JP2014036039A - Organic semiconductor material, and organic semiconductor device using the same - Google Patents

Organic semiconductor material, and organic semiconductor device using the same Download PDF

Info

Publication number
JP2014036039A
JP2014036039A JP2012174845A JP2012174845A JP2014036039A JP 2014036039 A JP2014036039 A JP 2014036039A JP 2012174845 A JP2012174845 A JP 2012174845A JP 2012174845 A JP2012174845 A JP 2012174845A JP 2014036039 A JP2014036039 A JP 2014036039A
Authority
JP
Japan
Prior art keywords
organic semiconductor
organic
semiconductor material
solubility
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012174845A
Other languages
Japanese (ja)
Other versions
JP6143257B2 (en
Inventor
Hiroshi Katagiri
洋史 片桐
Yoshihiro Oba
好弘 大場
Kenichi Nakayama
健一 中山
Yuta Ogawa
雄太 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamagata University NUC
Original Assignee
Yamagata University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamagata University NUC filed Critical Yamagata University NUC
Priority to JP2012174845A priority Critical patent/JP6143257B2/en
Publication of JP2014036039A publication Critical patent/JP2014036039A/en
Application granted granted Critical
Publication of JP6143257B2 publication Critical patent/JP6143257B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Thin Film Transistor (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an organic semiconductor material capable of expanding π conjugation by increase in the number of condensed rings to improve semiconductor performance, and further, of improving dissolubility to enable film formation by wet processing, and thereby, that can be obtained by simple synthesis in an organic semiconductor material of a low molecular system, and to provide an organic semiconductor device using the same.SOLUTION: An organic semiconductor material consisting of a compound having a thienothiophene skeleton represented by following general formula (1) is used. (In the formula (1), A represents the same condensed ring as each other.)

Description

本発明は、チエノチオフェン骨格を有する化合物からなる新規の有機半導体材料及びそれを用いた有機半導体デバイスに関する。   The present invention relates to a novel organic semiconductor material comprising a compound having a thienothiophene skeleton and an organic semiconductor device using the same.

有機半導体は、フレキシブルであり、これを用いることによりデバイスの大面積化が可能であることから、近年注目されており、このような特長を利用して、有機電界効果トランジスタや有機薄膜太陽電池、有機発光ダイオード等の有機半導体デバイスへの応用が進められている。   Since organic semiconductors are flexible and can be used to increase the area of devices, they have been attracting attention in recent years. Using these features, organic field-effect transistors, organic thin-film solar cells, Applications to organic semiconductor devices such as organic light-emitting diodes are underway.

有機電界効果トランジスタにおいては、ポリアセチレンやポリチオフェンが有機半導体材料として初めて適用されたが、トランジスタとしての性能が低く、実用化には至らなかった。しかしながら、近年、ペンタンセンやポリヘキシルチオフェン等により、それぞれ電荷移動度1.5cm2/Vs、0.1cm2/Vsの実用化レベルの移動度が示されたことにより、有機半導体材料は、シリコンデバイスにはない機能を持つ新たな半導体材料としての期待が高まっている。 In organic field effect transistors, polyacetylene and polythiophene were first applied as organic semiconductor materials, but their performance as a transistor was low, and they were not put into practical use. However, in recent years, by Pentansen and polyhexylthiophene like, by which practical level mobility of the respective charge mobility 1.5cm 2 /Vs,0.1cm 2 / Vs is shown, the organic semiconductor material is silicon devices Expectations are growing as new semiconductor materials with functions that are not available.

有機電界効果トランジスタの一般的な素子構造を図1に示す。図1に示す有機電界効果トランジスタ素子は、いわゆるボトムコンタクト型であり、ゲート電極1上にゲート絶縁膜2が積層されており、その上に所定間隔でドレイン電極3及びソース電極4が形成されており、さらにその上に有機半導体層5が積層されている。この有機電界効果トランジスタ素子は、前記電極3,4間を流れる電流を、ゲート絶縁膜2を介して設けられたゲート電極1に電圧を印加することにより制御するものである。   A general element structure of an organic field effect transistor is shown in FIG. The organic field effect transistor element shown in FIG. 1 is a so-called bottom contact type, in which a gate insulating film 2 is laminated on a gate electrode 1, and a drain electrode 3 and a source electrode 4 are formed on the gate electrode 1 at a predetermined interval. Further, an organic semiconductor layer 5 is laminated thereon. In this organic field effect transistor element, the current flowing between the electrodes 3 and 4 is controlled by applying a voltage to the gate electrode 1 provided via the gate insulating film 2.

