a state where the recovery liquid is in contact with the measurement area. Is added for 3 minutes or more.

本請求項3に係る発明は、測定表面の所定の面積に区画された測定領域に対して回収液を密封状態に設定して接触させ、測定領域に回収液を接触させた状態で保持することを特徴とする請求項1に記載の付着塩分測定方法。   In the invention according to claim 3, the recovery liquid is set in a sealed state and brought into contact with the measurement area partitioned into a predetermined area of the measurement surface, and the recovery liquid is held in contact with the measurement area. The method for measuring an attached salt content according to claim 1.

本請求項4に係る発明は、測定表面の所定の面積に区画された測定領域に対して回収液を滲み込ませた含浸部材を1分間以上密着させ、密着させた含浸部材を洗浄した回収液の付着塩分濃度を測定することを特徴とする。 In the invention according to claim 4, the impregnated member impregnated with the recovering liquid is brought into close contact with the measurement region partitioned into a predetermined area of the measurement surface for 1 minute or more, and the recovered impregnated member is washed. It is characterized by measuring the concentration of adhering salt.

本請求項5に係る発明は、前記回収液が純水であることを特徴とする請求項1から4のいずれかに記載の付着塩分測定方法。 The invention according to claim 5 is the method for measuring an attached salt content according to any one of claims 1 to 4, wherein the recovered liquid is pure water.

本請求項6に係る発明は、前記対象物体が、金属構造体又は付着塩分による腐食状態を検知するセンサ類であることを特徴とする請求項1から5のいずれかに記載の付着塩分測定方法。 6. The method according to claim 6, wherein the target object is a sensor that detects a corrosion state due to a metal structure or adhering salt. .

本請求項7に係る発明は、金属の腐食性因子となる塩分が付着した対象物体の測定表面に固定されて測定領域を区画する接液部と、前記接液部と前記対象物体とを水密に固定する押え部とを備え、前記接液部内に回収液を貯留して前記塩分を溶解させることを特徴とする付着塩分回収具。 The invention according to claim 7 is characterized in that a wetted part that is fixed to a measurement surface of a target object to which a salt that is a corrosive factor of metal adheres to partition a measurement region, and the wetted part and the target object are watertight. The attached salt content recovery tool comprising: a presser portion fixed to the liquid contact portion, wherein the recovered liquid is stored in the liquid contact portion to dissolve the salt content.

本請求項8に係る発明は、金属の腐食性因子となる塩分が付着した対象物体の測定表面に固定されて測定領域を区画する接液部と、回収液を滲み込ませて保持する含浸部と、前記含浸部が取り付けられるとともに前記接液部内に挿入されて前記含浸部を前記前記対象物体に密着させる押圧部とを備えていることを特徴とする付着塩分回収具。 The invention according to claim 8 includes a wetted part that is fixed to a measurement surface of a target object to which a salt content that is a corrosive factor of a metal adheres to partition a measurement region, and an impregnation part that soaks and holds the recovered liquid. And a pressing unit that is attached to the impregnated part and is inserted into the liquid contact part to bring the impregnated part into close contact with the target object.

本発明の付着塩分の測定方法および付着塩分回収治具は、金属構造体の表面に付着した1μg/m以上の付着塩分を任意に規定される面積で簡便に回収し、単位面積当たりの付着塩分量を高精度で計測することができる。よって、付着塩分量計測の時間削減、コスト低下を図ることとなる。また、金属構造体が使用される実環境下、一定期間に付着する塩分の種類・量を計測することが可能となる。1μg/m以上の超微量が計測できるために、実環境で塩分を付着させる期間を短縮できる。したがって、報告される付着塩分量と金属材料の腐食速度の関係から、目的とする使用環境での金属構造体の寿命が予測でき、最適な金属材料の選定、ライフサイクルコストの極小化に大きく貢献する。 The method for measuring the amount of adhering salt and the adhering salt content recovery jig of the present invention simply recovers the adhering salt content of 1 μg / m 2 or more adhering to the surface of the metal structure in an arbitrarily defined area, and adheres per unit area. The amount of salt can be measured with high accuracy. Therefore, the time for measuring the amount of adhering salt is reduced and the cost is reduced. Moreover, it becomes possible to measure the kind and amount of salt adhering in a certain period in an actual environment where the metal structure is used. Since an ultra trace amount of 1 μg / m 2 or more can be measured, the period for depositing salt in an actual environment can be shortened. Therefore, it is possible to predict the life of the metal structure in the intended use environment from the reported relationship between the amount of deposited salt and the corrosion rate of the metal material, which contributes greatly to the selection of the optimum metal material and the minimization of the life cycle cost. To do.

本発明に係る付着塩分回収具に関する概略構成図Schematic configuration diagram for attached salt content recovery tool according to the present invention 本発明に係る別の付着塩分回収具の概略構成図Schematic configuration diagram of another attached salt recovery tool according to the present invention 超音波時間と回収液中の塩化物イオン、硫酸イオン濃度変化との関係を表すグラフGraph showing the relationship between ultrasonic time and chloride ion and sulfate ion concentration changes in the recovered solution

図1に、本実施形態の付着塩分回収治具に関する概略構成図である。付着塩分回収治具は、付着塩分を回収する対象物体である金属構造体1の表面に対して所定面積の測定領域4を区画する接液部2、及び、金属構造体1と接液部2とを水密に固定する板状の押え部3を備えている。 In FIG. 1, it is a schematic block diagram regarding the adhesion salt content recovery jig | tool of this embodiment. The attached salt content recovery jig includes a liquid contact part 2 that partitions a measurement area 4 having a predetermined area with respect to the surface of the metal structure 1 that is a target object for recovering the attached salt content, and the metal structure 1 and the liquid contact part 2. Is provided with a plate-like presser portion 3 that is watertightly fixed.

