JP2014037052A - Workpiece polishing method and polishing liquid - Google Patents

Workpiece polishing method and polishing liquid Download PDF

Info

Publication number
JP2014037052A
JP2014037052A JP2013171429A JP2013171429A JP2014037052A JP 2014037052 A JP2014037052 A JP 2014037052A JP 2013171429 A JP2013171429 A JP 2013171429A JP 2013171429 A JP2013171429 A JP 2013171429A JP 2014037052 A JP2014037052 A JP 2014037052A
Authority
JP
Japan
Prior art keywords
polishing
workpiece
polishing liquid
photocatalyst
cylindrical roller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013171429A
Other languages
Japanese (ja)
Other versions
JP5622158B2 (en
Inventor
Takeshi Tanaka
武司 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ritsumeikan Trust
Original Assignee
Ritsumeikan Trust
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ritsumeikan Trust filed Critical Ritsumeikan Trust
Priority to JP2013171429A priority Critical patent/JP5622158B2/en
Publication of JP2014037052A publication Critical patent/JP2014037052A/en
Application granted granted Critical
Publication of JP5622158B2 publication Critical patent/JP5622158B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rolling element manufacturing method capable of suppressing uneven coloring and glossiness on a surface, sufficiently removing damage generated during preprocessing of workpiece manufacturing, and efficiently obtaining a member of low surface roughness, a workpiece polishing method, polishing liquid, and a polishing device.SOLUTION: For workpiece polishing, abrasive grains including particles made of photocatalysts and having particle sizes of 140 to 550 nm, a fluorescent material, and a substance transmitting light to excite the photocatalyst and the fluorescent material, and solvents are used. A rolling element workpiece polishing device 1 includes a disk-like workpiece support part 20 for swingably supporting a workpiece W, and a disk-like polishing pad 30 disposed to be slid into contact with the surface of the workpiece W supported by the workpiece support part 20, and configured to polish the surface of the workpiece W via polishing liquid while being relatively rotated around a center axis with respect to the workpiece support part 20 to rotate the workpiece W.

Description

本発明は、転動体の製造方法、ワークの研磨方法、研磨液および研磨装置に関する。さらに詳しくは、本発明は、産業機械、自動車、飛行機、船舶、電気電子製品などに用いられる部材の製造に有用な転動体の製造方法、ワークの研磨方法、研磨液および研磨装置に関する。   The present invention relates to a rolling element manufacturing method, a workpiece polishing method, a polishing liquid, and a polishing apparatus. More particularly, the present invention relates to a rolling element manufacturing method, a workpiece polishing method, a polishing liquid, and a polishing apparatus useful for manufacturing members used in industrial machines, automobiles, airplanes, ships, electrical and electronic products, and the like.

産業機械、自動車、飛行機、船舶、電気電子製品などには、転動体などのように相手部材との間で転がり接触および/または滑り接触をする金属部材が用いられている。これらの産業機械、自動車などでは、寿命の向上および稼働時における騒音ならびに発熱量の低減が求められている。そこで、バレル研磨法、超仕上げ研磨法などによる研磨によって前記金属部材の表面粗さを低減させることが提案されている。しかしながら、バレル研磨法には、金属部材の表面に砥粒痕が残りやすく、かつ十分な表面粗さを確保することが困難であるという欠点がある。また、超仕上げ研磨法には、研磨に用いられる装置が高価であり、かつ十分な表面粗さを確保することが困難であるという欠点がある。   In industrial machines, automobiles, airplanes, ships, electrical and electronic products, etc., metal members that make rolling contact and / or sliding contact with other members such as rolling elements are used. In these industrial machines, automobiles, etc., there is a demand for improvement in life and reduction in noise and heat generation during operation. Therefore, it has been proposed to reduce the surface roughness of the metal member by polishing using a barrel polishing method, a superfinish polishing method, or the like. However, the barrel polishing method has the disadvantages that abrasive mark marks are likely to remain on the surface of the metal member and that it is difficult to ensure a sufficient surface roughness. In addition, the superfinish polishing method has a drawback that an apparatus used for polishing is expensive and it is difficult to ensure a sufficient surface roughness.

一方、金属部材を研磨する方法として、例えば、紫外光によって励起されるカチロンと紫外光によって励起される酸化チタンまたは酸化アルミニウムと水とを含む研磨液を用いて紫外光の照射下に金属部材を研磨する方法が提案されている(例えば、非特許文献1参照)。また、非特許文献1には、前記研磨液に紫外光を照射する図示しない光源と、研磨パッド121を有する研磨槽102と、この研磨槽102内に設けられ、太陽歯車131と2つの遊星歯車132とを有する遊星歯車機構103と、この遊星歯車機構103を回転させるモータと、遊星歯車機構103の回転速度を調節する減速機105とを備えた研磨装置101が開示されている(図31参照)。   On the other hand, as a method for polishing a metal member, for example, a metal member is irradiated under ultraviolet light using a polishing liquid containing catilon excited by ultraviolet light and titanium oxide or aluminum oxide excited by ultraviolet light and water. A polishing method has been proposed (see, for example, Non-Patent Document 1). Non-Patent Document 1 discloses a light source (not shown) for irradiating the polishing liquid with ultraviolet light, a polishing tank 102 having a polishing pad 121, a sun gear 131 and two planetary gears provided in the polishing tank 102. There is disclosed a polishing apparatus 101 including a planetary gear mechanism 103 having 132, a motor for rotating the planetary gear mechanism 103, and a speed reducer 105 for adjusting the rotation speed of the planetary gear mechanism 103 (see FIG. 31). ).

千巖吉彦および田中武司、「紫外線により励起された蛍光材料と光触媒による銅の研磨現象について−紫外線励起加工の研究−」、砥粒加工学会誌、第51号、第4巻、pp.232−237Yoshihiko Senjo and Takeshi Tanaka, “About the polishing phenomenon of copper by a fluorescent material excited by ultraviolet rays and a photocatalyst—Study on ultraviolet excitation processing”, Journal of Abrasive Technology, No. 51, Volume 4, pp. 232-237

しかしながら、非特許文献1に記載の研磨液を、転動体用ワークなどのように硬いワークの研磨に用いた場合には、ワークの表面が酸化して黒色化してしまったり、ワーク表面に光沢のムラが生じたりすることがある。また、この場合、ワークを所望の表面粗さに研磨したり、ワークの製造時における前加工の際に生じた傷を十分に取り除いたりすることができないことがある。
また、非特許文献1に記載の研磨装置では、ワークの平面部分の研磨を行なうことができても、曲面部分を効率よく研磨することが困難であり、所望の表面粗さに研磨したり、ワーク製造時における前加工の際に生じた傷を十分に取り除いたりすることが困難である。
However, when the polishing liquid described in Non-Patent Document 1 is used for polishing a hard work such as a rolling element work, the work surface is oxidized and blackened, or the work surface is glossy. Unevenness may occur. In this case, the workpiece may not be polished to a desired surface roughness, or scratches generated during pre-processing during the production of the workpiece may not be sufficiently removed.
Further, in the polishing apparatus described in Non-Patent Document 1, it is difficult to efficiently polish the curved surface portion even if the planar portion of the workpiece can be polished, and polishing to a desired surface roughness, It is difficult to sufficiently remove the scratches generated during the pre-processing at the time of workpiece manufacture.

本発明は、このような事情に鑑みてなされたものであり、表面の呈色および表面における光沢のムラを抑制し、かつワークの製造時における前加工の際に生じた傷を十分に取り除くことができ、表面粗さの低い部材を効率よく得ることができる、転動体の製造方法、ワークの研磨方法、研磨液および研磨装置を提供することを目的とする。   The present invention has been made in view of such circumstances, suppresses surface coloration and uneven gloss on the surface, and sufficiently removes scratches generated during pre-processing during the manufacture of workpieces. An object of the present invention is to provide a rolling element manufacturing method, a workpiece polishing method, a polishing liquid, and a polishing apparatus, which can efficiently obtain a member having a low surface roughness.

すなわち、本発明の要旨は、
(1)転動体用ワークに研磨加工を施す研磨加工工程を含む転動体の製造方法であって、
前記研磨加工工程が、光触媒からなる粒子と蛍光材料と当該光触媒および蛍光材料それぞれを励起させる光を透過する物質からなる砥粒と溶媒とを含有してなる研磨液に前記ワークを接触させるとともに当該研磨液に前記光を照射しながら、前記ワークに研磨加工を施す工程であり、
前記光触媒の粒子径が140〜550nmであることを特徴とする転動体の製造方法、
(2)前記砥粒が、光触媒からなる粒子よりも大きい粒子径を有する粒子である前記(1)に記載の方法、
(3)前記砥粒の粒子径が、1000〜30000nmである前記(1)または(2)に記載の方法、
(4)前記蛍光材料が、一般式(I):
That is, the gist of the present invention is as follows.
(1) A method of manufacturing a rolling element including a polishing process for polishing a work for a rolling element,
In the polishing process, the workpiece is brought into contact with a polishing liquid containing particles made of a photocatalyst, a fluorescent material, abrasive grains made of a substance that transmits light that excites the photocatalyst and the fluorescent material, respectively, and a solvent. It is a step of polishing the workpiece while irradiating the polishing liquid with the light,
A method for producing a rolling element, wherein the photocatalyst has a particle size of 140 to 550 nm,
(2) The method according to (1), wherein the abrasive grains are particles having a larger particle diameter than particles made of a photocatalyst.
(3) The method according to (1) or (2), wherein the abrasive has a particle size of 1000 to 30000 nm,
(4) The fluorescent material has the general formula (I):

(式中、R1およびR2は、それぞれ独立して炭素数1〜4のアルキル基、R3およびR4は、それぞれ独立して炭素数1〜4のアルキル基、Xはハロゲン原子を示す)
で表わされる化合物である前記(1)〜(3)のいずれかに記載の方法、
(5)ワークに研磨加工を施す方法であって、
光触媒からなる粒子径140〜550nmの粒子と蛍光材料と当該光触媒および蛍光材料それぞれを励起させる光を透過する物質からなる砥粒と溶媒とを含有してなる研磨液に前記ワークを接触させるとともに当該研磨液に前記光を照射しながら、前記ワークの研磨加工を行なうことを特徴とするワークの研磨方法、
(6)前記砥粒が、光触媒からなる粒子よりも大きい粒子径を有する粒子である前記(5)に記載の方法、
(7)ワークを研磨するための研磨液であって、
光触媒からなる粒子径140〜550nmの粒子と、蛍光材料と、当該光触媒および蛍光材料それぞれを励起させる光を透過する物質からなる砥粒と、溶媒とを含有することを特徴とする研磨液、
(8)前記砥粒が、光触媒からなる粒子よりも大きい粒子径を有する粒子である前記(7)に記載の研磨液、
(9)研磨液を用いて転動体用ワークの表面を研磨するための研磨装置であって、
前記ワークを揺動可能に支持するための円盤状のワーク支持部と、
前記ワーク支持部に支持された前記ワークの表面と摺接可能に配置され、当該ワーク支持部に対して中心軸回りに相対的に回転することによって前記ワークを回転させながら、前記研磨液を介して当該ワークの表面を研磨する円盤状の研磨パッドと、
前記研磨液を前記ワーク支持部と前記研磨パッドとの間に供給する研磨液供給部と、
を備えていることを特徴とする研磨装置、
(10)前記研磨液が、光触媒からなる粒子径140〜550nmの粒子と蛍光材料と当該光触媒および蛍光材料を励起させる光を透過する砥粒と溶媒とを含有してなる研磨液であり、
前記研磨液中に含まれる光触媒および蛍光材料を励起させる光を照射する光源をさらに備えている前記(9)に記載の研磨装置、
(11)前記容器の少なくとも内壁面が光触媒および蛍光材料を励起させる光を反射する性質を有する前記(10)に記載の研磨装置、
(12)前記ワーク支持部が、ワークを揺動可能に収容可能なワーク支持孔を有する前記(9)〜(11)のいずれかに記載の研磨装置、
(13)前記ワーク支持孔において、ワーク支持部に対して前記研磨パッドを中心軸回りに相対的に回転させたときにワークと接触する側壁部に研磨パッドがさらに設けられている前記(12)に記載の研磨装置、
(14)前記研磨液供給部が前記研磨パッドの回転中心部に前記研磨液を供給するように配置されている前記(9)〜(13)のいずれかに記載の研磨装置、ならびに
(15)前記研磨パッドのワークとの摺接面側の表面に複数の起毛した繊維からなる研磨パッド本体を有しており、当該研磨パッド本体には、放射状のパターンを有する溝が形成されている前記(9)〜(14)のいずれかに記載の研磨装置
に関する。
Wherein R 1 and R 2 are each independently an alkyl group having 1 to 4 carbon atoms, R 3 and R 4 are each independently an alkyl group having 1 to 4 carbon atoms, and X is a halogen atom. )
The method according to any one of (1) to (3), which is a compound represented by:
(5) A method of polishing a workpiece,
The workpiece is brought into contact with a polishing liquid containing particles of a photocatalyst having a particle diameter of 140 to 550 nm, a fluorescent material, abrasive grains made of a substance that transmits light that excites the photocatalyst and the fluorescent material, respectively, and a solvent. A method for polishing a workpiece, wherein the workpiece is polished while irradiating a polishing liquid with the light,
(6) The method according to (5), wherein the abrasive grains are particles having a larger particle diameter than particles made of a photocatalyst.
(7) A polishing liquid for polishing a workpiece,
A polishing liquid comprising: particles having a particle diameter of 140 to 550 nm made of a photocatalyst; a fluorescent material; abrasive grains made of a substance that transmits light that excites the photocatalyst and the fluorescent material; and a solvent,
(8) The polishing liquid according to (7), wherein the abrasive grains are particles having a larger particle diameter than particles made of a photocatalyst.
(9) A polishing apparatus for polishing the surface of a rolling element workpiece using a polishing liquid,
A disc-shaped workpiece support for supporting the workpiece in a swingable manner;
The surface of the work supported by the work support is arranged so as to be slidable, and the work is rotated by rotating relative to the work support around the central axis while passing the polishing liquid. A disc-shaped polishing pad for polishing the surface of the workpiece,
A polishing liquid supply section for supplying the polishing liquid between the work support section and the polishing pad;
A polishing apparatus comprising:
(10) The polishing liquid is a polishing liquid comprising particles having a particle diameter of 140 to 550 nm made of a photocatalyst, a fluorescent material, abrasive grains that transmit light that excites the photocatalyst and the fluorescent material, and a solvent,
The polishing apparatus according to (9), further comprising a light source that emits light that excites the photocatalyst and the fluorescent material contained in the polishing liquid,
(11) The polishing apparatus according to (10), wherein at least an inner wall surface of the container reflects light that excites a photocatalyst and a fluorescent material.
(12) The polishing apparatus according to any one of (9) to (11), wherein the work support portion includes a work support hole that can accommodate the work in a swingable manner.
(13) In the workpiece support hole, the polishing pad is further provided on a side wall portion that comes into contact with the workpiece when the polishing pad is rotated relative to the workpiece support portion around a central axis. The polishing apparatus according to
(14) The polishing apparatus according to any one of (9) to (13), wherein the polishing liquid supply unit is arranged so as to supply the polishing liquid to a rotation center part of the polishing pad, and (15) The polishing pad main body has a polishing pad main body made of a plurality of raised fibers on the surface of the polishing pad on the side in contact with the workpiece, and the polishing pad main body is provided with grooves having a radial pattern ( The polishing apparatus according to any one of 9) to (14).

本発明は、本発明の転動体の製造方法、ワークの研磨方法、研磨液および研磨装置によれば、表面の呈色および表面における光沢のムラを抑制し、かつワークの製造時における前加工の際に生じた傷を十分に取り除くことができ、表面粗さの低い部材を効率よく得ることができる。   According to the present invention, according to the rolling element manufacturing method, the workpiece polishing method, the polishing liquid, and the polishing apparatus of the present invention, the surface coloration and the gloss unevenness on the surface are suppressed, and the pre-processing in manufacturing the workpiece is performed. It is possible to sufficiently remove the scratches generated at the time, and it is possible to efficiently obtain a member having a low surface roughness.

本発明の一実施形態に係る研磨装置の構成を示す概略説明図である。It is a schematic explanatory drawing which shows the structure of the grinding | polishing apparatus which concerns on one Embodiment of this invention. (A)は本発明の一実施形態に係る研磨装置の構成を示す平面説明図、(B)はAA線での断面説明図である。(A) is plane explanatory drawing which shows the structure of the grinding | polishing apparatus which concerns on one Embodiment of this invention, (B) is sectional explanatory drawing in the AA line. 本発明の一実施形態に係る研磨装置のワーク支持部の構成を示す概略説明図である。It is a schematic explanatory drawing which shows the structure of the workpiece | work support part of the grinding | polishing apparatus which concerns on one Embodiment of this invention. (A)は本発明の一実施形態に係る研磨装置のワーク支持部のワーク支持孔の形状を示す平面説明図、(B)は本発明の一実施形態に係る研磨装置のワーク支持部のワーク支持孔の形状を示す側面説明図である。(A) is plane explanatory drawing which shows the shape of the workpiece support hole of the workpiece | work support part of the grinding | polishing apparatus which concerns on one Embodiment of this invention, (B) is the workpiece | work of the workpiece | work support part of the grinding | polishing apparatus which concerns on one Embodiment of this invention. It is side surface explanatory drawing which shows the shape of a support hole. (A)は本発明の一実施形態に係る研磨装置の研磨パッドの構成を示す概略説明図、(B)は(A)のBB線での断面説明図、(C)は(B)の一部拡大説明図である。(A) is schematic explanatory drawing which shows the structure of the polishing pad of the polishing apparatus which concerns on one Embodiment of this invention, (B) is sectional explanatory drawing in the BB line of (A), (C) is one of (B). FIG. 本発明の一実施形態に係る研磨装置の研磨部の一例を示す概略説明図である。It is a schematic explanatory drawing which shows an example of the grinding | polishing part of the grinding | polishing apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る研磨装置の研磨部の一例を示す概略説明図である。It is a schematic explanatory drawing which shows an example of the grinding | polishing part of the grinding | polishing apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る転動体の製造方法の手順の一例を示す工程図である。It is process drawing which shows an example of the procedure of the manufacturing method of the rolling element which concerns on one Embodiment of this invention. (A)は実施例2において、研磨前の銅製の円筒ころ用ワークを観察した結果を示す図面代用写真、(B)は実施例2において、研磨後の銅製の円筒ころを観察した結果を示す図面代用写真である。(A) Drawing substitute photograph which shows the result of observing the workpiece for copper cylindrical rollers before grinding | polishing in Example 2, (B) shows the result of observing the copper cylindrical rollers after grinding | polishing in Example 2. It is a drawing substitute photograph. (A)は実施例7において、研磨前の一般構造用鋼SS41製の円筒ころ用ワークを観察した結果を示す図面代用写真、(B)は実施例7において、研磨後の一般構造用鋼SS41の円筒ころを観察した結果を示す図面代用写真である。(A) Drawing substitute photograph which shows the result of observing the workpiece | work for cylindrical rollers made from general structural steel SS41 before grinding | polishing in Example 7, (B) is general structural steel SS41 after grinding | polishing in Example 7. It is a drawing substitute photograph which shows the result of having observed the cylindrical roller. (A)は実施例9において、研磨前の軸受鋼SUJ2製の球面ころ用ワークを観察した結果を示す図面代用写真、(B)は実施例9において、研磨後の軸受鋼SUJ2製の球面ころを観察した結果を示す図面代用写真である。(A) Drawing substitute photograph which shows the result of observing the work for spherical roller made of bearing steel SUJ2 before grinding in Example 9, (B) is the spherical roller made of bearing steel SUJ2 after grinding in Example 9. It is a drawing substitute photograph which shows the result of having observed. (A)は実施例12において、研磨前の軸受鋼SUJ2製の球面ころ用ワークを観察した結果を示す図面代用写真、(B)は実施例12において、粒子径11500nmの砥粒を含む研磨液を用いて研磨した後の軸受鋼SUJ2製の球面ころを観察した結果を示す図面代用写真、(C)は実施例12において、粒子径1000nmの砥粒を含む研磨液を用いて研磨した後の軸受鋼SUJ2製の球面ころを観察した結果を示す図面代用写真である。(A) Drawing substitute photograph which shows the result of having observed the work for spherical roller work made from bearing steel SUJ2 before grinding in Example 12, and (B) Polishing liquid containing abrasive grains with a particle diameter of 11500 nm in Example 12 (C) is a drawing-substituting photograph showing the result of observing a spherical roller made of bearing steel SUJ2 after being polished using, and in Example 12, after polishing with a polishing liquid containing abrasive grains having a particle diameter of 1000 nm It is drawing substitute photograph which shows the result of having observed the spherical roller made from bearing steel SUJ2. (A)は実施例14において、研磨前の焼入れ鋼製の玉用ワークを観察した結果を示す図面代用写真、(B)は実施例14において、鋭角状パッドを用いた場合の研磨後の焼入れ鋼製の玉を観察した結果を示す図面代用写真、(C)は実施例14において、半球状パッドを用いた場合の研磨後の焼入れ鋼製の玉を観察した結果を示す図面代用写真である。(A) Drawing substitute photograph which shows the result of having observed the work for balls made from hardened steel before grinding in Example 14, (B) Quenching after grinding in case of using an acute angle pad in Example 14 The drawing substitute photograph which shows the result of having observed the steel ball | bowl, (C) is the drawing substitute photograph which shows the result of having observed the hardened steel ball | bowl after grinding | polishing at the time of using a hemispherical pad in Example 14. FIG. . 実施例16において、鋭角状パッドを用いた場合の研磨後の焼入れ鋼製の玉を観察した結果を示す図面代用写真である。In Example 16, it is a drawing substitute photograph which shows the result of having observed the ball | bowl made from hardened steel after grinding | polishing at the time of using an acute-angle-shaped pad. (A)比較例3において、研磨前の焼入れ鋼製の玉用ワークを観察した結果を示す図面代用写真、(B)は比較例3において、鋭角状パッドを用いた場合の研磨後の焼入れ鋼製の玉を観察した結果を示す図面代用写真である。(A) Drawing substitute photograph which shows the result of having observed the workpiece | work for hardened steel balls before grinding | polishing in the comparative example 3, (B) is hardening steel after grinding | polishing in the case of using the acute angle pad in the comparative example 3. It is a drawing substitute photograph which shows the result of having observed the ball made from. (A)比較例6において、研磨前の焼入れ鋼製の玉用ワークを観察した結果を示す図面代用写真、(B)は比較例6において、鋭角状パッドを用いた場合の研磨後の焼入れ鋼製の玉を観察した結果を示す図面代用写真である。(A) Drawing substitute photograph which shows the result of having observed the work for balls made from hardened steel before grinding in comparative example 6, (B) is hardened steel after grinding in case of using acute angle pad in comparative example 6 It is a drawing substitute photograph which shows the result of having observed the ball made from. (A)は比較例8において、研磨前の軸受鋼SUJ2製の球面ころ用ワークを観察した結果を示す図面代用写真、(B)は比較例8において、研磨後の軸受鋼SUJ2製の球面ころを観察した結果を示す図面代用写真である。(A) Drawing substitute photograph which shows the result of observing the work for spherical roller made of bearing steel SUJ2 before grinding in Comparative Example 8, (B) is the spherical roller made of bearing steel SUJ2 after grinding in Comparative Example 8 It is a drawing substitute photograph which shows the result of having observed. (A)は実施例17において、研磨前の軸受鋼SUJ2製の円筒ころ用ワークを観察した結果を示す図面代用写真、(B)は実施例17において、研磨後の軸受鋼SUJ2製の円筒ころを観察した結果を示す図面代用写真である。(A) Drawing substitute photograph which shows the result of having observed the workpiece for cylindrical rollers made from bearing steel SUJ2 before grinding in Example 17, (B) is the cylindrical roller made from bearing steel SUJ2 after grinding in Example 17. It is a drawing substitute photograph which shows the result of having observed. (A)は実施例18において、研磨前の軸受鋼SUJ2製の円筒ころ用ワークを観察した結果を示す図面代用写真、(B)は実施例18において、研磨後の軸受鋼SUJ2製の円筒ころを観察した結果を示す図面代用写真である。(A) Drawing substitute photograph which shows the result of having observed the work for cylindrical rollers made from bearing steel SUJ2 before grinding in Example 18, (B) is the cylindrical roller made from bearing steel SUJ2 after grinding in Example 18. It is a drawing substitute photograph which shows the result of having observed. (A)は実施例19において、研磨前の軸受鋼SUJ2製の円筒ころ用ワークを観察した結果を示す図面代用写真、(B)は実施例19において、研磨後の軸受鋼SUJ2製の円筒ころを観察した結果を示す図面代用写真である。(A) Drawing substitute photograph which shows the result of observing the workpiece | work for cylindrical rollers made from bearing steel SUJ2 before grinding | polishing in Example 19, (B) is the cylindrical roller made from bearing steel SUJ2 after grinding | polishing in Example 19. It is a drawing substitute photograph which shows the result of having observed. (A)は実施例20において、研磨前の軸受鋼SUJ2製の円筒ころ用ワークを観察した結果を示す図面代用写真、(B)は実施例20において、研磨後の軸受鋼SUJ2製の円筒ころを観察した結果を示す図面代用写真である。(A) Drawing substitute photograph which shows the result of having observed the work for cylindrical rollers made from bearing steel SUJ2 before grinding in Example 20, (B) is the cylindrical roller made from bearing steel SUJ2 after grinding in Example 20. It is a drawing substitute photograph which shows the result of having observed. (A)は比較例9において、研磨前の軸受鋼SUJ2製の円筒ころ用ワークを観察した結果を示す図面代用写真、(B)は比較例9において、研磨後の軸受鋼SUJ2製の円筒ころを観察した結果を示す図面代用写真である。(A) Drawing substitute photograph which shows the result of having observed the work for cylindrical rollers made from bearing steel SUJ2 before grinding in comparative example 9, (B) is the cylindrical roller made from bearing steel SUJ2 after grinding in comparative example 9. It is a drawing substitute photograph which shows the result of having observed. (A)は比較例10において、研磨前の軸受鋼SUJ2製の円筒ころ用ワークを観察した結果を示す図面代用写真、(B)は比較例10において、研磨後の軸受鋼SUJ2製の円筒ころを観察した結果を示す図面代用写真である。(A) Drawing substitute photograph which shows the result of having observed the work for cylindrical rollers made of bearing steel SUJ2 before grinding in comparative example 10, (B) is the cylindrical roller made of bearing steel SUJ2 after grinding in comparative example 10 It is a drawing substitute photograph which shows the result of having observed. (A)は実施例21において、研磨前の軸受鋼SUJ2製の円筒ころ用ワークを観察した結果を示す図面代用写真、(B)は実施例21において、研磨後の軸受鋼SUJ2製の円筒ころを観察した結果を示す図面代用写真である。(A) Drawing substitute photograph which shows the result of having observed the workpiece for cylindrical rollers made from bearing steel SUJ2 before grinding in Example 21, (B) is the cylindrical roller made from bearing steel SUJ2 after grinding in Example 21 It is a drawing substitute photograph which shows the result of having observed. (A)は実施例22において、研磨前の軸受鋼SUJ2製の円筒ころ用ワークを観察した結果を示す図面代用写真、(B)は実施例22において、研磨後の軸受鋼SUJ2製の円筒ころを観察した結果を示す図面代用写真である。(A) Drawing substitute photograph which shows the result of having observed the workpiece for cylindrical rollers made from bearing steel SUJ2 before grinding in Example 22, (B) is the cylindrical roller made from bearing steel SUJ2 after grinding in Example 22. It is a drawing substitute photograph which shows the result of having observed. (A)は実施例23において、研磨前の軸受鋼SUJ2製の円筒ころ用ワークを観察した結果を示す図面代用写真、(B)は実施例23において、研磨後の軸受鋼SUJ2製の円筒ころを観察した結果を示す図面代用写真である。(A) Drawing substitute photograph which shows the result of having observed the work for cylindrical rollers made from bearing steel SUJ2 before grinding in Example 23, (B) is the cylindrical roller made from bearing steel SUJ2 after grinding in Example 23 It is a drawing substitute photograph which shows the result of having observed. (A)は実施例24において、研磨前の軸受鋼SUJ2製の円筒ころ用ワークを観察した結果を示す図面代用写真、(B)は実施例24において、研磨後の軸受鋼SUJ2製の円筒ころを観察した結果を示す図面代用写真である。(A) Drawing substitute photograph which shows the result of observing the workpiece | work for cylindrical rollers made from bearing steel SUJ2 before grinding | polishing in Example 24, (B) is the cylindrical roller made from bearing steel SUJ2 after grinding | polishing in Example 24. It is a drawing substitute photograph which shows the result of having observed. (A)は比較例11において、研磨前の軸受鋼SUJ2製の円筒ころ用ワークを観察した結果を示す図面代用写真、(B)は比較例11において、研磨後の軸受鋼SUJ2製の円筒ころを観察した結果を示す図面代用写真である。(A) Drawing substitute photograph which shows the result of having observed the work for cylindrical rollers made of bearing steel SUJ2 before grinding in comparative example 11, (B) is the cylindrical roller made of bearing steel SUJ2 after grinding in comparative example 11. It is a drawing substitute photograph which shows the result of having observed. (A)は比較例12において、研磨前の軸受鋼SUJ2製の円筒ころ用ワークを観察した結果を示す図面代用写真、(B)は比較例12において、研磨後の軸受鋼SUJ2製の円筒ころを観察した結果を示す図面代用写真である。(A) Drawing substitute photograph which shows the result of having observed the work for cylindrical rollers made of bearing steel SUJ2 before grinding in comparative example 12, (B) is the cylindrical roller made of bearing steel SUJ2 after grinding in comparative example 12. It is a drawing substitute photograph which shows the result of having observed. (A)は比較例13において、研磨前の軸受鋼SUJ2製の円筒ころ用ワークを観察した結果を示す図面代用写真、(B)は比較例13において、研磨後の軸受鋼SUJ2製の円筒ころを観察した結果を示す図面代用写真である。(A) Drawing substitute photograph which shows the result of observing the workpiece for cylindrical rollers made of bearing steel SUJ2 before grinding in Comparative Example 13, (B) is the cylindrical roller made of bearing steel SUJ2 after grinding in Comparative Example 13 It is a drawing substitute photograph which shows the result of having observed. 従来の研磨装置の構成を示す概略説明図である。It is a schematic explanatory drawing which shows the structure of the conventional grinding | polishing apparatus.

1.転動体の製造方法
本発明の転動体の製造方法は、転動体用ワークに研磨加工を施す研磨加工工程を含む転動体の製造方法であって、前記研磨加工工程は、光触媒からなる粒子と蛍光材料と当該光触媒および蛍光材料それぞれを励起させる光(以下、「励起光」ともいう)を透過する物質からなる砥粒と溶媒とを含有している研磨液に前記ワークを接触させるとともに当該研磨液に前記光(励起光)を照射しながら、前記ワークに研磨加工を施す工程であり、前記光触媒の粒子径が140〜550nmであることを特徴とする。
1. A rolling element manufacturing method of the present invention is a rolling element manufacturing method including a polishing process for polishing a rolling element work, wherein the polishing process includes particles made of a photocatalyst and fluorescence. The workpiece is brought into contact with a polishing solution containing abrasive grains made of a material that transmits materials and light that excites the photocatalyst and the fluorescent material (hereinafter also referred to as “excitation light”) and a solvent, and the polishing solution In this step, the workpiece is polished while being irradiated with the light (excitation light), and the particle diameter of the photocatalyst is 140 to 550 nm.