このような有機電界効果トランジスタにおいては、ゲート電極1に電圧を加えると、絶縁膜2−ゲート電極1界面、及び、有機半導体層5−ゲート絶縁膜2界面に電荷が蓄積される。このとき、ソース電極3−ドレイン電極4間に電圧をかけると、両電極間の有機半導体層、すなわち、実効的チャネル層では、有機分子間を電子又は正孔が伝導し、これにより半導体としての性質を示す。前記実効的チャネル層が、このような半導体としての性質を示すためには、有機分子が規則的に配列した薄膜として形成されることが求められる。
したがって、有機半導体層5を構成する有機半導体材料においては、分子の配向性や電荷輸送のためのπ共役の重なり等が重要な要素なる。
In such an organic field effect transistor, when a voltage is applied to the gate electrode 1, charges are accumulated at the interface between the insulating film 2 and the gate electrode 1 and the interface between the organic semiconductor layer 5 and the gate insulating film 2. At this time, when a voltage is applied between the source electrode 3 and the drain electrode 4, electrons or holes are conducted between the organic molecules in the organic semiconductor layer between the two electrodes, that is, the effective channel layer. Show properties. In order for the effective channel layer to exhibit such properties as a semiconductor, it is required to be formed as a thin film in which organic molecules are regularly arranged.
Therefore, in the organic semiconductor material constituting the organic semiconductor layer 5, molecular orientation, π-conjugate overlap for charge transport, and the like are important factors.

これに対しては、従来は、π電子系の拡張による強い分子間相互作用を期待した直線的な縮合環数の増加が試みられてきた。ペンタセン等の直線的オリゴアセンは、縮合環数の増加とともに、π共役が拡張され、配向性が増大し、電荷移動度が向上する。このため、再組織化エネルギーが低下し、また、HOMO−LUMOエネルギーギャップが狭まるため、高い半導体特性が得られる。   Conventionally, attempts have been made to increase the number of linear condensed rings in anticipation of strong intermolecular interactions by expanding the π-electron system. In linear oligoacene such as pentacene, as the number of condensed rings increases, π conjugation is expanded, orientation is increased, and charge mobility is improved. For this reason, the reorganization energy is reduced and the HOMO-LUMO energy gap is narrowed, so that high semiconductor characteristics can be obtained.

しかしながら、縮合環数の増加は、安定性及び溶解性の著しい低下を招き、実際、ペンタセンの薄膜形成は、成膜コストの抑制が可能なウェットプロセスでは困難であり、蒸着等によるドライプロセスで行わなければならない。また、より縮合環数の多いヘキサセンやヘプタセンは、大気中での安定性が低く、半導体性能の測定が困難である。   However, the increase in the number of condensed rings leads to a significant decrease in stability and solubility, and in fact, pentacene thin film formation is difficult with a wet process that can control the film formation cost, and is performed by a dry process such as vapor deposition. There must be. Further, hexacene and heptacene having a larger number of condensed rings have low stability in the air, and it is difficult to measure semiconductor performance.

このため、縮合多環芳香族化合物による有機半導体材料においては、新たな分子設計が求められている。特に、有機溶媒への溶解性が低いことは、有機材料の特長を最大限に活用したプロセス、すなわち、インクジェット法に代表されるウェットプロセスによる簡便な大面積デバイスの作製において大きな障害となる。   For this reason, a new molecular design is required for organic semiconductor materials made of condensed polycyclic aromatic compounds. In particular, the low solubility in an organic solvent is a major obstacle in the production of a simple large-area device by a process that makes the best use of the characteristics of an organic material, that is, a wet process typified by an inkjet method.

上記のような縮合環数の増加に伴う安定性の低下を改善する方法としては、HOMOレベルの低下を目的とした硫黄原子の導入が知られている。しかしながら、硫黄原子の導入は、分子の安定化は達成できるものの、溶解性の改善には寄与しないものであった。
また、アルキル鎖等の嵩高い置換基の導入による溶解性の向上も図られてきたが、長鎖アルキル基の導入は分子パッキングに不利であり、溶解性と配向性との間での上述したようなトレードオフの関係から、半導体性能の向上には寄与しないものであった。
As a method for improving the decrease in stability due to the increase in the number of condensed rings as described above, introduction of a sulfur atom for the purpose of decreasing the HOMO level is known. However, introduction of sulfur atoms can achieve stabilization of the molecule but does not contribute to improvement of solubility.
In addition, the solubility has been improved by introducing a bulky substituent such as an alkyl chain, but the introduction of a long-chain alkyl group is disadvantageous for molecular packing, and it has been described above between solubility and orientation. From such a trade-off relationship, the semiconductor performance has not been improved.

これに対して、本発明者らは、縮合環骨格の折れ曲がり構造に着目し、溶解性の向上を図るべく、研究を進めてきた。そして、縮合環数6の無置換アセン類似構造であるにもかかわらず、ジクロロメタンに対して400ppmの溶解度を有し、しかも、折れ曲がり骨格であるにもかかわらず、分子配列が規則的である下記に示す化合物(NBBT)を合成することに成功した(非特許文献1参照)。   On the other hand, the present inventors have focused on the bent structure of the condensed ring skeleton, and have been researching to improve the solubility. And although it is an unsubstituted acene-like structure having 6 condensed rings, it has a solubility of 400 ppm with respect to dichloromethane, and its molecular arrangement is regular despite being a folded skeleton. The compound (NBBT) shown was successfully synthesized (see Non-Patent Document 1).

Figure 2014036039
Figure 2014036039

また、特許文献1には、下記に示すようなチエノチオフェン骨格を有する有機半導体材料が提案されており、ジクロロメタンに対する溶解度が770mg/l(約592ppm)であることが記載されている。   Patent Document 1 proposes an organic semiconductor material having a thienothiophene skeleton as shown below, and describes that the solubility in dichloromethane is 770 mg / l (about 592 ppm).