接液部2は、円筒状のアクリル樹脂材料からなり、金属構造体1の表面に接触する端面が、金属構造体1の表面に圧接した場合に水密に密着するように形成されている。接液部2の断面形状は、内部空間の断面積が測定領域4となる所定面積に設定されている。測定領域4の面積は、測定する対象物体に応じて適宜設定すればよいが、1cm〜50cmに設定すればよい。接液部2の材質としては、付着塩分と同成分が回収液へ溶出しないものであればよく、特に限定されないが、樹脂、金属、ガラス、セラミックスといった材料を用いることができる。例えば、アクリル樹脂が好ましい。また、接液部2の形状としては、回収液を保持できる形状であれば円筒状以外の形状でもよく、例えば、断面形状が多角形の角筒状でもよい。 The liquid contact portion 2 is made of a cylindrical acrylic resin material, and is formed so that an end surface that comes into contact with the surface of the metal structure 1 is in close contact with the surface of the metal structure 1 in a watertight manner. The cross-sectional shape of the wetted part 2 is set to a predetermined area in which the cross-sectional area of the internal space becomes the measurement region 4. Area of the measurement region 4 may be appropriately set depending on the object to be measured may be set to 1 cm 2 to 50 cm 2. The material of the wetted part 2 is not particularly limited as long as the same component as the adhering salt does not elute into the recovered liquid, and materials such as resin, metal, glass, and ceramics can be used. For example, an acrylic resin is preferable. Further, the shape of the liquid contact part 2 may be a shape other than a cylindrical shape as long as it can hold the recovered liquid. For example, it may be a rectangular tube having a polygonal cross-sectional shape.

押え部3は、接液部2と金属構造体1を固定するために、1対の押え板30及び留め具31を備えており、金属構造体1及び接液部2を挟持するように押え板30を配置して押え板30の四隅に取り付けた留め具31により固定する。接液部2には、接液部2内に回収液を投入するための開口5が形成されている。そして、各留め具31を均等に締め付けて接液部2が金属構造体1に水密に圧接した状態に設定する。押え板30は、接液部2と同様の材質のものを用いればよく、また、留め具31は、二箇所以上に取り付ければよく、例えば金属製の蝶ネジとナットを用いればよい。 In order to fix the wetted part 2 and the metal structure 1, the presser part 3 includes a pair of presser plates 30 and a fastener 31, and holds the metal structure 1 and the wetted part 2 so as to sandwich the pressed part 3. The plate 30 is arranged and fixed by fasteners 31 attached to the four corners of the presser plate 30. The liquid contact part 2 is formed with an opening 5 for introducing the recovered liquid into the liquid contact part 2. And each fastener 31 is clamp | tightened equally and the liquid-contacting part 2 is set to the state which press-contacted to the metal structure 1 watertightly. The presser plate 30 may be made of the same material as the liquid contact part 2, and the fastener 31 may be attached at two or more locations, for example, a metal wing screw and nut may be used.

次に、図1に示す付着塩分回収治具を用いた測定方法について説明する。まず、一方の押え板30に金属構造体1を載置し、金属構造体1の表面に接液部2を配置する。そして、接液部2の上面に、他方の押え板30を配置して、押え板30同士を留め具31により接続して締付固定する。こうして、金属構造体1に接液部2を密着させることで、金属構造体1の表面に対して所定面積の測定領域4を区画して設定する。 Next, a measurement method using the attached salt content recovery jig shown in FIG. 1 will be described. First, the metal structure 1 is placed on one presser plate 30, and the liquid contact part 2 is disposed on the surface of the metal structure 1. Then, the other presser plate 30 is arranged on the upper surface of the liquid contact part 2, and the presser plates 30 are connected to each other by the fasteners 31 and fastened and fixed. Thus, the measurement area 4 having a predetermined area is defined and set on the surface of the metal structure 1 by bringing the liquid contact portion 2 into close contact with the metal structure 1.

次に、開口5より所定量の回収液を投入し、金属構造体1の表面の付着塩分を回収液に溶解させる。回収液の投入量は、濃度測定に必要な量を投入すればよく、具体的には1ミリリットル〜100ミリリットルの量が好ましい。また、回収液としては、付着塩分が溶解可能な液体であればよく、純水、エタノール等の有機溶媒又はこれらの混合溶液が用いられる。特に純水を用いることが好ましく、純水としては、不純物を含まない比抵抗18.3MΩ・cm以上のものがさらに好ましい。 Next, a predetermined amount of the collected liquid is introduced from the opening 5, and the adhering salt on the surface of the metal structure 1 is dissolved in the collected liquid. The amount of the recovered liquid may be an amount required for concentration measurement, and specifically, an amount of 1 ml to 100 ml is preferable. Further, the recovered liquid may be any liquid that can dissolve the adhering salt, and pure water, an organic solvent such as ethanol, or a mixed solution thereof is used. In particular, it is preferable to use pure water, and as pure water, one having a specific resistance of 18.3 MΩ · cm or more that does not contain impurities is more preferable.

回収液に付着塩分を溶解させる場合、付着塩分が回収液に均一に溶解された状態とする。そのために、付着塩分回収治具に超音波振動を加えて溶解を促進させるようにしてもよい。付着塩分回収具に超音波振動を加える場合、超音波浴に付着塩分回収具を浸漬した状態で超音波振動子を動作させて振動を加えるようにすればよい。動作時間は3分間以上に設定するとよく、3分間より短いと、塩分の種類によっては溶解が不十分となる。また、回収液が撹拌されるように付着塩分回収具を揺動させて溶解を促進させるようにしてもよい。 When adhering salt is dissolved in the recovered liquid, the adhering salt is uniformly dissolved in the recovered liquid. Therefore, you may make it accelerate | stimulate melt | dissolution by applying ultrasonic vibration to an attached salt content recovery jig | tool. When applying ultrasonic vibration to the attached salt content collecting tool, the ultrasonic vibrator may be operated in a state where the attached salt content collecting tool is immersed in an ultrasonic bath to apply vibration. The operation time is preferably set to 3 minutes or longer, and if it is shorter than 3 minutes, dissolution may be insufficient depending on the type of salt. Further, the attached salt content recovery tool may be swung so as to promote the dissolution so that the recovered liquid is stirred.