本発明の転動体の製造方法では、転動体用ワークに研磨加工を施す際に、光触媒からなる粒子径140〜550nmの粒子と蛍光材料と当該光触媒および蛍光材料それぞれを励起させる光を透過する物質からなる砥粒と溶媒とを励起光照射下に併用している点に1つの特徴がある。したがって、本発明の転動体の製造方法によれば、ワークの表面の呈色およびワーク表面における光沢のムラを抑制し、かつワークの製造時における前加工の際に生じた傷を十分に取り除くことができ、表面粗さの低い転動体を、短時間に高い効率で、しかも低コストで製造することができる。   In the rolling element manufacturing method of the present invention, when polishing the rolling element workpiece, particles that are made of a photocatalyst having a particle diameter of 140 to 550 nm, a fluorescent material, and a substance that transmits light that excites the photocatalyst and the fluorescent material respectively. One feature is that the abrasive grains and the solvent are used together under irradiation with excitation light. Therefore, according to the rolling element manufacturing method of the present invention, it is possible to suppress the coloration of the surface of the workpiece and the unevenness of the gloss on the surface of the workpiece, and sufficiently remove the scratches generated during the pre-processing during the manufacturing of the workpiece. Therefore, a rolling element having a low surface roughness can be produced in a short time with high efficiency and at low cost.

本発明の転動体の製造方法によって製造された転動体は、低い表面粗さを有するので、使用時における騒音および発熱量の低減が期待される。また、かかる転動体を、例えば、軸受の転動体として用いた場合には、当該軸受の長寿命化することが期待される。   Since the rolling element produced by the method for producing a rolling element of the present invention has a low surface roughness, it is expected to reduce noise and heat generation during use. Further, when such a rolling element is used, for example, as a rolling element of a bearing, it is expected that the life of the bearing is extended.

従来、金属製のワークに研磨加工を施す際に、研磨液として、光触媒からなる粒子と蛍光材料と溶媒とからなる研磨液を用いる場合、光触媒からなる粒子は、光触媒作用を十分に発揮させて化学研磨を効率よく行なう観点から、粒子径が小さく表面積が大きい粒子であることが望ましいと考えられていた。しかしながら、本発明者らは、かかる研磨液を用い、転動体用ワークなどのように硬さが高い金属製のワークの研磨加工を試みたところ、ワークが呈色してしまううえに、ワーク表面における光沢のムラが生じ、ワークの製造時における前加工の際に生じた傷を十分に取り除くことができず、十分な表面粗さにまで研磨することが困難であることが判明した。そこで、本発明者らは、鋭意研究を重ねたところ、光触媒からなる粒子と蛍光材料と溶媒とに加え、当該光触媒および蛍光材料それぞれを励起させる光を透過する物質からなる砥粒を用いるとともに、光触媒からなる粒子として、粒子径140〜550nmの粒子を用いたところ、転動体用ワークなどのように硬さが高い金属製のワークが、呈色せず、ワーク表面における光沢のムラを抑制することができ、ワークの製造時における前加工の際に生じた傷を十分に取り除くことができ、しかも、従来の超仕上げ研磨加工およびバレル研磨加工では到達し得ない低い表面粗さにまで短時間に効率よく研磨されていることが見出された。本発明は、本発明者らによって見出されたかかる知見に基づくものである。   Conventionally, when polishing work is performed on a metal workpiece, when a polishing liquid composed of particles made of a photocatalyst, a fluorescent material, and a solvent is used as a polishing liquid, the particles made of a photocatalyst exhibit sufficient photocatalytic action. From the viewpoint of efficiently performing chemical polishing, it has been considered that particles having a small particle size and a large surface area are desirable. However, the present inventors tried to polish a metal work having a high hardness such as a rolling element work using such a polishing liquid. As a result, it was found that it was difficult to remove the scratches generated during the pre-processing during the production of the workpiece, and it was difficult to polish to a sufficient surface roughness. Therefore, the present inventors have conducted extensive research, and in addition to particles made of a photocatalyst, a fluorescent material, and a solvent, in addition to using abrasive grains made of a substance that transmits light that excites the photocatalyst and the fluorescent material, When particles having a particle diameter of 140 to 550 nm are used as particles made of a photocatalyst, a metal workpiece having a high hardness such as a rolling element workpiece is not colored and gloss unevenness on the workpiece surface is suppressed. It is possible to sufficiently remove the scratches generated during the pre-processing in the production of the workpiece, and to a low surface roughness that cannot be achieved by conventional super-finish polishing and barrel polishing in a short time. Was found to be efficiently polished. The present invention is based on such findings found by the present inventors.

本発明の転動体の製造方法は、図8に示されるように、例えば、前加工工程S1−1、表面硬化処理工程S1−2および研磨加工工程S1−3を含む。前記転動体としては、例えば、円筒ころ、円錐ころ、玉、球面ころなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。   As shown in FIG. 8, the method for manufacturing a rolling element of the present invention includes, for example, a pre-processing step S1-1, a surface hardening processing step S1-2, and a polishing processing step S1-3. Examples of the rolling elements include cylindrical rollers, tapered rollers, balls, and spherical rollers, but the present invention is not limited to such examples.

前加工工程S1−1では、転動体用材料を所定の形状に加工して、相手部材との間で転がり接触および/または滑り接触をする転がり摺動面を形成する部分に研磨取代を少なくとも有する素形材を得る。   In the pre-processing step S1-1, the rolling element material is processed into a predetermined shape, and at least a grinding allowance is provided in a portion that forms a rolling sliding surface that makes rolling contact and / or sliding contact with the counterpart member. Obtain a raw material.

前記原材料は、転動体の製造に適したものであればよい。かかる転動体用材料としては、例えば、単金属;非鉄合金;一般構造用鋼、機械構造用鋼、軸受鋼などの鉄系合金などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。本発明の転動体の製造方法では、これらの転動体用材料のなかでも、軸受鋼を好適に用いることができる。前記軸受鋼としては、例えば、SUJ2、SUJ3、SUJ4、SUJ5などの高炭素クロム軸受鋼;Z鋼(日本精工(株)製)、EP鋼(日本精工(株)製)、SHX鋼(日本精工(株)製)などの高速用耐熱鋼などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。なお、本発明においては、転動体用材料として、一般構造用鋼または機械構造用鋼に焼入れ処理を施すことによって得られる焼入れ鋼も好適に用いることができる。   The raw material may be any material suitable for manufacturing rolling elements. Examples of such rolling element materials include single metals; non-ferrous alloys; iron-based alloys such as general structural steel, mechanical structural steel, and bearing steel, but the present invention is limited to such examples. It is not a thing. In the rolling element manufacturing method of the present invention, bearing steel can be suitably used among these rolling element materials. Examples of the bearing steel include high carbon chromium bearing steels such as SUJ2, SUJ3, SUJ4, and SUJ5; Z steel (manufactured by Nippon Seiko Co., Ltd.), EP steel (manufactured by Nippon Seiko Co., Ltd.), SHX steel (Nippon Seiko Co., Ltd.). However, the present invention is not limited to such examples. In the present invention, a hardened steel obtained by subjecting a general structural steel or a mechanical structural steel to a quenching treatment can also be suitably used as the rolling element material.

つぎに、表面硬化処理工程S1−2では、前加工工程S1−1で得られた素形材に対して表面硬化処理を施し、転動体用ワークを得る。   Next, in surface hardening treatment process S1-2, surface hardening processing is performed with respect to the shaped material obtained by pre-processing process S1-1, and the workpiece for rolling elements is obtained.

前記転動体用ワークとしては、例えば、転動体に対応する形状に加工され、かつ研磨取代を有する転動体用ワークなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。   Examples of the rolling element workpiece include a rolling element workpiece processed into a shape corresponding to the rolling element and having a grinding allowance, but the present invention is not limited to such examples.

前記表面硬化処理としては、例えば、浸炭処理、浸炭窒化処理、焼入れ処理、高周波焼入れ処理、焼きもどし処理などの熱処理、ショットピーニングなどのピーニング加工などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらの表面硬化処理は、製造対象の転動体の種類に応じて、2種類以上を適宜組み合わせて行なうことができる。本工程で得られる転動体用ワークの硬さ(ロックウェル硬さ)は、本工程において採用された表面硬化処理の種類、転動体用材料の種類などによって異なるが、通常、転動体用原材料として高炭素クロム軸受鋼を用いる場合、好ましくは60〜67、より好ましくは61〜65である。   Examples of the surface hardening treatment include carburizing treatment, carbonitriding treatment, quenching treatment, induction hardening treatment, heat treatment such as tempering treatment, peening processing such as shot peening, etc. It is not limited. These surface hardening treatments can be performed by appropriately combining two or more types according to the type of rolling element to be manufactured. The hardness of the rolling element workpiece obtained in this step (Rockwell hardness) varies depending on the type of surface hardening treatment adopted in this step, the type of rolling element material, etc., but usually as a rolling element raw material. When high carbon chromium bearing steel is used, it is preferably 60 to 67, more preferably 61 to 65.

その後、研磨加工工程S1−3では、転動体用ワークを研磨液に接触させるとともに当該研磨液に前記光を照射しながら、当該転動体用ワークの前記転がり摺動面を形成する部分に研磨加工を施すことにより、所望の表面粗さを有する転がり摺動面を形成して転動体を得る。転動体用ワークの研磨には、例えば、転動体用ワークが転動体用ワークである場合、後述の研磨装置を用いることができる。なお、本発明の転動体の製造方法に用いられる研磨液については、後述する。   Thereafter, in the polishing step S1-3, the rolling element workpiece is brought into contact with the polishing liquid and the polishing process is performed on a portion of the rolling element work that forms the rolling sliding surface while irradiating the polishing liquid with the light. Is applied to form a rolling sliding surface having a desired surface roughness to obtain a rolling element. For polishing the rolling element workpiece, for example, when the rolling element workpiece is a rolling element workpiece, a polishing apparatus described later can be used. In addition, the polishing liquid used for the manufacturing method of the rolling element of this invention is mentioned later.

転動体用ワークの研磨時間は、転動体用ワークの大きさ、種類などによって異なることから、転動体用ワークの大きさ、種類などに応じて適宜設定することが好ましい。   Since the polishing time of the rolling element workpiece varies depending on the size and type of the rolling element workpiece, it is preferable that the polishing time is appropriately set according to the size and type of the rolling element workpiece.

研磨液に照射する光の種類は、研磨液中に含まれる光触媒および蛍光材料それぞれの種類などによって異なることから、研磨液中に含まれる光触媒および蛍光材料の種類などに応じて適宜選択することが好ましい。光の照射時間は、研磨時間と同じである。   Since the type of light irradiated to the polishing liquid varies depending on the type of the photocatalyst and fluorescent material contained in the polishing liquid, it can be appropriately selected according to the type of photocatalyst and fluorescent material contained in the polishing liquid. preferable. The light irradiation time is the same as the polishing time.

転動体用ワークを研磨するときの研磨液の温度は、より低い表面粗さを有する転動体を得る観点から、好ましくは15℃以上、より好ましくは20℃以上であり、過度の酸化による呈色およびエッチピットの発生を防止する観点から、好ましくは50℃以下、より好ましくは35℃以下である。   From the viewpoint of obtaining a rolling element having a lower surface roughness, the temperature of the polishing liquid when polishing the rolling element workpiece is preferably 15 ° C. or higher, more preferably 20 ° C. or higher, and coloration due to excessive oxidation. From the viewpoint of preventing the generation of etch pits, it is preferably 50 ° C. or lower, more preferably 35 ° C. or lower.

なお、本発明においては、研磨加工工程S1−3以外の工程は、前加工工程S1−1および表面硬化処理工程S1−2のみに限定されるものではなく、必要により、他の工程を行なうことができる。また、本発明においては、表面硬化処理工程S1−2を行なわなくてもよい。   In the present invention, processes other than the polishing process S1-3 are not limited to the pre-process S1-1 and the surface hardening process S1-2, and other processes are performed as necessary. Can do. Moreover, in this invention, it is not necessary to perform surface hardening treatment process S1-2.

[ワークの研磨方法]
本発明のワークの研磨方法は、ワークに研磨加工を施す方法であって、光触媒からなる粒子径140〜550nmの粒子と蛍光材料と当該光触媒および蛍光材料それぞれを励起させる光を透過する物質からなる砥粒と溶媒とを含有してなる研磨液に前記ワークを接触させるとともに当該研磨液に前記光を照射しながら、前記ワークの研磨加工を行なうことを特徴とする。
[Work polishing method]
The method for polishing a workpiece according to the present invention is a method for polishing a workpiece, comprising particles having a particle diameter of 140 to 550 nm made of a photocatalyst, a fluorescent material, and a substance that transmits light that excites the photocatalyst and the fluorescent material, respectively. The workpiece is brought into contact with a polishing liquid containing abrasive grains and a solvent, and the workpiece is polished while irradiating the polishing liquid with the light.

本発明のワークの研磨方法では、ワークの表面の研磨加工を行なうに際して、光触媒からなる粒子径140〜550nmの粒子と蛍光材料と当該光触媒および蛍光材料それぞれを励起させる光を透過する物質からなる砥粒と溶媒とを含有している研磨液を用いる点に1つの特徴がある。したがって、本発明のワークの研磨方法によれば、ワークとして、例えば、軸受鋼からなるワーク、表面硬化処理が施されたワークなどをはじめ、硬いワークを用いた場合であっても、ワークの表面の呈色およびワーク表面における光沢のムラを抑制し、かつワークの製造時における前加工の際に生じた傷を十分に取り除くことができる。しかも、本発明のワークの研磨方法によれば、短時間で高い研磨効率で所望の表面粗さまで研磨することができ、所望の表面粗さの部材を高い製造効率で得ることができる。なお、本発明のワークの研磨方法に用いられる研磨液については、後述する。   In the workpiece polishing method of the present invention, when polishing the surface of the workpiece, an abrasive comprising a photocatalyst particle having a particle diameter of 140 to 550 nm, a fluorescent material, and a substance that transmits light that excites the photocatalyst and the fluorescent material, respectively. One feature is that a polishing liquid containing grains and a solvent is used. Therefore, according to the workpiece polishing method of the present invention, as a workpiece, for example, a workpiece made of bearing steel, a workpiece subjected to surface hardening treatment, or the like, even when a hard workpiece is used, the surface of the workpiece And the unevenness of gloss on the workpiece surface can be suppressed, and scratches generated during the pre-processing during the production of the workpiece can be sufficiently removed. Moreover, according to the workpiece polishing method of the present invention, it is possible to polish to a desired surface roughness with high polishing efficiency in a short time, and a member having a desired surface roughness can be obtained with high production efficiency. The polishing liquid used in the workpiece polishing method of the present invention will be described later.

前記ワークを構成する材料としては、例えば、金属などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。金属としては、例えば、銅、ニッケル、チタンなどの単金属;ベリリウム銅、アルミニウム合金、超硬合金、などの非鉄合金;一般構造用鋼、機械構造用鋼(例えば、機械構造用高炭素鋼など)、軸受鋼、工具鋼などの鉄系合金などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。本発明のワークの研磨方法によれば、これらの金属のなかでも、軸受鋼などのように硬い金属を呈色させることなく、好適に研磨することができる。   Examples of the material constituting the workpiece include metals, but the present invention is not limited to such examples. Examples of metals include single metals such as copper, nickel, and titanium; non-ferrous alloys such as beryllium copper, aluminum alloys, and cemented carbides; general structural steels and mechanical structural steels (for example, high carbon steels for mechanical structures) ), And ferrous alloys such as bearing steel and tool steel, but the present invention is not limited to such examples. According to the workpiece polishing method of the present invention, among these metals, polishing can be suitably performed without coloring a hard metal such as bearing steel.

前記ワークは、表面硬化処理を施されたワークであってもよい。   The workpiece may be a workpiece subjected to a surface hardening treatment.

本発明のワークの研磨方法によって研磨するのに好適なワークの硬さ(ロックウェル硬さ)は、好ましくは60〜67、より好ましくは61〜65である。   The workpiece hardness (Rockwell hardness) suitable for polishing by the workpiece polishing method of the present invention is preferably 60 to 67, more preferably 61 to 65.

前記ワークの研磨加工は、前記研磨液を用いる代わりに前記研磨液から砥粒のみを取り除いた研磨液を用いる以外は前記ワークの研磨加工と同様に前記金属製のワークの研磨加工を行なったときに当該ワークの表面が酸化して呈色する場合と同様の条件(例えば、光触媒、蛍光材料および溶媒それぞれの種類、研磨液における光触媒からなる粒子および蛍光材料それぞれの含有率、研磨液のpH、研磨時間、研磨温度など)下で行なうことができる。   When the workpiece is polished, the metal workpiece is polished in the same manner as the workpiece except that a polishing solution obtained by removing only abrasive grains from the polishing solution is used instead of using the polishing solution. The conditions similar to the case where the surface of the workpiece is oxidized and colored (for example, the types of the photocatalyst, the fluorescent material and the solvent, the content of the photocatalyst particles and the fluorescent material in the polishing liquid, the pH of the polishing liquid, Polishing time, polishing temperature, etc.).

ワークの研磨は、研磨液を保持しうるパッド上で行なうことができる。ワークが、転動体用ワークである場合には、例えば、後述の研磨装置を用いることができる。   The workpiece can be polished on a pad capable of holding a polishing liquid. When the work is a rolling element work, for example, a polishing apparatus described later can be used.

ワークの研磨時間は、ワークの大きさおよび種類、ワークに用いられている金属の種類などによって異なることから、ワークの大きさおよび種類、ワークに用いられている材料の種類などに応じて適宜設定することが好ましい。ワークの研磨時間は、ワークが、例えば、軸受鋼からなるワークである場合、通常、好ましくは15〜120分間、より好ましくは30〜60分間である。   The workpiece polishing time varies depending on the size and type of the workpiece, the type of metal used in the workpiece, etc., so it is set appropriately according to the size and type of the workpiece, the type of material used in the workpiece, etc. It is preferable to do. When the work is a work made of bearing steel, for example, the work polishing time is usually preferably 15 to 120 minutes, more preferably 30 to 60 minutes.

研磨液に照射する光の種類および波長は、研磨液中に含まれる光触媒および蛍光材料それぞれの種類などによって異なることから、研磨液中に含まれる光触媒および蛍光材料の種類などに応じて適宜選択することが好ましい。光の照射時間は、研磨時間と同じである。   Since the type and wavelength of light applied to the polishing liquid vary depending on the type of the photocatalyst and fluorescent material contained in the polishing liquid, they are appropriately selected according to the type of photocatalyst and fluorescent material contained in the polishing liquid. It is preferable. The light irradiation time is the same as the polishing time.

ワークを研磨するときの研磨液の温度は、より低い表面粗さを有する部材を得る観点から、好ましくは15℃以上、より好ましくは20℃以上であり、過度の酸化による呈色ならびにエッチピットの発生を防止する観点から、好ましくは50℃以下、より好ましくは35℃以下である。   From the viewpoint of obtaining a member having a lower surface roughness, the temperature of the polishing liquid when polishing the workpiece is preferably 15 ° C. or higher, more preferably 20 ° C. or higher. From the viewpoint of preventing generation, it is preferably 50 ° C. or lower, more preferably 35 ° C. or lower.

[研磨液]
本発明の研磨液は、ワークを研磨するための研磨液であって、光触媒からなる粒子径140〜550nmの粒子と、蛍光材料と、当該光触媒および蛍光材料それぞれを励起させる光を透過する物質からなる砥粒と、溶媒とを含有することを特徴とする。本発明の研磨液は、前記光触媒からなる粒子径140〜550nmの粒子と蛍光材料と当該光触媒および蛍光材料を励起させる光を透過する砥粒と溶媒とが併用されているため、ワークとして、例えば、軸受鋼などのような高い硬さ、高い疲れ強さおよび高い耐磨耗性を有する金属製のワークなどを用いた場合であっても、ワークの表面の呈色およびワーク表面における光沢のムラを抑制しつつ、ワークの製造時における前加工の際に生じた傷を十分に取り除くことができ、高い研磨効率で研磨することができ、表面粗さの低い部材を効率よく得ることができる。
[Polishing liquid]
The polishing liquid of the present invention is a polishing liquid for polishing a workpiece, and includes a particle having a particle diameter of 140 to 550 nm made of a photocatalyst, a fluorescent material, and a substance that transmits light that excites the photocatalyst and the fluorescent material, respectively. It is characterized by containing an abrasive grain and a solvent. In the polishing liquid of the present invention, particles having a particle diameter of 140 to 550 nm made of the photocatalyst, a fluorescent material, abrasive grains that transmit light that excites the photocatalyst and the fluorescent material, and a solvent are used in combination. Even when using a metal workpiece with high hardness, high fatigue strength and high wear resistance such as bearing steel, the color of the workpiece surface and uneven gloss on the workpiece surface It is possible to sufficiently remove the scratches generated during the pre-processing during the manufacture of the workpiece, to polish with high polishing efficiency, and to efficiently obtain a member having a low surface roughness.

前記ワークに用いられる金属は、前述のワークの研磨方法におけるワークに用いられる金属と同様である。本発明の研磨液は、例えば、転動体用ワークなどのように硬いワークなどの研磨に好適に用いることができる。   The metal used for the workpiece is the same as the metal used for the workpiece in the workpiece polishing method described above. The polishing liquid of the present invention can be suitably used for polishing, for example, a hard work such as a rolling element work.

前記ワークは、前述のワークの研磨方法におけるワークと同様である。   The workpiece is the same as the workpiece in the workpiece polishing method described above.

前記光触媒は、紫外光応答型光触媒であってもよく、可視光応答型光触媒であってもよい。前記光触媒としては、例えば、チタン酸化物、酸化亜鉛、三酸化タングステン、酸化カドミウム、酸化インジウム、酸化銀、二酸化マンガン、酸化銅、酸化鉄(III)、五酸化バナジウム、二酸化スズなどの金属酸化物;硫化カドミウム、硫化亜鉛、硫化インジウム、硫化銅、硫化モリブデン、硫化タングステン、硫化ビスマスなどの金属硫化物;セレン化インジウム(III)、セレン化タングステン、テルル化カドミウムなどの金属カルコゲナイドなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。前記光触媒は、単独で用いてもよく、本発明の目的を阻害しない範囲で、2種類以上を混合して用いてもよい。前記光触媒は、白金原子、銀原子などをさらに担持させたものであってもよく、窒素原子、硫黄原子などをさらにドープしたものであってもよい。   The photocatalyst may be an ultraviolet light responsive photocatalyst or a visible light responsive photocatalyst. Examples of the photocatalyst include metal oxides such as titanium oxide, zinc oxide, tungsten trioxide, cadmium oxide, indium oxide, silver oxide, manganese dioxide, copper oxide, iron (III) oxide, vanadium pentoxide, and tin dioxide. Metal sulfides such as cadmium sulfide, zinc sulfide, indium sulfide, copper sulfide, molybdenum sulfide, tungsten sulfide and bismuth sulfide; metal chalcogenides such as indium (III) selenide, tungsten selenide and cadmium telluride The present invention is not limited to such examples. The said photocatalyst may be used independently and may mix and use 2 or more types in the range which does not inhibit the objective of this invention. The photocatalyst may further carry a platinum atom, a silver atom or the like, or may further be doped with a nitrogen atom or a sulfur atom.

前記光触媒のなかでは、化学的安定性が極めて優れ、長時間の使用に耐えることができ、ワークに対して高い密着性を示して研磨効率を高めることができる観点から、チタン酸化物が好ましい。前記チタン酸化物としては、例えば、アナターゼ型二酸化チタン、プルカイト型二酸化チタン、ルチル型二酸化チタンなどの二酸化チタンが挙げられるが、本発明は、かかる例示のみに限定されるものではない。これらのチタン酸化物のなかでは、化学的安定性が極めて優れ、長時間の使用に耐えることができ、ワークに対して高い密着性を示して研磨効率を高めることができる観点から、二酸化チタンが好ましく、アナターゼ型酸化チタンがより好ましい。   Among the photocatalysts, titanium oxide is preferable from the viewpoint that it has excellent chemical stability, can withstand long-term use, and exhibits high adhesion to a workpiece to increase polishing efficiency. Examples of the titanium oxide include titanium dioxide such as anatase-type titanium dioxide, pulukite-type titanium dioxide, and rutile-type titanium dioxide. However, the present invention is not limited to such examples. Among these titanium oxides, titanium dioxide is excellent in terms of chemical stability, can withstand long-term use, and exhibits high adhesion to a workpiece to increase polishing efficiency. Preferably, anatase type titanium oxide is more preferable.

前記光触媒からなる粒子の粒子径は、ワークの呈色を抑制し、かつワークの加工精度を高める観点から、140nm以上であり、好ましくは150nm以上、より好ましくは180nm以上、さらに好ましくは200nm以上である。前記光触媒からなる粒子の粒子径の上限は、十分な光触媒作用を有する範囲で適宜選択することができ、通常、入手および取り扱いが容易であり、しかも十分な光触媒作用が得られることから、好ましくは550nm以下、より好ましくは500nm以下、さらに好ましくは450nm以下である。かかる粒子径は、研磨対象のワークに用いられる材料の種類などによって好適な光触媒作用の大きさが異なることから、研磨対象のワークに用いられる材料の種類などに応じて前記範囲から適宜設定することが望ましい。   The particle diameter of the particles composed of the photocatalyst is 140 nm or more, preferably 150 nm or more, more preferably 180 nm or more, and further preferably 200 nm or more, from the viewpoint of suppressing the coloration of the work and increasing the processing accuracy of the work. is there. The upper limit of the particle size of the particles made of the photocatalyst can be appropriately selected within a range having sufficient photocatalytic action, and is usually easy to obtain and handle, and preferably provides sufficient photocatalytic action. It is 550 nm or less, More preferably, it is 500 nm or less, More preferably, it is 450 nm or less. Such a particle size is appropriately set from the above range depending on the type of material used for the workpiece to be polished because the suitable photocatalytic action size varies depending on the type of material used for the workpiece to be polished. Is desirable.

なお、本明細書において、「粒子径」とは、透過型電子顕微鏡による観察に基づく数平均粒子径をいう。なお、粒子が凝集している場合は、前記「粒子径」は、透過型電子顕微鏡による観察に基づく凝集粒子の数平均粒子径を意味する。   In the present specification, “particle diameter” refers to the number average particle diameter based on observation with a transmission electron microscope. When the particles are aggregated, the “particle diameter” means the number average particle diameter of the aggregated particles based on observation with a transmission electron microscope.

研磨液中における光触媒からなる粒子の含有量は、ワークの呈色を抑制するとともに研磨効率を高める観点から、好ましくは0.5質量%以上、より好ましくは2.5質量%以上、さらに好ましくは5.0質量%以上であり、過度の光触媒作用を抑制して研磨対象の金属製のワークの加工精度を高める観点から、好ましくは20質量%以下、より好ましくは15質量%以下、さらに好ましくは10質量%以下である。   The content of the particles composed of a photocatalyst in the polishing liquid is preferably 0.5% by mass or more, more preferably 2.5% by mass or more, and still more preferably from the viewpoint of suppressing the coloration of the work and increasing the polishing efficiency. From the viewpoint of suppressing excessive photocatalysis and increasing the processing accuracy of a metal workpiece to be polished, it is preferably 20% by mass or less, more preferably 15% by mass or less, and still more preferably 5.0% by mass or more. It is 10 mass% or less.

前記蛍光材料は、光が照射されることによって励起状態となり、蛍光を発する物質である。かかる蛍光材料を励起させる光は、使用時における操作容易性を確保する観点から、前記光触媒を励起させる光と同じであることが好ましい。   The fluorescent material is a substance that is excited by being irradiated with light and emits fluorescence. The light that excites the fluorescent material is preferably the same as the light that excites the photocatalyst from the viewpoint of ensuring ease of operation during use.

前記蛍光材料としては、例えば、一般式(I):   Examples of the fluorescent material include general formula (I):

(式中、R1およびR2は、それぞれ独立して炭素数1〜4のアルキル基、R3およびR4は、それぞれ独立して炭素数1〜4のアルキル基、Xはハロゲン原子を示す)
で表わされる化合物(カチロン染料など)、スピロン染料、塩基性染料、酸性染料(ブリリアントブルー)などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。前記蛍光材料は、単独で用いてもよく、本発明の目的を阻害しない範囲で、2種類以上を混合して用いてもよい。かかる蛍光材料の中では、ワークに用いられる金属との反応性に優れることから、一般式(I)で表わされる化合物が好ましい。
Wherein R 1 and R 2 are each independently an alkyl group having 1 to 4 carbon atoms, R 3 and R 4 are each independently an alkyl group having 1 to 4 carbon atoms, and X is a halogen atom. )
The compounds represented by (Cathlon dye, etc.), spirone dyes, basic dyes, acid dyes (brilliant blue) and the like are exemplified, but the present invention is not limited to such examples. The said fluorescent material may be used independently and may be used in mixture of 2 or more types in the range which does not inhibit the objective of this invention. Among such fluorescent materials, a compound represented by the general formula (I) is preferable because of excellent reactivity with a metal used for a workpiece.

一般式(I)において、R1およびR2は、それぞれ独立して炭素数1〜4のアルキル基である。炭素数1〜4のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、イソブチル基、tert−ブチル基などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。R1およびR2は、研磨効率を高める観点から、メチル基であることが好ましい。また、一般式(I)において、R3およびR4は、それぞれ独立して炭素数1〜4のアルキル基である。炭素数1〜4のアルキル基としては、R1およびR2における炭素数1〜4のアルキル基と同様のものが例示されるが、本発明は、かかる例示のみに限定されるものではない。R3およびR4は、研磨効率を高める観点から、エチル基であることが好ましい。一般式(I)において、Xは、ハロゲン原子である。ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。一般式(I)で表わされる化合物のなかでは、研磨効率を高める観点から、一般式(I)において、R1およびR2がメチル基であり、R3およびR4がエチル基であり、かつXが塩素原子である化合物〔1H−ベンジミダゾリウム,2−[7−(ジエチルアミノ)−2−オキソ−2H−1−ベンゾピラン−3−イル]−1,3−ジメチル−,クロライド〕が好ましい。 In the general formula (I), R 1 and R 2 are each independently an alkyl group having 1 to 4 carbon atoms. Examples of the alkyl group having 1 to 4 carbon atoms include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an isobutyl group, and a tert-butyl group. It is not limited to. R 1 and R 2 are preferably methyl groups from the viewpoint of increasing the polishing efficiency. In the general formula (I), R 3 and R 4 are each independently an alkyl group having 1 to 4 carbon atoms. Examples of the alkyl group having 1 to 4 carbon atoms are the same as those of the alkyl group having 1 to 4 carbon atoms in R 1 and R 2, but the present invention is not limited to such examples. R 3 and R 4 are preferably ethyl groups from the viewpoint of increasing the polishing efficiency. In general formula (I), X is a halogen atom. Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, but the present invention is not limited only to such illustration. Among the compounds represented by the general formula (I), from the viewpoint of increasing the polishing efficiency, in the general formula (I), R 1 and R 2 are methyl groups, R 3 and R 4 are ethyl groups, and A compound wherein X is a chlorine atom [1H-benzimidazolium, 2- [7- (diethylamino) -2-oxo-2H-1-benzopyran-3-yl] -1,3-dimethyl-, chloride] is preferable. .

前記研磨液中における光触媒からなる粒子の含有量は、ワークの呈色を抑制するとともに研磨効率を高める観点から、好ましくは0.5質量%以上、より好ましくは2.5質量%以上、さらに好ましくは5.0質量%以上であり、過度の光触媒作用を抑制して研磨対象のワークの加工精度を高める観点から、好ましくは20質量%以下、より好ましくは15質量%以下、さらに好ましくは10質量%以下である。また、研磨効率を高めるとともに、研磨対象の金属製のワークの加工精度を高める観点から、光触媒1モルあたりの蛍光材料の量は、0.02〜1.0モルであることが好ましい。   The content of the particles composed of the photocatalyst in the polishing liquid is preferably 0.5% by mass or more, more preferably 2.5% by mass or more, and further preferably from the viewpoint of suppressing the coloration of the work and increasing the polishing efficiency. Is 5.0% by mass or more, and is preferably 20% by mass or less, more preferably 15% by mass or less, and still more preferably 10% by mass from the viewpoint of suppressing excessive photocatalysis and increasing the processing accuracy of the workpiece to be polished. % Or less. Moreover, it is preferable that the amount of the fluorescent material per 1 mol of the photocatalyst is 0.02 to 1.0 mol from the viewpoint of increasing the polishing efficiency and increasing the processing accuracy of the metal workpiece to be polished.