Figure 2014036039
Figure 2014036039

特開2009−302264号公報JP 2009-302264 A

K. Yamamoto et al., TetrahedronLetters, 53 (2012), pp.1786-1759K. Yamamoto et al., TetrahedronLetters, 53 (2012), pp.1786-1759

しかしながら、ウェットプロセスによる成膜を行うためには、溶解度が400〜600ppm程度では十分とは言えず、実用のためには、少なくとも1000ppmの溶解度が必要である。また、NBBTは、電荷移動度についても十分なレベルとは言えなかった。   However, in order to form a film by a wet process, a solubility of about 400 to 600 ppm is not sufficient. For practical use, a solubility of at least 1000 ppm is required. Moreover, NBBT could not be said to have a sufficient level of charge mobility.

したがって、縮合環数の増加によっても、より溶解度を高めることができ、かつ、π共役の拡張による半導体性能の向上を図ることができる有機半導体材料が求められている。   Therefore, there is a demand for an organic semiconductor material that can increase the solubility even when the number of condensed rings is increased and can improve semiconductor performance by extending π conjugation.

本発明は、上記課題を解決するためになされたものであり、低分子系の有機半導体材料において、縮合環数の増加によりπ共役を拡張し、半導体性能の向上を図ることができ、しかも、溶解性が向上し、ウェットプロセスによる成膜が可能であって、簡便な合成により得ることができる有機半導体材料及びそれを用いた有機半導体デバイスを提供することを目的とするものである。   The present invention has been made to solve the above problems, and in a low molecular weight organic semiconductor material, the π conjugation can be expanded by increasing the number of condensed rings, and the semiconductor performance can be improved, An object of the present invention is to provide an organic semiconductor material having improved solubility and capable of film formation by a wet process, which can be obtained by simple synthesis, and an organic semiconductor device using the same.

本発明に係る有機半導体材料は、下記一般式(1)で表されるチエノチオフェン骨格を有する化合物からなる。   The organic semiconductor material according to the present invention comprises a compound having a thienothiophene skeleton represented by the following general formula (1).

Figure 2014036039
Figure 2014036039

前記式(1)中、Aは、同一の縮合環を表す。   In the formula (1), A represents the same condensed ring.

このようなチエノチオフェン骨格を有する化合物によれば、溶解性を向上させることができ、かつ、半導体性能の向上も図ることができる。   According to such a compound having a thienothiophene skeleton, solubility can be improved and semiconductor performance can be improved.

前記一般式(1)で表される化合物においては、Aが、ナフタレン、アントラセン、ペンタセン、フェナントレン、トリフェニレンのうちのいずれかであることが好ましい。
これらの中でも、特に、Aがアントラセンである下記化学式で表される化合物が好ましい。
In the compound represented by the general formula (1), A is preferably any one of naphthalene, anthracene, pentacene, phenanthrene, and triphenylene.
Among these, a compound represented by the following chemical formula in which A is anthracene is particularly preferable.

Figure 2014036039
Figure 2014036039

また、本発明によれば、上記のいずれかの有機半導体材料が用いられている有機半導体デバイスが提供される。   Moreover, according to this invention, the organic-semiconductor device in which one of said organic-semiconductor materials is used is provided.

本発明によれば、低分子系の有機半導体材料において、縮合環数を増加させても、溶解性を向上させることができ、ウェットプロセスによる成膜が可能となる。また、π共役が拡張されるため、半導体性能の向上も図ることができる。
しかも、本発明に係る有機半導体材料は、比較的少ない工程で簡便に合成することができる有用な新規の有機半導体材料である。
したがって、本発明に係る有機半導体材料を用いることにより、有機半導体デバイスを簡便に作製することが可能であり、かつ、有機電界効果トランジスタにおける高い電荷移動度や、有機太陽電池における高い変換効率が得られる等、有機半導体デバイスの性能の向上が期待される。
According to the present invention, in a low molecular weight organic semiconductor material, solubility can be improved even when the number of condensed rings is increased, and film formation by a wet process becomes possible. In addition, since π conjugation is expanded, semiconductor performance can be improved.
Moreover, the organic semiconductor material according to the present invention is a useful novel organic semiconductor material that can be easily synthesized with relatively few steps.
Therefore, by using the organic semiconductor material according to the present invention, it is possible to easily produce an organic semiconductor device, and high charge mobility in an organic field effect transistor and high conversion efficiency in an organic solar cell are obtained. The performance of organic semiconductor devices is expected to be improved.

有機電界効果トランジスタの層構成の一例を模式的に示した概略断面図である。It is the schematic sectional drawing which showed typically an example of the layer structure of an organic field effect transistor. 実施例における2,3b−DATT及びNBBTのUV−vis吸収スペクトルの測定結果である。It is a measurement result of the UV-vis absorption spectrum of 2,3b-DATT and NBBT in an Example.