回収液に付着塩分を溶解させた後、付着塩分回収具より回収液を濃度測定装置に投入して濃度測定を行う。濃度測定については、回収液に含まれるイオン成分ごとに定性定量分析法により測定することができる。定性定量分析法としては、滴定法、比色法、分離分析法などが挙げられる。1mg/L以下の微量のイオン成分の濃度測定では、サプレッサー付イオンクロマトグラフィーを用いた分離分析法が好ましい。 After the adhering salt is dissolved in the recovered liquid, the concentration is measured by putting the recovered liquid into the concentration measuring device from the adhering salt recovering tool. Concentration measurement can be performed by a qualitative quantitative analysis method for each ion component contained in the recovered liquid. Examples of the qualitative quantitative analysis method include a titration method, a colorimetric method, and a separation analysis method. A separation analysis method using ion chromatography with a suppressor is preferable for measuring the concentration of a trace amount of ion components of 1 mg / L or less.

濃度測定により得られた付着塩分濃度から回収液に含まれる付着塩分量が算出される。そして、接液部2のより区画された測定領域4の面積と得られた付着塩分量とから単位面積当たりの付着塩分量を算出することができる。 The amount of adhering salt contained in the recovered liquid is calculated from the adhering salt concentration obtained by concentration measurement. Then, the amount of adhering salt per unit area can be calculated from the area of the measurement region 4 divided by the wetted part 2 and the obtained amount of adhering salt.

付着塩分の濃度を測定する対象物体としては、上述した金属構造体の外に付着塩分による腐食の程度を測定するACMセンサ等のセンサ類が挙げられる。金属構造体の場合には、屋外に設置されて付着塩分により腐食する可能性のある金属材料を用いた部品等の構造体が対象となる。金属の腐食性因子となる付着塩分としては、海塩又は大気汚染物質由来の成分の水溶性イオンを含む塩が挙げられ、水溶性イオンとしては、塩化物イオン、硝酸イオン、亜硝酸イオン、硫酸イオン、フッ素イオン、ナトリウムイオン、カリウムイオン、アンモニウムイオン、マグネシウムイオン、カルシウムイオン、および、NOx、SOx類のイオンで水溶性のものが挙げられる。また、有機酸、次亜塩素酸などの水溶性の腐食性イオンを含む塩も挙げられる。 Examples of the target object for measuring the concentration of the attached salt content include sensors such as an ACM sensor that measures the degree of corrosion due to the attached salt content in addition to the above-described metal structure. In the case of a metal structure, a structure such as a part using a metal material which is installed outdoors and may corrode due to adhering salt is a target. Examples of the attached salt that is a corrosive factor for metals include sea salt or salts containing water-soluble ions of components derived from air pollutants. Examples of water-soluble ions include chloride ions, nitrate ions, nitrite ions, sulfuric acid. Examples of the ions include water-soluble ions, fluorine ions, sodium ions, potassium ions, ammonium ions, magnesium ions, calcium ions, and NOx and SOx ions. Moreover, the salt containing water-soluble corrosive ion, such as organic acid and hypochlorous acid, is also mentioned.

ACMセンサ等のセンサ類では、ガルバニック対を持ち、腐食電流値から大気環境下の腐食性因子を測定して腐食状態を監視するようになっているが、測定表面に実際に付着した塩分量が得られることで、センサによる測定データと付着塩分量との間の相関関係を実際の付着塩分に基づいて定量的に分析することができ、より高精度で腐食状態を監視することが可能となる。 Sensors such as ACM sensors have a galvanic pair and measure corrosive factors in the atmospheric environment from the corrosion current value to monitor the corrosion state. However, the amount of salt actually attached to the measurement surface is As a result, it is possible to quantitatively analyze the correlation between the measurement data from the sensor and the amount of the attached salt, based on the actual attached salt, and to monitor the corrosion state with higher accuracy. .

図2は、別の付着塩分回収具に関する概略構成図である。この例では、図1に示す例と同様に円筒状の接液部6を金属構造体1の表面に配置するが、接液部6の接触する端面に磁石等を取り付けて金属構造体1の表面に磁力により固定する。接液部5を金属構造体1の表面に固定することで、図1に示す例と同様に測定領域7を区画する。接液部6の内側には、回収液を滲み込ませた含浸部8を先端部に取り付けた押圧部9を摺動可能に挿入する。押圧部9は円筒状に形成されており、一方の端部に含浸部8が取り付けられて封止されている。含浸部8は、回収液を滲み込むことができる柔軟性のある含浸部材からなっており、接液部6の内周面に密着した状態で摺接するサイズに形成されている。こうした含浸部材としては、スポンジ等の多孔質材、不織布、織物、編物といった回収液を含浸可能な材料を用いればよく、スポンジ等の多孔質材が測定領域の表面全体に満遍なく密着させることができるので、好ましい。 FIG. 2 is a schematic configuration diagram regarding another attached salt content recovery tool. In this example, the cylindrical wetted part 6 is disposed on the surface of the metal structure 1 as in the example shown in FIG. 1, but a magnet or the like is attached to the end surface of the wetted part 6 that contacts the metal structure 1. It is fixed to the surface by magnetic force. By fixing the wetted part 5 to the surface of the metal structure 1, the measurement region 7 is defined as in the example shown in FIG. Inside the wetted part 6, a pressing part 9 having an impregnated part 8 impregnated with the collected liquid attached to the tip part is slidably inserted. The pressing portion 9 is formed in a cylindrical shape, and an impregnation portion 8 is attached to one end portion and sealed. The impregnation part 8 is made of a flexible impregnation member capable of soaking the recovered liquid, and is formed in a size that is in sliding contact with the inner peripheral surface of the liquid contact part 6 in close contact therewith. As such an impregnated member, a porous material such as a sponge, a material that can be impregnated with a recovered liquid such as a nonwoven fabric, a woven fabric, and a knitted fabric may be used, and the porous material such as a sponge can be uniformly adhered to the entire surface of the measurement region. Therefore, it is preferable.