前記砥粒は、前記光触媒および前記蛍光材料それぞれを励起させる光を透過させる物質からなる。前記砥粒に用いられる物質としては、例えば、酸化アルミニウムなどの紫外光を透過させる化合物;ダイヤモンドなどの炭素材料、水晶、ルチル、アメジスト、透明ジルコニアなどの可視光を透過させる化合物などが挙げられる。前記砥粒は、単独で用いてもよく、本発明の目的を阻害しない範囲で、2種類以上を混合して用いてもよい。前記砥粒は、光触媒の種類、蛍光材料の種類などによって透過させるべき光の種類が異なることから、光触媒の種類、蛍光材料の種類などに応じて適宜選択されることが好ましい。例えば、光触媒が二酸化チタンであり、かつ蛍光材料が一般式(I)において、R1およびR2がメチル基であり、R3およびR4がエチル基であり、かつXが塩素原子である化合物〔1H−ベンジミダゾリウム,2−[7−(ジエチルアミノ)−2−オキソ−2H−1−ベンゾピラン−3−イル]−1,3−ジメチル−,クロライド〕である場合、砥粒は、研磨液中において、当該砥粒の近傍に存在する二酸化チタンおよび蛍光材料に対して紫外光を効率よく照射して励起させることによって研磨効率をより一層高めることができることから、紫外光を透過させる化合物、好ましくは酸化アルミニウムからなる粒子である。前記酸化アルミニウムのなかでは、靱性に富み、一般的に過度の鋭利な切れ刃を有さず低い表面粗さを得るのに適した形状であり、化学的に安定であることから、α型酸化アルミニウムが好ましい。 The abrasive grains are made of a material that transmits light that excites the photocatalyst and the fluorescent material, respectively. Examples of the substance used for the abrasive grains include a compound that transmits ultraviolet light such as aluminum oxide; a carbon material such as diamond; a compound that transmits visible light such as crystal, rutile, amethyst, and transparent zirconia. The said abrasive grain may be used independently and may mix and use 2 or more types in the range which does not inhibit the objective of this invention. The abrasive grains are preferably selected as appropriate depending on the type of photocatalyst, the type of fluorescent material, and the like because the type of light to be transmitted differs depending on the type of photocatalyst, the type of fluorescent material, and the like. For example, a compound in which the photocatalyst is titanium dioxide, the fluorescent material is general formula (I), R 1 and R 2 are methyl groups, R 3 and R 4 are ethyl groups, and X is a chlorine atom In the case of [1H-benzimidazolium, 2- [7- (diethylamino) -2-oxo-2H-1-benzopyran-3-yl] -1,3-dimethyl-, chloride], the abrasive grains are polished. In the liquid, since the polishing efficiency can be further enhanced by efficiently irradiating and exciting ultraviolet light to the titanium dioxide and the fluorescent material existing in the vicinity of the abrasive grains, a compound that transmits ultraviolet light, Preferably, the particles are made of aluminum oxide. Among the aluminum oxides, it is rich in toughness and generally has a shape suitable for obtaining a low surface roughness without having an excessively sharp cutting edge, and is chemically stable. Aluminum is preferred.

前記砥粒の粒子径は、ワークの呈色を抑制するとともに研磨効率を高くする観点から、好ましくは1000nm以上、より好ましくは2000nm以上であり、ワークの表面の加工精度を高くし、表面粗さを小さくする観点から、好ましくは30000nm以下、より好ましくは11500nm以下、さらに好ましくは4000nm以下である。   The particle diameter of the abrasive grains is preferably 1000 nm or more, more preferably 2000 nm or more from the viewpoint of suppressing the coloration of the workpiece and increasing the polishing efficiency, and increases the processing accuracy of the surface of the workpiece, thereby increasing the surface roughness. From the viewpoint of reducing the thickness, it is preferably 30000 nm or less, more preferably 11500 nm or less, and still more preferably 4000 nm or less.

なお、研磨液を用いて研磨する対象となるワークが、表面硬化処理が施された金属製のワークである場合、高い研磨効率で研磨し、表面粗さの低い金属部材を得る観点から、前記砥粒は、光触媒からなる粒子よりも大きい粒子径を有する粒子であることが好ましい。この場合、前記砥粒の粒子径と光触媒からなる粒子の粒子径との比(砥粒/光触媒)は、好ましくは20/11以上であり、ワークの呈色を抑制するとともにワークの表面の加工精度を高める観点から、好ましくは1500/7以下である。   In addition, when the workpiece to be polished using the polishing liquid is a metal workpiece subjected to surface hardening treatment, the polishing is performed with high polishing efficiency, and from the viewpoint of obtaining a metal member with low surface roughness, The abrasive grains are preferably particles having a larger particle diameter than particles made of a photocatalyst. In this case, the ratio (abrasive / photocatalyst) of the particle diameter of the abrasive grains to the particle diameter of the photocatalyst is preferably 20/11 or more, and suppresses the coloration of the work and processes the surface of the work. From the viewpoint of improving the accuracy, it is preferably 1500/7 or less.

前記研磨液中における前記砥粒の含有量は、ワークの呈色を抑制するとともに研磨効率を高める観点から、好ましくは0.5質量%以上、より好ましくは2.5質量%以上、さらに好ましくは5.0質量%以上であり、研磨対象の金属製のワークの加工精度を高める観点から、好ましくは20質量%以下、より好ましくは15質量%以下、さらに好ましくは10質量%以下である。また、研磨効率を高めるとともに研磨対象の金属製のワークの加工精度を高める観点から、光触媒1モルあたりの砥粒の量は、0.07〜3.7モルであることが好ましい。   The content of the abrasive grains in the polishing liquid is preferably 0.5% by mass or more, more preferably 2.5% by mass or more, and further preferably from the viewpoint of suppressing the coloration of the workpiece and increasing the polishing efficiency. From the viewpoint of improving the processing accuracy of a metal workpiece to be polished, it is preferably 20% by mass or less, more preferably 15% by mass or less, and further preferably 10% by mass or less. Further, from the viewpoint of increasing the polishing efficiency and increasing the processing accuracy of the metal workpiece to be polished, the amount of abrasive grains per mole of the photocatalyst is preferably 0.07 to 3.7 moles.

なお、研磨液を用いて研磨する対象となるワークが、表面硬化処理が施された金属製のワークである場合、高い研磨効率で研磨し、表面粗さの低い金属部材を得る観点から、前記研磨液中における前記砥粒の含有量は、前記研磨液中における前記光触媒の含有量よりも多いことが好ましい。   In addition, when the workpiece to be polished using the polishing liquid is a metal workpiece subjected to surface hardening treatment, the polishing is performed with high polishing efficiency, and from the viewpoint of obtaining a metal member with low surface roughness, It is preferable that the content of the abrasive grains in the polishing liquid is larger than the content of the photocatalyst in the polishing liquid.

前記溶媒は、前記光触媒、蛍光材料および砥粒を懸濁させるのに適した溶媒であればよい。かかる溶媒としては、例えば、水などが挙げられるが、本発明は、かかる例示のみに限定されるものではない。前記溶媒は、単独で用いてもよく、2種類以上を混合して用いてもよい。   The solvent may be any solvent suitable for suspending the photocatalyst, the fluorescent material, and the abrasive grains. Examples of such a solvent include water, but the present invention is not limited to such examples. The said solvent may be used independently and may mix and use 2 or more types.

研磨液に用いられる溶媒が水または水を含む溶媒である場合、研磨液のpHは、過度の酸化による呈色ならびにエッチピットの発生を防止する観点から、好ましくは2以上、より好ましくは3以上であり、より低い表面粗さを有する部材を得る観点から、好ましくは7以下、より好ましくは6以下である。   When the solvent used for the polishing liquid is water or a solvent containing water, the pH of the polishing liquid is preferably 2 or more, more preferably 3 or more, from the viewpoint of preventing coloration due to excessive oxidation and generation of etch pits. From the viewpoint of obtaining a member having a lower surface roughness, it is preferably 7 or less, more preferably 6 or less.

なお、本発明の研磨液は、本発明の目的を阻害しない範囲で、種々の助剤をさらに含有していてもよい。   In addition, the polishing liquid of this invention may further contain various adjuvants in the range which does not inhibit the objective of this invention.

2.研磨装置
つぎに、本発明の一実施形態に係る金属製の転動体用ワークの表面を研磨するための研磨装置について、添付図面を参照しながら説明する。図1は、本発明の一実施形態に係る研磨装置の構成を示す概略説明図である。図2(A)は、本発明の一実施形態に係る研磨装置の構成を示す平面説明図であり、図2(B)はAA線での断面説明図である。本実施形態においては、前述した研磨液を用いて円筒ころ用ワークを研磨する場合を例として挙げて説明する。なお、図1および図2(A)において、簡略化の観点から、研磨液の記載を省略している。
2. Next, a polishing apparatus for polishing the surface of a metal rolling element work according to an embodiment of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic explanatory view showing a configuration of a polishing apparatus according to an embodiment of the present invention. FIG. 2A is a plan explanatory view showing a configuration of a polishing apparatus according to an embodiment of the present invention, and FIG. 2B is a cross-sectional explanatory view taken along line AA. In this embodiment, the case where a cylindrical roller workpiece is polished using the above-described polishing liquid will be described as an example. In FIG. 1 and FIG. 2A, the description of the polishing liquid is omitted from the viewpoint of simplification.

研磨装置1は、研磨部2と、この研磨部2を駆動および/または制御するため駆動部や制御部を収容している台座3と、光源4とを備えている(図1参照)。   The polishing apparatus 1 includes a polishing unit 2, a pedestal 3 that houses a drive unit and a control unit for driving and / or controlling the polishing unit 2, and a light source 4 (see FIG. 1).

研磨部2は、容器10と、円筒ころ用ワークWを支持する円盤状のワーク支持部20と、研磨液を介して円筒ころ用ワークWの表面を研磨する円盤状の研磨パッド30と、ワーク支持部20および研磨パッド30の間に前述した研磨液を供給する研磨液供給部40とを備えている〔図1、図2(A)および(B)参照〕。   The polishing unit 2 includes a container 10, a disk-shaped workpiece support unit 20 that supports the cylindrical roller workpiece W, a disk-shaped polishing pad 30 that polishes the surface of the cylindrical roller workpiece W via a polishing liquid, A polishing liquid supply unit 40 that supplies the above-described polishing liquid is provided between the support unit 20 and the polishing pad 30 (see FIGS. 1, 2A, and 2B).

容器10は、有底円筒状の形状を有する容器である。かかる容器10は、光源4から照射される光を反射する性質を有する材料より構成される。容器10を構成する材料としては、光源4から照射される光によって異なるが、例えば、ポリプロピレン樹脂などの紫外光を反射する材料;ポリエチレン樹脂、ポリスチレン樹脂、アクリロニトリル・ブタジエン・スチレン樹脂(ABS樹脂)、フェノール樹脂、メラミン樹脂、アルミニウムなどの可視光を反射する材料などが挙げられる。なお、本発明においては、光源4から照射される光を容器10の内壁で反射させることによって研磨液中の光触媒および蛍光材料の励起をさらに効率よく行なうことができる。したがって、本発明においては、容器10の内壁のみが、光源4から照射される光を反射する性質を有する材料によって構成されていてもよい。   The container 10 is a container having a bottomed cylindrical shape. The container 10 is made of a material having a property of reflecting light emitted from the light source 4. The material constituting the container 10 varies depending on the light irradiated from the light source 4, but for example, a material that reflects ultraviolet light such as polypropylene resin; polyethylene resin, polystyrene resin, acrylonitrile-butadiene-styrene resin (ABS resin), Examples thereof include materials that reflect visible light, such as phenol resins, melamine resins, and aluminum. In the present invention, the photocatalyst and the fluorescent material in the polishing liquid can be excited more efficiently by reflecting the light emitted from the light source 4 on the inner wall of the container 10. Therefore, in the present invention, only the inner wall of the container 10 may be made of a material having a property of reflecting light emitted from the light source 4.

ワーク支持部20は、容器10内に収納されている。ワーク支持部20の中心軸上には、研磨液供給部40の一端部がワーク支持部20を貫通するように一体的に設けられている。これにより、研磨液供給部40によって研磨液を研磨パッド30の回転中心部に供給することが可能となっている。また、本実施形態においては、研磨液供給部40は、図示しない天板部に固定されており、かかる研磨液供給部40によって、ワーク支持部20が中心軸回りに回転できないように固定されている。   The work support unit 20 is accommodated in the container 10. On the central axis of the workpiece support 20, one end of the polishing liquid supply unit 40 is integrally provided so as to penetrate the workpiece support 20. As a result, the polishing liquid supply unit 40 can supply the polishing liquid to the center of rotation of the polishing pad 30. Further, in the present embodiment, the polishing liquid supply unit 40 is fixed to a not-shown top plate part, and is fixed by the polishing liquid supply unit 40 so that the workpiece support unit 20 cannot rotate around the central axis. Yes.

ワーク支持部20は、軸方向に貫通したワーク支持孔21を有している〔図2(A)および(B)参照〕。かかるワーク支持孔21内に円筒ころ用ワークWが収容されることにより、円筒ころ用ワークWは、ワーク支持部20によって揺動可能に支持される。また、ワーク支持孔21内に収容された円筒ころ用ワークWの一部は、研磨液供給部40から供給された研磨液Pに浸漬される。   The work support part 20 has a work support hole 21 penetrating in the axial direction (see FIGS. 2A and 2B). By accommodating the cylindrical roller workpiece W in the workpiece support hole 21, the cylindrical roller workpiece W is supported by the workpiece support portion 20 so as to be swingable. A part of the cylindrical roller workpiece W accommodated in the workpiece support hole 21 is immersed in the polishing liquid P supplied from the polishing liquid supply unit 40.

ワーク支持孔21における円筒ころ用ワークWの移動方向前方の側壁部には、円筒ころ用ワークWと摺接して研磨する側壁パッド22が設けられている(図3参照)。なお、図3においては、ワーク支持孔21を一部省略して記載している。側壁パッド22は、ワーク支持部20に対して研磨パッド30を中心軸回りに相対的に回転させたときに円筒ころ用ワークWと摺接する。かかる側壁パッド22における円筒ころ用ワークWとの摺接面側の表面には複数の繊維からなる起毛層が形成されている(図示せず)。かかる起毛層を構成する繊維の長さは、円筒ころ用ワークWの回転を大きく妨げない程度に円筒ころ用ワークWを研磨するに適した長さであればよい。前記繊維の長さは、通常、円筒ころ用ワークWを十分に研磨する観点から、好ましくは1mm以上、より好ましくは1.5mm以上であり、円筒ころ用ワークWの回転を十分に行なう観点から、好ましくは3mm以下、より好ましくは2.5mm以下である。   A side wall pad 22 that is slidably contacted with the cylindrical roller workpiece W and polished is provided on the side wall portion of the workpiece support hole 21 in the moving direction of the cylindrical roller workpiece W (see FIG. 3). In FIG. 3, the work support hole 21 is partially omitted. The side wall pad 22 is in sliding contact with the cylindrical roller workpiece W when the polishing pad 30 is rotated relative to the workpiece support portion 20 around the central axis. A raised layer composed of a plurality of fibers is formed on the surface of the side wall pad 22 on the side in contact with the cylindrical roller workpiece W (not shown). The length of the fibers constituting the raised layer may be a length suitable for polishing the cylindrical roller workpiece W to such an extent that the rotation of the cylindrical roller workpiece W is not significantly hindered. The length of the fiber is usually 1 mm or more, more preferably 1.5 mm or more from the viewpoint of sufficiently polishing the cylindrical roller workpiece W, and from the viewpoint of sufficiently rotating the cylindrical roller workpiece W. , Preferably 3 mm or less, more preferably 2.5 mm or less.

ワーク支持孔21は、ワーク支持部20の上方から中心軸方向に見て、長方形状を示す〔図4(A)、21a参照〕。ここで、長さaは、式(1):
長さa=(2.0〜2.5)×円筒ころの直径D1 (1)
を満たす長さであり、長さbは、式(2):
長さb=(3.0〜4.0)×円筒ころの長さL1 (2)
を満たす長さである。
The work support hole 21 has a rectangular shape when viewed from above the work support part 20 in the central axis direction (see FIGS. 4A and 21a). Here, the length a is expressed by the formula (1):
Length a = (2.0 to 2.5) × Cylindrical roller diameter D 1 (1)
The length b satisfies the formula (2):
Length b = (3.0 to 4.0) × Cylindrical roller length L 1 (2)
It is the length which satisfies.

研磨パッド30は、容器10内の底部に一体的に配置され、研磨パッド30と容器10とは一体回転可能になっている。また、研磨パッド30は、ワーク支持部20に支持された円筒ころ用ワークWの表面と摺接可能に配置されている〔図2(B)参照〕。   The polishing pad 30 is integrally disposed on the bottom of the container 10 so that the polishing pad 30 and the container 10 can rotate integrally. Further, the polishing pad 30 is disposed so as to be slidable in contact with the surface of the cylindrical roller workpiece W supported by the workpiece support section 20 (see FIG. 2B).

研磨パッド30は、プラスチック製の有縁プレート31と、研磨パッド本体32とからなる〔図5(A)および(B)参照〕。研磨パッド本体32は、複数の起毛した繊維32aからなり、有縁プレート31における円筒ころ用ワークWとの摺接面側の表面に付設されている〔図5(B)および(C)参照〕。かかる研磨パッド本体32には、90°毎に円筒ころ用ワークWが研磨パッド30の外側および内側に交互に移動するように遠心方向ベクトルと求心方向ベクトルとを変化さする放射状のパターンを有する溝33が形成されている。   The polishing pad 30 includes a plastic edge plate 31 and a polishing pad main body 32 (see FIGS. 5A and 5B). The polishing pad main body 32 is composed of a plurality of brushed fibers 32a, and is attached to the surface of the edged plate 31 on the sliding contact surface side with the cylindrical roller workpiece W (see FIGS. 5B and 5C). . The polishing pad main body 32 has a groove having a radial pattern that changes the centrifugal direction vector and the centripetal direction vector so that the cylindrical roller workpiece W alternately moves outside and inside the polishing pad 30 every 90 °. 33 is formed.

かかる研磨パッド本体32を構成する繊維の長さは、円筒ころ用ワークWに回転力を与え、かつ円筒ころ用ワークWを研磨するに適した長さであればよい。前記繊維の長さは、通常、円筒ころ用ワークWを十分に研磨する観点から、好ましくは2.0mm以上、より好ましくは2.3mm以上であり、円筒ころ用ワークWの回転を十分に行なう観点から、好ましくは3mm以下、より好ましくは2.5mm以下である。なお、研磨パッド本体32を構成する繊維の長さは、円筒ころ用ワークWを効率よく研磨する観点から、前記側壁パッド22を構成する繊維の長さよりも長いことが好ましい。   The length of the fibers constituting the polishing pad main body 32 may be a length suitable for applying a rotational force to the cylindrical roller workpiece W and polishing the cylindrical roller workpiece W. The length of the fiber is usually preferably 2.0 mm or more, more preferably 2.3 mm or more from the viewpoint of sufficiently polishing the cylindrical roller workpiece W, and the cylindrical roller workpiece W is sufficiently rotated. From the viewpoint, it is preferably 3 mm or less, more preferably 2.5 mm or less. In addition, it is preferable that the length of the fiber which comprises the polishing pad main body 32 is longer than the length of the fiber which comprises the said side wall pad 22 from a viewpoint of grind | polishing the workpiece W for cylindrical rollers efficiently.

研磨装置1の台座3には、図2に示されるように、容器10を回転駆動させる回転軸60と、この回転軸60を駆動させる駆動部70と、駆動部70の動作を制御する制御部80とが収容されている。   As shown in FIG. 2, the pedestal 3 of the polishing apparatus 1 includes a rotating shaft 60 that rotates the container 10, a driving unit 70 that drives the rotating shaft 60, and a control unit that controls the operation of the driving unit 70. 80 are housed.

光源4は、前述した研磨液に含まれている光触媒および蛍光材料を励起させる光を発生する。かかる光源4としては、例えば、紫外光ランプ、可視光ランプなどが挙げられるが、本発明は、かかる例示のみに限定されるものではない。   The light source 4 generates light that excites the photocatalyst and the fluorescent material contained in the polishing liquid. Examples of such a light source 4 include an ultraviolet light lamp and a visible light lamp, but the present invention is not limited to such examples.

研磨装置1では、紫外光の照射下に容器10を中心軸回りに矢印方向に回転駆動させることにより、ワーク支持部20によって支持された円筒ころ用ワークWが矢印方向に回転して研磨パッド30および図示しない側壁パッド22に線接触で摺接するとともに中心軸方向に揺動する(図6参照)。これにより、円筒ころ用ワークWが研磨される。   In the polishing apparatus 1, the cylindrical roller workpiece W supported by the workpiece support unit 20 is rotated in the direction of the arrow by rotating the container 10 around the central axis in the direction of the arrow under irradiation with ultraviolet light, and the polishing pad 30. Further, it slides in contact with the side wall pad 22 (not shown) and swings in the central axis direction (see FIG. 6). Thereby, the work W for cylindrical rollers is grind | polished.

なお、本発明においては、ワークとして、例えば、球面ころ用ワーク、玉用ワーク、円錐ころ用ワーク、棒状ころ用ワーク、針状ころ用ワークなどの転動体用ワークを用いることができる。例えば、ワークとして、玉用ワークを用いる場合、研磨装置1では、紫外光の照射下に容器10を中心軸回りに矢印方向に回転駆動させることにより、ワーク支持部20によって支持された玉用ワークWが矢印方向に回転して研磨パッド30および図示しない側壁パッド22に点接触で摺接するとともに中心軸方向に揺動する(図7参照)。これにより、玉用ワークWが研磨される。   In the present invention, for example, a workpiece for a rolling element such as a spherical roller workpiece, a ball workpiece, a tapered roller workpiece, a rod roller workpiece, or a needle roller workpiece can be used as the workpiece. For example, when a ball workpiece is used as the workpiece, in the polishing apparatus 1, the ball workpiece supported by the workpiece support portion 20 is driven by rotating the container 10 around the central axis in the arrow direction under irradiation of ultraviolet light. W rotates in the direction of the arrow to slidably contact the polishing pad 30 and the sidewall pad 22 (not shown) by point contact and swing in the central axis direction (see FIG. 7). Thereby, the workpiece | work W for balls is grind | polished.

また、本発明において、ワーク支持孔の形状は、ワークWの形状に応じた形状を適宜選択することができる。   In the present invention, the shape of the work support hole can be selected as appropriate according to the shape of the work W.

例えば、ワークWが球面ころ用ワークである場合、ワーク支持孔として、図4(A)のワーク支持孔21bおよびワーク支持孔21cが例示されるが、本発明は、かかる例示のみに限定されるものではない。ワーク支持孔21bにおけるワークWの移動方向前方の側壁部201は、ワーク支持部20の上方から中心軸方向に見て、くの字状を示し、ワーク支持孔21bにおけるワークWの移動方向後方の側壁部202は、ワーク支持部20の上方から中心軸方向に見て、逆くの字状を示す〔図4(A)、21b参照〕。ここで、ワーク支持孔21bの長さcは、好ましくは式(3):
長さc=(1.5〜2.0)×球面ころの直径D2 (3)
を満たす長さ、長さdは、好ましくは式(4):
長さd=(1.5〜2.0)×球面ころの長さL2 (4)
を満たす長さ、長さeは、好ましくは式(5):
長さe=1/2d (5)
を満たす長さである。また、図4(A)において、角度αおよびβは、好ましくは1〜10°である。なお、ワーク支持孔21bを側面から見た場合、側壁部の傾斜角度γおよびδは、好ましくは0〜30°、より好ましくは0〜15℃である〔図4(B)参照〕。一方、ワーク支持孔21cにおけるワークWの移動方向前方の側壁部203およびワークWの移動方向後方の側壁部204には、Rがつけられている〔図4(A)、21c参照〕。このとき、図4(A)において、ワーク支持孔21bの長さfは、好ましくは式(6):
長さf=(2.0〜3.0)×球面ころの直径D2 (6)
を満たす長さ、長さgは、好ましくは式(7):
長さg=(2.5〜3.0)×球面ころの長さL2 (7)
を満たす長さ、側壁部203,204の曲率は、好ましくは式(8):
曲率=(1.0〜1.59)×球面ころの曲率R2 (8)
を満たす曲率である。また、図4(A)において、角度εは、好ましくは15〜30°である。
For example, when the workpiece W is a spherical roller workpiece, examples of the workpiece support hole include the workpiece support hole 21b and the workpiece support hole 21c in FIG. 4A. However, the present invention is limited to such an example. It is not a thing. The front side wall 201 in the workpiece support hole 21b in the moving direction of the workpiece W has a dogleg shape when viewed from above the workpiece supporting portion 20 in the central axis direction, and is behind the workpiece W in the moving direction of the workpiece W in the workpiece supporting hole 21b. The side wall portion 202 has an inverted letter shape when viewed from above the workpiece support portion 20 in the central axis direction (see FIGS. 4A and 21b). Here, the length c of the workpiece support hole 21b is preferably the formula (3):
Length c = (1.5 to 2.0) × spherical roller diameter D 2 (3)
The length satisfying the above, the length d is preferably the formula (4):
Length d = (1.5 to 2.0) × Spherical roller length L 2 (4)
The length satisfying the above, the length e is preferably the formula (5):
Length e = 1 / 2d (5)
It is the length which satisfies. In FIG. 4A, the angles α and β are preferably 1 to 10 °. When the work support hole 21b is viewed from the side, the inclination angles γ and δ of the side wall are preferably 0 to 30 °, more preferably 0 to 15 ° C. [see FIG. 4 (B)]. On the other hand, the side wall 203 at the front of the workpiece W in the movement direction of the workpiece support hole 21c and the side wall 204 at the rear of the workpiece W in the movement direction are provided with R (see FIGS. 4A and 21c). At this time, in FIG. 4A, the length f of the work support hole 21b is preferably the formula (6):
Length f = (2.0 to 3.0) × Spherical roller diameter D 2 (6)
The length satisfying the above, the length g is preferably the formula (7):
Length g = (2.5-3.0) × Spherical roller length L 2 (7)
The length satisfying the above and the curvature of the side wall portions 203 and 204 are preferably represented by the formula (8):
Curvature = (1.0-1.59) × Surface curvature R 2 (8)
It is the curvature that satisfies. In FIG. 4A, the angle ε is preferably 15 to 30 °.

また、ワークWが玉用ワークである場合、ワーク支持孔として、図4(A)のワーク支持孔21dが例示されるが、本発明は、かかる例示のみに限定されるものではない。ワーク支持孔21dにおける中心軸側の角部205,206には、Rがつけられている〔図4(A)、21d参照〕。このとき、図4(A)において、ワーク支持孔21dの長さhは、好ましくは式(9):
長さh=(2.0〜3.0)×玉の直径D3 (9)
を満たす長さ、長さiは、好ましくは式(10):
長さi=(2.0〜3.0)×玉の直径D3 (10)
を満たす長さ、角部205,206の曲率は、好ましくは式(11):
曲率≧玉の直径D3/2 (11)
を満たす曲率である。また、図5(A)において、角度ζは、好ましくは10〜20°である。
Moreover, when the workpiece | work W is a ball | bowl workpiece | work, although the workpiece | work support hole 21d of FIG. 4 (A) is illustrated as a workpiece | work support hole, this invention is not limited only to this illustration. R is attached to the corners 205 and 206 on the central axis side in the workpiece support hole 21d (see FIGS. 4A and 21d). At this time, in FIG. 4A, the length h of the workpiece support hole 21d is preferably the formula (9):
Length h = (2.0-3.0) × Diameter of ball D 3 (9)
The length satisfying the above, the length i is preferably the formula (10):
Length i = (2.0 to 3.0) × ball diameter D 3 (10)
The length satisfying the above, and the curvature of the corners 205 and 206 are preferably the formula (11):
Curvature ≧ ball diameter D 3/2 (11)
It is the curvature that satisfies. In FIG. 5A, the angle ζ is preferably 10 to 20 °.

さらに、ワークWが円錐ころ用ワークである場合、ワーク支持孔として、図4(A)のワーク支持孔21eが例示されるが、本発明は、かかる例示のみに限定されるものではない。ワーク支持孔21eは、中心軸側から外側に向かって縮径している〔図4(A)、21e参照〕。このとき、図4(A)において、ワーク支持孔21eの長さjは、好ましくは式(12):
長さj=(1.0〜2.0)×円錐ころの小端径D4 (12)
を満たす長さ、長さkは、好ましくは式(13):
長さk=(2.0〜2.5)×円錐ころの大端径D5 (13)
を満たす長さ、長さlは、好ましくは式(14):
長さl=(3.0〜4.0)×円錐ころの長さL4 (14)
を満たす長さである。また、図4(A)において、角度ηは、好ましくは10〜20°、角度θは、好ましくは10〜20°である。
Furthermore, when the workpiece W is a tapered roller workpiece, the workpiece support hole 21e shown in FIG. 4A is exemplified as the workpiece support hole, but the present invention is not limited to such illustration. The work support hole 21e is reduced in diameter from the central axis side toward the outside (see FIGS. 4A and 21e). At this time, in FIG. 4A, the length j of the work support hole 21e is preferably expressed by the formula (12):
Length j = (1.0-2.0) × small end diameter D 4 of tapered roller (12)
The length satisfying the above, the length k is preferably the formula (13):
Length k = (2.0 to 2.5) × large end diameter D 5 of tapered roller (13)
The length satisfying the above, the length l is preferably the formula (14):
Length l = (3.0 to 4.0) × Length of tapered roller L 4 (14)
It is the length which satisfies. 4A, the angle η is preferably 10 to 20 °, and the angle θ is preferably 10 to 20 °.

本発明においては、研磨装置1の研磨パッド30における溝33のパターンは、直線以外に、放物線、2次曲線、渦巻き線、対数渦巻き線、インボリュート曲線、サイクロイド曲線、正弦曲線、余弦曲線などの曲線;楕円;円などによって形成されていてもよい。   In the present invention, the pattern of the groove 33 in the polishing pad 30 of the polishing apparatus 1 is not only a straight line but also a curve such as a parabola, a quadratic curve, a spiral, a logarithmic spiral, an involute curve, a cycloid curve, a sine curve, and a cosine curve. An ellipse; it may be formed by a circle or the like.

本発明においては、ワークの自重によって自由落下するときの底パッドとの圧力を負荷に変えやすくするべく、容器10を水平面に対して20〜40°傾斜させてもよい。この場合、ワークWの回転および揺動をより大きくして研磨効率を高める観点から、ワーク支持部20を設けず、研磨パッド30の直径よりも小さい直径を有する容器10を研磨パッド30と独立して回転することができるように当該研磨パッド30上に設けてもよい。   In the present invention, the container 10 may be tilted by 20 to 40 ° with respect to the horizontal plane so that the pressure with the bottom pad when freely falling due to the weight of the work can be easily changed to a load. In this case, from the viewpoint of increasing the rotation and swinging of the workpiece W to increase the polishing efficiency, the workpiece support portion 20 is not provided, and the container 10 having a diameter smaller than the diameter of the polishing pad 30 is independent of the polishing pad 30. It may be provided on the polishing pad 30 so that it can be rotated.