以下、本発明について、より詳細に説明する。
本発明に係る有機半導体材料は、下記(化5)に示すチエノ[2,3−b]チオフェンを基本骨格に有するものである。このチエノ[2,3−b]チオフェンは、下記(化6)に示すチエノ[3,2−b]チオフェンが点対称構造であるのに対して、2つのチオフェン環の硫黄原子が同じ向きに位置している。
Hereinafter, the present invention will be described in more detail.
The organic semiconductor material according to the present invention has thieno [2,3-b] thiophene shown in the following (Chemical Formula 5) as a basic skeleton. In this thieno [2,3-b] thiophene, the thieno [3,2-b] thiophene shown below (Chemical Formula 6) has a point-symmetric structure, whereas the sulfur atoms of the two thiophene rings are in the same direction. positioned.

Figure 2014036039
Figure 2014036039

Figure 2014036039
Figure 2014036039

このため、本発明に係る有機半導体材料の分子構造は、このチエノ[2,3−b]チオフェン骨格を中心とした線対称の折れ曲がり構造となる。
このように、従来の有機半導体材料の分子設計においては、分子の配向性の観点から、主として直線的かつ点対称とする傾向にあったのに対して、本発明は、これとは異なり、非点対称型の折れ曲がり構造を導入した点に特徴を有している。
For this reason, the molecular structure of the organic semiconductor material according to the present invention is a line-symmetric bent structure around the thieno [2,3-b] thiophene skeleton.
Thus, in the conventional molecular design of organic semiconductor materials, from the viewpoint of molecular orientation, there was a tendency to be mainly linear and point-symmetric, whereas the present invention is different from this. It is characterized by the introduction of a point-symmetric bent structure.

本発明に係る有機半導体材料は、上記一般式(1)に示したように、チエノ[2,3−b]チオフェン骨格の両端に同一の縮合環が結合しているものである。
本発明においては、半導体性能に影響を及ぼす官能基を導入することなく、前記縮合環が無置換のアセンであっても、上記のようなチエノチオフェン骨格の導入によって構築される分子の折れ曲がり構造のみによって、溶解性を高めることが可能である。
有機半導体デバイスを作製する際の有機薄膜の形成において、従来のチオフェン環を有する有機半導体材料では、ジクロロメタン等の有機溶媒への溶解性が十分でなく、低コストで大面積の成膜が可能なウェットプロセスを適用することは困難であったが、本発明に係る有機半導体材料によれば、ウェットプロセスを行うために必要とされる1000ppm以上の溶解性を得ることができる。
The organic semiconductor material according to the present invention is one in which the same condensed ring is bonded to both ends of the thieno [2,3-b] thiophene skeleton as shown in the general formula (1).
In the present invention, only the bent structure of the molecule constructed by the introduction of the thienothiophene skeleton as described above, even if the condensed ring is an unsubstituted acene, without introducing a functional group that affects semiconductor performance. It is possible to increase the solubility.
In forming an organic thin film when manufacturing an organic semiconductor device, conventional organic semiconductor materials having a thiophene ring are not sufficiently soluble in an organic solvent such as dichloromethane, and can be formed into a large area at low cost. Although it has been difficult to apply the wet process, the organic semiconductor material according to the present invention can achieve a solubility of 1000 ppm or more required for performing the wet process.

また、本発明に係る有機半導体材料は、縮合環のπ共役も保持されるため、半導体性能の向上も図られる。
さらに、本発明に係る有機半導体材料は、チエノチオフェン骨格を中心とした線対称の分子構造を有しているため、市販の化合物を原料として、比較的容易に少ないステップで合成することができるという利点も有している。
In addition, since the organic semiconductor material according to the present invention retains the π conjugate of the condensed ring, the semiconductor performance can be improved.
Furthermore, since the organic semiconductor material according to the present invention has a line-symmetric molecular structure centered on the thienothiophene skeleton, it can be synthesized with relatively few steps using commercially available compounds as raw materials. It also has advantages.

本発明に係る有機半導体材料としては、具体的には、上記一般式(1)におけるAが、ナフタレン、アントラセン、ペンタセン、フェナントレン、トリフェニレンのうちのいずれかであることが好ましい。これらの化合物の具体例を下記に示す。
これらの中でも、特に、Aがアントラセンである2,3b−DATTが好ましい。
Specifically, as the organic semiconductor material according to the present invention, it is preferable that A in the general formula (1) is any one of naphthalene, anthracene, pentacene, phenanthrene, and triphenylene. Specific examples of these compounds are shown below.
Among these, 2,3b-DATT in which A is anthracene is particularly preferable.

Figure 2014036039
Figure 2014036039

上記のような本発明に係る有機半導体材料の合成方法は、特に限定されるものではないが、上記例示した化合物のうち、例えば、2,3b−DATTについては、下記実施例に示すような方法により合成することするができる。
この合成方法は、フリーデル−クラフツアシル化反応により、チエノ[2,3−b]チオフェンの2,5位にナフタレンジカルボン酸無水物を付加させ、次に、ポリリン酸を用いた環化反応を行った後、塩化水銀を用いて還元するものである。
このように、2,3b−DATTは、市販の化合物を原料として、3ステップで合成することが可能である。
上記(化7)において例示した他の化合物は、チエノ[2,3−b]チオフェンに付加させるナフタレンジカルボン酸無水物に代えて、下記に示す市販のカルボン酸無水物を用いることにより、同様の方法で合成することができる。
The method for synthesizing the organic semiconductor material according to the present invention as described above is not particularly limited, but among the compounds exemplified above, for example, for 2,3b-DATT, the method as shown in the following examples. Can be synthesized.
In this synthesis method, naphthalenedicarboxylic anhydride is added to the 2,5-positions of thieno [2,3-b] thiophene by Friedel-Crafts acylation reaction, and then cyclization reaction using polyphosphoric acid is performed. Then, reduction is performed using mercury chloride.
Thus, 2,3b-DATT can be synthesized in three steps using a commercially available compound as a raw material.
Other compounds exemplified in the above (Chemical Formula 7) can be obtained by replacing the naphthalenedicarboxylic anhydride to be added to thieno [2,3-b] thiophene with the following commercially available carboxylic anhydride. It can be synthesized by the method.