次に、図2に示す付着塩分回収治具を用いた測定方法について説明する。まず、金属構造体1の表面に接液部6を配置して磁力により固定し、金属構造体1の表面に対して所定面積の測定領域7を区画して設定する。次に、別の容器に所定量の回収液を貯留しておき、貯留した回収液に含浸部8を浸漬して含浸部8に回収液を十分含浸させる。そして、回収液を含浸部8に滲み込ませた状態で押圧部9を接液部6に挿入して含浸部8を測定領域7全体に密着させる。含浸部8を1分間以上測定領域7に密着させた後押圧部9を接液部6から引き抜いて別の容器の回収液中に含浸部8を浸漬する。含浸部8を浸漬した状態で回収液中を十分撹拌し、含浸部8に回収された付着塩分を回収液に溶解させる。 Next, a measurement method using the attached salt recovery jig shown in FIG. 2 will be described. First, the wetted part 6 is disposed on the surface of the metal structure 1 and fixed by magnetic force, and a measurement area 7 having a predetermined area is defined and set on the surface of the metal structure 1. Next, a predetermined amount of the collected liquid is stored in another container, and the impregnated portion 8 is immersed in the stored collected liquid so that the impregnated portion 8 is sufficiently impregnated with the collected liquid. Then, with the recovered liquid infiltrated into the impregnation portion 8, the pressing portion 9 is inserted into the liquid contact portion 6 to bring the impregnation portion 8 into close contact with the entire measurement region 7. After the impregnation part 8 is brought into close contact with the measurement region 7 for 1 minute or more, the pressing part 9 is pulled out from the liquid contact part 6 and the impregnation part 8 is immersed in the collected liquid in another container. The recovered liquid is sufficiently stirred while the impregnated part 8 is immersed, and the adhering salt content recovered in the impregnated part 8 is dissolved in the recovered liquid.

次に、図1に示す付着塩分回収具の場合と同様に、付着塩分が溶解した回収液の付着塩分濃度を測定して単位面積当たりの付着塩分量を算出する。 Next, as in the case of the attached salt content recovery tool shown in FIG. 1, the amount of attached salt content per unit area is calculated by measuring the attached salt concentration of the recovered solution in which the attached salt content is dissolved.

なお、含浸部8を測定領域7に密着させた後、押圧部9内に回収液を投入して撹拌することで測定領域7の付着塩分を回収液中に溶解させ、付着塩分濃度を測定することもできる。 In addition, after making the impregnation part 8 contact | adhere to the measurement area | region 7, the collection | recovery liquid is thrown into the press part 9, and it stirs, the adhesion salt content of the measurement area | region 7 is dissolved in a collection liquid, and adhesion salt content density | concentration is measured. You can also.

以下の実施例により、本発明を詳細に説明する。 The following examples illustrate the invention in detail.

(実施例1)板状の金属構造体(SUS420J2、長さ50mm×幅50mm×厚み1mm)7検体の試験片を6月1日から0.5〜40日間で、日数を変えて屋外に暴露した。これらを本実施例の試験片とした。 (Example 1) Plate-like metal structure (SUS420J2, length 50 mm × width 50 mm × thickness 1 mm) Seven specimens were exposed to the outdoors from June 1 to 0.5 to 40 days, changing the number of days. did. These were used as test pieces of this example.

図1に示す付着塩分回収治具を用いて試験片の表面の付着塩分を回収した。測定領域4の面積は15cmに設定し、留め具31は金属製の蝶ネジとナットを用い、その他の部品はアクリル樹脂製とした。接液部2および押圧部30は、分析の汚染を防ぐために、予め、超純水で洗浄後乾燥した。 The attached salt content on the surface of the test piece was collected using the attached salt content collecting jig shown in FIG. The area of the measurement region 4 was set to 15 cm 2 , the fastener 31 was made of a metal thumb screw and nut, and the other parts were made of acrylic resin. The wetted part 2 and the pressing part 30 were washed with ultrapure water and dried in advance in order to prevent analysis contamination.

次に、この付着塩分回収治具による回収手順を示す試験片を付着塩分回収治具に装着し、接液部2に回収液を20ミリリットル投入した。開口5から回収液が漏れ出さないように、付着塩分回収具の下部と金属構造体1を40℃に設定した超音波浴中に入れて3分間超音波振動を与えた後、超音波浴から取り出した。そして、回収液の一部を採取して、サプレッサー付イオンクロマトグラフィー(日本ダイオネクス社製)を用いて塩化物イオンおよび水溶性イオンの定量分析を行った。得られた付着塩分濃度と測定領域の面積に基づいて付着塩分量(mg/m2;以下「Ws」という)を算出した。なお、全塩化物イオンをNaClとして換算し、付着塩分量とした。結果を表1に示す。 Next, a test piece showing a recovery procedure using the attached salt content collecting jig was attached to the attached salt content collecting jig, and 20 ml of the collected solution was put into the wetted part 2. In order to prevent the recovered liquid from leaking from the opening 5, the lower part of the attached salt content recovery tool and the metal structure 1 are placed in an ultrasonic bath set at 40 ° C. and subjected to ultrasonic vibration for 3 minutes. I took it out. Then, a part of the recovered liquid was collected and subjected to quantitative analysis of chloride ions and water-soluble ions using a suppressor ion chromatography (manufactured by Nippon Dionex). The amount of adhered salt (mg / m 2; hereinafter referred to as “Ws”) was calculated based on the obtained adhered salt concentration and the area of the measurement region. The total chloride ion was converted to NaCl and used as the amount of attached salt. The results are shown in Table 1.

(実施例2)図2に示す付着塩分回収具を用いて、表1の試験片2と5の付着塩分量を測定した。測定領域6の面積は15cmに設定し、含浸部8は樹脂製スポンジを用い、接液部6は磁石により固定するようにした。接液部6、含浸部8および押圧部9は、分析の汚染を防ぐために、予め、超純水で洗浄後乾燥した。まず、含浸部8に回収液1ミリリットルを染み込ませる。そして、接液部6を試験片に磁力で密着させた後、押圧部9を接液部6に挿入して含浸部8を測定領域7に密着させ、押圧部9に回収液19ミリリットルを投入した。押圧部に撹拌ミキサー棒を入れ、低速で撹拌し、付着塩分を溶解させる。その後、回収液の一部を採取して、実施例1と同様に、塩化物イオン濃度をイオンクロマトグラィーで定量分析した。Wsの算出結果を表1に示す。 (Example 2) Using the attached salt content recovery tool shown in FIG. 2, the amount of attached salt content of test pieces 2 and 5 in Table 1 was measured. The area of the measurement region 6 was set to 15 cm 2 , a resin sponge was used for the impregnation part 8, and the liquid contact part 6 was fixed with a magnet. The wetted part 6, the impregnated part 8 and the pressing part 9 were washed with ultrapure water and dried in advance in order to prevent analysis contamination. First, the impregnation part 8 is soaked with 1 ml of the recovered liquid. After the wetted part 6 is brought into close contact with the test piece by magnetic force, the pressing part 9 is inserted into the wetted part 6 to bring the impregnated part 8 into close contact with the measurement region 7 and 19 ml of the recovered liquid is put into the pressed part 9. did. Put a stirring mixer rod into the pressing part and stir at low speed to dissolve the adhering salt. Thereafter, a part of the collected liquid was collected, and the chloride ion concentration was quantitatively analyzed by ion chromatography in the same manner as in Example 1. The calculation result of Ws is shown in Table 1.