また、本発明においては、微小部品を効率よく研磨すべく、容器10を水平面に対して20〜40°傾斜させるとともに、ワーク支持部20の代わりに、ワークWを研磨パッド30に押し付けるワーク押圧部を研磨パッド30と独立して回転することができるように当該研磨パッド30上に設けてもよい。   In the present invention, in order to polish fine parts efficiently, the container 10 is tilted by 20 to 40 ° with respect to the horizontal plane, and the workpiece pressing portion that presses the workpiece W against the polishing pad 30 instead of the workpiece support portion 20. May be provided on the polishing pad 30 so as to be able to rotate independently of the polishing pad 30.

以上説明したように、本発明によれば、金属製のワークを高い研磨効率で低い表面粗さにまで研磨することができることから、低い表面粗さおよび高い精度が求められる金属部材などの製造を製造することができる。したがって、本発明の転動体の製造方法、ワークの研磨方法、研磨液および研磨装置は、油圧機器、工作機械、繊維機械、建築機械、半導体製造装置などの産業機械、自動車、飛行機、船舶、電気電子製品などに用いられる部材の製造に有用である。   As described above, according to the present invention, a metal workpiece can be polished to a low surface roughness with a high polishing efficiency, so that it is possible to manufacture a metal member or the like that requires a low surface roughness and a high accuracy. Can be manufactured. Therefore, the rolling element manufacturing method, workpiece polishing method, polishing liquid and polishing apparatus of the present invention are hydraulic machines, machine tools, textile machines, construction machines, semiconductor manufacturing apparatuses and other industrial machines, automobiles, airplanes, ships, electricity It is useful for manufacturing members used in electronic products and the like.

つぎに、本発明を実施例に基づいてさらに詳細に説明するが、本発明は、かかる実施例のみに限定されるものではない。   Next, the present invention will be described in more detail based on examples, but the present invention is not limited to such examples.

(実施例1)
酸化アルミニウムからなる粒子径1000nmの砥粒〔(株)フジミインコーポレーテッド製、商品名:ホワイトフューズドアルミナ〕7.89g(研磨液中における濃度:5質量%)と、酸化アルミニウムからなる粒子径4000nmの砥粒〔(株)フジミインコーポレーテッド製、商品名:ホワイトフューズドアルミナ〕7.89g(研磨液中における濃度:5質量%)と、二酸化チタンからなる粒子径180nmの光触媒粒子〔石原テクノ(株)製、商品名:光触媒用酸化チタンST−41〕(研磨液中における濃度:5質量%)と、蛍光材料〔1H−ベンジミダゾリウム,2−[7−(ジエチルアミノ)−2−オキソ−2H−1−ベンゾピラン−3−イル]−1,3−ジメチル−,クロライド、一般式(I)において、R1およびR2がメチル基であり、R3およびR4がエチル基であり、かつXが塩素原子である化合物(保土ヶ谷化学工業(株)製、商品名:Cathilon Brilliant Flavine GFH)〕0.754g(研磨液中における濃度:0.5質量%)と、精製水150gとを混合して研磨液(pH5.63)を得た。
Example 1
Abrasive grains made of aluminum oxide having a particle diameter of 1000 nm [trade name: White Fused Alumina, manufactured by Fujimi Incorporated Co., Ltd.] 7.89 g (concentration in polishing liquid: 5 mass%), and a particle diameter made of aluminum oxide of 4000 nm 7.89 g (product name: white fused alumina, manufactured by Fujimi Incorporated, Ltd.) (concentration in polishing liquid: 5 mass%) and photocatalyst particles having a particle diameter of 180 nm made of titanium dioxide [Ishihara Techno ( Product name: Titanium oxide ST-41 for photocatalyst (concentration in polishing liquid: 5% by mass) and fluorescent material [1H-benzimidazolium, 2- [7- (diethylamino) -2-oxo -2H-1-benzopyran-3-yl] -1,3-dimethyl-, chloride, in general formula (I), R 1 and R 2 Is a methyl group, R 3 and R 4 are ethyl groups, and X is a chlorine atom (Hodogaya Chemical Co., Ltd., trade name: Catilon Brilliant Flavine GFH)] 0.754 g (in the polishing liquid) The polishing liquid (pH 5.63) was obtained by mixing 150 g of purified water and 150 g of purified water.

(製造例1)
純銅(組成:銅99%)からなる材料を引き抜き加工およびアールバイト〔住友電工(株)製、商品名:ダイヤモンドバイトDA1000〕による切削加工によって加工して、直径15mmおよび長さ25mmの円筒ころ用ワークを得た。得られた円筒ころ用ワークの転がり摺動面を形成する部分の算術平均粗さRaおよび最大高さRyをサーフテスト〔ミツトヨ(株)製、商品名:SV−400〕によって測定した。その結果、円筒ころ用ワークの転がり摺動面を形成する部分の算術平均粗さRaは0.569μmであり、最大高さRyは4.53μmであった。
(Production Example 1)
For cylindrical rollers with a diameter of 15 mm and a length of 25 mm, a material made of pure copper (composition: 99% copper) is processed by drawing and cutting with an cutting tool (trade name: Diamond Tool DA1000, manufactured by Sumitomo Electric Industries, Ltd.) I got a work. The arithmetic average roughness Ra and the maximum height Ry of the part which forms the rolling sliding surface of the obtained cylindrical roller workpiece were measured by a surf test (trade name: SV-400, manufactured by Mitutoyo Corporation). As a result, the arithmetic average roughness Ra of the portion forming the rolling sliding surface of the cylindrical roller workpiece was 0.569 μm, and the maximum height Ry was 4.53 μm.

(実施例2)
製造例1で得られた円筒ころ用ワークを、図6に示される研磨部を有する本発明の研磨装置のワーク支持孔にセットし、実施例1で得られた研磨液を用いて当該円筒ころワークの表面を研磨した。なお、研磨条件は、容器の回転数:100min-1、円筒ころ用ワークの回転数:2000min-1、紫外線強度:0.8mW/cm、研磨時間および光照射時間:120分、研磨液の温度:25℃、ならびに使用した研磨パッドおよび側壁パッド:妙中パイル織物(株)製、商品名:ラビングクロスY15−23である。実施例2において、研磨前の銅製の円筒ころ用ワークを観察した結果を図9(A)、研磨後の銅製の円筒ころ用ワークを観察した結果を図9(B)に示す。また、研磨後の円筒ころの転がり摺動面の算術平均粗さRaおよび最大高さRyをサーフテスト〔ミツトヨ(株)製、商品名:SV−400〕によって測定した。また、得られた円筒ころについて、下記基準:
(1)前加工の傷が取り除かれている。
(2)得られた金属部材の表面全体にわたって光沢ムラが見られない。
(3)酸化による呈色が見られない。
を満たすかどうかを目視および光学顕微鏡付き走査型レーザ顕微鏡〔レーザテック(株)製:商品名:1LM−21〕によって評価した。
(Example 2)
The cylindrical roller workpiece obtained in Production Example 1 is set in the workpiece support hole of the polishing apparatus of the present invention having the polishing portion shown in FIG. 6, and the cylindrical roller using the polishing liquid obtained in Example 1 is used. The surface of the workpiece was polished. The polishing conditions were as follows: the rotational speed of the container: 100 min −1 , the rotational speed of the cylindrical roller workpiece: 2000 min −1 , the ultraviolet intensity: 0.8 mW / cm 2 , the polishing time and the light irradiation time: 120 minutes, Temperature: 25 ° C., and used polishing pad and side wall pad: manufactured by Myonaka Pile Woven Co., Ltd., trade name: rubbing cloth Y15-23. In Example 2, the result of observing the copper cylindrical roller workpiece before polishing is shown in FIG. 9A, and the result of observing the copper cylindrical roller workpiece after polishing is shown in FIG. 9B. Further, the arithmetic average roughness Ra and the maximum height Ry of the rolling sliding surface of the cylindrical roller after polishing were measured by a surf test (trade name: SV-400, manufactured by Mitutoyo Corporation). In addition, for the obtained cylindrical roller, the following criteria:
(1) The pre-processed scratches are removed.
(2) No gloss unevenness is observed over the entire surface of the obtained metal member.
(3) No coloration due to oxidation is observed.
It was evaluated by visual observation and a scanning laser microscope with an optical microscope [Lasertec Co., Ltd .: trade name: 1LM-21].

図9(A)および(B)に示された結果から、研磨前の円筒ころ用ワークの表面には、多数の細かい切削痕が存在し、かつ濃茶色の酸化膜が存在していたのに対し、研磨後の円筒ころの表面は、平滑化されていることがわかる。また、研磨後の円筒ころの算術平均粗さRaは0.109μmであり、最大高さRyは1.46μmであったことから、低い表面粗さを有する円筒ころが得られたことがわかる。また、得られた円筒ころは、前記基準(1)〜(3)の全てを満たすことから、実用上十分なレベルに達していることがわかる。   From the results shown in FIGS. 9A and 9B, the surface of the cylindrical roller workpiece before polishing had many fine cutting marks and a dark brown oxide film. On the other hand, it can be seen that the surface of the cylindrical roller after polishing is smoothed. Moreover, since the arithmetic average roughness Ra of the polished cylindrical roller was 0.109 μm and the maximum height Ry was 1.46 μm, it was found that a cylindrical roller having a low surface roughness was obtained. Moreover, since the obtained cylindrical roller satisfy | fills all the said references | standards (1)-(3), it turns out that it has reached the practically sufficient level.

(製造例2)
アルミニウム合金(AL5052)からなる材料を引き抜き加工およびダイヤモンドバイト〔住友電工(株)製、商品名:ダイヤモンドバイトDA1000〕による精密切削加工によって加工して、直径15mmおよび長さ25mmの円筒ころ用ワークを得た。得られた円筒ころ用ワークの転がり摺動面を形成する部分の算術平均粗さRaおよび最大高さRyをサーフテスト〔ミツトヨ(株)製、商品名:SV−400〕によって測定した。その結果、円筒ころ用ワークの転がり摺動面を形成する部分の算術平均粗さRaは0.386μmであり、最大高さRyは2.13μmであった。
(Production Example 2)
A cylindrical roller workpiece having a diameter of 15 mm and a length of 25 mm is obtained by drawing a material made of an aluminum alloy (AL5052) and precision cutting with a diamond cutting tool (trade name: diamond cutting tool DA1000, manufactured by Sumitomo Electric Industries, Ltd.). Obtained. The arithmetic average roughness Ra and the maximum height Ry of the part which forms the rolling sliding surface of the obtained cylindrical roller workpiece were measured by a surf test (trade name: SV-400, manufactured by Mitutoyo Corporation). As a result, the arithmetic average roughness Ra of the portion forming the rolling sliding surface of the cylindrical roller workpiece was 0.386 μm, and the maximum height Ry was 2.13 μm.

(実施例3)
製造例2で得られた円筒ころ用ワークを、図6に示される研磨部を有する本発明の研磨装置のワーク支持孔にセットし、実施例1で得られた研磨液を用いて当該円筒ころワークの表面を研磨した。なお、研磨条件は、容器の回転数:150min-1、円筒ころ用ワークの回転数:60min-1、紫外線強度:0.8mW/cm、研磨時間および光照射時間:120分、研磨液の温度:25℃、ならびに使用した研磨パッドおよび側壁パッド:妙中パイル織物(株)製、商品名:ラビングクロスY15−23である。研磨後の円筒ころの転がり摺動面の算術平均粗さRaおよび最大高さRyをサーフテスト〔ミツトヨ(株)製、商品名:SV−400〕によって測定した。また、得られた円筒ころについて、前記基準(1)〜(3)を満たすかどうかを目視および光学顕微鏡付き走査型レーザ顕微鏡〔レーザテック(株)製:商品名:1LM−21〕によって評価した。
(Example 3)
The cylindrical roller workpiece obtained in Production Example 2 is set in the workpiece support hole of the polishing apparatus of the present invention having the polishing section shown in FIG. 6, and the cylindrical roller is obtained using the polishing liquid obtained in Example 1. The surface of the workpiece was polished. The polishing conditions were as follows: the rotation speed of the container: 150 min −1 , the rotation speed of the cylindrical roller work: 60 min −1 , the ultraviolet intensity: 0.8 mW / cm 2 , the polishing time and the light irradiation time: 120 minutes, Temperature: 25 ° C., and used polishing pad and side wall pad: manufactured by Myonaka Pile Woven Co., Ltd., trade name: rubbing cloth Y15-23. The arithmetic average roughness Ra and maximum height Ry of the rolling sliding surface of the cylindrical roller after polishing were measured by a surf test (trade name: SV-400, manufactured by Mitutoyo Corporation). Moreover, about the obtained cylindrical roller, it was evaluated by visual observation and a scanning laser microscope with an optical microscope [manufactured by Lasertec Co., Ltd .: trade name: 1LM-21] as to whether or not the above criteria (1) to (3) were satisfied. .

その結果、研磨後の円筒ころの算術平均粗さRaは0.109μmであり、最大高さRyは0.98μmであったことから、低い表面粗さを有する円筒ころが得られたことがわかる。また、得られた円筒ころは、前記基準(1)〜(3)の全てを満たすことから、実用上十分なレベルに達していることがわかる。   As a result, the arithmetic average roughness Ra of the polished cylindrical roller was 0.109 μm, and the maximum height Ry was 0.98 μm, so that it was found that a cylindrical roller having a low surface roughness was obtained. . Moreover, since the obtained cylindrical roller satisfy | fills all the said references | standards (1)-(3), it turns out that it has reached the practically sufficient level.

(実施例4)
酸化アルミニウムからなる粒子径4000nmの砥粒〔(株)フジミインコーポレーテッド製、商品名:ホワイトフューズドアルミナ〕16.7g(研磨液中における濃度:10質量%)と、二酸化チタンからなる粒子径180nmの光触媒粒子〔石原テクノ(株)製、商品名:光触媒用酸化チタンST−41〕7.89g(研磨液中における濃度:5質量%)と、蛍光材料〔1H−ベンジミダゾリウム,2−[7−(ジエチルアミノ)−2−オキソ−2H−1−ベンゾピラン−3−イル]−1,3−ジメチル−,クロライド(保土ヶ谷化学工業(株)製、商品名:Cathilon Brilliant Flavine GFH)〕0.754g(研磨液中における濃度:0.5質量%)と、精製水150gとを混合して研磨液(pH5.63)を得た。
Example 4
Abrasive grains made of aluminum oxide having a particle diameter of 4000 nm [manufactured by Fujimi Incorporated, trade name: White Fused Alumina] 16.7 g (concentration in polishing liquid: 10% by mass) and particle diameter of titanium dioxide 180 nm Photocatalyst particles [manufactured by Ishihara Techno Co., Ltd., trade name: titanium oxide ST-41 for photocatalyst] 7.89 g (concentration in polishing liquid: 5% by mass) and fluorescent material [1H-benzimidazolium, 2- [7- (Diethylamino) -2-oxo-2H-1-benzopyran-3-yl] -1,3-dimethyl-, chloride (manufactured by Hodogaya Chemical Co., Ltd., trade name: Cathillion Brilliant GFH)] 754 g (concentration in polishing liquid: 0.5 mass%) and 150 g of purified water were mixed to prepare a polishing liquid (pH 5.6). ) Was obtained.

(製造例3)
チタン(組成:チタン99.0質量%)からなる材料を引き抜き加工および超硬合金バイト〔東芝タンガロイ(株)製、商品名:タンガロイTNPL321C〕による精密切削加工によって加工して、直径12mmおよび長さ25mmの円筒ころ用ワークを得た。得られた円筒ころ用ワークの転がり摺動面を形成する部分の算術平均粗さRaおよび最大高さRyをサーフテスト〔ミツトヨ(株)製、商品名:SV−400〕によって測定した。その結果、円筒ころ用ワークの転がり摺動面を形成する部分の算術平均粗さRaは0.653μmであり、最大高さRyは3.56μmであった。
(Production Example 3)
A material composed of titanium (composition: 99.0% by mass of titanium) is processed by drawing and precision cutting with cemented carbide tool [manufactured by Toshiba Tungaloy Co., Ltd., trade name: Tungaloy TNPL321C]. A 25 mm cylindrical roller workpiece was obtained. The arithmetic average roughness Ra and the maximum height Ry of the part which forms the rolling sliding surface of the obtained cylindrical roller workpiece were measured by a surf test (trade name: SV-400, manufactured by Mitutoyo Corporation). As a result, the arithmetic average roughness Ra of the portion forming the rolling sliding surface of the cylindrical roller workpiece was 0.653 μm, and the maximum height Ry was 3.56 μm.

(実施例5)
製造例3で得られた円筒ころ用ワークを、図6に示される研磨部を有する本発明の研磨装置のワーク支持孔にセットし、実施例4で得られた研磨液を用いて当該円筒ころワークの表面を研磨した。なお、研磨条件は、容器の回転数:150min-1、円筒ころ用ワークの回転数:2000min-1、紫外線強度:0.8mW/cm、研磨時間および光照射時間:120分、研磨液の温度:25℃、ならびに使用した研磨パッドおよび側壁パッド:妙中パイル織物(株)製、商品名:ラビングクロスY15−23である。研磨後の円筒ころの転がり摺動面の算術平均粗さRaおよび最大高さRyをサーフテスト〔ミツトヨ(株)製、商品名:SV−400〕によって測定した。また、得られた円筒ころについて、前記基準(1)〜(3)を満たすかどうかを目視および光学顕微鏡付き走査型レーザ顕微鏡〔レーザテック(株)製:商品名:1LM−21〕によって評価した。
(Example 5)
The cylindrical roller workpiece obtained in Production Example 3 is set in the workpiece support hole of the polishing apparatus of the present invention having the polishing portion shown in FIG. 6, and the cylindrical roller is obtained using the polishing liquid obtained in Example 4 The surface of the workpiece was polished. The polishing conditions were: the number of rotations of the container: 150 min −1 , the number of rotations of the cylindrical roller work: 2000 min −1 , the ultraviolet intensity: 0.8 mW / cm 2 , the polishing time and the light irradiation time: 120 minutes, Temperature: 25 ° C., and used polishing pad and side wall pad: manufactured by Myonaka Pile Woven Co., Ltd., trade name: rubbing cloth Y15-23. The arithmetic average roughness Ra and maximum height Ry of the rolling sliding surface of the cylindrical roller after polishing were measured by a surf test (trade name: SV-400, manufactured by Mitutoyo Corporation). Moreover, about the obtained cylindrical roller, it was evaluated by visual observation and a scanning laser microscope with an optical microscope [manufactured by Lasertec Co., Ltd .: trade name: 1LM-21] as to whether or not the above criteria (1) to (3) were satisfied. .

その結果、研磨後の円筒ころの算術平均粗さRaは0.324μmであり、最大高さRyは1.89μmであったことから、低い表面粗さを有する円筒ころが得られたことがわかる。また、得られた円筒ころは、前記基準(1)〜(3)の全てを満たすことから、実用上十分なレベルに達していることがわかる。   As a result, since the arithmetic average roughness Ra of the polished cylindrical roller was 0.324 μm and the maximum height Ry was 1.89 μm, it was found that a cylindrical roller having a low surface roughness was obtained. . Moreover, since the obtained cylindrical roller satisfy | fills all the said references | standards (1)-(3), it turns out that it has reached the practically sufficient level.

(実施例6)
酸化アルミニウムからなる粒子径1000nmの砥粒〔(株)フジミインコーポレーテッド製、商品名:ホワイトフューズドアルミナ〕16.7g(研磨液中における濃度:10質量%)と、二酸化チタンからなる粒子径180nmの光触媒粒子〔石原テクノ(株)製、商品名:光触媒用酸化チタンST−41〕3.85g(研磨液中における濃度:2.5質量%)と、蛍光材料〔1H−ベンジミダゾリウム,2−[7−(ジエチルアミノ)−2−オキソ−2H−1−ベンゾピラン−3−イル]−1,3−ジメチル−,クロライド(保土ヶ谷化学工業(株)製、商品名:Cathilon Brilliant Flavine GFH)〕3.85g(研磨液中における濃度:2.5質量%)と、精製水150gとを混合して研磨液(pH4.23)を得た。
(Example 6)
16.7 g of abrasive grains made of aluminum oxide with a particle diameter of 1000 nm (trade name: White Fused Alumina, manufactured by Fujimi Incorporated) (concentration in polishing liquid: 10% by mass), and a particle diameter of 180 nm made of titanium dioxide. Photocatalyst particles (manufactured by Ishihara Techno Co., Ltd., trade name: titanium oxide ST-41 for photocatalyst) 3.85 g (concentration in polishing liquid: 2.5 mass%), and fluorescent material [1H-benzimidazolium, 2- [7- (Diethylamino) -2-oxo-2H-1-benzopyran-3-yl] -1,3-dimethyl-, chloride (manufactured by Hodogaya Chemical Co., Ltd., trade name: Cathilon Flavorne GFH)] 3.85 g (concentration in polishing liquid: 2.5% by mass) and 150 g of purified water were mixed to prepare a polishing liquid (pH 4. 3) was obtained.

(製造例4)
一般構造用鋼SS41からなる鋼材を引き抜き加工および精密旋盤〔ワシノ機械(株)製、商品名:LEO〕による切削加工によって加工して、直径12mmおよび長さ12mmの円筒ころ用ワークを得た。得られた円筒ころ用ワークの転がり摺動面を形成する部分の算術平均粗さRaおよび最大高さRyをサーフテスト〔ミツトヨ(株)製、商品名:SV−400〕によって測定した。その結果、円筒ころ用ワークの転がり摺動面を形成する部分の算術平均粗さRaは0.196μmであり、最大高さRyは1.453μmであった。
(Production Example 4)
A steel material made of general structural steel SS41 was processed by drawing and cutting with a precision lathe (trade name: LEO, manufactured by Wasino Kikai Co., Ltd.) to obtain a cylindrical roller workpiece having a diameter of 12 mm and a length of 12 mm. The arithmetic average roughness Ra and the maximum height Ry of the part which forms the rolling sliding surface of the obtained cylindrical roller workpiece were measured by a surf test (trade name: SV-400, manufactured by Mitutoyo Corporation). As a result, the arithmetic average roughness Ra of the portion forming the rolling sliding surface of the cylindrical roller workpiece was 0.196 μm, and the maximum height Ry was 1.453 μm.

(実施例7)
製造例4で得られた円筒ころ用ワークを、図6に示される研磨部を有する本発明の研磨装置のワーク支持孔にセットし、実施例6で得られた研磨液を用いて当該円筒ころワークの表面を研磨した。なお、研磨条件は、容器の回転数:130〜150min-1、円筒ころ用ワークの回転数:2500min-1、紫外線強度:0.8mW/cm、研磨時間および光照射時間:60分、研磨液の温度:25℃、使用した研磨パッド:妙中パイル織物(株)製、商品名:ラビングクロスY15−23、使用した側壁パッド:妙中パイル織物(株)製、商品名:ラビングクロスY15−20である。実施例7において、研磨前の一般構造用鋼SS41製の円筒ころ用ワークを観察した結果を図10(A)、研磨後の一般構造用鋼SS41製の円筒ころを観察した結果を図10(B)に示す。研磨後の円筒ころの転がり摺動面の算術平均粗さRaおよび最大高さRyをサーフテスト〔ミツトヨ(株)製、商品名:SV−400〕によって測定した。また、得られた円筒ころについて、前記基準(1)〜(3)を満たすかどうかを目視および光学顕微鏡付き走査型レーザ顕微鏡〔レーザテック(株)製:商品名:1LM−21〕によって評価した。
(Example 7)
The cylindrical roller workpiece obtained in Production Example 4 is set in the workpiece support hole of the polishing apparatus of the present invention having the polishing portion shown in FIG. 6, and the cylindrical roller is obtained using the polishing liquid obtained in Example 6 The surface of the workpiece was polished. The polishing conditions were as follows: the number of rotations of the container: 130 to 150 min −1 , the number of rotations of the cylindrical roller work: 2500 min −1 , the ultraviolet intensity: 0.8 mW / cm 2 , the polishing time and the light irradiation time: 60 minutes, polishing Liquid temperature: 25 ° C., polishing pad used: manufactured by Myonaka Pile Woven Co., Ltd., trade name: rubbing cloth Y15-23, used side wall pad: manufactured by Myonaka Pile Woven Co., Ltd., trade name: rubbing cloth Y15 -20. In Example 7, the result of observing the cylindrical roller workpiece made of general structural steel SS41 before polishing is shown in FIG. 10A, and the result of observing the cylindrical roller made of general structural steel SS41 after polishing is shown in FIG. Shown in B). The arithmetic average roughness Ra and maximum height Ry of the rolling sliding surface of the cylindrical roller after polishing were measured by a surf test (trade name: SV-400, manufactured by Mitutoyo Corporation). Moreover, about the obtained cylindrical roller, it was evaluated by visual observation and a scanning laser microscope with an optical microscope [manufactured by Lasertec Co., Ltd .: trade name: 1LM-21] as to whether or not the above criteria (1) to (3) were satisfied. .

図10(A)および(B)に示された結果から、研磨前の円筒ころ用ワークの表面には、多数の細かい切削痕が存在していたのに対し、研磨後の円筒ころの表面は、平滑化されていることがわかる。また、研磨後の円筒ころの算術平均粗さRaは0.0356μmであり、最大高さRyは0.65μmであったことから、低い表面粗さを有する円筒ころが得られたことがわかる。また、得られた円筒ころは、前記基準(1)〜(3)の全てを満たすことから、実用上十分なレベルに達していることがわかる。   From the results shown in FIGS. 10A and 10B, the surface of the cylindrical roller workpiece before polishing had many fine cutting marks, whereas the surface of the cylindrical roller after polishing was It can be seen that it is smoothed. In addition, since the arithmetic average roughness Ra of the cylindrical roller after polishing was 0.0356 μm and the maximum height Ry was 0.65 μm, it is understood that a cylindrical roller having a low surface roughness was obtained. Moreover, since the obtained cylindrical roller satisfy | fills all the said references | standards (1)-(3), it turns out that it has reached the practically sufficient level.

(実施例8)
酸化アルミニウムからなる粒子径1000nmの砥粒〔(株)フジミインコーポレーテッド製、商品名:ホワイトフューズドアルミナ〕16.7g(研磨液中における濃度:10質量%)と、二酸化チタンからなる粒子径180nmの光触媒粒子〔石原テクノ(株)製、商品名:光触媒用酸化チタンST−41〕7.89g(研磨液中における濃度:5質量%)と、蛍光材料〔1H−ベンジミダゾリウム,2−[7−(ジエチルアミノ)−2−オキソ−2H−1−ベンゾピラン−3−イル]−1,3−ジメチル−,クロライド(保土ヶ谷化学工業(株)製、商品名:Cathilon Brilliant Flavine GFH)〕3.85g(研磨液中における濃度:2.5質量%)と、精製水150gとを混合して研磨液(pH4.23)を得た。
(Example 8)
16.7 g of abrasive grains made of aluminum oxide with a particle diameter of 1000 nm (trade name: White Fused Alumina, manufactured by Fujimi Incorporated) (concentration in polishing liquid: 10% by mass), and a particle diameter of 180 nm made of titanium dioxide. Photocatalyst particles [manufactured by Ishihara Techno Co., Ltd., trade name: titanium oxide ST-41 for photocatalyst] 7.89 g (concentration in polishing liquid: 5% by mass) and fluorescent material [1H-benzimidazolium, 2- [7- (Diethylamino) -2-oxo-2H-1-benzopyran-3-yl] -1,3-dimethyl-, chloride (manufactured by Hodogaya Chemical Co., Ltd., trade name: Cathillion Brilliant GFH)] 85 g (concentration in polishing liquid: 2.5% by mass) and 150 g of purified water were mixed to prepare a polishing liquid (pH 4.23). It was obtained.

(製造例5)
軸受鋼SUJ2からなる鋼材に塑性加工、切削加工、熱処理、研削加工、バレル研磨加工を施して加工して、凸面壁部を有する球面ころの中央部の直径が19mmおよび長さが15mmである球面ころ用ワークを得た。得られたワークの算術平均粗さRaを表面検査機〔テーラーホブソン(株)製、商品名:タリサーフ〕によって測定した。その結果、ワークの算術平均粗さRaは0.150μmであった。
(Production Example 5)
A spherical surface having a diameter of 19 mm and a length of 15 mm at the center of a spherical roller having a convex wall portion obtained by subjecting a steel material made of bearing steel SUJ2 to plastic processing, cutting, heat treatment, grinding and barrel polishing. A roller work was obtained. The arithmetic average roughness Ra of the obtained workpiece was measured by a surface inspection machine (manufactured by Taylor Hobson Co., Ltd., trade name: Talysurf). As a result, the arithmetic average roughness Ra of the workpiece was 0.150 μm.

(実施例9)
製造例5で得られたワークを、図4の21bに示されるワーク支持孔を有する本発明の研磨装置のワーク支持孔にセットし、実施例8で得られた研磨液を用いて当該ワークの表面を研磨した。なお、研磨条件は、容器の回転数:130〜150min-1、ワークの回転数:2200min-1、紫外線強度:0.8mW/cm、研磨時間および光照射時間:30分、研磨液の温度:25℃、ならびに使用した研磨パッド:妙中パイル織物(株)製、商品名:ラビングクロスY15−23、使用した側壁パッド:妙中パイル織物(株)製、商品名:ラビングクロスY15−20である。実施例9において、研磨前の軸受鋼SUJ2製の球面ころ用ワークを観察した結果を図11(A)、研磨後の軸受鋼SUJ2製の球面ころを観察した結果を図11(B)に示す。研磨後の軸受鋼SUJ2製の球面の凸面壁部の中央部における算術平均粗さRaを表面検査機〔テーラーホブソン(株)製、商品名:タリサーフ〕によって測定した。また、得られた球面ころについて、前記基準(1)〜(3)を満たすかどうかを目視および光学顕微鏡付き走査型レーザ顕微鏡〔レーザテック(株)製:商品名:1LM−21〕によって評価した。
Example 9
The workpiece obtained in Production Example 5 is set in the workpiece support hole of the polishing apparatus of the present invention having the workpiece support hole shown in 21b of FIG. 4, and the polishing liquid obtained in Example 8 is used for the workpiece. The surface was polished. The polishing conditions were: the rotational speed of the container: 130 to 150 min −1 , the rotational speed of the workpiece: 2200 min −1 , the ultraviolet intensity: 0.8 mW / cm 2 , the polishing time and the light irradiation time: 30 minutes, the temperature of the polishing liquid : 25 ° C. and polishing pad used: manufactured by Myonaka Pile Woven Co., Ltd., trade name: rubbing cloth Y15-23, used side wall pad: manufactured by Myonaka Pile Woven Co., Ltd., trade name: rubbing cloth Y15-20 It is. In Example 9, the result of observing the spherical roller workpiece made of bearing steel SUJ2 before polishing is shown in FIG. 11A, and the result of observing the spherical roller made of bearing steel SUJ2 after polishing is shown in FIG. 11B. . The arithmetic average roughness Ra at the central portion of the spherical convex wall portion made of the bearing steel SUJ2 after polishing was measured by a surface inspection machine (made by Taylor Hobson Co., Ltd., trade name: Talysurf). Moreover, about the obtained spherical roller, it was evaluated by visual observation and a scanning laser microscope with an optical microscope [made by Lasertec Co., Ltd .: trade name: 1LM-21] as to whether or not the above criteria (1) to (3) were satisfied. .