Figure 2014036039
Figure 2014036039

本発明に係る有機半導体材料は、上述したように、従来よりも溶解性が改善され、かつ、合成プロセスも簡便であることから、ウェットプロセスによる低コストでの有機半導体デバイスの作製を可能とし得るものであり、有用な材料である。
また、本発明に係る有機半導体材料は、低分子系であっても高い電荷移動度が得られることから、有機半導体デバイスに適用することにより、例えば、有機電界効果トランジスタにおいては電荷移動度の増大が図られ、また、有機太陽電池においては変換効率の向上が図られる等、デバイス性能の向上が期待される。
As described above, the organic semiconductor material according to the present invention has improved solubility as compared with the conventional method, and the synthesis process is simpler. Therefore, the organic semiconductor material can be manufactured at a low cost by a wet process. Is a useful material.
In addition, since the organic semiconductor material according to the present invention can obtain high charge mobility even in a low molecular system, by applying it to an organic semiconductor device, for example, in an organic field effect transistor, the charge mobility is increased. In addition, the organic solar cell is expected to improve device performance such as improvement in conversion efficiency.

以下、本発明を実施例に基づきさらに具体的に説明するが、本発明は下記の実施例により制限されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example, this invention is not restrict | limited by the following Example.

(2,3b−DATTの合成)
本発明に係る有機半導体材料の代表例として、2,3b−DATTを下記に示すような3ステップで合成した。
(Synthesis of 2,3b-DATT)
As a representative example of the organic semiconductor material according to the present invention, 2,3b-DATT was synthesized in three steps as shown below.

Figure 2014036039
Figure 2014036039

まず、200ml三口フラスコに、ナフタレンジカルボン酸無水物(化合物2)2.83g(7.13mmol)と塩化アルミニウム6.00g(45.0mmol)を入れ、窒素雰囲気下、0℃とした。これに、1,2−ジクロロエタンを50ml加え、30分撹拌した。その後、1,2−ジクロロエタン30mlに混合したチエノチオフェン(化合物1)1.00g(7.13mmol)を12時間かけて滴下し、24時間撹拌した。
10%塩酸50mlを加え、反応を停止させ、吸引ろ過した。ろ物を10%水酸化ナトリウム水溶液で溶解して吸引ろ過し、ろ物に水を加えて溶解した後、濃塩酸でpH1として、再度吸引ろ過し、化合物3を収率30.0%、収量1.15gで得た。
First, 2.83 g (7.13 mmol) of naphthalenedicarboxylic anhydride (Compound 2) and 6.00 g (45.0 mmol) of aluminum chloride were placed in a 200 ml three-necked flask, and the temperature was adjusted to 0 ° C. in a nitrogen atmosphere. To this, 50 ml of 1,2-dichloroethane was added and stirred for 30 minutes. Thereafter, 1.00 g (7.13 mmol) of thienothiophene (compound 1) mixed in 30 ml of 1,2-dichloroethane was added dropwise over 12 hours, and the mixture was stirred for 24 hours.
The reaction was stopped by adding 50 ml of 10% hydrochloric acid, and suction filtration was performed. The filtrate was dissolved in a 10% aqueous sodium hydroxide solution and suction filtered. Water was added to the filtrate and dissolved, and then the solution was suction filtered again with concentrated hydrochloric acid to pH 1. Compound 3 was obtained in a yield of 30.0%. Obtained at 1.15 g.

得られた化合物3の1H NMR及びFDイオン化法による高分解能質量分析(HRMS)の測定結果を以下に示す。
1H NMR(500MHz,DMSO−d6):δ=8.623(s,2H,ArH),8.205(dd,2H,ArH),8.178(s,2H,ArH),8.097(dd,2H,J=7.37Hz,ArH),7.751(ddd,4H,ArH),7.541(s,2H,ArH)
HRMS(FD+):C301662(M+)m/z=536.03891(計算値536.03883)
The measurement result of the high resolution mass spectrometry (HRMS) by 1 H NMR and FD ionization method of the obtained compound 3 is shown below.
1 H NMR (500 MHz, DMSO-d6): δ = 8.623 (s, 2H, ArH), 8.205 (dd, 2H, ArH), 8.178 (s, 2H, ArH), 8.097 ( dd, 2H, J = 7.37 Hz, ArH), 7.751 (ddd, 4H, ArH), 7.541 (s, 2H, ArH)
HRMS (FD + ): C 30 H 16 O 6 S 2 (M + ) m / z = 536.03891 (calculated value 536.03883)