(比較例1)
表1の試験片2について、図1の付着塩分回収具の測定領域4と同形で同一面積の領域以外の表面を耐水性粘着テープで被覆し、測定領域4と同様の表面が露出した状態に設定した。粘着テープで被覆した試験片を、超純水100mLを入れたビーカーに浸せきし、これを40℃で、超音波浴中に3分入れた後、超音波浴から取り出した。そして、ビーカー中の超純水の一部を採取して、実施例1と同様に、サプレッサー付イオンクロマトグラフィーによる塩化物イオンおよび水溶性イオンの定量分析を行った。Wsの算出結果を表1に示す。
(Comparative Example 1)
About the test piece 2 of Table 1, the surface other than the area | region of the same shape and the same area as the measurement area | region 4 of the attached salt content recovery tool of FIG. 1 was coat | covered with water-resistant adhesive tape, and the surface similar to the measurement area | region 4 was exposed. Set. The test piece covered with the adhesive tape was dipped in a beaker containing 100 mL of ultrapure water, placed in an ultrasonic bath at 40 ° C. for 3 minutes, and then removed from the ultrasonic bath. Then, a part of ultrapure water in the beaker was collected, and quantitative analysis of chloride ions and water-soluble ions was performed by ion chromatography with a suppressor in the same manner as in Example 1. Table 1 shows the calculation result of Ws.

試験片1〜7で、暴露日数の増加に伴い付着塩分が増加し、Wsも増加する。試験片1は、回収液中の塩化物イオン濃度が低く定量限界であり、Wsが測定不可能であった。これは、屋外暴露期間が半日と短く、付着塩分が1μg/m未満であることが考えられた。一方、Wsが1μg/m以上である試験片2から7は、実施例1にて測定可能であった。比較例1は、超音波浴に浸せき中、試験片と粘着テープ間に回収液が進入し、測定領域以外の表面を完全にマスキングすることができなかったため、実施例1の同試験片のWsに比べて10倍以上となった。また、回収液中に粘着剤からの硝酸イオン、亜硝酸イオン溶出が確認され、耐水性粘着テープ種によっては、付着塩分の定量分析に悪影響を及ぼす可能性があると考えられる。実施例2は、試験片2および5において、実施例1と同量のWsが計測可能であった。 In the test pieces 1 to 7, with the increase in the number of exposure days, the attached salt content increases and Ws also increases. The test piece 1 had a low chloride ion concentration in the recovered liquid, which was the limit of quantification, and Ws could not be measured. This was considered that the outdoor exposure period was as short as half a day, and the attached salt content was less than 1 μg / m 2 . On the other hand, test pieces 2 to 7 having Ws of 1 μg / m 2 or more were measurable in Example 1. In Comparative Example 1, since the recovered liquid entered between the test piece and the adhesive tape during immersion in the ultrasonic bath, and the surface other than the measurement region could not be completely masked, Ws of the test piece of Example 1 More than 10 times. Further, elution of nitrate ions and nitrite ions from the adhesive was confirmed in the recovered liquid, and depending on the type of water-resistant adhesive tape, it is considered that there is a possibility of adversely affecting the quantitative analysis of the adhered salt. In Example 2, the same amount of Ws as in Example 1 could be measured in test pieces 2 and 5.

(実施例3)ACMセンサ(鉄-銀系;株式会社シュリンクス製)の櫛形電極部であるセンサ中心部(表面積11cm)に、NaCl付着量が0.1μg/m〜1000mg/mの所定量となるように希釈した人工海水を水滴状に付着後、60℃のオーブン上で乾燥させた。 (Example 3) NaCl adhesion amount is 0.1 μg / m 2 to 1000 mg / m 2 on the sensor central part (surface area 11 cm 2 ) which is a comb-shaped electrode part of an ACM sensor (iron-silver type; manufactured by Shrinks Co., Ltd.). After the artificial seawater diluted to a predetermined amount of was attached in the form of water droplets, it was dried in an oven at 60 ° C.

NaClを付着させたACMセンサの試験片(番号1〜8、各々3枚)について、実施例1と同様に、付着塩分回収と回収液の塩化物イオンの定量分析をおこなった。分析値は、同量を付着させた試験片3枚の平均値とした。全塩化物イオンをNaClとして換算した。各センサに付着させたNaCl付着量、分析値(Ws)、及び、回収率(Ws/NaCl付着量×100%)の結果を表2に示す。 About the test piece (Nos. 1-8, 3 pieces each) of the ACM sensor to which NaCl was adhered, in the same manner as in Example 1, the collected salt content and the quantitative analysis of chloride ions in the recovered solution were performed. The analysis value was an average value of three test pieces to which the same amount was adhered. All chloride ions were converted as NaCl. Table 2 shows the results of the NaCl adhesion amount, analytical value (Ws), and recovery rate (Ws / NaCl adhesion amount x 100%) adhered to each sensor.

(比較例2)表2の試験片1〜8について、比較例1と同様に、実施例3の測定領域と同形同一面積以外の表面を耐水性粘着テープで被覆した。露出した表面を超純水で湿らせたガーゼで1回拭き取った。次に、ガーゼを超純水20mLに浸して、サプレッサー付イオンクロマトグラフィーによる塩化物イオンの定量分析をおこなった。全塩化物イオンをNaClとして換算した付着塩分量Wsを表2に示す。 (Comparative example 2) About the test pieces 1-8 of Table 2, similarly to the comparative example 1, surfaces other than the measurement area of Example 3 and the same shape same area were coat | covered with the water-resistant adhesive tape. The exposed surface was wiped once with gauze moistened with ultrapure water. Next, the gauze was immersed in 20 mL of ultrapure water, and quantitative analysis of chloride ions was performed by ion chromatography with a suppressor. Table 2 shows the amount of adhering salt Ws in which all chloride ions are converted to NaCl.