図11(A)および(B)に示された結果から、研磨前のワークの表面には、多数の細かい切削痕が存在していたのに対し、研磨後の球面ころの表面は、平滑化されていることがわかる。また、研磨後の球面ころの凸面壁部の中央部における算術平均粗さRaは0.035μmであったことから、低い表面粗さを有する球面ころが得られたことがわかる。なお、ワークの研磨をさらに15分間行なったところ、研磨後の球面ころの凸面壁部の中央部における算術平均粗さRaは0.028μmであった。また、得られた球面ころは、前記基準(1)〜(3)の全てを満たすことから、実用上十分なレベルに達していることがわかる。   From the results shown in FIGS. 11 (A) and 11 (B), many fine cutting traces existed on the surface of the workpiece before polishing, whereas the surface of the spherical roller after polishing was smoothed. You can see that Further, since the arithmetic average roughness Ra at the center of the convex wall portion of the polished spherical roller was 0.035 μm, it can be seen that a spherical roller having a low surface roughness was obtained. When the workpiece was further polished for 15 minutes, the arithmetic average roughness Ra at the center of the convex wall portion of the spherical roller after polishing was 0.028 μm. Moreover, since the obtained spherical roller satisfy | fills all the said references | standards (1)-(3), it turns out that it has reached the practically sufficient level.

(実施例10)
酸化アルミニウムからなる粒子径11500nmの砥粒〔(株)フジミインコーポレーテッド製、商品名:ホワイトフューズドアルミナ〕16.7g(研磨液中における濃度:10質量%)と、二酸化チタンからなる粒子径180nmの光触媒粒子〔石原テクノ(株)製、商品名:光触媒用酸化チタンST−41〕7.89g(研磨液中における濃度:5質量%)と、蛍光材料〔1H−ベンジミダゾリウム,2−[7−(ジエチルアミノ)−2−オキソ−2H−1−ベンゾピラン−3−イル]−1,3−ジメチル−,クロライド(保土ヶ谷化学工業(株)製、商品名:Cathilon Brilliant Flavine GFH)〕3.85g(研磨液中における濃度:2.5質量%)と、精製水150gとを混合して研磨液(pH4.23)を得た。
(Example 10)
16.7 g of abrasive grains made of aluminum oxide with a particle diameter of 11500 nm [manufactured by Fujimi Incorporated, trade name: white fused alumina] (concentration in polishing liquid: 10% by mass), and a particle diameter of 180 nm made of titanium dioxide Photocatalyst particles [manufactured by Ishihara Techno Co., Ltd., trade name: titanium oxide ST-41 for photocatalyst] 7.89 g (concentration in polishing liquid: 5% by mass) and fluorescent material [1H-benzimidazolium, 2- [7- (Diethylamino) -2-oxo-2H-1-benzopyran-3-yl] -1,3-dimethyl-, chloride (manufactured by Hodogaya Chemical Co., Ltd., trade name: Cathillion Brilliant GFH)] 85 g (concentration in polishing liquid: 2.5% by mass) and 150 g of purified water were mixed to prepare a polishing liquid (pH 4.2). ) Was obtained.

(実施例11)
酸化アルミニウムからなる粒子径1000nmの砥粒〔(株)フジミインコーポレーテッド製、商品名:ホワイトフューズドアルミナ〕16.7g(研磨液中における濃度:10質量%)と、二酸化チタンからなる粒子径180nmの光触媒粒子〔石原テクノ(株)製、商品名:光触媒用酸化チタンST−41〕7.89g(研磨液中における濃度:5質量%)と、蛍光材料〔1H−ベンジミダゾリウム,2−[7−(ジエチルアミノ)−2−オキソ−2H−1−ベンゾピラン−3−イル]−1,3−ジメチル−,クロライド(保土ヶ谷化学工業(株)製、商品名:Cathilon Brilliant Flavine GFH)〕3.85g(研磨液中における濃度:2.5質量%)と、精製水150gとを混合して研磨液(pH4.23)を得た。
(Example 11)
16.7 g of abrasive grains made of aluminum oxide with a particle diameter of 1000 nm (trade name: White Fused Alumina, manufactured by Fujimi Incorporated) (concentration in polishing liquid: 10% by mass), and a particle diameter of 180 nm made of titanium dioxide. Photocatalyst particles [manufactured by Ishihara Techno Co., Ltd., trade name: titanium oxide ST-41 for photocatalyst] 7.89 g (concentration in polishing liquid: 5% by mass) and fluorescent material [1H-benzimidazolium, 2- [7- (Diethylamino) -2-oxo-2H-1-benzopyran-3-yl] -1,3-dimethyl-, chloride (manufactured by Hodogaya Chemical Co., Ltd., trade name: Cathillion Brilliant GFH)] 85 g (concentration in polishing liquid: 2.5% by mass) and 150 g of purified water were mixed to prepare a polishing liquid (pH 4.23). It was obtained.

(製造例6)
軸受鋼SUJ2からなる鋼材に塑性加工、切削加工および研削加工を施して加工して、凸面壁部を有する球面ころの中央部の直径が19mmおよび長さが15mmである球面ころ用ワークを得た。得られたワークの算術平均粗さRaを表面検査機〔テーラーホブソン(株)製、商品名:タリサーフ〕によって測定した。その結果、ワークの算術平均粗さRaは0.219μmであった。
(Production Example 6)
The steel material made of the bearing steel SUJ2 was subjected to plastic processing, cutting processing, and grinding processing to obtain a spherical roller workpiece having a diameter of 19 mm and a length of 15 mm at the center of the spherical roller having the convex wall portion. . The arithmetic average roughness Ra of the obtained workpiece was measured by a surface inspection machine (manufactured by Taylor Hobson Co., Ltd., trade name: Talysurf). As a result, the arithmetic average roughness Ra of the workpiece was 0.219 μm.

(実施例12)
製造例6で得られたワークを、図4の21bに示されるワーク支持孔を有する本発明の研磨装置のワーク支持孔にセットし、実施例10で得られた研磨液を用いて当該ワークの表面を研磨した。なお、研磨条件は、容器の回転数:130〜150min-1、ワークの回転数:2200min-1、紫外線強度:0.8mW/cm、研磨時間および光照射時間:120分、研磨液の温度:25℃、使用した研磨パッド:妙中パイル織物(株)製、商品名:ラビングクロスY15−23、使用した側壁パッド:妙中パイル織物(株)製、商品名:ラビングクロスY15−20である。
(Example 12)
The workpiece obtained in Production Example 6 is set in the workpiece support hole of the polishing apparatus of the present invention having the workpiece support hole shown in 21b of FIG. 4, and the polishing liquid obtained in Example 10 is used for the workpiece. The surface was polished. The polishing conditions were as follows: the rotation speed of the container: 130 to 150 min −1 , the rotation speed of the workpiece: 2200 min −1 , the ultraviolet intensity: 0.8 mW / cm 2 , the polishing time and the light irradiation time: 120 minutes, and the temperature of the polishing liquid : 25 ° C., used polishing pad: manufactured by Myonaka Pile Woven Co., Ltd., trade name: rubbing cloth Y15-23, used side wall pad: manufactured by Myonaka Pile Woven Co., Ltd., trade name: rubbing cloth Y15-20 is there.

つぎに、研磨後のワークの表面を、実施例11で得られた研磨液を用いて研磨した。なお、研磨条件は、容器の回転数:130〜150min-1、ワークの回転数:2200min-1、紫外線強度:0.8mW/cm、研磨時間および光照射時間:30分、研磨液の温度:25℃、使用した研磨パッド:妙中パイル織物(株)製、商品名:ラビングクロスY15−23、使用した側壁パッド:妙中パイル織物(株)製、商品名:ラビングクロスY15−20である。実施例12において、研磨前の軸受鋼SUJ2製の球面ころ用ワークを観察した結果を示す図12(A)、粒子径11500nmの砥粒を含む研磨液を用いて研磨した後の軸受鋼SUJ2製の球面ころ用ワークを観察した結果を図12(B)、粒子径1000nmの砥粒を含む研磨液を用いて研磨した後の軸受鋼SUJ2製の球面ころを観察した結果を図12(C)に示す。また、粒子径1000nmの砥粒を含む研磨液を用いて研磨した後の軸受鋼SUJ2製の球面ころの凸面壁部の中央部における算術平均粗さRaを表面検査機〔テーラーホブソン(株)製、商品名:タリサーフ〕によって測定した。また、得られた球面ころについて、前記基準(1)〜(3)を満たすかどうかを目視および光学顕微鏡付き走査型レーザ顕微鏡〔レーザテック(株)製:商品名:1LM−21〕によって評価した。 Next, the surface of the workpiece after polishing was polished using the polishing liquid obtained in Example 11. The polishing conditions were: the rotational speed of the container: 130 to 150 min −1 , the rotational speed of the workpiece: 2200 min −1 , the ultraviolet intensity: 0.8 mW / cm 2 , the polishing time and the light irradiation time: 30 minutes, the temperature of the polishing liquid : 25 ° C., used polishing pad: manufactured by Myonaka Pile Woven Co., Ltd., trade name: rubbing cloth Y15-23, used side wall pad: manufactured by Myonaka Pile Woven Co., Ltd., trade name: rubbing cloth Y15-20 is there. In Example 12, FIG. 12A shows the result of observing a spherical roller workpiece made of bearing steel SUJ2 before polishing. Bearing steel SUJ2 after polishing with a polishing liquid containing abrasive grains having a particle diameter of 11500 nm FIG. 12B shows the result of observing the spherical roller workpiece, and FIG. 12C shows the result of observing the spherical roller made of bearing steel SUJ2 after polishing using a polishing liquid containing abrasive grains having a particle diameter of 1000 nm. Shown in In addition, the arithmetic average roughness Ra at the central portion of the convex wall portion of the spherical roller made of bearing steel SUJ2 after being polished using a polishing liquid containing abrasive grains having a particle diameter of 1000 nm is measured by a surface inspection machine [manufactured by Taylor Hobson Co., Ltd. , Trade name: Talysurf]. Moreover, about the obtained spherical roller, it was evaluated by visual observation and a scanning laser microscope with an optical microscope [made by Lasertec Co., Ltd .: trade name: 1LM-21] as to whether or not the above criteria (1) to (3) were satisfied. .

図12(A)〜(C)に示された結果から、研磨前のワークの表面には、多数の細かい切削痕が存在していたのに対し、研磨が進むほど、球面ころの表面が平滑化されていることがわかる。また、粒子径1000nmの砥粒を含む研磨液を用いて研磨した後の球面ころの凸面壁部の中央部における算術平均粗さRaは0.061μmであったことから、低い表面粗さを有する球面ころが得られたことがわかる。また、得られた球面ころは、前記基準(1)〜(3)の全てを満たすことから、実用上十分なレベルに達していることがわかる。   From the results shown in FIGS. 12 (A) to 12 (C), the surface of the workpiece before polishing had many fine cutting marks, whereas the surface of the spherical roller became smoother as polishing progressed. It can be seen that Further, since the arithmetic average roughness Ra at the central portion of the convex wall portion of the spherical roller after polishing using a polishing liquid containing abrasive grains having a particle diameter of 1000 nm was 0.061 μm, it has a low surface roughness. It can be seen that spherical rollers were obtained. Moreover, since the obtained spherical roller satisfy | fills all the said references | standards (1)-(3), it turns out that it has reached the practically sufficient level.

以上の実施例1〜12の結果から、本発明の研磨装置および研磨液を用いることにより、転動体に対応するワークを低い表面粗さになるまで効率よく研磨することができることがわかる。また、本発明の研磨装置および研磨液を用いることにより、実用上十分なレベルの部材を得ることができることがわかる。   From the results of Examples 1 to 12 described above, it can be seen that by using the polishing apparatus and the polishing liquid of the present invention, the workpiece corresponding to the rolling element can be efficiently polished until the surface roughness becomes low. Moreover, it turns out that a practically sufficient member can be obtained by using the polishing apparatus and polishing liquid of this invention.

(実施例13)
酸化アルミニウムからなる粒子径1000nmの砥粒〔(株)フジミインコーポレーテッド製、商品名:ホワイトフューズドアルミナ〕16.7g(研磨液中における濃度:10質量%)と、二酸化チタンからなる粒子径180nmの光触媒粒子〔石原テクノ(株)製、商品名:光触媒用酸化チタンST−41〕3.85g(研磨液中における濃度:2.5質量%)と、蛍光材料〔1H−ベンジミダゾリウム,2−[7−(ジエチルアミノ)−2−オキソ−2H−1−ベンゾピラン−3−イル]−1,3−ジメチル−,クロライド(保土ヶ谷化学工業(株)製、商品名:Cathilon Brilliant Flavine GFH)〕3.85g(研磨液中における濃度:2.5質量%)と、精製水150gとを混合して研磨液(pH4.23)を得た。
(Example 13)
16.7 g of abrasive grains made of aluminum oxide with a particle diameter of 1000 nm (trade name: White Fused Alumina, manufactured by Fujimi Incorporated) (concentration in polishing liquid: 10% by mass), and a particle diameter of 180 nm made of titanium dioxide. Photocatalyst particles (manufactured by Ishihara Techno Co., Ltd., trade name: titanium oxide ST-41 for photocatalyst) 3.85 g (concentration in polishing liquid: 2.5 mass%), and fluorescent material [1H-benzimidazolium, 2- [7- (Diethylamino) -2-oxo-2H-1-benzopyran-3-yl] -1,3-dimethyl-, chloride (manufactured by Hodogaya Chemical Co., Ltd., trade name: Cathilon Flavorne GFH)] 3.85 g (concentration in polishing liquid: 2.5% by mass) and 150 g of purified water were mixed to prepare a polishing liquid (pH 4. 3) was obtained.

(製造例7)
機械構造用高炭素鋼S55Cに塑性加工、切削加工、研削加工、を施し、焼入れ処理(1300℃、30分間加熱後水焼入れ)および研磨加工を施して焼入れ鋼からなる鋼材を得た。得られた焼入れ鋼からなる鋼材に研削加工およびバレル研磨加工を施して加工して、直径16mmの玉用ワークを得た。得られたワークの算術平均粗さRaおよび最大高さRyをサーフテスト〔ミツトヨ(株)製、商品名:SV−400〕によって測定した。その結果、ワークの算術平均粗さRaは0.12μmであり、最大高さRyは1.51μmであった。
(Production Example 7)
The high structural steel for machine structure S55C was subjected to plastic working, cutting, grinding, and subjected to quenching (1300 ° C., 30 minutes after water quenching) and polishing to obtain a steel material made of quenched steel. The obtained steel material made of hardened steel was processed by grinding and barrel polishing to obtain a ball work having a diameter of 16 mm. The arithmetic average roughness Ra and maximum height Ry of the obtained workpiece were measured by a surf test (trade name: SV-400, manufactured by Mitutoyo Corporation). As a result, the arithmetic average roughness Ra of the workpiece was 0.12 μm, and the maximum height Ry was 1.51 μm.

(実施例14)
製造例7で得られたワークを、図7に示される研磨部を有する本発明の研磨装置のワーク支持孔にセットし、実施例13で得られた研磨液を用いて当該ワークの表面を研磨した。なお、側壁パッドとして、鋭角状パッドまたは半球状パッドを用いた。また、研磨条件は、容器の回転数:250min-1、ワークの回転数:3500min-1、紫外線強度:0.8mW/cm、研磨時間および光照射時間:60分、研磨液の温度:25℃、使用した研磨パッド:妙中パイル織物(株)製、商品名:ラビングクロスY15−23、使用した側壁パッド:妙中パイル織物(株)製、商品名:ラビングクロスY15−20である。実施例14において、研磨前の焼入れ鋼製の玉用ワークを観察した結果を示す図13(A)、鋭角状パッドを用いた場合の研磨後の焼入れ鋼製の玉を観察した結果を図13(B)、半球状パッドを用いた場合の研磨後の焼入れ鋼製の玉を観察した結果を図13(C)に示す。また、鋭角状パッドを用いた場合の研磨後の焼入れ鋼製の玉および半球状パッドを用いた場合の研磨後の焼入れ鋼製の玉それぞれの算術平均粗さRaおよび最大高さRyをサーフテスト〔ミツトヨ(株)製、商品名:SV−400〕によって測定した。また、得られた玉について、前記基準(1)〜(3)を満たすかどうかを目視および光学顕微鏡付き走査型レーザ顕微鏡〔レーザテック(株)製:商品名:1LM−21〕によって評価した。
(Example 14)
The workpiece obtained in Production Example 7 is set in the workpiece support hole of the polishing apparatus of the present invention having the polishing portion shown in FIG. 7, and the surface of the workpiece is polished using the polishing liquid obtained in Example 13 did. An acute angle pad or a hemispherical pad was used as the side wall pad. The polishing conditions were as follows: container rotation speed: 250 min −1 , work rotation speed: 3500 min −1 , ultraviolet intensity: 0.8 mW / cm 2 , polishing time and light irradiation time: 60 minutes, polishing liquid temperature: 25 C., polishing pad used: manufactured by Myonaka Pile Woven Co., Ltd., trade name: rubbing cloth Y15-23, used side wall pad: manufactured by Myonaka Pile Woven Co., Ltd., trade name: rubbing cloth Y15-20. In Example 14, FIG. 13A shows the result of observing a hardened steel ball workpiece before polishing, and FIG. 13 shows the result of observing hardened steel ball after polishing when an acute pad is used. FIG. 13 (C) shows the result of observing hardened steel balls after polishing when a (B) hemispherical pad is used. In addition, the surf test is performed on the arithmetic average roughness Ra and the maximum height Ry of the hardened steel balls after polishing when using sharp-angled pads and the hardened steel balls after polishing when using hemispherical pads. [Measured by Mitutoyo Co., Ltd., trade name: SV-400]. Moreover, about the obtained ball | bowl, it was evaluated by visual observation and the scanning laser microscope with an optical microscope [Lasertec Corporation | KK brand name: 1LM-21] whether the said reference | standard (1)-(3) was satisfy | filled.

図13(A)〜(C)に示された結果から、研磨前のワークの表面には、多数の細かい切削痕が存在していたのに対し、鋭角状パッドまたは半球状パッドを用いた場合の研磨後の焼入れ鋼製の玉の表面は、平滑化されていることがわかる。また、鋭角状パッドを用いた場合の研磨後の焼入れ鋼製の玉の算術平均粗さRaは0.043μm、最大高さRyは0.51μmであり、半球状パッドを用いた場合の研磨後の焼入れ鋼製の玉の算術平均粗さRaは0.051μm、最大高さRyは0.62μmであったことから、低い表面粗さを有する玉が得られたことがわかる。また、得られた玉は、前記基準(1)〜(3)の全てを満たすことから、実用上十分なレベルに達していることがわかる。   From the results shown in FIGS. 13A to 13C, a large number of fine cutting marks were present on the surface of the workpiece before polishing, whereas an acute angle pad or a hemispherical pad was used. It can be seen that the surface of the hardened steel balls after polishing is smoothed. Further, the arithmetic average roughness Ra of the hardened steel balls after polishing when using an acute-angle pad is 0.043 μm, the maximum height Ry is 0.51 μm, and after polishing when using a hemispherical pad The arithmetic average roughness Ra of the hardened steel balls of 0.051 μm and the maximum height Ry of 0.62 μm indicate that balls having a low surface roughness were obtained. Moreover, since the obtained ball | bowl satisfy | fills all the said references | standards (1)-(3), it turns out that it has reached the practically sufficient level.

(実施例15)
酸化アルミニウムからなる粒子径11500nmの砥粒〔フジミインコーポレーテッド(株)製、商品名:ホワイトフューズッドアルミナ〕16.7g(研磨液中における濃度:10質量%)と、二酸化チタンからなる粒子径180nmの光触媒粒子〔石原テクノ(株)製、商品名:光触媒用酸化チタンST−41〕3.85g(研磨液中における濃度:2.5質量%)と、蛍光材料〔1H−ベンジミダゾリウム,2−[7−(ジエチルアミノ)−2−オキソ−2H−1−ベンゾピラン−3−イル]−1,3−ジメチル−,クロライド(保土ヶ谷化学工業(株)製、商品名:Cathilon Brilliant Flavine GFH)〕3.85g(研磨液中における濃度:2.5質量%)と、精製水150gとを混合して研磨液(pH4.23)を得た。
(Example 15)
Abrasive grains made of aluminum oxide with a particle diameter of 11500 nm [manufactured by Fujimi Incorporated, trade name: White Fused Alumina] 16.7 g (concentration in polishing liquid: 10% by mass) and a particle diameter of titanium dioxide made of 180 nm Photocatalyst particles (manufactured by Ishihara Techno Co., Ltd., trade name: titanium oxide ST-41 for photocatalyst) 3.85 g (concentration in polishing liquid: 2.5 mass%), and fluorescent material [1H-benzimidazolium, 2- [7- (Diethylamino) -2-oxo-2H-1-benzopyran-3-yl] -1,3-dimethyl-, chloride (manufactured by Hodogaya Chemical Co., Ltd., trade name: Cathilon Flavorne GFH)] 3.85 g (concentration in polishing liquid: 2.5% by mass) and 150 g of purified water were mixed to prepare a polishing liquid (pH .23) was obtained.

(実施例16)
実施例14において、実施例13で得られた研磨液を用いる代わりに実施例15で得られた研磨液を用いたことを除き、実施例14と同様の操作を行ない、玉を得た。実施例16において、鋭角状パッドを用いた場合の研磨後の焼入れ鋼製の玉を観察した結果を図14に示す。また、得られた玉について、前記基準(1)〜(3)を満たすかどうかを目視および光学顕微鏡付き走査型レーザ顕微鏡〔レーザテック(株)製:商品名:1LM−21〕によって評価した。
(Example 16)
In Example 14, a ball was obtained in the same manner as in Example 14 except that the polishing liquid obtained in Example 15 was used instead of the polishing liquid obtained in Example 13. In Example 16, the result of observing hardened steel balls after polishing in the case of using an acute pad is shown in FIG. Moreover, about the obtained ball | bowl, it was evaluated by visual observation and the scanning laser microscope with an optical microscope [Lasertec Corporation | KK brand name: 1LM-21] whether the said reference | standard (1)-(3) was satisfy | filled.

図14に示された結果から、得られた玉は、実施例14で得られた玉と同様に、低い表面粗さを有していることがわかる。また、得られた玉は、前記基準(1)〜(3)の全てを満たすことから、実用上十分なレベルに達していることがわかる。   From the results shown in FIG. 14, it can be seen that the balls obtained have a low surface roughness, similar to the balls obtained in Example 14. Moreover, since the obtained ball | bowl satisfy | fills all the said references | standards (1)-(3), it turns out that it has reached the practically sufficient level.

(比較例1)
酸化アルミニウムからなる粒子径300nmの粒子〔フジミインコーポレーテッド(株)製、商品名:ホワイトフューズッドアルミナ〕37.5g(研磨液中における濃度:20質量%)と、蛍光材料〔1H−ベンジミダゾリウム,2−[7−(ジエチルアミノ)−2−オキソ−2H−1−ベンゾピラン−3−イル]−1,3−ジメチル−,クロライド(保土ヶ谷化学工業(株)製、商品名:Cathilon Brilliant Flavine GFH)〕0.75g(研磨液中における濃度:0.5質量%)と、精製水150gとを混合して研磨液(pH5.63)を得た。
(Comparative Example 1)
37.5 g of particles made of aluminum oxide having a particle diameter of 300 nm [manufactured by Fujimi Incorporated, trade name: White Fused Alumina] (concentration in polishing liquid: 20% by mass) and fluorescent material [1H-benzimidazo Lithium, 2- [7- (diethylamino) -2-oxo-2H-1-benzopyran-3-yl] -1,3-dimethyl-, chloride (manufactured by Hodogaya Chemical Co., Ltd., trade name: Cathilon Flavorne GFH) )] 0.75 g (concentration in polishing liquid: 0.5 mass%) and 150 g of purified water were mixed to obtain a polishing liquid (pH 5.63).

(比較例2)
二酸化チタンからなる粒子径100nmの粒子〔ホソカワミクロン(株)製、商品名:酸化チタン〕37.5g(研磨液中における濃度:20質量%)と、蛍光材料〔1H−ベンジミダゾリウム,2−[7−(ジエチルアミノ)−2−オキソ−2H−1−ベンゾピラン−3−イル]−1,3−ジメチル−,クロライド(保土ヶ谷化学工業(株)製、商品名:Cathilon Brilliant Flavine GFH)〕0.75g(研磨液中における濃度:0.5質量%)と、精製水150gとを混合して研磨液(pH5.63)を得た。
(Comparative Example 2)
37.5 g of particles made of titanium dioxide having a particle diameter of 100 nm [manufactured by Hosokawa Micron Corporation, trade name: titanium oxide] (concentration in polishing liquid: 20% by mass) and fluorescent material [1H-benzimidazolium, 2- [7- (Diethylamino) -2-oxo-2H-1-benzopyran-3-yl] -1,3-dimethyl-, chloride (manufactured by Hodogaya Chemical Co., Ltd., trade name: Cathillion Brilliant GFH)] A polishing liquid (pH 5.63) was obtained by mixing 75 g (concentration in the polishing liquid: 0.5 mass%) and 150 g of purified water.

(比較例3)
実施例14において、実施例13で得られた研磨液を用いる代わりに比較例1で得られた研磨液を用いたことを除き、実施例14と同様の操作を行なった。比較例3において、研磨前の焼入れ鋼製の玉用ワークを観察した結果を示す図15(A)、鋭角状パッドを用いた場合の研磨後の焼入れ鋼製の玉を観察した結果を図15(B)に示す。また、得られた玉について、前記基準(1)〜(3)を満たすかどうかを目視および光学顕微鏡付き走査型レーザ顕微鏡〔レーザテック(株)製:商品名:1LM−21〕によって評価した。
(Comparative Example 3)
In Example 14, the same operation as in Example 14 was performed, except that the polishing liquid obtained in Comparative Example 1 was used instead of the polishing liquid obtained in Example 13. In Comparative Example 3, FIG. 15A shows the result of observing a hardened steel ball workpiece before polishing, and FIG. 15 shows the result of observing hardened steel ball after polishing when using an acute pad. Shown in (B). Moreover, about the obtained ball | bowl, it was evaluated by visual observation and the scanning laser microscope with an optical microscope [Lasertec Corporation | KK brand name: 1LM-21] whether the said reference | standard (1)-(3) was satisfy | filled.

図15に示された結果から、玉の表面は、研磨されておらず、酸化して黒色化していることがわかる。したがって、得られた玉は、前記基準のいずれも満たさず、実用上不十分であることがわかる。   From the results shown in FIG. 15, it can be seen that the surface of the ball is not polished but oxidized and blackened. Therefore, it can be seen that the obtained balls do not satisfy any of the above criteria and are insufficient in practice.

(比較例4)
実施例14において、実施例13で得られた研磨液を用いる代わりに比較例2で得られた研磨液を用いたことを除き、実施例14と同様の操作を行なった。得られた玉について、前記基準(1)〜(3)を満たすかどうかを目視および光学顕微鏡付き走査型レーザ顕微鏡〔レーザテック(株)製:商品名:1LM−21〕によって評価した。その結果、玉の表面は、研磨されておらず、酸化して黒色化していた。したがって、得られた玉は、前記基準のいずれも満たさず、実用上不十分であることがわかる。
(Comparative Example 4)
In Example 14, the same operation as in Example 14 was performed, except that the polishing liquid obtained in Comparative Example 2 was used instead of the polishing liquid obtained in Example 13. About the obtained ball | bowl, it was evaluated by visual observation and the scanning laser microscope with an optical microscope [Lasertec Corporation | KK brand name: 1LM-21] whether the said reference | standard (1)-(3) was satisfy | filled. As a result, the surface of the ball was not polished and was oxidized and blackened. Therefore, it can be seen that the obtained balls do not satisfy any of the above criteria and are insufficient in practice.

(比較例5)
酸化アルミニウムからなる粒子径300nmの粒子〔フジミインコーポレーテッド(株)製、商品名:ホワイトフューズッドアルミナ〕16.7g(研磨液中における濃度:10質量%)と、二酸化チタンからなる粒子径100nmの粒子(ホソカワミクロン(株)製、商品名:酸化チタン)3.85g(研磨液中における濃度:2.5質量%)と、蛍光材料〔1H−ベンジミダゾリウム,2−[7−(ジエチルアミノ)−2−オキソ−2H−1−ベンゾピラン−3−イル]−1,3−ジメチル−,クロライド(保土ヶ谷化学工業(株)製、商品名:Cathilon Brilliant Flavine GFH)〕3.85g(研磨液中における濃度:2.5質量%)と、精製水150gとを混合して研磨液(pH4.23)を得た。
(Comparative Example 5)
16.7 g of particles having a particle diameter of 300 nm made of aluminum oxide (manufactured by Fujimi Incorporated, trade name: White Fused Alumina) (concentration in polishing liquid: 10% by mass) and particles having a particle diameter of 100 nm made of titanium dioxide 3.85 g of particles (manufactured by Hosokawa Micron Corporation, trade name: titanium oxide) (concentration in polishing liquid: 2.5 mass%) and fluorescent material [1H-benzimidazolium, 2- [7- (diethylamino) -2-oxo-2H-1-benzopyran-3-yl] -1,3-dimethyl-, chloride (manufactured by Hodogaya Chemical Co., Ltd., trade name: Catilon Brilliant Flavine GFH)] 3.85 g (in polishing liquid) Concentration: 2.5% by mass) and 150 g of purified water were mixed to obtain a polishing liquid (pH 4.23).

(比較例6)
実施例14において、実施例13で得られた研磨液を用いる代わりに比較例5で得られた研磨液を用いたことを除き、実施例14と同様の操作を行なった。比較例6において、研磨前の焼入れ鋼製の玉用ワークを観察した結果を示す図16(A)、鋭角状パッドを用いた場合の研磨後の焼入れ鋼製の玉を観察した結果を図16(B)に示す。また、得られた玉について、前記基準(1)〜(3)を満たすかどうかを目視および光学顕微鏡付き走査型レーザ顕微鏡〔レーザテック(株)製:商品名:1LM−21〕によって評価した。
(Comparative Example 6)
In Example 14, the same operation as in Example 14 was performed, except that the polishing liquid obtained in Comparative Example 5 was used instead of using the polishing liquid obtained in Example 13. In Comparative Example 6, FIG. 16A shows the result of observing a hardened steel ball workpiece before polishing, and FIG. 16 shows the result of observing hardened steel ball after polishing when an acute pad is used. Shown in (B). Moreover, about the obtained ball | bowl, it was evaluated by visual observation and the scanning laser microscope with an optical microscope [Lasertec Corporation | KK brand name: 1LM-21] whether the said reference | standard (1)-(3) was satisfy | filled.

図16に示された結果から、玉の表面は、研磨されておらず、酸化して黒色化していることがわかる。したがって、得られた玉は、前記基準のいずれも満たさず、実用上不十分であることがわかる。   From the results shown in FIG. 16, it can be seen that the surface of the ball is not polished but oxidized and blackened. Therefore, it can be seen that the obtained balls do not satisfy any of the above criteria and are insufficient in practice.

(比較例7)
酸化アルミニウムからなる粒子径1000nmの粒子〔フジミインコーポレーテッド(株)製、商品名:ホワイトフューズッドアルミナ〕5.26g(研磨液中における濃度:5質量%)と、二酸化チタンからなる粒子径100nmの粒子(ホソカワミクロン(株)製、商品名:酸化チタン)11.1g(研磨液中における濃度:10質量%)と、蛍光材料〔1H−ベンジミダゾリウム,2−[7−(ジエチルアミノ)−2−オキソ−2H−1−ベンゾピラン−3−イル]−1,3−ジメチル−,クロライド(保土ヶ谷化学工業(株)製、商品名:Cathilon Brilliant Flavine GFH)〕8.01g(研磨液中における濃度:7.5質量%)と、精製水100gとを混合して研磨液(pH4.23)を得た。
(Comparative Example 7)
5.26 g of particles having a particle diameter of 1000 nm made of aluminum oxide (manufactured by Fujimi Incorporated, trade name: White Fused Alumina) (concentration in polishing liquid: 5% by mass) and particles having a particle diameter of 100 nm made of titanium dioxide 11.1 g of particles (manufactured by Hosokawa Micron Corporation, trade name: titanium oxide) (concentration in polishing liquid: 10% by mass) and fluorescent material [1H-benzimidazolium, 2- [7- (diethylamino) -2 -Oxo-2H-1-benzopyran-3-yl] -1,3-dimethyl-chloride (manufactured by Hodogaya Chemical Co., Ltd., trade name: Catilon Brilliant Flavine GFH)] 8.01 g (concentration in polishing liquid: 7.5% by mass) and 100 g of purified water were mixed to obtain a polishing liquid (pH 4.23).