Figure 2014036039
Figure 2014036039

次に、50ml二口フラスコに、化合物3を0.1g(0.19mmol)入れ、窒素雰囲気下とし、ポリリン酸30mlを加え、80℃に加熱して24時間撹拌した。その後、室温まで空冷し、反応液を氷水に入れ、撹拌し、ポリリン酸を加水分解した。水層が無色透明になるまでジクロロメタンで抽出し、ジクロロメタンをエバポレータで留去し、化合物4を収率40.1%、収量39mgで得た。   Next, 0.1 g (0.19 mmol) of Compound 3 was placed in a 50 ml two-necked flask, put under a nitrogen atmosphere, added with 30 ml of polyphosphoric acid, heated to 80 ° C., and stirred for 24 hours. Then, it cooled to room temperature and put the reaction liquid in ice water, stirred, and hydrolyzed polyphosphoric acid. Extraction was performed with dichloromethane until the aqueous layer became colorless and transparent, and the dichloromethane was distilled off with an evaporator to obtain Compound 4 in a yield of 40.1% and a yield of 39 mg.

得られた化合物4の1H NMR及びFDイオン化法によるHRMSの測定結果を以下に示す。
1H NMR(500MHz,CDCl3):δ=8.902(s,2H,ArH),8.778(s,2H,ArH),8.123(dd,4H,J=9.64Hz,ArH),7.756(ddd,4H,ArH)
HRMS(FD+):C301242(M+)m/z=500.01715(計算値500.01770)
The measurement result of HRMS by 1 H NMR and FD ionization method of the obtained compound 4 is shown below.
1 H NMR (500 MHz, CDCl 3 ): δ = 8.902 (s, 2H, ArH), 8.778 (s, 2H, ArH), 8.123 (dd, 4H, J = 9.64 Hz, ArH) , 7.756 (ddd, 4H, ArH)
HRMS (FD + ): C 30 H 12 O 4 S 2 (M + ) m / z = 500.01715 (calculated value 500.01770)

Figure 2014036039
Figure 2014036039

さらに、200ml三口フラスコにアルミニウムワイヤ2.07g(76.7mmol)と塩化水銀42mg(0.15mmol)を入れ、窒素雰囲気下とし、シクロヘキサノール50mlと四塩化炭素2.2ml(22.7mmol)を加えた。撹拌しながら加熱し、アルミニウムが溶けた後、化合物4を75mg(0.15mmol)加え、160℃まで加熱し、60時間撹拌した。その後、室温まで空冷し、4mol/l塩酸を120ml加えた。この反応液をエーテルで抽出した後、エバポレータで水、トルエン及びシクロヘキサノールを共沸させて溶媒を留去した。その後、メタノール、ヘキサンで洗浄し、2,3b−DATTを収率30%、収量20mgで得た。   Furthermore, 2.07 g (76.7 mmol) of aluminum wire and 42 mg (0.15 mmol) of mercury chloride were placed in a 200 ml three-necked flask, put under a nitrogen atmosphere, and 50 ml of cyclohexanol and 2.2 ml (22.7 mmol) of carbon tetrachloride were added. It was. After stirring and heating to dissolve aluminum, 75 mg (0.15 mmol) of Compound 4 was added, heated to 160 ° C., and stirred for 60 hours. Then, it air-cooled to room temperature and 120 ml of 4 mol / l hydrochloric acid was added. After extracting this reaction liquid with ether, water, toluene and cyclohexanol were azeotroped with an evaporator to distill off the solvent. Thereafter, it was washed with methanol and hexane to obtain 2,3b-DATT in a yield of 30% and a yield of 20 mg.

得られた2,3b−DATTの1H NMR及びFDイオン化法によるHRMSの測定結果を以下に示す。
1H NMR(500MHz,CDCl3):δ=9.074(s,2H,ArH),8.817(s,2H,ArH),8.556(s,2H,ArH),8.553(s,2H,ArH),8.123(dd,2H,J=7.94Hz,ArH),8.079(dd,2H,J=9.07Hz,ArH),7.519(ddd,4H,ArH)
HRMS(FD+):C30162(M+)m/z=440.06950(計算値440.06934)
The measurement results of HRMS by 1 H NMR and FD ionization of the obtained 2,3b-DATT are shown below.
1 H NMR (500 MHz, CDCl 3 ): δ = 9.074 (s, 2H, ArH), 8.817 (s, 2H, ArH), 8.556 (s, 2H, ArH), 8.553 (s , 2H, ArH), 8.123 (dd, 2H, J = 7.94 Hz, ArH), 8.079 (dd, 2H, J = 9.07 Hz, ArH), 7.519 (ddd, 4H, ArH)
HRMS (FD + ): C 30 H 16 S 2 (M + ) m / z = 440.069950 (calculated value 440.06934)