実施例3は、0.001mg/m以上のNaClを人為的に付着した試験片3〜8において、Wsが97%以上で回収された。人為的付着した全量が回収されたと考えられる。試験片1は、回収液中の塩化物イオン濃度がイオンクロマト分析の定量限界で、実施例2と比較例2両者ともに検出不可能であった。試験片2は、塩化物イオン濃度の定量分析は可能であったが、実施例3で回収率が40%、比較例2で同率20%と低かった。比較例2はNaCl付着量が1000mg/m以上の試験片8で回収率97%となったが、他試験片の回収率は低かった。 In Example 3, Ws was recovered at 97% or more in test pieces 3 to 8 in which NaCl of 0.001 mg / m 2 or more was artificially attached. It is thought that all the artificially attached amount was recovered. In test piece 1, the chloride ion concentration in the recovered liquid was the limit of quantification of ion chromatography analysis, and both Example 2 and Comparative Example 2 were not detectable. Specimen 2 could be quantitatively analyzed for the chloride ion concentration, but the recovery rate was 40% in Example 3 and 20% in Comparative Example 2, which was as low as 20%. In Comparative Example 2, the recovery rate was 97% for the test piece 8 with the NaCl adhesion amount of 1000 mg / m 2 or more, but the recovery rate of the other test pieces was low.

(実施例4)ACMセンサ4種(鉄-銀系、鉄-炭素系、アルミ-銀系、亜鉛-銀系;株式会社シュリンクス製)を屋外の同地点で、12月1日から30日間の暴露をおこない、大気中の飛来塩粒子の自然付着をおこなった。ACMセンサは自己腐食型であるために、試験後、鉄錆または酸化亜鉛、酸化アルミニウムなどの腐食生成物がセンサ表面に生成していた。これらを試験片1〜4として実施例3と同様に、図1の付着塩分回収具を各センサの櫛形電極部に装着し、付着塩分の回収とその測定をおこない、Wsの結果を表3に示す。 (Example 4) Four types of ACM sensors (iron-silver, iron-carbon, aluminum-silver, zinc-silver; manufactured by Shrinks Co., Ltd.) at the same outdoor location for 30 days from December 1st As a result, the salt particles in the atmosphere naturally adhered. Since the ACM sensor is a self-corrosion type, after the test, corrosion products such as iron rust, zinc oxide, and aluminum oxide were generated on the sensor surface. These samples were used as test pieces 1 to 4 in the same manner as in Example 3, and the attached salt content recovery tool of FIG. 1 was attached to the comb-shaped electrode portion of each sensor, and the collected salt content was collected and measured. Show.

(比較例3)表3の試験片1について、比較例2と同様の試験をおこなった。付着塩分量Wsを表3に示す。 (Comparative Example 3) The test piece 1 shown in Table 3 was tested in the same manner as in Comparative Example 2. The amount of adhering salt Ws is shown in Table 3.

暴露試験は同一の地点および期間でおこなわれたので、全試験片に付着した塩分量は同じである。表3の結果から、本実施例では、センサ種による測定差は±6%以内であった。4種全てのセンサの付着塩分が回収でき、センサの櫛形電極部に限定した箇所、かつ、錆び層などの表面凹凸のある試験片においても付着塩分量が測定できることが確認された。比較例3は、30日間の屋外暴露した錆び層の生成した試験片で、試験片1の実施例3のWs=68mg/mの約59%の回収率と低く、付着塩分の全量回収に至らなかった。 Since the exposure test was conducted at the same point and period, the amount of salt attached to all the test pieces was the same. From the results of Table 3, in this example, the measurement difference depending on the sensor type was within ± 6%. It was confirmed that the amount of adhering salt from all four types of sensors could be collected and the amount of adhering salinity could be measured even in a test piece with surface irregularities such as a rust layer and a portion limited to the comb-shaped electrode portion of the sensor. Comparative Example 3 is a test piece formed with a rust layer exposed outdoors for 30 days. The recovery rate of Ws = 68 mg / m 2 of Example 3 of test piece 1 is as low as about 59%, and the total amount of adhered salt can be recovered. It did not come.

(実施例5)10日間の屋外暴露で飛来海塩粒子を自然付着したACMセンサの試験片1と表2の試験片6の2検体について、実施例3と同様に、図1の付着塩分回収具を装着した。これを超音波浴に0秒、10秒、30秒、1分、2、3、5、6分の各時間入れた後、回収液中の塩化物イオンと硫酸イオンをサプレッサー付イオンクロマトグラフィーで定量分析した。超音波浴に入れた時間に対する塩化物イオンと硫酸イオンの濃度変化を図3に示す。 (Example 5) For two specimens of test piece 1 of ACM sensor to which flying sea salt particles were naturally attached by outdoor exposure for 10 days and test piece 6 of Table 2, the same as in Example 3, the collected salt content recovery of FIG. Wearing tools. After putting this in an ultrasonic bath for 0 seconds, 10 seconds, 30 seconds, 1 minute, 2, 3, 5, 6 minutes, chloride ions and sulfate ions in the recovered solution were subjected to ion chromatography with a suppressor. Quantitative analysis was performed. FIG. 3 shows changes in the concentration of chloride ions and sulfate ions with respect to the time in the ultrasonic bath.

図3より、試験片1の塩化物イオンは超音波浴1分以上において恒量となり、硫酸イオンは3分以上で恒量となった。試験片6は、30秒以降で両イオンとも恒量となった。試験片1は実暴露により被回収部の表面に錆層が発生しており、試験片6よりも付着塩分の回収時間が必要となった。 From FIG. 3, the chloride ion of the test piece 1 became constant in the ultrasonic bath for 1 minute or more, and the sulfate ion became constant in 3 minutes or more. In the test piece 6, both ions became constant after 30 seconds. The test piece 1 had a rust layer on the surface of the portion to be collected due to actual exposure, and more time was needed to recover the adhering salt than the test piece 6.