(比較例8)
実施例9において、実施例8で得られた研磨液を用いる代わりに比較例7で得られた研磨液を用いたことを除き、実施例9と同様の操作を行なった。比較例8において、研磨前の軸受鋼SUJ2製の球面ころ用ワークを観察した結果を図17(A)、研磨後の軸受鋼SUJ2製の球面ころを観察した結果を図17(B)に示す。また、得られた球面ころについて、前記基準(1)〜(3)を満たすかどうかを目視および光学顕微鏡付き走査型レーザ顕微鏡〔レーザテック(株)製:商品名:1LM−21〕によって評価した。
(Comparative Example 8)
In Example 9, the same operation as in Example 9 was performed except that the polishing liquid obtained in Comparative Example 7 was used instead of using the polishing liquid obtained in Example 8. In Comparative Example 8, the result of observing the spherical roller workpiece made of the bearing steel SUJ2 before polishing is shown in FIG. 17A, and the result of observing the spherical roller made of the bearing steel SUJ2 after polishing is shown in FIG. 17B. . Moreover, about the obtained spherical roller, it was evaluated by visual observation and a scanning laser microscope with an optical microscope [made by Lasertec Co., Ltd .: trade name: 1LM-21] as to whether or not the above criteria (1) to (3) were satisfied. .

図17(A)および(B)に示された結果から、球面ころの表面は、酸化して黒色化していることがわかる。したがって、得られた球面ころは、前記基準のいずれも満たさず、実用上不十分であることがわかる。   From the results shown in FIGS. 17A and 17B, it can be seen that the surface of the spherical roller is oxidized and blackened. Therefore, it can be seen that the obtained spherical roller does not satisfy any of the above criteria and is insufficient in practice.

(実施例17)
(1)研磨液の調製
酸化アルミニウムからなる粒子径1000nmの砥粒〔(株)フジミインコーポレーテッド製、商品名:ホワイトフューズドアルミナ〕7.89g(研磨液中における濃度:5質量%)と、二酸化チタンからなる粒子径180nmの光触媒粒子〔石原テクノ(株)製、商品名:光触媒用酸化チタンST−41〕7.89g(研磨液中における濃度:5質量%)と、蛍光材料〔1H−ベンジミダゾリウム,2−[7−(ジエチルアミノ)−2−オキソ−2H−1−ベンゾピラン−3−イル]−1,3−ジメチル−,クロライド(保土ヶ谷化学工業(株)製、商品名:Cathilon Brilliant Flavine GFH)〕3.85g(研磨液中における濃度:2.5質量%)と、精製水150gとを混合して研磨液(pH4.23)を得た。
(Example 17)
(1) Preparation of polishing liquid Abrasive grains made of aluminum oxide having a particle diameter of 1000 nm [trade name: White Fused Alumina, manufactured by Fujimi Incorporated] (concentration in polishing liquid: 5% by mass); Photocatalyst particles made of titanium dioxide having a particle diameter of 180 nm [manufactured by Ishihara Techno Co., Ltd., trade name: titanium oxide ST-41 for photocatalyst] (concentration in polishing liquid: 5% by mass) and fluorescent material [1H- Benzimidazolium, 2- [7- (Diethylamino) -2-oxo-2H-1-benzopyran-3-yl] -1,3-dimethyl-, chloride (manufactured by Hodogaya Chemical Co., Ltd., trade name: Cathilon) (Brilliant Flavine GFH)] 3.85 g (concentration in polishing liquid: 2.5% by mass) and 150 g of purified water were mixed and polished. A liquid (pH 4.23) was obtained.

(2)円筒ころ用ワークの研磨
軸受鋼SUJ2製の円筒ころ用ワーク〔(株)東振精機、外径:19mm、ころ長さ:19mmの超仕上げ加工された円筒ころ用ワーク(算術平均粗さRa:0.0236μm、最大高さRy:0.481μm)〕を、図4の21bに示されるワーク支持孔を有する本発明の研磨装置のワーク支持孔にセットし、前記(1)で得られた研磨液を用いて当該ワークの表面を研磨した。なお、研磨条件は、容器の回転数:130〜150min-1、ワークの回転数:2200min-1、紫外線強度:0.8mW/cm、研磨時間および光照射時間:90分、研磨液の温度:25℃、ならびに使用した研磨パッド:妙中パイル織物(株)製、商品名:ラビングクロスY15−23、使用した側壁パッド:妙中パイル織物(株)製、商品名:ラビングクロスY15−20である。実施例17において、研磨前の軸受鋼SUJ2製の円筒ころ用ワークを観察した結果を図18(A)、研磨後の軸受鋼SUJ2製の円筒ころを観察した結果を図18(B)に示す。研磨後の軸受鋼SUJ2製の円筒ころの転がり摺動面の算術平均粗さRaをサーフテスト〔ミツトヨ(株)製、商品名:SV−400〕によって測定した。また、得られた円筒ころについて、前記基準(1)〜(3)を満たすかどうかを目視および光学顕微鏡付き走査型レーザ顕微鏡〔レーザテック(株)製:商品名:1LM−21〕によって評価した。
(2) Polishing of cylindrical roller workpiece Cylindrical roller workpiece made of bearing steel SUJ2 [Tosei Seiki Co., Ltd., outer diameter: 19 mm, roller length: 19 mm superfinished cylindrical roller workpiece (arithmetic mean roughness) (Ra: 0.0236 μm, maximum height Ry: 0.481 μm) is set in the work support hole of the polishing apparatus of the present invention having the work support hole shown in 21b of FIG. The surface of the workpiece was polished using the obtained polishing liquid. The polishing conditions were: the rotational speed of the container: 130 to 150 min −1 , the rotational speed of the workpiece: 2200 min −1 , the ultraviolet intensity: 0.8 mW / cm 2 , the polishing time and the light irradiation time: 90 minutes, and the temperature of the polishing liquid : 25 ° C. and polishing pad used: manufactured by Myonaka Pile Woven Co., Ltd., trade name: rubbing cloth Y15-23, used side wall pad: manufactured by Myonaka Pile Woven Co., Ltd., trade name: rubbing cloth Y15-20 It is. In Example 17, the result of observing the cylindrical roller workpiece made of bearing steel SUJ2 before polishing is shown in FIG. 18A, and the result of observing the cylindrical roller made of bearing steel SUJ2 after polishing is shown in FIG. 18B. . The arithmetic average roughness Ra of the rolling sliding surface of the cylindrical roller made of the bearing steel SUJ2 after polishing was measured by a surf test (trade name: SV-400, manufactured by Mitutoyo Corporation). Moreover, about the obtained cylindrical roller, it was evaluated by visual observation and a scanning laser microscope with an optical microscope [manufactured by Lasertec Co., Ltd .: trade name: 1LM-21] as to whether or not the above criteria (1) to (3) were satisfied. .

図18(A)および(B)に示された結果から、研磨前のワークの表面には、多数の深い切削痕が存在していたのに対し、研磨後の円筒ころの表面は、平滑化されていることがわかる。また、研磨後の円筒ころの転がり摺動面における算術平均粗さRaは0.0129μmであり、最大高さRyは0.230μmであったことから、低い表面粗さを有する円筒ころが得られたことがわかる。また、得られた円筒ころは、前記基準(1)〜(3)の全てを満たすことから、実用上十分なレベルに達していることがわかる。   From the results shown in FIGS. 18 (A) and 18 (B), many deep cutting marks were present on the surface of the workpiece before polishing, whereas the surface of the cylindrical roller after polishing was smoothed. You can see that Moreover, since the arithmetic average roughness Ra on the rolling sliding surface of the cylindrical roller after polishing was 0.0129 μm and the maximum height Ry was 0.230 μm, a cylindrical roller having a low surface roughness was obtained. I understand that. Moreover, since the obtained cylindrical roller satisfy | fills all the said references | standards (1)-(3), it turns out that it has reached the practically sufficient level.

(実施例18)
(1)研磨液の調製
酸化アルミニウムからなる粒子径1000nmの砥粒〔(株)フジミインコーポレーテッド製、商品名:ホワイトフューズドアルミナ〕7.89g(研磨液中における濃度:5質量%)と、二酸化チタンからなる粒子径150nmの光触媒粒子〔昭和電工(株)製、商品名:スーパータイタニアF−10〕7.89g(研磨液中における濃度:5質量%)と、蛍光材料〔1H−ベンジミダゾリウム,2−[7−(ジエチルアミノ)−2−オキソ−2H−1−ベンゾピラン−3−イル]−1,3−ジメチル−,クロライド(保土ヶ谷化学工業(株)製、商品名:Cathilon Brilliant Flavine GFH)〕3.85g(研磨液中における濃度:2.5質量%)と、精製水150gとを混合して研磨液(pH4.23)を得た。
(Example 18)
(1) Preparation of polishing liquid Abrasive grains made of aluminum oxide having a particle diameter of 1000 nm [trade name: White Fused Alumina, manufactured by Fujimi Incorporated] (concentration in polishing liquid: 5% by mass); 7.89 g of photocatalyst particles (made by Showa Denko KK, trade name: Super Titania F-10) made of titanium dioxide (concentration in polishing liquid: 5% by mass) and fluorescent material [1H-Benzimi Dazolium, 2- [7- (diethylamino) -2-oxo-2H-1-benzopyran-3-yl] -1,3-dimethyl-, chloride (manufactured by Hodogaya Chemical Co., Ltd., trade name: Catilon Brilliant Flavine) GFH)] 3.85 g (concentration in polishing liquid: 2.5 mass%) and 150 g of purified water were mixed to prepare a polishing liquid (p 4.23) was obtained.

(2)円筒ころ用ワークの研磨
軸受鋼SUJ2製の円筒ころ用ワーク〔(株)東振精機、外径:19mm、ころ長さ:19mmの超仕上げ加工された円筒ころ用ワーク(算術平均粗さRa:0.0272μm、最大高さRy:0.563μm)〕を、図4の21bに示されるワーク支持孔を有する本発明の研磨装置のワーク支持孔にセットし、前記(1)で得られた研磨液を用いて当該ワークの表面を研磨した。なお、研磨条件は、容器の回転数:130〜150min-1、ワークの回転数:2200min-1、紫外線強度:0.8mW/cm、研磨時間および光照射時間:90分、研磨液の温度:25℃、ならびに使用した研磨パッド:妙中パイル織物(株)製、商品名:ラビングクロスY15−23、使用した側壁パッド:妙中パイル織物(株)製、商品名:ラビングクロスY15−20である。実施例18において、研磨前の軸受鋼SUJ2製の円筒ころ用ワークを観察した結果を図19(A)、研磨後の軸受鋼SUJ2製の円筒ころを観察した結果を図19(B)に示す。研磨後の軸受鋼SUJ2製の円筒ころの転がり摺動面の算術平均粗さRaをサーフテスト〔ミツトヨ(株)製、商品名:SV−400〕によって測定した。また、得られた円筒ころについて、前記基準(1)〜(3)を満たすかどうかを目視および光学顕微鏡付き走査型レーザ顕微鏡〔レーザテック(株)製:商品名:1LM−21〕によって評価した。
(2) Polishing of cylindrical roller workpiece Cylindrical roller workpiece made of bearing steel SUJ2 [Tosei Seiki Co., Ltd., outer diameter: 19 mm, roller length: 19 mm superfinished cylindrical roller workpiece (arithmetic mean roughness) (Ra: 0.0272 μm, maximum height Ry: 0.563 μm)] is set in the work support hole of the polishing apparatus of the present invention having the work support hole shown in 21b of FIG. The surface of the workpiece was polished using the obtained polishing liquid. The polishing conditions were: the rotational speed of the container: 130 to 150 min −1 , the rotational speed of the workpiece: 2200 min −1 , the ultraviolet intensity: 0.8 mW / cm 2 , the polishing time and the light irradiation time: 90 minutes, and the temperature of the polishing liquid : 25 ° C. and polishing pad used: manufactured by Myonaka Pile Woven Co., Ltd., trade name: rubbing cloth Y15-23, used side wall pad: manufactured by Myonaka Pile Woven Co., Ltd., trade name: rubbing cloth Y15-20 It is. In Example 18, the result of observing the cylindrical roller workpiece made of bearing steel SUJ2 before polishing is shown in FIG. 19A, and the result of observing the cylindrical roller made of bearing steel SUJ2 after polishing is shown in FIG. 19B. . The arithmetic average roughness Ra of the rolling sliding surface of the cylindrical roller made of the bearing steel SUJ2 after polishing was measured by a surf test (trade name: SV-400, manufactured by Mitutoyo Corporation). Moreover, about the obtained cylindrical roller, it was evaluated by visual observation and a scanning laser microscope with an optical microscope [manufactured by Lasertec Co., Ltd .: trade name: 1LM-21] as to whether or not the above criteria (1) to (3) were satisfied. .

図19(A)および(B)に示された結果から、研磨前のワークの表面には、多数の深い切削痕が存在していたのに対し、研磨後の円筒ころの表面は、平滑化されていることがわかる。また、研磨後の円筒ころの転がり摺動面における算術平均粗さRaは0.0124μmであり、最大高さRyは0.288μmであったことから、低い表面粗さを有する円筒ころが得られたことがわかる。また、得られた円筒ころは、前記基準(1)〜(3)の全てを満たすことから、実用上十分なレベルに達していることがわかる。   From the results shown in FIGS. 19 (A) and 19 (B), many deep cutting marks were present on the surface of the workpiece before polishing, whereas the surface of the cylindrical roller after polishing was smoothed. You can see that Moreover, since the arithmetic average roughness Ra on the rolling sliding surface of the cylindrical roller after polishing was 0.0124 μm and the maximum height Ry was 0.288 μm, a cylindrical roller having a low surface roughness was obtained. I understand that. Moreover, since the obtained cylindrical roller satisfy | fills all the said references | standards (1)-(3), it turns out that it has reached the practically sufficient level.

(実施例19)
(1)研磨液の調製
酸化アルミニウムからなる粒子径1000nmの砥粒〔(株)フジミインコーポレーテッド製、商品名:ホワイトフューズドアルミナ〕7.89g(研磨液中における濃度:5質量%)と、二酸化チタンからなる粒子径250nmの光触媒粒子〔昭和電工(株)製、商品名:スーパータイタニアG−1〕7.89g(研磨液中における濃度:5質量%)と、蛍光材料〔1H−ベンジミダゾリウム,2−[7−(ジエチルアミノ)−2−オキソ−2H−1−ベンゾピラン−3−イル]−1,3−ジメチル−,クロライド(保土ヶ谷化学工業(株)製、商品名:Cathilon Brilliant Flavine GFH)〕3.85g(研磨液中における濃度:2.5質量%)と、精製水150gとを混合して研磨液(pH4.23)を得た。
(Example 19)
(1) Preparation of polishing liquid Abrasive grains made of aluminum oxide having a particle diameter of 1000 nm [trade name: White Fused Alumina, manufactured by Fujimi Incorporated] (concentration in polishing liquid: 5% by mass); 7.89 g of photocatalyst particles made of titanium dioxide having a particle diameter of 250 nm [manufactured by Showa Denko KK, trade name: Super Titania G-1] (concentration in polishing liquid: 5 mass%), and fluorescent material [1H-Benzimi Dazolium, 2- [7- (diethylamino) -2-oxo-2H-1-benzopyran-3-yl] -1,3-dimethyl-, chloride (manufactured by Hodogaya Chemical Co., Ltd., trade name: Catilon Brilliant Flavine) GFH)] 3.85 g (concentration in polishing liquid: 2.5 mass%) and 150 g of purified water were mixed to prepare a polishing liquid (p H4.23) was obtained.

(2)円筒ころ用ワークの研磨
軸受鋼SUJ2製の円筒ころ用ワーク〔(株)東振精機、外径:19mm、ころ長さ:19mmの超仕上げ加工された円筒ころ用ワーク(算術平均粗さRa:0.0266μm、最大高さRy:0.460μm)〕を、図4の21bに示されるワーク支持孔を有する本発明の研磨装置のワーク支持孔にセットし、前記(1)で得られた研磨液を用いて当該ワークの表面を研磨した。なお、研磨条件は、容器の回転数:130〜150min-1、ワークの回転数:2200min-1、紫外線強度:0.8mW/cm、研磨時間および光照射時間:90分、研磨液の温度:25℃、ならびに使用した研磨パッド:妙中パイル織物(株)製、商品名:ラビングクロスY15−23、使用した側壁パッド:妙中パイル織物(株)製、商品名:ラビングクロスY15−20である。実施例19において、研磨前の軸受鋼SUJ2製の円筒ころ用ワークを観察した結果を図20(A)、研磨後の軸受鋼SUJ2製の円筒ころを観察した結果を図20(B)に示す。研磨後の軸受鋼SUJ2製の円筒ころの転がり摺動面の算術平均粗さRaをサーフテスト〔ミツトヨ(株)製、商品名:SV−400〕によって測定した。また、得られた円筒ころについて、前記基準(1)〜(3)を満たすかどうかを目視および光学顕微鏡付き走査型レーザ顕微鏡〔レーザテック(株)製:商品名:1LM−21〕によって評価した。
(2) Polishing of cylindrical roller workpiece Cylindrical roller workpiece made of bearing steel SUJ2 [Tosei Seiki Co., Ltd., outer diameter: 19 mm, roller length: 19 mm superfinished cylindrical roller workpiece (arithmetic mean roughness) (Ra: 0.0266 μm, maximum height Ry: 0.460 μm) is set in the work support hole of the polishing apparatus of the present invention having the work support hole shown in 21b of FIG. The surface of the workpiece was polished using the obtained polishing liquid. The polishing conditions were: the rotational speed of the container: 130 to 150 min −1 , the rotational speed of the workpiece: 2200 min −1 , the ultraviolet intensity: 0.8 mW / cm 2 , the polishing time and the light irradiation time: 90 minutes, and the temperature of the polishing liquid : 25 ° C. and polishing pad used: manufactured by Myonaka Pile Woven Co., Ltd., trade name: rubbing cloth Y15-23, used side wall pad: manufactured by Myonaka Pile Woven Co., Ltd., trade name: rubbing cloth Y15-20 It is. In Example 19, the result of observing the cylindrical roller workpiece made of bearing steel SUJ2 before polishing is shown in FIG. 20A, and the result of observing the cylindrical roller made of bearing steel SUJ2 after polishing is shown in FIG. 20B. . The arithmetic average roughness Ra of the rolling sliding surface of the cylindrical roller made of the bearing steel SUJ2 after polishing was measured by a surf test (trade name: SV-400, manufactured by Mitutoyo Corporation). Moreover, about the obtained cylindrical roller, it was evaluated by visual observation and a scanning laser microscope with an optical microscope [manufactured by Lasertec Co., Ltd .: trade name: 1LM-21] as to whether or not the above criteria (1) to (3) were satisfied. .

図20(A)および(B)に示された結果から、研磨前のワークの表面には、多数の深い切削痕が存在していたのに対し、研磨後の円筒ころの表面は、平滑化されていることがわかる。また、研磨後の円筒ころの転がり摺動面の中央部における算術平均粗さRaは0.013μmであり、最大高さRyは0.266μmであったことから、低い表面粗さを有する円筒ころが得られたことがわかる。また、得られた円筒ころは、前記基準(1)〜(3)の全てを満たすことから、実用上十分なレベルに達していることがわかる。   From the results shown in FIGS. 20 (A) and 20 (B), many deep cutting marks were present on the surface of the workpiece before polishing, whereas the surface of the cylindrical roller after polishing was smoothed. You can see that In addition, since the arithmetic average roughness Ra at the center of the rolling sliding surface of the cylindrical roller after polishing was 0.013 μm and the maximum height Ry was 0.266 μm, the cylindrical roller having a low surface roughness. It turns out that was obtained. Moreover, since the obtained cylindrical roller satisfy | fills all the said references | standards (1)-(3), it turns out that it has reached the practically sufficient level.

(実施例20)
(1)研磨液の調製
酸化アルミニウムからなる粒子径1000nmの砥粒〔(株)フジミインコーポレーテッド製、商品名:ホワイトフューズドアルミナ〕7.89g(研磨液中における濃度:5質量%)と、二酸化チタンからなる粒子径300−500nmの光触媒粒子〔チタン工業(株)製、商品名:KRONOS KA−10〕7.89g(研磨液中における濃度:5質量%)と、蛍光材料〔1H−ベンジミダゾリウム,2−[7−(ジエチルアミノ)−2−オキソ−2H−1−ベンゾピラン−3−イル]−1,3−ジメチル−,クロライド(保土ヶ谷化学工業(株)製、商品名:Cathilon Brilliant Flavine GFH)〕3.85g(研磨液中における濃度:2.5質量%)と、精製水150gとを混合して研磨液(pH4.23)を得た。
(Example 20)
(1) Preparation of polishing liquid Abrasive grains made of aluminum oxide having a particle diameter of 1000 nm [trade name: White Fused Alumina, manufactured by Fujimi Incorporated] (concentration in polishing liquid: 5% by mass); 7.89 g (trade name: KRONOS KA-10, product name: KRONOS KA-10, manufactured by Titanium Industry Co., Ltd.) having a particle diameter of 300 to 500 nm made of titanium dioxide, and a fluorescent material [1H-ben Dimidazolium, 2- [7- (diethylamino) -2-oxo-2H-1-benzopyran-3-yl] -1,3-dimethyl-, chloride (manufactured by Hodogaya Chemical Co., Ltd., trade name: Cathilon Brilliant) Flavin GFH)] 3.85 g (concentration in polishing liquid: 2.5 mass%) and 150 g of purified water were mixed. It was obtained Migakueki (pH4.23).

(2)円筒ころ用ワークの研磨
軸受鋼SUJ2製の円筒ころ用ワーク〔(株)東振精機、外径:19mm、ころ長さ:19mmの超仕上げ加工された円筒ころ用ワーク(算術平均粗さRa:0.0233μm、最大高さRy:0.487μm)〕を、図4の21bに示されるワーク支持孔を有する本発明の研磨装置のワーク支持孔にセットし、前記(1)で得られた研磨液を用いて当該ワークの表面を研磨した。なお、研磨条件は、容器の回転数:130〜150min-1、ワークの回転数:2200min-1、紫外線強度:0.8mW/cm、研磨時間および光照射時間:90分、研磨液の温度:25℃、ならびに使用した研磨パッド:妙中パイル織物(株)製、商品名:ラビングクロスY15−23、使用した側壁パッド:妙中パイル織物(株)製、商品名:ラビングクロスY15−20である。実施例20において、研磨前の軸受鋼SUJ2製の円筒ころ用ワークを観察した結果を図21(A)、研磨後の軸受鋼SUJ2製の円筒ころを観察した結果を図21(B)に示す。研磨後の軸受鋼SUJ2製の円筒ころの転がり摺動面の算術平均粗さRaをサーフテスト〔ミツトヨ(株)製、商品名:SV−400〕によって測定した。また、得られた円筒ころについて、前記基準(1)〜(3)を満たすかどうかを目視および光学顕微鏡付き走査型レーザ顕微鏡〔レーザテック(株)製:商品名:1LM−21〕によって評価した。
(2) Polishing of cylindrical roller workpiece Cylindrical roller workpiece made of bearing steel SUJ2 [Tosei Seiki Co., Ltd., outer diameter: 19 mm, roller length: 19 mm superfinished cylindrical roller workpiece (arithmetic mean roughness) (Ra: 0.0233 μm, maximum height Ry: 0.487 μm)] is set in the work support hole of the polishing apparatus of the present invention having the work support hole shown in 21b of FIG. The surface of the workpiece was polished using the obtained polishing liquid. The polishing conditions were: the rotational speed of the container: 130 to 150 min −1 , the rotational speed of the workpiece: 2200 min −1 , the ultraviolet intensity: 0.8 mW / cm 2 , the polishing time and the light irradiation time: 90 minutes, and the temperature of the polishing liquid : 25 ° C. and polishing pad used: manufactured by Myonaka Pile Woven Co., Ltd., trade name: rubbing cloth Y15-23, used side wall pad: manufactured by Myonaka Pile Woven Co., Ltd., trade name: rubbing cloth Y15-20 It is. In Example 20, the result of observing the workpiece for cylindrical roller made of bearing steel SUJ2 before polishing is shown in FIG. 21A, and the result of observing the cylindrical roller made of bearing steel SUJ2 after polishing is shown in FIG. 21B. . The arithmetic average roughness Ra of the rolling sliding surface of the cylindrical roller made of the bearing steel SUJ2 after polishing was measured by a surf test (trade name: SV-400, manufactured by Mitutoyo Corporation). Moreover, about the obtained cylindrical roller, it was evaluated by visual observation and a scanning laser microscope with an optical microscope [manufactured by Lasertec Co., Ltd .: trade name: 1LM-21] as to whether or not the above criteria (1) to (3) were satisfied. .

図21(A)および(B)に示された結果から、研磨前のワークの表面には、多数の深い切削痕が存在していたのに対し、研磨後の円筒ころの表面は、平滑化されていることがわかる。また、研磨後の円筒ころの転がり摺動面の中央部における算術平均粗さRaは0.00128μmであり、最大高さRyは0.266μmであったことから、低い表面粗さを有する円筒ころが得られたことがわかる。また、得られた円筒ころは、前記基準(1)〜(3)の全てを満たすことから、実用上十分なレベルに達していることがわかる。   From the results shown in FIGS. 21A and 21B, the surface of the workpiece before polishing had many deep cutting marks, whereas the surface of the cylindrical roller after polishing was smoothed. You can see that In addition, since the arithmetic average roughness Ra at the center of the rolling sliding surface of the cylindrical roller after polishing was 0.00128 μm and the maximum height Ry was 0.266 μm, the cylindrical roller having a low surface roughness. It turns out that was obtained. Moreover, since the obtained cylindrical roller satisfy | fills all the said references | standards (1)-(3), it turns out that it has reached the practically sufficient level.

(比較例9)
(1)研磨液の調製
酸化アルミニウムからなる粒子径1000nmの砥粒〔(株)フジミインコーポレーテッド製、商品名:ホワイトフューズドアルミナ〕7.89g(研磨液中における濃度:5質量%)と、二酸化チタンからなる粒子径30nmの光触媒粒子〔テイカ(株)製、商品名:二酸化チタンAMT−600〕7.89g(研磨液中における濃度:5質量%)と、蛍光材料〔1H−ベンジミダゾリウム,2−[7−(ジエチルアミノ)−2−オキソ−2H−1−ベンゾピラン−3−イル]−1,3−ジメチル−,クロライド(保土ヶ谷化学工業(株)製、商品名:Cathilon Brilliant Flavine GFH)〕3.85g(研磨液中における濃度:2.5質量%)と、精製水150gとを混合して研磨液(pH4.23)を得た。
(Comparative Example 9)
(1) Preparation of polishing liquid Abrasive grains made of aluminum oxide having a particle diameter of 1000 nm [trade name: White Fused Alumina, manufactured by Fujimi Incorporated] (concentration in polishing liquid: 5% by mass); 7.89 g of photocatalyst particles made of titanium dioxide having a particle diameter of 30 nm [manufactured by Teika Co., Ltd., trade name: titanium dioxide AMT-600] (concentration in polishing liquid: 5 mass%), and fluorescent material [1H-benzimidazo Lithium, 2- [7- (diethylamino) -2-oxo-2H-1-benzopyran-3-yl] -1,3-dimethyl-, chloride (manufactured by Hodogaya Chemical Co., Ltd., trade name: Cathilon Flavorne GFH) )] 3.85 g (concentration in polishing liquid: 2.5 mass%) and 150 g of purified water were mixed to prepare a polishing liquid (pH 4.23) was obtained.

(2)円筒ころ用ワークの研磨
軸受鋼SUJ2製の円筒ころ用ワーク〔(株)東振精機、外径:19mm、ころ長さ:19mmの超仕上げ加工された円筒ころ用ワーク(算術平均粗さRa:0.0269μm、最大高さRy:0.464μm)〕を、図4の21bに示されるワーク支持孔を有する本発明の研磨装置のワーク支持孔にセットし、前記(1)で得られた研磨液を用いて当該ワークの表面を研磨した。なお、研磨条件は、容器の回転数:130〜150min-1、ワークの回転数:2200min-1、紫外線強度:0.8mW/cm、研磨時間および光照射時間:90分、研磨液の温度:25℃、ならびに使用した研磨パッド:妙中パイル織物(株)製、商品名:ラビングクロスY15−23、使用した側壁パッド:妙中パイル織物(株)製、商品名:ラビングクロスY15−20である。比較例9において、研磨前の軸受鋼SUJ2製の円筒ころ用ワークを観察した結果を図22(A)、研磨後の軸受鋼SUJ2製の円筒ころを観察した結果を図22(B)に示す。また、得られた円筒ころについて、前記基準(1)〜(3)を満たすかどうかを目視および光学顕微鏡付き走査型レーザ顕微鏡〔レーザテック(株)製:商品名:1LM−21〕によって評価した。
(2) Polishing of cylindrical roller workpiece Cylindrical roller workpiece made of bearing steel SUJ2 [Tosei Seiki Co., Ltd., outer diameter: 19 mm, roller length: 19 mm superfinished cylindrical roller workpiece (arithmetic mean roughness) (Ra: 0.0269 μm, maximum height Ry: 0.464 μm)] is set in the work support hole of the polishing apparatus of the present invention having the work support hole shown in 21b of FIG. The surface of the workpiece was polished using the obtained polishing liquid. The polishing conditions were: the rotational speed of the container: 130 to 150 min −1 , the rotational speed of the workpiece: 2200 min −1 , the ultraviolet intensity: 0.8 mW / cm 2 , the polishing time and the light irradiation time: 90 minutes, and the temperature of the polishing liquid : 25 ° C. and polishing pad used: manufactured by Myonaka Pile Woven Co., Ltd., trade name: rubbing cloth Y15-23, used side wall pad: manufactured by Myonaka Pile Woven Co., Ltd., trade name: rubbing cloth Y15-20 It is. In Comparative Example 9, the result of observing the cylindrical roller workpiece made of bearing steel SUJ2 before polishing is shown in FIG. 22A, and the result of observing the cylindrical roller made of bearing steel SUJ2 after polishing is shown in FIG. 22B. . Moreover, about the obtained cylindrical roller, it was evaluated by visual observation and a scanning laser microscope with an optical microscope [manufactured by Lasertec Co., Ltd .: trade name: 1LM-21] as to whether or not the above criteria (1) to (3) were satisfied. .

図22(A)および(B)に示された結果から、研磨前のワークの表面および研磨後の円筒ころの表面ともに、多数の細かい切削痕が存在していることがわかる。したがって、得られた円筒ころは、前記基準(1)を満たさず、実用上不十分であることがわかる。   From the results shown in FIGS. 22A and 22B, it can be seen that there are a large number of fine cutting marks on both the surface of the workpiece before polishing and the surface of the cylindrical roller after polishing. Therefore, it can be seen that the obtained cylindrical roller does not satisfy the standard (1) and is insufficient in practice.