(UV−vis吸収スペクトル測定)
上記において合成した2,3b−DATTについて、ジクロロメタン溶液として、UV−vis吸収スペクトルを測定した。
図2に、UV−vis吸収スペクトルの測定結果を示す。なお、比較例として、NBBTについての測定値も併せて示す。
図2に示した結果から分かるように、2,3b−DATTのUV−vis吸収スペクトルの吸収端の波長は475nmであった。密度汎関数法による計算から求められるHOMO−LUMOエネルギーギャップは2.61eVであり、NBBTと比較して長波長化していることからも、縮合環数の増加に伴い、π共役が拡張されていると考えられる。
(UV-vis absorption spectrum measurement)
With respect to 2,3b-DATT synthesized above, a UV-vis absorption spectrum was measured as a dichloromethane solution.
In FIG. 2, the measurement result of a UV-vis absorption spectrum is shown. In addition, the measured value about NBBT is also shown as a comparative example.
As can be seen from the results shown in FIG. 2, the wavelength of the absorption edge of the UV-vis absorption spectrum of 2,3b-DATT was 475 nm. The HOMO-LUMO energy gap obtained from the calculation by the density functional method is 2.61 eV, and since the wavelength is longer than that of NBBT, π conjugation is expanded as the number of condensed rings increases. it is conceivable that.

(溶解度測定)
2,3b−DATTのジクロロメタンに対する溶解度は、1700ppmであった。なお、比較例として、NBBTの溶解度は400ppmであった。
このことから、縮合環数が6個のNBBTよりも2,3b−DATTの方が8個と多いにもかかわらず、溶解性に優れていることから、折れ曲がり骨格が溶解性の向上に有効であると考えられる。
(Solubility measurement)
The solubility of 2,3b-DATT in dichloromethane was 1700 ppm. As a comparative example, the solubility of NBBT was 400 ppm.
Therefore, although the number of 2,3b-DATT is 8 more than that of NBBT having 6 condensed rings, the bent skeleton is effective in improving the solubility. It is believed that there is.

(有機電界効果トランジスタ素子特性評価)
上記において合成した2,3b−DATTを用いて、図1に示すような一般的なボトムゲート・ボトムコンタクト構造の有機電界効果トランジスタを作製した。
まず、高濃度n型ドープSiからなるゲート電極1上に、SiO2ゲート絶縁膜2を積層し、その上に所定の間隔でAuによるソース電極4及びドレイン電極5を形成した。
さらに、絶縁膜2表面を自己組織化単分子膜であるオクタデシルトリクロロシラン(OTS)で被覆した後、2,3b−DATTのジクロロメタン溶液(1700ppm)をスピンコート法で塗布成膜することにより、有機半導体層3を積層し、有機電界効果トランジスタ素子を得た。
この有機電界効果トランジスタ素子について、半導体特性を測定したところ、p型特性を示し、大気中で安定動作することが確認された。
(Organic field effect transistor element characteristic evaluation)
Using the 2,3b-DATT synthesized above, an organic field effect transistor having a general bottom gate / bottom contact structure as shown in FIG. 1 was produced.
First, a SiO 2 gate insulating film 2 was laminated on a gate electrode 1 made of high-concentration n-type doped Si, and a source electrode 4 and a drain electrode 5 made of Au were formed thereon at a predetermined interval.
Furthermore, after coating the surface of the insulating film 2 with octadecyltrichlorosilane (OTS) which is a self-assembled monomolecular film, a dichloromethane solution (1,700 ppm) of 2,3b-DATT is applied by spin coating to form an organic film. The semiconductor layer 3 was laminated | stacked and the organic field effect transistor element was obtained.
As a result of measuring semiconductor characteristics of the organic field effect transistor element, it was confirmed that the organic field effect transistor element showed p-type characteristics and stably operated in the atmosphere.

1 ゲート電極
2 ゲート絶縁膜
3 ソース電極
4 ドレイン電極
5 有機半導体層
DESCRIPTION OF SYMBOLS 1 Gate electrode 2 Gate insulating film 3 Source electrode 4 Drain electrode 5 Organic-semiconductor layer

Claims (4)

下記一般式(1)で表されるチエノチオフェン骨格を有する化合物からなる有機半導体材料。
Figure 2014036039
(式(1)中、Aは、同一の縮合環を表す。)
An organic semiconductor material comprising a compound having a thienothiophene skeleton represented by the following general formula (1).
Figure 2014036039
(In formula (1), A represents the same condensed ring.)
前記一般式(1)で表される化合物において、Aが、ナフタレン、アントラセン、ペンタセン、フェナントレン、トリフェニレンのうちのいずれかであることを特徴とする請求項1記載の有機半導体材料。   2. The organic semiconductor material according to claim 1, wherein in the compound represented by the general formula (1), A is any one of naphthalene, anthracene, pentacene, phenanthrene, and triphenylene. 下記化学式で表される化合物からなる有機半導体材料。
Figure 2014036039
An organic semiconductor material comprising a compound represented by the following chemical formula.
Figure 2014036039
請求項1〜3のいずれか1項に記載された有機半導体材料が用いられていることを特徴とする有機半導体デバイス。   The organic-semiconductor device described in any one of Claims 1-3 is used, The organic-semiconductor device characterized by the above-mentioned.
JP2012174845A 2012-08-07 2012-08-07 Organic semiconductor material and organic semiconductor device using the same Active JP6143257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012174845A JP6143257B2 (en) 2012-08-07 2012-08-07 Organic semiconductor material and organic semiconductor device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012174845A JP6143257B2 (en) 2012-08-07 2012-08-07 Organic semiconductor material and organic semiconductor device using the same