(実施例6)図2に示す付着塩分回収具を用いて、屋外に設置した構造物の塗装金属壁面3箇所の付着塩分量を測定した。まず、含浸部8に回収液5mLを染み込ませる。そして、接液部5を磁力で密着させた後、押圧部9を接液部6に挿入して含浸部8を塗装金属壁面に60秒押しつける。その後、静かに押圧部9を引き抜き、含浸部8のスポンジを超純水10mLで洗浄し、その洗浄水の塩化物イオン濃度をイオンクロマトグラィーで定量分析した。Wsの結果を表4に示す。 Example 6 Using the attached salt content recovery tool shown in FIG. 2, the amount of attached salt content at three places on the painted metal wall surface of a structure installed outdoors was measured. First, the impregnation part 8 is soaked with 5 mL of the recovered liquid. Then, after the wetted part 5 is brought into close contact with a magnetic force, the pressing part 9 is inserted into the wetted part 6 and the impregnated part 8 is pressed against the coated metal wall surface for 60 seconds. Thereafter, the pressing portion 9 was gently pulled out, the sponge of the impregnation portion 8 was washed with 10 mL of ultrapure water, and the chloride ion concentration of the washing water was quantitatively analyzed by ion chromatography. Table 4 shows the results of Ws.

(実施例7)実施例6で用いた塗装金属壁面から試験片(長さ50mm×幅50mm×厚み1mm)を切り出した。得られた試験片の外気側の表面に対して実施例1と同様に、付着塩分の回収とその測定と算出をおこなった。Wsの結果を表4に示す。 Example 7 A test piece (length 50 mm × width 50 mm × thickness 1 mm) was cut out from the coated metal wall surface used in Example 6. In the same manner as in Example 1, the collected salt content, its measurement and calculation were performed on the surface on the outside air side of the obtained test piece. Table 4 shows the results of Ws.

実施例6と実施例7は、同じ金属構造体からほぼ同量の付着塩分を回収・計測した。構造物を切断せず、また、屋外の現地で簡便に付着塩分を回収できる点で、実施例6のような回収方法が有効である。 In Example 6 and Example 7, almost the same amount of attached salt was recovered and measured from the same metal structure. The recovery method as in Example 6 is effective in that the attached salt content can be easily recovered outdoors without cutting the structure.

1 金属構造体
2 接液部
3 押え部
4 測定領域
5 開口
6 接液部
7 測定領域
8 含浸部
9 押圧部
DESCRIPTION OF SYMBOLS 1 Metal structure 2 Liquid contact part 3 Holding part 4 Measurement area | region 5 Opening 6 Liquid contact part 7 Measurement area 8 Impregnation part 9 Press part

Claims (8)

金属の腐食性因子となる塩分が付着した対象物体の測定表面に回収液を接触させ、対象物体の表面に付着した1μg/m以上の付着塩分を回収液に溶解し、前記回収液の付着塩分濃度を測定し、単位面積当たりの付着塩分量を算出することを特徴とする付着塩分測定方法。 The recovered liquid is brought into contact with the measurement surface of the target object to which the salt that is a corrosive factor of the metal adheres, and 1 μg / m 2 or more of the adhered salt adhered to the surface of the target object is dissolved in the recovered liquid, and the recovered liquid is adhered. A method for measuring the amount of adhering salt, characterized by measuring the salinity concentration and calculating the amount of adhering salt per unit area. 測定表面の所定の面積に区画された測定領域に対して回収液を密封状態に設定して接触させ、測定領域に回収液を接触させた状態で超音波振動を3分間以上加えることを特徴とする請求項1に記載の付着塩分測定方法。   The recovery liquid is set in a sealed state and brought into contact with a measurement area partitioned into a predetermined area on the measurement surface, and ultrasonic vibration is applied for 3 minutes or more in a state where the recovery liquid is in contact with the measurement area. The attached salt content measuring method according to claim 1. 測定表面の所定の面積に区画された測定領域に対して回収液を密封状態に設定して接触させ、測定領域に回収液を接触させた状態で保持することを特徴とする請求項1に記載の付着塩分測定方法。   The recovery liquid is set in a sealed state and brought into contact with a measurement area partitioned into a predetermined area on the measurement surface, and the recovery liquid is held in contact with the measurement area. Of measuring the amount of adhering salt. 測定表面の所定の面積に区画された測定領域に対して回収液を滲み込ませた含浸部材を1分間以上密着させ、密着させた含浸部材を洗浄した回収液の付着塩分濃度を測定することを特徴とする請求項1に記載の付着塩分測定方法。   Impregnating the impregnated member impregnated with the collected liquid for one minute or more to the measurement area partitioned into a predetermined area on the measurement surface, and measuring the adhering salt concentration of the recovered liquid after washing the impregnated member adhered The attached salt content measuring method according to claim 1, characterized in that: 前記回収液が純水であることを特徴とする請求項1から4のいずれかに記載の付着塩分測定方法。 The method for measuring an attached salt content according to any one of claims 1 to 4, wherein the recovered liquid is pure water. 前記対象物体は、金属構造体又は付着塩分による腐食状態を検知するセンサ類であることを特徴とする請求項1から5のいずれかに記載の付着塩分測定方法。 The attached salt content measuring method according to claim 1, wherein the target object is a metal structure or a sensor that detects a corrosion state due to attached salt content. 金属の腐食性因子となる塩分が付着した対象物体の測定表面に固定されて測定領域を区画する接液部と、前記接液部と前記対象物体とを水密に固定する押え部とを備え、前記接液部内に回収液を貯留して前記塩分を溶解させることを特徴とする付着塩分回収具。 A wetted part that is fixed to a measurement surface of a target object to which a salt that is a corrosive factor of the metal is attached and partitions a measurement region; and a presser that fixes the wetted part and the target object in a watertight manner, An attached salt content recovery tool, wherein the recovered liquid is stored in the liquid contact part to dissolve the salt content. 金属の腐食性因子となる塩分が付着した対象物体の測定表面に固定されて測定領域を区画する接液部と、回収液を滲み込ませて保持する含浸部と、前記含浸部が取り付けられるとともに前記接液部内に挿入されて前記含浸部を前記前記対象物体に密着させる押圧部とを備えていることを特徴とする付着塩分回収具。
A wetted part that is fixed to a measurement surface of a target object to which a salt that becomes a corrosive factor of metal adheres and partitions a measurement region, an impregnated part that soaks and holds the recovered liquid, and the impregnated part are attached. An attached salt content recovery tool, comprising: a pressing portion that is inserted into the liquid contact portion and causes the impregnation portion to be in close contact with the target object.
JP2012180008A 2012-08-15 2012-08-15 Deposited salt measurement method and deposited salt collection device Pending JP2014038026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012180008A JP2014038026A (en) 2012-08-15 2012-08-15 Deposited salt measurement method and deposited salt collection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012180008A JP2014038026A (en) 2012-08-15 2012-08-15 Deposited salt measurement method and deposited salt collection device