(比較例10)
(1)研磨液の調製
酸化アルミニウムからなる粒子径1000nmの砥粒〔(株)フジミインコーポレーテッド製、商品名:ホワイトフューズドアルミナ〕7.89g(研磨液中における濃度:5質量%)と、二酸化チタンからなる粒子径100nmの光触媒粒子〔ホソカワミクロン(株)製、商品名:二酸化チタン〕7.89g(研磨液中における濃度:5質量%)と、蛍光材料〔1H−ベンジミダゾリウム,2−[7−(ジエチルアミノ)−2−オキソ−2H−1−ベンゾピラン−3−イル]−1,3−ジメチル−,クロライド(保土ヶ谷化学工業(株)製、商品名:Cathilon Brilliant Flavine GFH)〕3.85g(研磨液中における濃度:2.5質量%)と、精製水150gとを混合して研磨液(pH4.23)を得た。
(Comparative Example 10)
(1) Preparation of polishing liquid Abrasive grains made of aluminum oxide having a particle diameter of 1000 nm [trade name: White Fused Alumina, manufactured by Fujimi Incorporated] (concentration in polishing liquid: 5% by mass); 7.89 g of photocatalyst particles made of titanium dioxide having a particle diameter of 100 nm [manufactured by Hosokawa Micron Co., Ltd., trade name: titanium dioxide] (concentration in polishing liquid: 5 mass%) and fluorescent material [1H-benzimidazolium, 2 -[7- (Diethylamino) -2-oxo-2H-1-benzopyran-3-yl] -1,3-dimethyl-, chloride (Hodogaya Chemical Co., Ltd., trade name: Cathilon Flavorne GFH)] 3 .85 g (concentration in polishing liquid: 2.5 mass%) and 150 g of purified water were mixed to prepare a polishing liquid (pH 4 .23) was obtained.

(2)円筒ころ用ワークの研磨
軸受鋼SUJ2製の円筒ころ用ワーク〔(株)東振精機、外径:19mm、ころ長さ:19mmの超仕上げ加工された円筒ころ用ワーク(算術平均粗さRa:0.0268μm、最大高さRy:0.580μm)〕を、図4の21bに示されるワーク支持孔を有する本発明の研磨装置のワーク支持孔にセットし、前記(1)で得られた研磨液を用いて当該ワークの表面を研磨した。なお、研磨条件は、容器の回転数:130〜150min-1、ワークの回転数:2200min-1、紫外線強度:0.8mW/cm、研磨時間および光照射時間:90分、研磨液の温度:25℃、ならびに使用した研磨パッド:妙中パイル織物(株)製、商品名:ラビングクロスY15−23、使用した側壁パッド:妙中パイル織物(株)製、商品名:ラビングクロスY15−20である。比較例10において、研磨前の軸受鋼SUJ2製の円筒ころ用ワークを観察した結果を図23(A)、研磨後の軸受鋼SUJ2製の円筒ころを観察した結果を図23(B)に示す。また、得られた円筒ころについて、前記基準(1)〜(3)を満たすかどうかを目視および光学顕微鏡付き走査型レーザ顕微鏡〔レーザテック(株)製:商品名:1LM−21〕によって評価した。
(2) Polishing of cylindrical roller workpiece Cylindrical roller workpiece made of bearing steel SUJ2 [Tosei Seiki Co., Ltd., outer diameter: 19 mm, roller length: 19 mm superfinished cylindrical roller workpiece (arithmetic mean roughness) (Ra: 0.0268 μm, maximum height Ry: 0.580 μm)] is set in the work support hole of the polishing apparatus of the present invention having the work support hole shown in 21b of FIG. The surface of the workpiece was polished using the obtained polishing liquid. The polishing conditions were: the rotational speed of the container: 130 to 150 min −1 , the rotational speed of the workpiece: 2200 min −1 , the ultraviolet intensity: 0.8 mW / cm 2 , the polishing time and the light irradiation time: 90 minutes, and the temperature of the polishing liquid : 25 ° C. and polishing pad used: manufactured by Myonaka Pile Woven Co., Ltd., trade name: rubbing cloth Y15-23, used side wall pad: manufactured by Myonaka Pile Woven Co., Ltd., trade name: rubbing cloth Y15-20 It is. In Comparative Example 10, the result of observing the cylindrical roller workpiece made of bearing steel SUJ2 before polishing is shown in FIG. 23A, and the result of observing the cylindrical roller made of bearing steel SUJ2 after polishing is shown in FIG. 23B. . Moreover, about the obtained cylindrical roller, it was evaluated by visual observation and a scanning laser microscope with an optical microscope [manufactured by Lasertec Co., Ltd .: trade name: 1LM-21] as to whether or not the above criteria (1) to (3) were satisfied. .

図23(A)および(B)に示された結果から、研磨前のワークの表面および研磨後の円筒ころの表面ともに、光沢が少なく、多数の細かい切削痕が存在していることがわかる。したがって、得られた円筒ころは、前記基準(1)および(2)を満たさず、実用上不十分であることがわかる。   From the results shown in FIGS. 23A and 23B, it can be seen that both the surface of the workpiece before polishing and the surface of the cylindrical roller after polishing are less glossy and there are a large number of fine cutting marks. Therefore, it can be seen that the obtained cylindrical roller does not satisfy the above-mentioned criteria (1) and (2) and is insufficient in practical use.

(実施例21〕
(1)研磨液の調製
酸化アルミニウムからなる粒子径1000nmの砥粒〔(株)フジミインコーポレーテッド製、商品名:ホワイトフューズドアルミナ〕7.89g(研磨液中における濃度:5質量%)と、二酸化チタンからなる粒子径180nmの光触媒粒子〔石原テクノ(株)製、商品名:光触媒用酸化チタンST−41〕3.85g(研磨液中における濃度:2.5質量%)と、蛍光材料〔1H−ベンジミダゾリウム,2−[7−(ジエチルアミノ)−2−オキソ−2H−1−ベンゾピラン−3−イル]−1,3−ジメチル−,クロライド(保土ヶ谷化学工業(株)製、商品名:Cathilon Brilliant Flavine GFH)〕3.85g(研磨液中における濃度:2.5質量%)と、精製水150gとを混合して研磨液(pH4.23)を得た。
(Example 21)
(1) Preparation of polishing liquid Abrasive grains made of aluminum oxide having a particle diameter of 1000 nm [trade name: White Fused Alumina, manufactured by Fujimi Incorporated] (concentration in polishing liquid: 5% by mass); Photocatalyst particles made of titanium dioxide having a particle diameter of 180 nm [manufactured by Ishihara Techno Co., Ltd., trade name: titanium oxide ST-41 for photocatalyst] (concentration in polishing liquid: 2.5% by mass) and fluorescent material [ 1H-benzimidazolium, 2- [7- (diethylamino) -2-oxo-2H-1-benzopyran-3-yl] -1,3-dimethyl-, chloride (manufactured by Hodogaya Chemical Co., Ltd., trade name) : Cathilon Flavor Flavor GFH)] 3.85 g (concentration in polishing liquid: 2.5 mass%) and 150 g of purified water were mixed. A polishing liquid (pH 4.23) was obtained.

(2)円筒ころ用ワークの研磨
軸受鋼SUJ2製の円筒ころ用ワーク〔(株)東振精機、外径:19mm、ころ長さ:19mmの超仕上げ加工された円筒ころ用ワーク(算術平均粗さRa:0.0237μm、最大高さRy:0.453μm)〕を、図4の21bに示されるワーク支持孔を有する本発明の研磨装置のワーク支持孔にセットし、前記(1)で得られた研磨液を用いて当該ワークの表面を研磨した。なお、研磨条件は、容器の回転数:130〜150min-1、ワークの回転数:2200min-1、紫外線強度:0.8mW/cm、研磨時間および光照射時間:90分、研磨液の温度:25℃、ならびに使用した研磨パッド:妙中パイル織物(株)製、商品名:ラビングクロスY15−23、使用した側壁パッド:妙中パイル織物(株)製、商品名:ラビングクロスY15−20である。実施例21において、研磨前の軸受鋼SUJ2製の円筒ころ用ワークを観察した結果を図24(A)、研磨後の軸受鋼SUJ2製の円筒ころを観察した結果を図24(B)に示す。研磨後の軸受鋼SUJ2製の円筒ころの転がり摺動面の算術平均粗さRaをサーフテスト〔ミツトヨ(株)製、商品名:SV−400〕によって測定した。また、得られた円筒ころについて、前記基準(1)〜(3)を満たすかどうかを目視および光学顕微鏡付き走査型レーザ顕微鏡〔レーザテック(株)製:商品名:1LM−21〕によって評価した。
(2) Polishing of cylindrical roller workpiece Cylindrical roller workpiece made of bearing steel SUJ2 [Tosei Seiki Co., Ltd., outer diameter: 19 mm, roller length: 19 mm superfinished cylindrical roller workpiece (arithmetic mean roughness) (Ra: 0.0237 μm, maximum height Ry: 0.453 μm)] is set in the work support hole of the polishing apparatus of the present invention having the work support hole shown in 21b of FIG. The surface of the workpiece was polished using the obtained polishing liquid. The polishing conditions were: the rotational speed of the container: 130 to 150 min −1 , the rotational speed of the workpiece: 2200 min −1 , the ultraviolet intensity: 0.8 mW / cm 2 , the polishing time and the light irradiation time: 90 minutes, and the temperature of the polishing liquid : 25 ° C. and polishing pad used: manufactured by Myonaka Pile Woven Co., Ltd., trade name: rubbing cloth Y15-23, used side wall pad: manufactured by Myonaka Pile Woven Co., Ltd., trade name: rubbing cloth Y15-20 It is. In Example 21, the result of observing the cylindrical roller workpiece made of bearing steel SUJ2 before polishing is shown in FIG. 24A, and the result of observing the cylindrical roller made of bearing steel SUJ2 after polishing is shown in FIG. . The arithmetic average roughness Ra of the rolling sliding surface of the cylindrical roller made of the bearing steel SUJ2 after polishing was measured by a surf test (trade name: SV-400, manufactured by Mitutoyo Corporation). Moreover, about the obtained cylindrical roller, it was evaluated by visual observation and a scanning laser microscope with an optical microscope [manufactured by Lasertec Co., Ltd .: trade name: 1LM-21] as to whether or not the above criteria (1) to (3) were satisfied. .

図24(A)および(B)に示された結果から、研磨前のワークの表面には、多数の深い切削痕が存在していたのに対し、研磨後の円筒ころの表面は、平滑化されていることがわかる。また、研磨後の円筒ころの転がり摺動面の中央部における算術平均粗さRaは0.0120μmであり、最大高さRyは0.197μmであったことから、低い表面粗さを有する円筒ころが得られたことがわかる。また、得られた円筒ころは、前記基準(1)〜(3)の全てを満たすことから、実用上十分なレベルに達していることがわかる。   From the results shown in FIGS. 24 (A) and (B), many deep cutting marks were present on the surface of the workpiece before polishing, whereas the surface of the cylindrical roller after polishing was smoothed. You can see that In addition, since the arithmetic average roughness Ra at the center of the rolling sliding surface of the cylindrical roller after polishing was 0.0120 μm and the maximum height Ry was 0.197 μm, the cylindrical roller having a low surface roughness. It turns out that was obtained. Moreover, since the obtained cylindrical roller satisfy | fills all the said references | standards (1)-(3), it turns out that it has reached the practically sufficient level.

(実施例22)
(1)研磨液の調製
酸化アルミニウムからなる粒子径1000nmの砥粒〔(株)フジミインコーポレーテッド製、商品名:ホワイトフューズドアルミナ〕7.89g(研磨液中における濃度:5質量%)と、二酸化チタンからなる粒子径150nmの光触媒粒子〔昭和電工(株)製、商品名:スーパータイタニアF−10〕3.85g(研磨液中における濃度:2.5質量%)と、蛍光材料〔1H−ベンジミダゾリウム,2−[7−(ジエチルアミノ)−2−オキソ−2H−1−ベンゾピラン−3−イル]−1,3−ジメチル−,クロライド(保土ヶ谷化学工業(株)製、商品名:Cathilon Brilliant Flavine GFH)〕3.85g(研磨液中における濃度:2.5質量%)と、精製水150gとを混合して研磨液(pH4.23)を得た。
(Example 22)
(1) Preparation of polishing liquid Abrasive grains made of aluminum oxide having a particle diameter of 1000 nm [trade name: White Fused Alumina, manufactured by Fujimi Incorporated] (concentration in polishing liquid: 5% by mass); 3.85 g of photocatalyst particles made of titanium dioxide having a particle diameter of 150 nm [manufactured by Showa Denko KK, trade name: Super Titania F-10] (concentration in polishing liquid: 2.5 mass%), and fluorescent material [1H- Benzimidazolium, 2- [7- (Diethylamino) -2-oxo-2H-1-benzopyran-3-yl] -1,3-dimethyl-, chloride (manufactured by Hodogaya Chemical Co., Ltd., trade name: Cathilon) (Brilliant Flavine GFH)] 3.85 g (concentration in polishing liquid: 2.5% by mass) and 150 g of purified water were mixed and polished. A liquid (pH 4.23) was obtained.

(2)円筒ころ用ワークの研磨
軸受鋼SUJ2製の円筒ころ用ワーク〔(株)東振精機、外径:19mm、ころ長さ:19mmの超仕上げ加工された円筒ころ用ワーク(算術平均粗さRa:0.0266μm、最大高さRy:0.569μm)〕を、図4の21bに示されるワーク支持孔を有する本発明の研磨装置のワーク支持孔にセットし、前記(1)で得られた研磨液を用いて当該ワークの表面を研磨した。なお、研磨条件は、容器の回転数:130〜150min-1、ワークの回転数:2200min-1、紫外線強度:0.8mW/cm、研磨時間および光照射時間:90分、研磨液の温度:25℃、ならびに使用した研磨パッド:妙中パイル織物(株)製、商品名:ラビングクロスY15−23、使用した側壁パッド:妙中パイル織物(株)製、商品名:ラビングクロスY15−20である。実施例22において、研磨前の軸受鋼SUJ2製の円筒ころ用ワークを観察した結果を図25(A)、研磨後の軸受鋼SUJ2製の円筒ころを観察した結果を図25(B)に示す。研磨後の軸受鋼SUJ2製の円筒ころの転がり摺動面の算術平均粗さRaをサーフテスト〔ミツトヨ(株)製、商品名:SV−400〕によって測定した。また、得られた円筒ころについて、前記基準(1)〜(3)を満たすかどうかを目視および光学顕微鏡付き走査型レーザ顕微鏡〔レーザテック(株)製:商品名:1LM−21〕によって評価した。
(2) Polishing of cylindrical roller workpiece Cylindrical roller workpiece made of bearing steel SUJ2 [Tosei Seiki Co., Ltd., outer diameter: 19 mm, roller length: 19 mm superfinished cylindrical roller workpiece (arithmetic mean roughness) (Ra: 0.0266 μm, maximum height Ry: 0.569 μm) is set in the work support hole of the polishing apparatus of the present invention having the work support hole shown in 21b of FIG. The surface of the workpiece was polished using the obtained polishing liquid. The polishing conditions were: the rotational speed of the container: 130 to 150 min −1 , the rotational speed of the workpiece: 2200 min −1 , the ultraviolet intensity: 0.8 mW / cm 2 , the polishing time and the light irradiation time: 90 minutes, and the temperature of the polishing liquid : 25 ° C. and polishing pad used: manufactured by Myonaka Pile Woven Co., Ltd., trade name: rubbing cloth Y15-23, used side wall pad: manufactured by Myonaka Pile Woven Co., Ltd., trade name: rubbing cloth Y15-20 It is. In Example 22, the result of observing the cylindrical roller workpiece made of bearing steel SUJ2 before polishing is shown in FIG. 25A, and the result of observing the cylindrical roller made of bearing steel SUJ2 after polishing is shown in FIG. 25B. . The arithmetic average roughness Ra of the rolling sliding surface of the cylindrical roller made of the bearing steel SUJ2 after polishing was measured by a surf test (trade name: SV-400, manufactured by Mitutoyo Corporation). Moreover, about the obtained cylindrical roller, it was evaluated by visual observation and a scanning laser microscope with an optical microscope [manufactured by Lasertec Co., Ltd .: trade name: 1LM-21] as to whether or not the above criteria (1) to (3) were satisfied. .

図25(A)および(B)に示された結果から、研磨前のワークの表面には、多数の深い切削痕が存在していたのに対し、研磨後の円筒ころの表面は、平滑化されていることがわかる。また、研磨後の円筒ころの転がり摺動面の中央部における算術平均粗さRaは0.0096μmであり、最大高さRyは0.237μmであったことから、低い表面粗さを有する円筒ころが得られたことがわかる。また、得られた円筒ころは、前記基準(1)〜(3)の全てを満たすことから、実用上十分なレベルに達していることがわかる。   From the results shown in FIGS. 25A and 25B, the surface of the workpiece before polishing had many deep cutting marks, whereas the surface of the cylindrical roller after polishing was smoothed. You can see that Further, since the arithmetic average roughness Ra at the center of the rolling sliding surface of the cylindrical roller after polishing was 0.0096 μm and the maximum height Ry was 0.237 μm, the cylindrical roller having a low surface roughness. It turns out that was obtained. Moreover, since the obtained cylindrical roller satisfy | fills all the said references | standards (1)-(3), it turns out that it has reached the practically sufficient level.

(実施例23)
(1)研磨液の調製
酸化アルミニウムからなる粒子径1000nmの砥粒〔(株)フジミインコーポレーテッド製、商品名:ホワイトフューズドアルミナ〕7.89g(研磨液中における濃度:5質量%)と、二酸化チタンからなる粒子径250nmの光触媒粒子〔昭和電工(株)製、商品名:スーパータイタニアG−1〕3.85g(研磨液中における濃度:2.5質量%)と、蛍光材料〔1H−ベンジミダゾリウム,2−[7−(ジエチルアミノ)−2−オキソ−2H−1−ベンゾピラン−3−イル]−1,3−ジメチル−,クロライド(保土ヶ谷化学工業(株)製、商品名:Cathilon Brilliant Flavine GFH)〕3.85g(研磨液中における濃度:2.5質量%)と、精製水150gとを混合して研磨液(pH4.23)を得た。
(Example 23)
(1) Preparation of polishing liquid Abrasive grains made of aluminum oxide having a particle diameter of 1000 nm [trade name: White Fused Alumina, manufactured by Fujimi Incorporated] (concentration in polishing liquid: 5% by mass); 3.85 g of photocatalyst particles made of titanium dioxide having a particle diameter of 250 nm [manufactured by Showa Denko KK, trade name: Super Titania G-1] (concentration in polishing liquid: 2.5 mass%), and fluorescent material [1H- Benzimidazolium, 2- [7- (Diethylamino) -2-oxo-2H-1-benzopyran-3-yl] -1,3-dimethyl-, chloride (manufactured by Hodogaya Chemical Co., Ltd., trade name: Cathilon) (Brilliant Flavine GFH)] 3.85 g (concentration in polishing liquid: 2.5 mass%) and 150 g of purified water were mixed to prepare a polishing liquid. (PH 4.23) was obtained.

(2)円筒ころ用ワークの研磨
軸受鋼SUJ2製の円筒ころ用ワーク〔(株)東振精機、外径:19mm、ころ長さ:19mmの超仕上げ加工された円筒ころ用ワーク(算術平均粗さRa:0.0232μm、最大高さRy:0.501μm)〕を、図4の21bに示されるワーク支持孔を有する本発明の研磨装置のワーク支持孔にセットし、前記(1)で得られた研磨液を用いて当該ワークの表面を研磨した。なお、研磨条件は、容器の回転数:130〜150min-1、ワークの回転数:2200min-1、紫外線強度:0.8mW/cm、研磨時間および光照射時間:90分、研磨液の温度:25℃、ならびに使用した研磨パッド:妙中パイル織物(株)製、商品名:ラビングクロスY15−23、使用した側壁パッド:妙中パイル織物(株)製、商品名:ラビングクロスY15−20である。実施例23において、研磨前の軸受鋼SUJ2製の円筒ころ用ワークを観察した結果を図26(A)、研磨後の軸受鋼SUJ2製の円筒ころを観察した結果を図26(B)に示す。研磨後の軸受鋼SUJ2製の円筒ころの転がり摺動面の算術平均粗さRaをサーフテスト〔ミツトヨ(株)製、商品名:SV−400〕によって測定した。また、得られた円筒ころについて、前記基準(1)〜(3)を満たすかどうかを目視および光学顕微鏡付き走査型レーザ顕微鏡〔レーザテック(株)製:商品名:1LM−21〕によって評価した。
(2) Polishing of cylindrical roller workpiece Cylindrical roller workpiece made of bearing steel SUJ2 [Tosei Seiki Co., Ltd., outer diameter: 19 mm, roller length: 19 mm superfinished cylindrical roller workpiece (arithmetic mean roughness) (Ra: 0.0232 μm, maximum height Ry: 0.501 μm)] is set in the work support hole of the polishing apparatus of the present invention having the work support hole shown in 21b of FIG. The surface of the workpiece was polished using the obtained polishing liquid. The polishing conditions were: the rotational speed of the container: 130 to 150 min −1 , the rotational speed of the workpiece: 2200 min −1 , the ultraviolet intensity: 0.8 mW / cm 2 , the polishing time and the light irradiation time: 90 minutes, and the temperature of the polishing liquid : 25 ° C. and polishing pad used: manufactured by Myonaka Pile Woven Co., Ltd., trade name: rubbing cloth Y15-23, used side wall pad: manufactured by Myonaka Pile Woven Co., Ltd., trade name: rubbing cloth Y15-20 It is. In Example 23, the result of observing the workpiece for cylindrical roller made of bearing steel SUJ2 before polishing is shown in FIG. 26A, and the result of observing the cylindrical roller made of bearing steel SUJ2 after polishing is shown in FIG. . The arithmetic average roughness Ra of the rolling sliding surface of the cylindrical roller made of the bearing steel SUJ2 after polishing was measured by a surf test (trade name: SV-400, manufactured by Mitutoyo Corporation). Moreover, about the obtained cylindrical roller, it was evaluated by visual observation and a scanning laser microscope with an optical microscope [manufactured by Lasertec Co., Ltd .: trade name: 1LM-21] as to whether or not the above criteria (1) to (3) were satisfied. .

図26(A)および(B)に示された結果から、研磨前のワークの表面には、多数の深い切削痕が存在していたのに対し、研磨後の円筒ころの表面は、平滑化されていることがわかる。また、研磨後の円筒ころの転がり摺動面の中央部における算術平均粗さRaは0.0093μmであり、最大高さRyは0.228μmであったことから、低い表面粗さを有する円筒ころが得られたことがわかる。また、得られた円筒ころは、前記基準(1)〜(3)の全てを満たすことから、実用上十分なレベルに達していることがわかる。   From the results shown in FIGS. 26A and 26B, the surface of the workpiece before polishing had many deep cutting marks, whereas the surface of the cylindrical roller after polishing was smoothed. You can see that Further, since the arithmetic average roughness Ra at the center of the rolling sliding surface of the cylindrical roller after polishing was 0.0093 μm and the maximum height Ry was 0.228 μm, the cylindrical roller having a low surface roughness. It turns out that was obtained. Moreover, since the obtained cylindrical roller satisfy | fills all the said references | standards (1)-(3), it turns out that it has reached the practically sufficient level.

(実施例24)
(1)研磨液の調製
酸化アルミニウムからなる粒子径1000nmの砥粒〔(株)フジミインコーポレーテッド製、商品名:ホワイトフューズドアルミナ〕7.89g(研磨液中における濃度:5質量%)と、二酸化チタンからなる粒子径300−500nmの光触媒粒子〔チタン工業(株)製、商品名:KRONOS KA−10〕3.85g(研磨液中における濃度:2.5質量%)と、蛍光材料〔1H−ベンジミダゾリウム,2−[7−(ジエチルアミノ)−2−オキソ−2H−1−ベンゾピラン−3−イル]−1,3−ジメチル−,クロライド(保土ヶ谷化学工業(株)製、商品名:Cathilon Brilliant Flavine GFH)〕3.85g(研磨液中における濃度:2.5質量%)と、精製水150gとを混合して研磨液(pH4.23)を得た。
(Example 24)
(1) Preparation of polishing liquid Abrasive grains made of aluminum oxide having a particle diameter of 1000 nm [trade name: White Fused Alumina, manufactured by Fujimi Incorporated] (concentration in polishing liquid: 5% by mass); 3.85 g of photocatalyst particles made of titanium dioxide having a particle diameter of 300 to 500 nm [manufactured by Titanium Industry Co., Ltd., trade name: KRONOS KA-10] (concentration in polishing liquid: 2.5 mass%), and fluorescent material [1H -Benzimidazolium, 2- [7- (diethylamino) -2-oxo-2H-1-benzopyran-3-yl] -1,3-dimethyl-, chloride (manufactured by Hodogaya Chemical Co., Ltd., trade name: Cathillon Flavorine GFH)] 3.85 g (concentration in polishing liquid: 2.5 mass%) and 150 g of purified water It was obtained polishing liquid (pH4.23) Te.

(2)円筒ころ用ワークの研磨
軸受鋼SUJ2製の円筒ころ用ワーク〔(株)東振精機、外径:19mm、ころ長さ:19mmの超仕上げ加工された円筒ころ用ワーク(算術平均粗さRa:0.0253μm、最大高さRy:0.499μm)〕を、図4の21bに示されるワーク支持孔を有する本発明の研磨装置のワーク支持孔にセットし、前記(1)で得られた研磨液を用いて当該ワークの表面を研磨した。なお、研磨条件は、容器の回転数:130〜150min-1、ワークの回転数:2200min-1、紫外線強度:0.8mW/cm、研磨時間および光照射時間:90分、研磨液の温度:25℃、ならびに使用した研磨パッド:妙中パイル織物(株)製、商品名:ラビングクロスY15−23、使用した側壁パッド:妙中パイル織物(株)製、商品名:ラビングクロスY15−20である。実施例24において、研磨前の軸受鋼SUJ2製の円筒ころ用ワークを観察した結果を図27(A)、研磨後の軸受鋼SUJ2製の円筒ころを観察した結果を図27(B)に示す。研磨後の軸受鋼SUJ2製の円筒ころの転がり摺動面の算術平均粗さRaをサーフテスト〔ミツトヨ(株)製、商品名:SV−400〕によって測定した。また、得られた円筒ころについて、前記基準(1)〜(3)を満たすかどうかを目視および光学顕微鏡付き走査型レーザ顕微鏡〔レーザテック(株)製:商品名:1LM−21〕によって評価した。
(2) Polishing of cylindrical roller workpiece Cylindrical roller workpiece made of bearing steel SUJ2 [Tosei Seiki Co., Ltd., outer diameter: 19 mm, roller length: 19 mm superfinished cylindrical roller workpiece (arithmetic mean roughness) (Ra: 0.0253 μm, maximum height Ry: 0.499 μm)] is set in the work support hole of the polishing apparatus of the present invention having the work support hole shown in 21b of FIG. The surface of the workpiece was polished using the obtained polishing liquid. The polishing conditions were: the rotational speed of the container: 130 to 150 min −1 , the rotational speed of the workpiece: 2200 min −1 , the ultraviolet intensity: 0.8 mW / cm 2 , the polishing time and the light irradiation time: 90 minutes, and the temperature of the polishing liquid : 25 ° C. and polishing pad used: manufactured by Myonaka Pile Woven Co., Ltd., trade name: rubbing cloth Y15-23, used side wall pad: manufactured by Myonaka Pile Woven Co., Ltd., trade name: rubbing cloth Y15-20 It is. In Example 24, the result of observing the cylindrical roller workpiece made of bearing steel SUJ2 before polishing is shown in FIG. 27A, and the result of observing the cylindrical roller made of bearing steel SUJ2 after polishing is shown in FIG. 27B. . The arithmetic average roughness Ra of the rolling sliding surface of the cylindrical roller made of the bearing steel SUJ2 after polishing was measured by a surf test (trade name: SV-400, manufactured by Mitutoyo Corporation). Moreover, about the obtained cylindrical roller, it was evaluated by visual observation and a scanning laser microscope with an optical microscope [manufactured by Lasertec Co., Ltd .: trade name: 1LM-21] as to whether or not the above criteria (1) to (3) were satisfied. .

図27(A)および(B)に示された結果から、研磨前のワークの表面には、多数の深い切削痕が存在していたのに対し、研磨後の円筒ころの表面は、平滑化されていることがわかる。また、研磨後の円筒ころの転がり摺動面の中央部における算術平均粗さRaは0.0116μmであり、最大高さRyは0.289μmであったことから、低い表面粗さを有する円筒ころが得られたことがわかる。また、得られた円筒ころは、前記基準(1)〜(3)の全てを満たすことから、実用上十分なレベルに達していることがわかる。   From the results shown in FIGS. 27A and 27B, the surface of the workpiece before polishing had many deep cutting marks, whereas the surface of the cylindrical roller after polishing was smoothed. You can see that In addition, since the arithmetic average roughness Ra at the center of the rolling sliding surface of the cylindrical roller after polishing was 0.0116 μm and the maximum height Ry was 0.289 μm, the cylindrical roller having a low surface roughness. It turns out that was obtained. Moreover, since the obtained cylindrical roller satisfy | fills all the said references | standards (1)-(3), it turns out that it has reached the practically sufficient level.

(比較例11)
(1)研磨液の調製
酸化アルミニウムからなる粒子径1000nmの砥粒〔(株)フジミインコーポレーテッド製、商品名:ホワイトフューズドアルミナ〕7.89g(研磨液中における濃度:5質量%)と、二酸化チタンからなる粒子径30nmの光触媒粒子〔テイカ(株)製、商品名:二酸化チタンAMT−600〕3.85g(研磨液中における濃度:2.5質量%)と、蛍光材料〔1H−ベンジミダゾリウム,2−[7−(ジエチルアミノ)−2−オキソ−2H−1−ベンゾピラン−3−イル]−1,3−ジメチル−,クロライド(保土ヶ谷化学工業(株)製、商品名:Cathilon Brilliant Flavine GFH)〕3.85g(研磨液中における濃度:2.5質量%)と、精製水150gとを混合して研磨液(pH4.23)を得た。
(Comparative Example 11)
(1) Preparation of polishing liquid Abrasive grains made of aluminum oxide having a particle diameter of 1000 nm [trade name: White Fused Alumina, manufactured by Fujimi Incorporated] (concentration in polishing liquid: 5% by mass); 3.85 g of photocatalyst particles made of titanium dioxide having a particle diameter of 30 nm [manufactured by Teika Co., Ltd., trade name: titanium dioxide AMT-600] (concentration in polishing liquid: 2.5 mass%), and fluorescent material [1H-ben Dimidazolium, 2- [7- (diethylamino) -2-oxo-2H-1-benzopyran-3-yl] -1,3-dimethyl-, chloride (manufactured by Hodogaya Chemical Co., Ltd., trade name: Cathilon Brilliant) Flavin GFH)] 3.85 g (concentration in polishing liquid: 2.5% by mass) and 150 g of purified water were mixed to prepare a polishing liquid ( pH 4.23) was obtained.