Publications (2)

Publication Number Publication Date
JP2014036039A true JP2014036039A (en) 2014-02-24
JP6143257B2 JP6143257B2 (en) 2017-06-07

Family

ID=50284864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012174845A Active JP6143257B2 (en) 2012-08-07 2012-08-07 Organic semiconductor material and organic semiconductor device using the same

Country Status (1)

Country Link
JP (1) JP6143257B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4092751A1 (en) 2015-07-17 2022-11-23 Sony Group Corporation Photoelectric conversion element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009009965A (en) * 2007-06-26 2009-01-15 Mitsui Chemicals Inc Organic transistor
JP2009302264A (en) * 2008-06-13 2009-12-24 Ushio Chemix Kk Organic semiconductor material characterized by thienothiophene skeleton
JP2012067039A (en) * 2010-09-24 2012-04-05 Denso Corp Compound, organic semiconductor material, and semiconductor device
WO2012050001A1 (en) * 2010-10-12 2012-04-19 新日鐵化学株式会社 Chalcogen-containing aromatic compound, organic semiconductor material, and organic electronic device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009009965A (en) * 2007-06-26 2009-01-15 Mitsui Chemicals Inc Organic transistor
JP2009302264A (en) * 2008-06-13 2009-12-24 Ushio Chemix Kk Organic semiconductor material characterized by thienothiophene skeleton
JP2012067039A (en) * 2010-09-24 2012-04-05 Denso Corp Compound, organic semiconductor material, and semiconductor device
WO2012050001A1 (en) * 2010-10-12 2012-04-19 新日鐵化学株式会社 Chalcogen-containing aromatic compound, organic semiconductor material, and organic electronic device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KAZUHIRO YAMAMOTO ET AL.: ""Synthesis and properties of naphthobisbenzo[b]thiophenes: structural curvature of higher acene fra", TETRAHEDRON LETTERS, vol. 53, JPN6016030063, 3 February 2012 (2012-02-03), pages 1786 - 1789, ISSN: 0003534329 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4092751A1 (en) 2015-07-17 2022-11-23 Sony Group Corporation Photoelectric conversion element

Also Published As

Publication number Publication date
JP6143257B2 (en) 2017-06-07

Similar Documents

Publication Publication Date Title
US8530889B2 (en) Carbon nanotube composite, organic semiconductor composite, and field-effect transistor
JP5562652B2 (en) Silylethynylated heteroacenes and electronic devices made therewith
Lin et al. Ambipolar organic field-effect transistors based on diketopyrrolopyrrole derivatives containing different π-conjugating spacers
Chen et al. Asymmetric fused thiophenes for field-effect transistors: crystal structure–film microstructure–transistor performance correlations
WO2008127029A1 (en) Dioxypyrrolo-heteroaromatic compounds and organic electronic devices using the same
TWI549327B (en) Organic field effect transistor and organic semiconductor material
JP2008513544A (en) Carbonyl-functionalized thiophene compounds and related device structures
Dutta et al. Novel naphtho [1, 2-b: 5, 6-b′] dithiophene core linear donor–π–acceptor conjugated small molecules with thiophene-bridged bithiazole acceptor: design, synthesis, and their application in bulk heterojunction organic solar cells
Yan et al. Influence of heteroatoms on the charge mobility of anthracene derivatives
JP2006008679A (en) Process for preparing small-molecular thiophene compound
JP5180498B2 (en) Organic semiconductor material and organic transistor using the same
JP2006013483A (en) Apparatus equipped with small molecular thiophene compound
Mao et al. High-performance polymer field-effect transistors fabricated with low-bandgap DPP-based semiconducting materials
Wang et al. Synthesis of low-bandgap small molecules by extending the π-conjugation of the termini in quinoidal compounds
Mamillapalli et al. Solution-processable end-functionalized tetrathienoacene semiconductors: Synthesis, characterization and organic field effect transistors applications
Tian et al. A feasibly synthesized ladder-type conjugated molecule as the novel high mobility n-type organic semiconductor
Hao et al. Perpendicularly entangled perylene diimides for high performance electron transport materials
EP2887414A1 (en) Organic semiconductor solution and organic semiconductor film
Wu et al. High-performance n-channel field effect transistors based on solution-processed dicyanomethylene-substituted tetrathienoquinoid
Zou et al. Synthesis, characterization, and field-effect transistor performance of a two-dimensional starphene containing sulfur
Zhu et al. The synthesis of 2, 6-dialkylphenyldithieno [3, 2-b: 2′, 3′-d] thiophene derivatives and their applications in organic field-effect transistors
JP6143257B2 (en) Organic semiconductor material and organic semiconductor device using the same
JP5590491B2 (en) Polymer compound, polymer organic semiconductor material and organic semiconductor device
JP4065874B2 (en) Organic thin film transistor and manufacturing method thereof
KR20110068665A (en) Anthracenyl alternating copolymer, preparation method thereof, and organic thin film transistor using the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20141201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160928

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170308

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170501

R150 Certificate of patent or registration of utility model

Ref document number: 6143257

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250