Publications (1)

Publication Number Publication Date
JP2014038026A true JP2014038026A (en) 2014-02-27

Family

ID=50286279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012180008A Pending JP2014038026A (en) 2012-08-15 2012-08-15 Deposited salt measurement method and deposited salt collection device

Country Status (1)

Country Link
JP (1) JP2014038026A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101680312B1 (en) * 2014-11-28 2016-11-28 삼성중공업 주식회사 Manufacturing apparatus of test piece for measuring salinity
CN113109098A (en) * 2021-04-22 2021-07-13 山东电力研究院 Method and system for real-time remote control of standard sampling operation of multiple sampling point atmospheric soluble salt deposition rate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002202276A (en) * 2000-12-28 2002-07-19 Toshiba Corp Pollution level measuring instrument and measuring method therefor
JP2002333415A (en) * 2001-03-09 2002-11-22 Mitsubishi Electric Corp Measuring device and measuring method of pollutant
JP2003307506A (en) * 2002-02-12 2003-10-31 Dkk Toa Corp Salinity measuring device for structure surface
JP2010151465A (en) * 2008-12-24 2010-07-08 Dkk Toa Corp Salt measuring device of structure surface
JP2012063250A (en) * 2010-09-16 2012-03-29 Fuji Electric Co Ltd Analysis/evaluation method for degree of staining

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002202276A (en) * 2000-12-28 2002-07-19 Toshiba Corp Pollution level measuring instrument and measuring method therefor
JP2002333415A (en) * 2001-03-09 2002-11-22 Mitsubishi Electric Corp Measuring device and measuring method of pollutant
JP2003307506A (en) * 2002-02-12 2003-10-31 Dkk Toa Corp Salinity measuring device for structure surface
JP2010151465A (en) * 2008-12-24 2010-07-08 Dkk Toa Corp Salt measuring device of structure surface
JP2012063250A (en) * 2010-09-16 2012-03-29 Fuji Electric Co Ltd Analysis/evaluation method for degree of staining

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101680312B1 (en) * 2014-11-28 2016-11-28 삼성중공업 주식회사 Manufacturing apparatus of test piece for measuring salinity
CN113109098A (en) * 2021-04-22 2021-07-13 山东电力研究院 Method and system for real-time remote control of standard sampling operation of multiple sampling point atmospheric soluble salt deposition rate
CN113109098B (en) * 2021-04-22 2023-08-25 国网山东省电力公司电力科学研究院 Multi-sampling-point atmospheric soluble salt deposition rate standard sampling operation method and system

Similar Documents

Publication Publication Date Title
JP5630032B2 (en) Corrosion resistance evaluation method for metal materials for automobile steel plate mating parts and corrosion promotion test equipment for metal materials
CN101762453B (en) Accelerated test method of inbuilt electrode simulating non-uniform corrosion of steel bar in concrete
JP6213426B2 (en) Corrosion resistance evaluation method and corrosion resistance evaluation apparatus for painted metal
Lamaka et al. In-situ visualization of local corrosion by Scanning Ion-selective Electrode Technique (SIET)
Doménech‐Carbó et al. ‘One‐Touch’Voltammetry of Microparticles for the Identification of Corrosion Products in Archaeological Lead
CN105784578A (en) Detection method for simulating accelerated corrosion of metal material in atmospheric environment
Wang et al. Influence of temperature and relative humidity on the atmospheric corrosion of zinc in field exposures and laboratory environments by atmospheric corrosion monitor
ATE533054T1 (en) ELECTROCHEMICAL DETECTION WITH METAL MARKED DETECTION AGENT
Mirceski et al. Mechanisms and kinetics of electrode processes at bismuth and antimony film and bare glassy carbon surfaces under square-wave anodic stripping voltammetry conditions
CN105063621B (en) A kind of magnesium alloy metallographic etching agent
JP2014038026A (en) Deposited salt measurement method and deposited salt collection device
Nazir et al. Electrochemical corrosion failure analysis of large complex engineering structures by using micro-LPR sensors
JP3849338B2 (en) Method for evaluating weather resistance of steel and weather resistance measuring apparatus
Pižeta et al. Solid microelectrodes for in situ voltammetric measurements
Han et al. Online monitoring of the atmospheric corrosion of aluminium alloys using electrochemical noise technique
Kim et al. Accelerated prediction methodologies to predict the outdoor exposure lifespan of galvannealed steel
Schindelholz Towards Understanding Surface Wetness and Corrosion Response of Mild Steel in Marine Atmospheres
Nelson et al. Electrochemical deposition of lead for water quality sensing
Ukpaka Detrimental effect of water soluble contaminant on steel/paint interface
KR970001327Y1 (en) Electro-chemical pitting measuring method
Badwe et al. A study of corrosion behavior of Ni-22Cr-13Mo-3W alloy under hygroscopic salt deposits on hot surface
JP2006170737A (en) Method and apparatus for evaluating water corrosiveness
JP5910609B2 (en) Corrosion resistance evaluation method of steel sheet, selection method of corrosion resistance element, and corrosion resistance steel sheet using the same
JP2012063250A (en) Analysis/evaluation method for degree of staining
Yamamoto et al. Time-Dependent Measurement of Hydrogen Penetration into Iron Sheets from a Borate Buffer Solution Using FFT Analysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160621

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170117