(2)円筒ころ用ワークの研磨
軸受鋼SUJ2製の円筒ころ用ワーク〔(株)東振精機、外径:19mm、ころ長さ:19mmの超仕上げ加工された円筒ころ用ワーク(算術平均粗さRa:0.0232μm、最大高さRy:0.439μm)〕を、図4の21bに示されるワーク支持孔を有する本発明の研磨装置のワーク支持孔にセットし、前記(1)で得られた研磨液を用いて当該ワークの表面を研磨した。なお、研磨条件は、容器の回転数:130〜150min-1、ワークの回転数:2200min-1、紫外線強度:0.8mW/cm、研磨時間および光照射時間:90分、研磨液の温度:25℃、ならびに使用した研磨パッド:妙中パイル織物(株)製、商品名:ラビングクロスY15−23、使用した側壁パッド:妙中パイル織物(株)製、商品名:ラビングクロスY15−20である。比較例11において、研磨前の軸受鋼SUJ2製の円筒ころ用ワークを観察した結果を図28(A)、研磨後の軸受鋼SUJ2製の円筒ころを観察した結果を図28(B)に示す。また、得られた円筒ころについて、前記基準(1)〜(3)を満たすかどうかを目視および光学顕微鏡付き走査型レーザ顕微鏡〔レーザテック(株)製:商品名:1LM−21〕によって評価した。
(2) Polishing of cylindrical roller workpiece Cylindrical roller workpiece made of bearing steel SUJ2 [Tosei Seiki Co., Ltd., outer diameter: 19 mm, roller length: 19 mm superfinished cylindrical roller workpiece (arithmetic mean roughness) (Ra: 0.0232 μm, maximum height Ry: 0.439 μm)] is set in the work support hole of the polishing apparatus of the present invention having the work support hole shown in 21b of FIG. The surface of the workpiece was polished using the obtained polishing liquid. The polishing conditions were: the rotational speed of the container: 130 to 150 min −1 , the rotational speed of the workpiece: 2200 min −1 , the ultraviolet intensity: 0.8 mW / cm 2 , the polishing time and the light irradiation time: 90 minutes, and the temperature of the polishing liquid : 25 ° C. and polishing pad used: manufactured by Myonaka Pile Woven Co., Ltd., trade name: rubbing cloth Y15-23, used side wall pad: manufactured by Myonaka Pile Woven Co., Ltd., trade name: rubbing cloth Y15-20 It is. In Comparative Example 11, the result of observing the cylindrical roller workpiece made of bearing steel SUJ2 before polishing is shown in FIG. 28A, and the result of observing the cylindrical roller made of bearing steel SUJ2 after polishing is shown in FIG. 28B. . Moreover, about the obtained cylindrical roller, it was evaluated by visual observation and a scanning laser microscope with an optical microscope [manufactured by Lasertec Co., Ltd .: trade name: 1LM-21] as to whether or not the above criteria (1) to (3) were satisfied. .

図28(A)および(B)に示された結果から、研磨前のワークの表面および研磨後の円筒ころの表面ともに、多数の細かい切削痕が存在していることがわかる。したがって、得られた円筒ころは、前記基準(1)を満たさず、実用上不十分であることがわかる。   From the results shown in FIGS. 28A and 28B, it can be seen that there are a large number of fine cutting marks on both the surface of the workpiece before polishing and the surface of the cylindrical roller after polishing. Therefore, it can be seen that the obtained cylindrical roller does not satisfy the standard (1) and is insufficient in practice.

(比較例12)
(1)研磨液の調製
酸化アルミニウムからなる粒子径1000nmの砥粒〔(株)フジミインコーポレーテッド製、商品名:ホワイトフューズドアルミナ〕7.89g(研磨液中における濃度:5質量%)と、二酸化チタンからなる粒子径100nmの光触媒粒子〔ホソカワミクロン(株)製、商品名:二酸化チタン〕3.85g(研磨液中における濃度:2.5質量%)と、蛍光材料〔1H−ベンジミダゾリウム,2−[7−(ジエチルアミノ)−2−オキソ−2H−1−ベンゾピラン−3−イル]−1,3−ジメチル−,クロライド(保土ヶ谷化学工業(株)製、商品名:Cathilon Brilliant Flavine GFH)〕3.85g(研磨液中における濃度:2.5質量%)と、精製水150gとを混合して研磨液(pH4.23)を得た。
(Comparative Example 12)
(1) Preparation of polishing liquid Abrasive grains made of aluminum oxide having a particle diameter of 1000 nm [trade name: White Fused Alumina, manufactured by Fujimi Incorporated] (concentration in polishing liquid: 5% by mass); 3.85 g of photocatalyst particles made of titanium dioxide having a particle diameter of 100 nm [manufactured by Hosokawa Micron Co., Ltd., trade name: titanium dioxide] (concentration in polishing liquid: 2.5 mass%), and fluorescent material [1H-benzimidazolium , 2- [7- (Diethylamino) -2-oxo-2H-1-benzopyran-3-yl] -1,3-dimethyl-chloride (manufactured by Hodogaya Chemical Co., Ltd., trade name: Cathilon Flavorne GFH) ] 3.85 g (concentration in polishing liquid: 2.5 mass%) and 150 g of purified water were mixed to prepare a polishing liquid (p H4.23) was obtained.

(2)円筒ころ用ワークの研磨
軸受鋼SUJ2製の円筒ころ用ワーク〔(株)東振精機、外径:19mm、ころ長さ:19mmの超仕上げ加工された円筒ころ用ワーク(算術平均粗さRa:0.0259μm、最大高さRy:0.487μm)〕を、図4の21bに示されるワーク支持孔を有する本発明の研磨装置のワーク支持孔にセットし、前記(1)で得られた研磨液を用いて当該ワークの表面を研磨した。なお、研磨条件は、容器の回転数:130〜150min-1、ワークの回転数:2200min-1、紫外線強度:0.8mW/cm、研磨時間および光照射時間:90分、研磨液の温度:25℃、ならびに使用した研磨パッド:妙中パイル織物(株)製、商品名:ラビングクロスY15−23、使用した側壁パッド:妙中パイル織物(株)製、商品名:ラビングクロスY15−20である。比較例12において、研磨前の軸受鋼SUJ2製の円筒ころ用ワークを観察した結果を図29(A)、研磨後の軸受鋼SUJ2製の円筒ころを観察した結果を図29(B)に示す。また、得られた円筒ころについて、前記基準(1)〜(3)を満たすかどうかを目視および光学顕微鏡付き走査型レーザ顕微鏡〔レーザテック(株)製:商品名:1LM−21〕によって評価した。
(2) Polishing of cylindrical roller workpiece Cylindrical roller workpiece made of bearing steel SUJ2 [Tosei Seiki Co., Ltd., outer diameter: 19 mm, roller length: 19 mm superfinished cylindrical roller workpiece (arithmetic mean roughness) (Ra: 0.0259 μm, maximum height Ry: 0.487 μm)] is set in the work support hole of the polishing apparatus of the present invention having the work support hole shown in 21b of FIG. The surface of the workpiece was polished using the obtained polishing liquid. The polishing conditions were: the rotational speed of the container: 130 to 150 min −1 , the rotational speed of the workpiece: 2200 min −1 , the ultraviolet intensity: 0.8 mW / cm 2 , the polishing time and the light irradiation time: 90 minutes, and the temperature of the polishing liquid : 25 ° C. and polishing pad used: manufactured by Myonaka Pile Woven Co., Ltd., trade name: rubbing cloth Y15-23, used side wall pad: manufactured by Myonaka Pile Woven Co., Ltd., trade name: rubbing cloth Y15-20 It is. In Comparative Example 12, the result of observing the cylindrical roller workpiece made of bearing steel SUJ2 before polishing is shown in FIG. 29A, and the result of observing the cylindrical roller made of bearing steel SUJ2 after polishing is shown in FIG. 29B. . Moreover, about the obtained cylindrical roller, it was evaluated by visual observation and a scanning laser microscope with an optical microscope [manufactured by Lasertec Co., Ltd .: trade name: 1LM-21] as to whether or not the above criteria (1) to (3) were satisfied. .

図29(A)および(B)に示された結果から、研磨前のワークの表面および研磨後の円筒ころの表面ともに、多数の細かい切削痕が存在していることがわかる。したがって、得られた円筒ころは、前記基準(1)を満たさず、実用上不十分であることがわかる。   From the results shown in FIGS. 29A and 29B, it can be seen that there are a large number of fine cutting marks on both the surface of the workpiece before polishing and the surface of the cylindrical roller after polishing. Therefore, it can be seen that the obtained cylindrical roller does not satisfy the standard (1) and is insufficient in practice.

(比較例13)
(1)研磨液の調製
酸化アルミニウムからなる粒子径500〜700nmの砥粒〔フジミインコーポレーテッド(株)製、商品名:ホワイトフューズドアルミナ〕37.5g(研磨液中における濃度:20質量%)と、二酸化チタンからなる粒子径100nmの光触媒粒子〔ホソカワミクロン(株)製、商品名:二酸化チタン〕3.85g(研磨液中における濃度:2.5質量%)と、蛍光材料〔1H−ベンジミダゾリウム,2−[7−(ジエチルアミノ)−2−オキソ−2H−1−ベンゾピラン−3−イル]−1,3−ジメチル−,クロライド(保土ヶ谷化学工業(株)製、商品名:Cathilon Brilliant Flavine GFH)〕0.378g(研磨液中における濃度:0.25質量%)と、精製水150gとを混合して研磨液(pH6.17)を得た。
(Comparative Example 13)
(1) Preparation of polishing liquid Abrasive grains made of aluminum oxide having a particle diameter of 500 to 700 nm [manufactured by Fujimi Incorporated, trade name: white fused alumina] 37.5 g (concentration in polishing liquid: 20% by mass) And 3.85 g of photocatalyst particles made of titanium dioxide having a particle diameter of 100 nm [manufactured by Hosokawa Micron Co., Ltd., trade name: titanium dioxide] (concentration in polishing liquid: 2.5 mass%), and fluorescent material [1H-Benzimi Dazolium, 2- [7- (diethylamino) -2-oxo-2H-1-benzopyran-3-yl] -1,3-dimethyl-, chloride (manufactured by Hodogaya Chemical Co., Ltd., trade name: Catilon Brilliant Flavine) GFH)] 0.378 g (concentration in polishing liquid: 0.25% by mass) and 150 g of purified water were mixed. Thus, a polishing liquid (pH 6.17) was obtained.

(2)円筒ころ用ワークの研磨
軸受鋼SUJ2製の円筒ころ用ワーク〔(株)東振精機、外径:19mm、ころ長さ:19mmの超仕上げ加工された円筒ころ用ワーク(算術平均粗さRa:0.0262μm、最大高さRy:0.535μm)〕を、図4の21bに示されるワーク支持孔を有する本発明の研磨装置のワーク支持孔にセットし、前記(1)で得られた研磨液を用いて当該ワークの表面を研磨した。なお、研磨条件は、容器の回転数:130〜150min-1、ワークの回転数:2200min-1、紫外線強度:0.8mW/cm、研磨時間および光照射時間:90分、研磨液の温度:25℃、ならびに使用した研磨パッド:妙中パイル織物(株)製、商品名:ラビングクロスY15−23、使用した側壁パッド:妙中パイル織物(株)製、商品名:ラビングクロスY15−20である。比較例13において、研磨前の軸受鋼SUJ2製の円筒ころ用ワークを観察した結果を図30(A)、研磨後の軸受鋼SUJ2製の円筒ころを観察した結果を図30(B)に示す。また、得られた円筒ころについて、前記基準(1)〜(3)を満たすかどうかを目視および光学顕微鏡付き走査型レーザ顕微鏡〔レーザテック(株)製:商品名:1LM−21〕によって評価した。
(2) Polishing of cylindrical roller workpiece Cylindrical roller workpiece made of bearing steel SUJ2 [Tosei Seiki Co., Ltd., outer diameter: 19 mm, roller length: 19 mm superfinished cylindrical roller workpiece (arithmetic mean roughness) (Ra: 0.0262 μm, maximum height Ry: 0.535 μm)] is set in the work support hole of the polishing apparatus of the present invention having the work support hole shown in 21b of FIG. The surface of the workpiece was polished using the obtained polishing liquid. The polishing conditions were: the rotational speed of the container: 130 to 150 min −1 , the rotational speed of the workpiece: 2200 min −1 , the ultraviolet intensity: 0.8 mW / cm 2 , the polishing time and the light irradiation time: 90 minutes, and the temperature of the polishing liquid : 25 ° C. and polishing pad used: manufactured by Myonaka Pile Woven Co., Ltd., trade name: rubbing cloth Y15-23, used side wall pad: manufactured by Myonaka Pile Woven Co., Ltd., trade name: rubbing cloth Y15-20 It is. In Comparative Example 13, the result of observing the cylindrical roller workpiece made of bearing steel SUJ2 before polishing is shown in FIG. 30A, and the result of observing the cylindrical roller made of bearing steel SUJ2 after polishing is shown in FIG. 30B. . Moreover, about the obtained cylindrical roller, it was evaluated by visual observation and a scanning laser microscope with an optical microscope [manufactured by Lasertec Co., Ltd .: trade name: 1LM-21] as to whether or not the above criteria (1) to (3) were satisfied. .

図30(A)および(B)に示された結果から、研磨前のワークの表面および研磨後の円筒ころの表面ともに、多数の細かい切削痕が存在していることがわかる。したがって、得られた円筒ころは、前記基準(1)を満たさず、実用上不十分であることがわかる。   From the results shown in FIGS. 30A and 30B, it can be seen that there are a large number of fine cutting marks on both the surface of the workpiece before polishing and the surface of the cylindrical roller after polishing. Therefore, it can be seen that the obtained cylindrical roller does not satisfy the standard (1) and is insufficient in practice.

以上の結果から、光触媒粒子と砥粒と蛍光材料と溶媒とを含む研磨液において、光触媒粒子として、粒子径が140〜550nm、好ましくは150〜500nmである光触媒粒子を用いることにより、低い表面粗さにまでワークを効率よく研磨することができ、前記基準(1)〜(3)の全てを満たす実用上十分なレベルの部材を得ることができることがわかる。また、砥粒は、光触媒粒子よりも大きい粒子径が好ましいことが示される。   From the above results, in a polishing liquid containing photocatalyst particles, abrasive grains, a fluorescent material, and a solvent, the photocatalyst particles having a particle diameter of 140 to 550 nm, preferably 150 to 500 nm, are used to reduce the surface roughness. It can be seen that the workpiece can be polished efficiently, and a member having a practically sufficient level that satisfies all of the criteria (1) to (3) can be obtained. In addition, it is shown that the abrasive grains preferably have a larger particle diameter than the photocatalyst particles.

砥粒の粒子径は、実施例14、16などの結果から、少なくとも1000nmであることが望ましいと考えられる。なお、砥粒の粒子径の上限は、ワークの呈色を抑制することができ、かつ低い表面粗さを達成することができる大きさであればよいと考えられ、通常、粒子径30000nm以下、好ましくは11500nm以下の砥粒を用いることができると考えられる。   From the results of Examples 14 and 16, it is considered that the particle diameter of the abrasive grains is desirably at least 1000 nm. In addition, it is thought that the upper limit of the particle diameter of an abrasive grain should just be a magnitude | size which can suppress the coloring of a workpiece | work and can achieve low surface roughness, Usually, a particle diameter of 30000 nm or less, Preferably, it is considered that abrasive grains of 11500 nm or less can be used.

また、実施例2、3、5、7、9および14において、研磨前後の表面粗さ、ワークの表面積および研磨時間から、単位表面積あたり表面粗さを単位時間に減らす効率(研磨効率)を求めたところ、表1に示される研磨効率でワークを研磨することができたことがわかる。なお、実施例2、3、5、7、9および14においては、ワークと研磨パッドとは点接触または線接触をしていることから、接触幅をほぼ10μmとし、表面積を算出した。   In Examples 2, 3, 5, 7, 9, and 14, the efficiency (polishing efficiency) for reducing the surface roughness per unit surface area to unit time is determined from the surface roughness before and after polishing, the surface area of the workpiece, and the polishing time. As a result, it was found that the workpiece could be polished with the polishing efficiency shown in Table 1. In Examples 2, 3, 5, 7, 9, and 14, since the workpiece and the polishing pad were in point contact or line contact, the contact width was approximately 10 μm and the surface area was calculated.

これに対し、非特許文献1に記載の方法にしたがい、純銅(組成:銅99%)からなる直径15mmで厚さ3.5mmの円板を450℃で360分間焼鈍し、酸化アルミニウムからなる砥粒(♯6000)でポリシングして得られた試料片(表面粗さRa:0.026μm)を、比較例1または2で得られた研磨液と図31に示される研磨装置とを用いて研磨し、研磨開始から最も低い表面粗さになったときの経過時間を研磨時間とし、研磨前の表面粗さ、最も低い表面粗さ、ワークの表面積および研磨時間から、従来の非特許文献1に記載の方法の研磨効率は、表2に示されるとおりであった。   On the other hand, according to the method described in Non-Patent Document 1, a 15 mm diameter and 3.5 mm thick disk made of pure copper (composition: 99% copper) was annealed at 450 ° C. for 360 minutes to obtain an abrasive made of aluminum oxide. A sample piece (surface roughness Ra: 0.026 μm) obtained by polishing with grains (# 6000) is polished using the polishing liquid obtained in Comparative Example 1 or 2 and the polishing apparatus shown in FIG. The elapsed time when the lowest surface roughness from the start of polishing is defined as the polishing time. From the surface roughness before polishing, the lowest surface roughness, the surface area of the workpiece, and the polishing time, The polishing efficiency of the described method was as shown in Table 2.

材料が純銅である場合の研磨効率(実施例2、比較例1および2)それぞれを比較すると、本願発明の方法によれば、従来の非特許文献1に記載の方法よりも高い研磨効率でワークを研磨することができることがわかる。   Comparing each of the polishing efficiencies in the case where the material is pure copper (Example 2, Comparative Examples 1 and 2), according to the method of the present invention, the workpiece is polished with higher polishing efficiency than the method described in the conventional non-patent document 1. It can be seen that it can be polished.

また、蛍光材料として1H−ベンジミダゾリウム,2−[7−(ジエチルアミノ)−2−オキソ−2H−1−ベンゾピラン−3−イル]−1,3−ジメチル−,クロライド以外の一般式(I)で表わされる化合物を用いた場合にも、実施例1〜26と同様の結果が得られることが期待される。   Further, general formulas (I) other than 1H-benzimidazolium, 2- [7- (diethylamino) -2-oxo-2H-1-benzopyran-3-yl] -1,3-dimethyl-, chloride are used as fluorescent materials. In the case of using the compound represented by), it is expected that the same results as in Examples 1 to 26 are obtained.

以上説明したように、光触媒からなる粒子径140〜550nmの粒子と蛍光材料と当該光触媒および蛍光材料それぞれを励起させる光を透過する物質からなる砥粒と溶媒とを含有する本発明の研磨液を用いることにより、ワーク、特に、転動体用ワークなどの硬さが高いワークを低い表面粗さになるまで効率よく研磨することができ、ワークの表面の呈色およびワーク表面における光沢のムラが抑制され、かつワークの製造時における前加工の際に生じた傷が十分に取り除かれ、低い表面粗さを有する転動体を高い製造効率で製造することができることがわかる。   As described above, the polishing liquid of the present invention containing particles having a particle diameter of 140 to 550 nm made of a photocatalyst, a fluorescent material, abrasive grains made of a substance that transmits light that excites the photocatalyst and the fluorescent material, respectively, and a solvent. By using it, it is possible to efficiently polish a workpiece, especially a workpiece with high hardness such as a rolling element workpiece, until the surface roughness is low, and suppress uneven coloring of the workpiece surface and uneven gloss on the workpiece surface. In addition, it can be seen that scratches generated during the pre-processing during the production of the workpiece are sufficiently removed, and a rolling element having a low surface roughness can be produced with high production efficiency.

1 研磨装置
2 研磨部
3 台座
4 光源
10 容器
20 ワーク支持部
21 ワーク支持孔
21b ワーク支持孔
21c ワーク支持孔
21d ワーク支持孔
21e ワーク支持孔
22 側壁パッド
30 研磨パッド
31 有縁プレート
32 研磨パッド本体
32a 繊維
33 溝
40 研磨液供給部
60 回転軸
70 駆動部
80 制御部
201 側壁部
202 側壁部
203 側壁部
204 側壁部
205 角部
206 角部
DESCRIPTION OF SYMBOLS 1 Polishing apparatus 2 Polishing part 3 Base 4 Light source 10 Container 20 Work support part 21 Work support hole 21b Work support hole 21c Work support hole 21d Work support hole 21e Work support hole 22 Side wall pad 30 Polishing pad 31 Edged plate 32 Polishing pad main body 32a Fiber 33 Groove 40 Polishing liquid supply part 60 Rotating shaft 70 Drive part 80 Control part 201 Side wall part 202 Side wall part 203 Side wall part 204 Side wall part 205 Corner part 206 Corner part

Claims (15)

転動体用ワークに研磨加工を施す研磨加工工程を含む転動体の製造方法であって、
前記研磨加工工程が、光触媒からなる粒子と蛍光材料と当該光触媒および蛍光材料それぞれを励起させる光を透過する物質からなる砥粒と溶媒とを含有してなる研磨液に前記ワークを接触させるとともに当該研磨液に前記光を照射しながら、前記ワークに研磨加工を施す工程であり、
前記光触媒の粒子径が140〜550nmであることを特徴とする転動体の製造方法。
A method for manufacturing a rolling element including a polishing process for polishing a workpiece for a rolling element,
In the polishing process, the workpiece is brought into contact with a polishing liquid containing particles made of a photocatalyst, a fluorescent material, abrasive grains made of a substance that transmits light that excites the photocatalyst and the fluorescent material, respectively, and a solvent. It is a step of polishing the workpiece while irradiating the polishing liquid with the light,
The photocatalyst has a particle size of 140 to 550 nm.
前記砥粒が、光触媒からなる粒子よりも大きい粒子径を有する粒子である請求項1に記載の方法。   The method according to claim 1, wherein the abrasive grains are particles having a larger particle diameter than particles made of a photocatalyst. 前記砥粒の粒子径が、1000〜30000nmである請求項1または2に記載の方法。   The method according to claim 1 or 2, wherein a particle diameter of the abrasive grains is 1000 to 30000 nm. 前記蛍光材料が、一般式(I):

(式中、R1およびR2は、それぞれ独立して炭素数1〜4のアルキル基、R3およびR4は、それぞれ独立して炭素数1〜4のアルキル基、Xはハロゲン原子を示す)
で表わされる化合物である請求項1〜3のいずれかに記載の方法。
The fluorescent material has the general formula (I):

Wherein R 1 and R 2 are each independently an alkyl group having 1 to 4 carbon atoms, R 3 and R 4 are each independently an alkyl group having 1 to 4 carbon atoms, and X is a halogen atom. )
The method according to claim 1, wherein the compound is represented by the formula:
ワークに研磨加工を施す方法であって、
光触媒からなる粒子径140〜550nmの粒子と蛍光材料と当該光触媒および蛍光材料それぞれを励起させる光を透過する物質からなる砥粒と溶媒とを含有してなる研磨液に前記ワークを接触させるとともに当該研磨液に前記光を照射しながら、前記ワークの研磨加工を行なうことを特徴とするワークの研磨方法。
A method of polishing a workpiece,
The workpiece is brought into contact with a polishing liquid containing particles of a photocatalyst having a particle diameter of 140 to 550 nm, a fluorescent material, abrasive grains made of a substance that transmits light that excites the photocatalyst and the fluorescent material, respectively, and a solvent. A method for polishing a workpiece, comprising polishing the workpiece while irradiating the polishing liquid with the light.
前記砥粒が、光触媒からなる粒子よりも大きい粒子径を有する粒子である請求項5に記載の方法。   The method according to claim 5, wherein the abrasive grains are particles having a larger particle diameter than particles made of a photocatalyst. ワークを研磨するための研磨液であって、
光触媒からなる粒子径140〜550nmの粒子と、蛍光材料と、当該光触媒および蛍光材料それぞれを励起させる光を透過する物質からなる砥粒と、溶媒とを含有することを特徴とする研磨液。
A polishing liquid for polishing a workpiece,
A polishing liquid comprising particles having a particle diameter of 140 to 550 nm made of a photocatalyst, a fluorescent material, abrasive grains made of a substance that transmits light that excites the photocatalyst and the fluorescent material, and a solvent.
前記砥粒が、光触媒からなる粒子よりも大きい粒子径を有する粒子である請求項7に記載の研磨液。   The polishing liquid according to claim 7, wherein the abrasive grains are particles having a larger particle diameter than particles made of a photocatalyst. 研磨液を用いて転動体用ワークの表面を研磨するための研磨装置であって、
前記ワークを揺動可能に支持するための円盤状のワーク支持部と、
前記ワーク支持部に支持された前記ワークの表面と摺接可能に配置され、当該ワーク支持部に対して中心軸回りに相対的に回転することによって前記ワークを回転させながら、前記研磨液を介して当該ワークの表面を研磨する円盤状の研磨パッドと、
前記研磨液を前記ワーク支持部と前記研磨パッドとの間に供給する研磨液供給部と、
を備えていることを特徴とする研磨装置。
A polishing apparatus for polishing the surface of a rolling element workpiece using a polishing liquid,
A disc-shaped workpiece support for supporting the workpiece in a swingable manner;
The surface of the work supported by the work support is arranged so as to be slidable, and the work is rotated by rotating relative to the work support around the central axis while passing the polishing liquid. A disc-shaped polishing pad for polishing the surface of the workpiece,
A polishing liquid supply section for supplying the polishing liquid between the work support section and the polishing pad;
A polishing apparatus comprising:
前記研磨液が、光触媒からなる粒子径140〜550nmの粒子と蛍光材料と当該光触媒および蛍光材料を励起させる光を透過する砥粒と溶媒とを含有してなる研磨液であり、
前記研磨液中に含まれる光触媒および蛍光材料を励起させる光を照射する光源をさらに備えている請求項9に記載の研磨装置。
The polishing liquid is a polishing liquid containing particles having a particle diameter of 140 to 550 nm made of a photocatalyst, a fluorescent material, abrasive grains that transmit light that excites the photocatalyst and the fluorescent material, and a solvent,
The polishing apparatus according to claim 9, further comprising a light source that emits light that excites a photocatalyst and a fluorescent material contained in the polishing liquid.
前記容器の少なくとも内壁面が光触媒および蛍光材料を励起させる光を反射する性質を有する請求項10に記載の研磨装置。   The polishing apparatus according to claim 10, wherein at least an inner wall surface of the container reflects light that excites the photocatalyst and the fluorescent material. 前記ワーク支持部が、ワークを揺動可能に収容可能なワーク支持孔を有する請求項9〜11のいずれかに記載の研磨装置。   The polishing apparatus according to any one of claims 9 to 11, wherein the work support portion has a work support hole that can accommodate the work in a swingable manner. 前記ワーク支持孔において、ワーク支持部に対して前記研磨パッドを中心軸回りに相対的に回転させたときにワークと接触する側壁部に研磨パッドがさらに設けられている請求項12に記載の研磨装置。   The polishing according to claim 12, wherein a polishing pad is further provided on a side wall portion that comes into contact with the workpiece when the polishing pad is rotated relative to the workpiece support portion around the central axis in the workpiece support hole. apparatus. 前記研磨液供給部が前記研磨パッドの回転中心部に前記研磨液を供給するように配置されている請求項9〜13のいずれかに記載の研磨装置。   The polishing apparatus according to claim 9, wherein the polishing liquid supply unit is disposed so as to supply the polishing liquid to a center of rotation of the polishing pad. 前記研磨パッドのワークとの摺接面側の表面に複数の起毛した繊維からなる研磨パッド本体を有しており、当該研磨パッド本体には、放射状のパターンを有する溝が形成されている請求項9〜14のいずれかに記載の研磨装置。   A polishing pad body made of a plurality of raised fibers is provided on the surface of the polishing pad on the side in contact with the workpiece, and a groove having a radial pattern is formed in the polishing pad body. The polishing apparatus according to any one of 9 to 14.
JP2013171429A 2013-08-21 2013-08-21 Work polishing method and polishing liquid Expired - Fee Related JP5622158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013171429A JP5622158B2 (en) 2013-08-21 2013-08-21 Work polishing method and polishing liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013171429A JP5622158B2 (en) 2013-08-21 2013-08-21 Work polishing method and polishing liquid

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012181709A Division JP5354631B1 (en) 2012-08-20 2012-08-20 Rolling body manufacturing method and polishing apparatus

Publications (2)

Publication Number Publication Date
JP2014037052A true JP2014037052A (en) 2014-02-27
JP5622158B2 JP5622158B2 (en) 2014-11-12

Family

ID=50285561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013171429A Expired - Fee Related JP5622158B2 (en) 2013-08-21 2013-08-21 Work polishing method and polishing liquid

Country Status (1)

Country Link
JP (1) JP5622158B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016162916A (en) * 2015-03-03 2016-09-05 株式会社ディスコ Cutting device and wafer processing method
CN113510634A (en) * 2021-03-31 2021-10-19 安徽禾臣新材料有限公司 Porous groove white pad for polishing and grinding and production method thereof
CN114770367A (en) * 2022-04-26 2022-07-22 安徽禾臣新材料有限公司 Elastic porous polishing white pad for display screen edge polishing and production process thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008307659A (en) * 2007-06-15 2008-12-25 Ritsumeikan Metal polishing method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008307659A (en) * 2007-06-15 2008-12-25 Ritsumeikan Metal polishing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016162916A (en) * 2015-03-03 2016-09-05 株式会社ディスコ Cutting device and wafer processing method
CN105936095A (en) * 2015-03-03 2016-09-14 株式会社迪思科 Cutting apparatus and wafer cutting method
TWI671175B (en) * 2015-03-03 2019-09-11 日商迪思科股份有限公司 Cutting device and wafer cutting method
CN105936095B (en) * 2015-03-03 2019-11-29 株式会社迪思科 The cutting process of cutting apparatus and chip
CN113510634A (en) * 2021-03-31 2021-10-19 安徽禾臣新材料有限公司 Porous groove white pad for polishing and grinding and production method thereof
CN113510634B (en) * 2021-03-31 2022-08-23 安徽禾臣新材料有限公司 Porous groove white pad for polishing and grinding and production method thereof
CN114770367A (en) * 2022-04-26 2022-07-22 安徽禾臣新材料有限公司 Elastic porous polishing white pad for display screen edge polishing and production process thereof
CN114770367B (en) * 2022-04-26 2023-08-11 安徽禾臣新材料有限公司 Elastic porous polishing white pad for edging display screen and production process thereof

Also Published As

Publication number Publication date
JP5622158B2 (en) 2014-11-12

Similar Documents

Publication Publication Date Title
JP5622158B2 (en) Work polishing method and polishing liquid
JP5845174B2 (en) High throughput finishing of metal parts
CN102666009B (en) The slab of stone material for making for example, natural stone and agglomerated stone, ceramics and glass is smooth or machine of polishing
RU2287615C2 (en) Non-abrasive media with accelerated chemical processes
JP5354631B1 (en) Rolling body manufacturing method and polishing apparatus
CN102076980B (en) Self-aligning roller bearing, bearing, and self-aligning roller bearing processing method
TWI382893B (en) Substrate, grinding method of the same and grinding device
JP2004530040A (en) Chemical machining and surface finishing
JP2010023217A (en) Carrier disc for retaining article to be polished
KR20130092606A (en) Method of polishing the diamond-surface
GB2247892A (en) Abrasive composition for scratch-free finish buffing
JP6347907B1 (en) Glass substrate polishing method, glass substrate manufacturing method, magnetic disk glass substrate manufacturing method, magnetic disk manufacturing method, polishing liquid and cerium oxide reduction method
EP2283969A1 (en) High throughput finishing of metal components
JPS58132455A (en) Surface finishing device
CN218746984U (en) High-speed burnishing device in steel pipe surface
KR20150065757A (en) Polishing method and method for producing alloy material
CN106737017A (en) A kind of efficient sanding apparatus of jadeware
CN206998573U (en) A kind of automatic waxing apparatus in aluminium alloy production polishing machine
Murata et al. Photo-Assisted Chemical Mechanical Polishing of Si Wafer Using Phosphorescent Particles as a Luminescent Agent
JP2022145548A (en) Centrifugal barrel polishing method
CN217194486U (en) Automatic grinding device of alloy work piece
TWM398993U (en) Rolling mill
WO2004012935A3 (en) Wear resistant grinding machine components
CN213730811U (en) Forming and processing equipment for crystal cast iron non-stick pan
CN107755836A (en) One kind wheel is to skin processing neutral electrolyte

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131217

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131217

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20131217

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20140128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140912

R150 Certificate of patent or registration of utility model

Ref document number: 5622158

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees