JP2014035971A - Power storage device - Google Patents

Power storage device Download PDF

Info

Publication number
JP2014035971A
JP2014035971A JP2012177928A JP2012177928A JP2014035971A JP 2014035971 A JP2014035971 A JP 2014035971A JP 2012177928 A JP2012177928 A JP 2012177928A JP 2012177928 A JP2012177928 A JP 2012177928A JP 2014035971 A JP2014035971 A JP 2014035971A
Authority
JP
Japan
Prior art keywords
power storage
cooling medium
duct
stacking direction
storage module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012177928A
Other languages
Japanese (ja)
Inventor
Rieko Koyama
梨英子 小山
Takuro Kamata
太久郎 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2012177928A priority Critical patent/JP2014035971A/en
Publication of JP2014035971A publication Critical patent/JP2014035971A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To cool a plurality of power storage cells configuring a power storage pack uniformly.SOLUTION: A power storage pack P is configured by juxtaposing a first power storage module M1 and a second power storage module M2, each laminating a plurality of power storage cells C in the lamination direction, in the width direction. Cooling medium supplied from a suction duct 38, provided along one external surface of the first power storage module M1 in the width direction, cools the power storage cells C of the first power storage module M1 and flows into an intermediate duct 42. The cooling medium mixed in the intermediate duct 42 and having a uniform temperature cools the power storage cells C of the second power storage module M2, before being discharged to an exhaust duct 39 provided along the other external surface of the second power storage module M2 in the width direction. Since both ends of the intermediate duct 42 in the lamination direction are closed with seal members 43, the cooling medium in the intermediate duct 42 is prevented from leaking to the outside, and cooling efficiency of the power storage cells C can be enhanced.

Description

本発明は、複数の蓄電セルを積層方向に積層した第1蓄電モジュールおよび第2蓄電モジュールを幅方向に並置して蓄電パックを構成し、前記第1蓄電モジュールの幅方向一方の外面に沿って冷却媒体の吸入ダクトを設けるとともに、前記第2蓄電モジュールの幅方向他方の外面に沿って冷却媒体の排出ダクトを設け、前記吸入ダクトから供給した冷却媒体を前記第1、第2蓄電モジュールの前記蓄電セル間に形成した冷却媒体通路を通過させて前記排出ダクトに排出する蓄電装置に関する。   In the present invention, a first power storage module and a second power storage module in which a plurality of power storage cells are stacked in the stacking direction are juxtaposed in the width direction to form a power storage pack, and along one outer surface in the width direction of the first power storage module A cooling medium suction duct is provided, a cooling medium discharge duct is provided along the other outer surface in the width direction of the second power storage module, and the cooling medium supplied from the suction duct is supplied to the first and second power storage modules. The present invention relates to a power storage device that passes through a cooling medium passage formed between power storage cells and discharges it to the discharge duct.

複数の蓄電セルを蓄電セルホルダを挟んで積層方向に積層して蓄電モジュールを構成し、複数の蓄電モジュールを前記積層方向と直交する並置方向に並置して蓄電パックを構成し、並置方向上流側の蓄電モジュールから並置方向下流側の蓄電モジュールへと冷却媒体を直線状に流して各蓄電セルを冷却するものが、下記特許文献1により公知である。   A plurality of power storage cells are stacked in the stacking direction with a power storage cell holder interposed therebetween to form a power storage module, a plurality of power storage modules are juxtaposed in a juxtaposition direction orthogonal to the stacking direction to form a power storage pack, and the upstream of the juxtaposition direction Japanese Patent Application Laid-Open No. 2004-228561 discloses a cooling medium that flows from a power storage module to a power storage module downstream in the juxtaposition direction to cool each power storage cell.

特開2009−134937号公報JP 2009-134937 A

ところで、上記従来のものは、並置された複数の蓄電モジュールを上流側のものから下流側のものへと冷却媒体が次々に通過するため、下流側に行くに従って冷却媒体の温度が次第に高くなり、上流側の蓄電セルに比べて下流側の蓄電セルの冷却効率が低下してしまい、各蓄電セルの温度が不均一になって耐久性に悪影響が及ぶ可能性があった。   By the way, the above-mentioned conventional one passes through the plurality of juxtaposed power storage modules from the upstream one to the downstream one after another, so that the temperature of the cooling medium gradually increases toward the downstream, Compared to the upstream storage cell, the cooling efficiency of the downstream storage cell is lowered, and the temperature of each storage cell becomes non-uniform, which may adversely affect the durability.

本発明は前述の事情に鑑みてなされたもので、蓄電パックを構成する複数の蓄電セルを均等に冷却できるようにすることを目的とする。   The present invention has been made in view of the above-described circumstances, and an object thereof is to allow a plurality of power storage cells constituting a power storage pack to be uniformly cooled.

上記目的を達成するために、請求項1に記載された発明によれば、複数の蓄電セルを積層方向に積層した第1蓄電モジュールおよび第2蓄電モジュールを幅方向に並置して蓄電パックを構成し、前記第1蓄電モジュールの幅方向一方の外面に沿って冷却媒体の吸入ダクトを設けるとともに、前記第2蓄電モジュールの幅方向他方の外面に沿って冷却媒体の排出ダクトを設け、前記吸入ダクトから供給した冷却媒体を前記第1、第2蓄電モジュールの前記蓄電セル間に形成した冷却媒体通路を通過させて前記排出ダクトに排出する蓄電装置において、前記第1、第2蓄電モジュール間に、前記第1蓄電モジュールの冷却媒体通路および前記第2蓄電モジュールの冷却媒体通路に連通して積層方向に延びる中間ダクトを形成し、前記中間ダクトの積層方向両端部を閉塞したことを特徴とする蓄電装置が提案される。   In order to achieve the above object, according to the invention described in claim 1, a power storage pack is configured by juxtaposing a first power storage module and a second power storage module in which a plurality of power storage cells are stacked in the stacking direction in the width direction. A cooling medium suction duct is provided along one outer surface in the width direction of the first power storage module, and a cooling medium discharge duct is provided along the other outer surface in the width direction of the second power storage module. In the power storage device that discharges the cooling medium supplied from the cooling medium passage formed between the power storage cells of the first and second power storage modules to the discharge duct, between the first and second power storage modules, Forming an intermediate duct that communicates with the cooling medium passage of the first power storage module and the cooling medium passage of the second power storage module and extends in the stacking direction; Power storage device is proposed which is characterized in that it has closed the layer opposite ends.

また請求項2に記載された発明によれば、請求項1の構成に加えて、前記中間ダクトの積層方向両端部は、前記第1、第2蓄電モジュールの積層方向両端部にそれぞれ配置したエンドプレートにより閉塞され、前記中間ダクトの上下部は、前記エンドプレート間を接続する上部拘束部材および下部拘束部材により閉塞されることを特徴とする蓄電装置が提案される。   According to the invention described in claim 2, in addition to the configuration of claim 1, both ends in the stacking direction of the intermediate duct are arranged at both ends in the stacking direction of the first and second power storage modules, respectively. A power storage device is proposed, which is closed by a plate, and the upper and lower portions of the intermediate duct are closed by an upper restraining member and a lower restraining member connecting the end plates.

また請求項3に記載された発明によれば、請求項2の構成に加えて、前記第1、第2蓄電モジュールを前記上部拘束部材に向けて付勢する付勢手段を備えることを特徴とする蓄電装置が提案される。   According to the invention described in claim 3, in addition to the configuration of claim 2, the invention further comprises biasing means for biasing the first and second power storage modules toward the upper restraining member. A power storage device is proposed.

また請求項4に記載された発明によれば、請求項3の構成に加えて、前記第1、第2蓄電モジュールと前記下部拘束部材との間に配置された弾性を有するシール部材を備えることを特徴とする蓄電装置が提案される。   According to the invention described in claim 4, in addition to the configuration of claim 3, it is provided with a sealing member having elasticity arranged between the first and second power storage modules and the lower restraining member. A power storage device featuring the above is proposed.

また請求項5に記載された発明によれば、請求項1〜請求項4の何れか1項の構成に加えて、前記第2蓄電モジュールの冷却媒体通路の上流端が前記中間ダクトに開口する面積は、前記第1蓄電モジュールの冷却媒体通路の下流端が前記中間ダクトに開口する面積よりも小さいことを特徴とする蓄電装置が提案される。   According to the invention described in claim 5, in addition to the configuration of any one of claims 1 to 4, the upstream end of the cooling medium passage of the second power storage module opens into the intermediate duct. A power storage device is proposed in which the area is smaller than the area where the downstream end of the cooling medium passage of the first power storage module is open to the intermediate duct.

また請求項6に記載された発明によれば、請求項1〜請求項4の何れか1項の構成に加えて、前記第1蓄電モジュールの冷却媒体通路と前記第2蓄電モジュールの冷却媒体通路とを積層方向にずらしたことを特徴とする蓄電装置が提案される。   According to the invention described in claim 6, in addition to the configuration of any one of claims 1 to 4, the cooling medium passage of the first electricity storage module and the cooling medium passage of the second electricity storage module. A power storage device characterized in that is shifted in the stacking direction is proposed.

また請求項7に記載された発明によれば、請求項1〜請求項6の何れか1項の構成に加えて、一対の前記蓄電パックを上下2段に重ね合わせ、下段の前記蓄電パックは前記吸入ダクトの積層方向一端側から冷却媒体を吸入して前記排出ダクトの積層方向他端側から冷却媒体を排出し、上段の前記蓄電パックは前記吸入ダクトの積層方向他端側から冷却媒体を吸入して前記排出ダクトの積層方向一端側から冷却媒体を排出することを特徴とする蓄電装置が提案される。   According to the invention described in claim 7, in addition to the configuration of any one of claims 1 to 6, a pair of the electricity storage packs are stacked in two upper and lower stages, and the electricity storage pack in the lower stage is The cooling medium is sucked from one end side in the stacking direction of the suction duct and discharged from the other end side in the stacking direction of the discharge duct, and the upper storage pack receives the cooling medium from the other end side in the stacking direction of the suction duct. A power storage device is proposed in which the cooling medium is discharged from one end side in the stacking direction of the discharge duct.

また請求項8に記載された発明によれば、請求項1〜請求項7の何れか1項の構成に加えて、前記中間ダクトは分割部において積層方向に2分割され、吸入ダクトの冷却媒体の流れ方向に対して、前記分割部の上流側の前記蓄電セルの積層数よりも、前記分割部の下流側の前記蓄電セルの積層数を大きく設定したことを特徴とする蓄電装置が提案される。   According to the invention described in claim 8, in addition to the configuration of any one of claims 1 to 7, the intermediate duct is divided into two in the stacking direction at the dividing portion, and the cooling medium of the suction duct A power storage device is proposed in which the number of stacked storage cells downstream of the dividing unit is set larger than the number of stacked storage cells upstream of the dividing unit with respect to the flow direction. The

尚、実施の形態のセンタープレート25は本発明の分割部に対応し、実施の形態の第3上部拘束部材33は本発明の拘束部材に対応し、実施の形態の板ばね37は本発明の付勢手段に対応する。   The center plate 25 of the embodiment corresponds to the dividing portion of the present invention, the third upper restraining member 33 of the embodiment corresponds to the restraining member of the present invention, and the leaf spring 37 of the embodiment of the present invention. Corresponds to the biasing means.

請求項1の構成によれば、複数の蓄電セルを積層方向に積層した第1蓄電モジュールおよび第2蓄電モジュールを幅方向に並置して蓄電パックを構成する。第1蓄電モジュールの幅方向一方の外面に沿って設けた吸入ダクトから供給した冷却媒体は、第1蓄電モジュールの蓄電セルを冷却して中間ダクトに流入し、中間ダクトで混合して温度が均一化された冷却媒体は第2蓄電モジュールの蓄電セルを冷却した後、第2蓄電モジュールの幅方向他方の外面に沿って設けた排出ダクトに排出される。第1、第2蓄電モジュールとも、吸入ダクトの上流側の蓄電セルは冷却風の流量が小さいために冷却され難く、吸入ダクトの下流側の蓄電セルは冷却風の流量が大きいために冷却され易いが、第1蓄電モジュールを通過して温度が不均一になった冷却媒体を中間ダクトで混合して温度を均一化した後に第2蓄電モジュールに供給することで、各蓄電セルを均一に冷却して温度差を最小限に抑えることができる。しかも中間ダクトの積層方向両端部を閉塞したので、中間ダクトの冷却媒体が外部に漏れるのを防止して蓄電セルの冷却効率を高めることができる。   According to the configuration of claim 1, the power storage pack is configured by juxtaposing the first power storage module and the second power storage module in which the plurality of power storage cells are stacked in the stacking direction in the width direction. The cooling medium supplied from the suction duct provided along one outer surface in the width direction of the first power storage module cools the power storage cell of the first power storage module, flows into the intermediate duct, and mixes in the intermediate duct so that the temperature is uniform. The cooled cooling medium cools the power storage cell of the second power storage module, and then is discharged to a discharge duct provided along the other outer surface in the width direction of the second power storage module. In both the first and second power storage modules, the storage cell upstream of the suction duct is difficult to be cooled because the flow rate of the cooling air is small, and the storage cell downstream of the suction duct is easily cooled because the flow rate of the cooling air is large. However, the cooling medium that has passed through the first power storage module and has become non-uniform in temperature is mixed in the intermediate duct to equalize the temperature, and then supplied to the second power storage module to uniformly cool each power storage cell. Temperature difference can be minimized. In addition, since both ends of the intermediate duct in the stacking direction are closed, the cooling medium of the intermediate duct can be prevented from leaking to the outside, and the cooling efficiency of the storage cell can be increased.

また請求項2の構成によれば、中間ダクトの積層方向両端部は、第1、第2蓄電モジュールの積層方向両端部にそれぞれ配置したエンドプレートにより閉塞され、中間ダクトの上下部は、エンドプレート間を接続する上部拘束部材および下部拘束部材により閉塞されるので、特別のシール部材を必要とせずに冷却媒体の漏れを防止することができる。   According to the second aspect of the present invention, both ends of the intermediate duct in the stacking direction are closed by the end plates disposed at both ends of the first and second power storage modules in the stacking direction, and the upper and lower portions of the intermediate duct are the end plates. Since it is obstruct | occluded by the upper restraint member and lower restraint member which connect between, the leakage of a cooling medium can be prevented, without requiring a special sealing member.

また請求項3の構成によれば、第1、第2蓄電モジュールを上部拘束部材に向けて付勢する付勢手段を備えるので、第1、第2蓄電モジュールを上部拘束部材に密着させることで、特別のシール部材を必要とせずに冷却媒体の漏れを防止することができる。   According to the third aspect of the present invention, since the first and second power storage modules are provided with biasing means for biasing the first and second power storage modules toward the upper restraining member, the first and second power storage modules are brought into close contact with the upper restraining member. Further, it is possible to prevent leakage of the cooling medium without requiring a special seal member.

また請求項4の構成によれば、第1、第2蓄電モジュールと下部拘束部材との間に配置された弾性を有するシール部材を備えるので、第1、第2蓄電モジュールを付勢手段で上部拘束部材に向けて付勢しても、第1、第2蓄電モジュールと下部拘束部材との間から冷却媒体が漏れるのを防止することができる。   According to the fourth aspect of the present invention, since the elastic sealing member disposed between the first and second power storage modules and the lower restraining member is provided, the first and second power storage modules are moved upward by the urging means. Even if it urges | biases toward a restraint member, it can prevent that a cooling medium leaks from between a 1st, 2nd electrical storage module and a lower restraint member.

また請求項5の構成によれば、第2蓄電モジュールの冷却媒体通路の上流端が中間ダクトに開口する面積は、第1蓄電モジュールの冷却媒体通路の下流端が中間ダクトに開口する面積よりも小さいので、第1蓄電モジュール側から中間ダクトに流入した冷却媒体が第2蓄電モジュール側に流出し難くすることで中間ダクトにおける冷却媒体の混合を促進し、蓄電セルの均等な冷却を可能にすることができる。   According to the configuration of claim 5, the area where the upstream end of the cooling medium passage of the second power storage module opens to the intermediate duct is larger than the area where the downstream end of the cooling medium passage of the first power storage module opens to the intermediate duct. Since it is small, the cooling medium that has flowed into the intermediate duct from the first power storage module side is less likely to flow out to the second power storage module side, thereby promoting the mixing of the cooling medium in the intermediate duct and enabling uniform cooling of the storage cells. be able to.

また請求項6の構成によれば、第1蓄電モジュールの冷却媒体通路と第2蓄電モジュールの冷却媒体通路とを積層方向にずらしたので、第1蓄電モジュール側から中間ダクトに流入した冷却媒体が第2蓄電モジュール側に流出し難くすることで中間ダクトにおける冷却媒体の混合を促進し、蓄電セルの均等な冷却を可能にすることができる。   According to the configuration of claim 6, since the cooling medium passage of the first power storage module and the cooling medium passage of the second power storage module are shifted in the stacking direction, the cooling medium flowing into the intermediate duct from the first power storage module side By making it difficult to flow out to the second power storage module side, mixing of the cooling medium in the intermediate duct can be promoted, and the power storage cells can be evenly cooled.

また請求項7の構成によれば、一対の蓄電パックを上下2段に重ね合わせ、下段の蓄電パックは吸入ダクトの積層方向一端側から冷却媒体を吸入して排出ダクトの積層方向他端側から冷却媒体を排出し、上段の蓄電パックは吸入ダクトの積層方向他端側から冷却媒体を吸入して排出ダクトの積層方向一端側から冷却媒体を排出するので、冷却媒体の流れ方向上流側の冷え難い部分と冷却媒体の流れ方向下流側の冷え易い部分とが上段の蓄電パックおよび下段の蓄電パックで逆になり、上下段の蓄電パックの高温部および低温部を対向させて熱交換を行うことで蓄電セルの均等な冷却を可能にすることができる。   According to the configuration of claim 7, the pair of power storage packs are stacked in two upper and lower stages, and the lower power storage pack sucks the cooling medium from one end side in the stacking direction of the suction duct and from the other end side in the stacking direction of the discharge duct. The cooling medium is discharged, and the upper storage pack sucks the cooling medium from the other end in the stacking direction of the suction duct and discharges the cooling medium from the one end in the stacking direction of the discharge duct. The difficult part and the easy-to-cool part downstream in the flow direction of the cooling medium are reversed in the upper storage pack and the lower storage pack, and heat exchange is performed with the high and low temperature parts of the upper and lower storage packs facing each other. Thus, it is possible to evenly cool the storage cells.

また請求項8の構成によれば、中間ダクトは分割部において積層方向に2分割され、吸入ダクトの冷却媒体の流れ方向に対して、分割部の上流側の蓄電セルの積層数よりも、分割部の下流側の蓄電セルの積層数を大きく設定したので、冷却媒体の流量が小さい分割部の上流側に配置される蓄電セルの数を小さくし、冷却媒体の流量が大きい分割部の下流側に配置される蓄電セルの数を大きくすることで、蓄電セルの均等な冷却を可能にすることができる。   According to the configuration of claim 8, the intermediate duct is divided into two in the stacking direction in the split section, and is divided more than the number of stacked storage cells upstream of the split section in the flow direction of the cooling medium in the suction duct. Since the number of stacked storage cells on the downstream side of the unit is set to be large, the number of storage cells arranged on the upstream side of the dividing unit with a small flow rate of the cooling medium is reduced, and the downstream side of the dividing unit with the large flow rate of the cooling medium By increasing the number of power storage cells arranged in the battery, it is possible to cool the power storage cells evenly.

バッテリユニットの斜視図。(第1の実施の形態)The perspective view of a battery unit. (First embodiment) バッテリユニットの主要部の斜視図。(第1の実施の形態)The perspective view of the principal part of a battery unit. (First embodiment) バッテリパックの分解斜視図。(第1の実施の形態)The exploded perspective view of a battery pack. (First embodiment) 蓄電セル群の分解斜視図。(第1の実施の形態)The exploded perspective view of an electrical storage cell group. (First embodiment) 図2の5方向矢視図。(第1の実施の形態)FIG. (First embodiment) 図5の6−6線断面図。(第1の実施の形態)FIG. 6 is a sectional view taken along line 6-6 of FIG. (First embodiment) 図5の7−7線断面図。(第1の実施の形態)FIG. 7 is a cross-sectional view taken along line 7-7 of FIG. (First embodiment) 図5の8−8線断面図。(第1の実施の形態)FIG. 8 is a cross-sectional view taken along line 8-8 in FIG. 5. (First embodiment) 図5の9−9線断面図。FIG. 9 is a cross-sectional view taken along line 9-9 in FIG. 5. 冷却媒体の流路を説明する模式図。(第1の実施の形態)The schematic diagram explaining the flow path of a cooling medium. (First embodiment) 冷却媒体の流量を説明する模式図。(第1の実施の形態)The schematic diagram explaining the flow volume of a cooling medium. (First embodiment) 蓄電セルの総電圧と電食による孔食の深さとの関係を示すグラフ。(第1の実施の形態)The graph which shows the relationship between the total voltage of an electrical storage cell, and the depth of pitting by electric corrosion. (First embodiment) 第2蓄電モジュールを排出ダクト側から見た図。(第2の実施の形態)The figure which looked at the 2nd electrical storage module from the discharge duct side. (Second Embodiment) 蓄電セルホルダの斜視図。(第2の実施の形態)The perspective view of an electrical storage cell holder. (Second Embodiment) 図13の15A−15A線および15B−15B線断面図。(第2の実施の形態)FIG. 15 is a cross-sectional view taken along a line 15A-15A and a line 15B-15B in FIG. (Second Embodiment) 図10に対応する図。(第3の実施の形態)The figure corresponding to FIG. (Third embodiment)

第1の実施の形態First embodiment

以下、図1〜図12に基づいて本発明の第1の実施の形態を説明する。尚、本明細書において、前後方向、左右方向(車幅方向)および上下方向とは、運転席に着座した乗員を基準として定義される(図1参照)。   Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. In the present specification, the front-rear direction, the left-right direction (vehicle width direction), and the up-down direction are defined based on an occupant seated in the driver's seat (see FIG. 1).

図1および図2に示すように、ハイブリッド車両のモータ・ジェネレータに電力を供給する蓄電ユニットUは、実質的に同一の構造を有して上下に重ね合わされた一対の蓄電パックP,Pを備える。上面を平板状のカバー11で覆われた蓄電ユニットUは、シートクッション12aおよびシートバック12bよりなるリヤシート12の後部の荷室に搭載される。上段の蓄電パックPの前面右側から前方に延びる吸入通路13は、リヤシート12のシートバック12bの右側面において車室内に開口する吸入口13aを備え、前記蓄電パックPの後面左側から後方に延びる排出通路14の中間部には冷却ファン15が設けられ、下流端には排出口14aが形成される。同様に、下段の蓄電パックPの前面左側から前方に延びる吸入通路16は、リヤシート12のシートバック12bの左側面において車室内に開口する吸入口16aを備え、前記蓄電パックPの後面右側から後方に延びる排出通路17の中間部には冷却ファン18が設けられ、下流端には排出口17aが形成される。   As shown in FIGS. 1 and 2, a power storage unit U that supplies power to a motor / generator of a hybrid vehicle includes a pair of power storage packs P and P that have substantially the same structure and are stacked one above the other. . The power storage unit U, the upper surface of which is covered with the flat cover 11, is mounted in the luggage compartment at the rear of the rear seat 12 including the seat cushion 12a and the seat back 12b. The suction passage 13 that extends forward from the front right side of the upper storage pack P includes a suction port 13a that opens into the vehicle compartment on the right side surface of the seat back 12b of the rear seat 12, and is a discharge that extends rearward from the rear left side of the storage pack P. A cooling fan 15 is provided at an intermediate portion of the passage 14, and a discharge port 14a is formed at the downstream end. Similarly, the suction passage 16 extending forward from the front left side of the lower storage pack P includes a suction port 16a that opens into the vehicle compartment on the left side surface of the seat back 12b of the rear seat 12, and rearward from the rear right side of the storage pack P. A cooling fan 18 is provided at an intermediate portion of the discharge passage 17 extending to the outlet, and a discharge port 17a is formed at the downstream end.

次に、図3〜図11に基づいて蓄電パックP,Pの構造を説明する。上段の蓄電パックPおよび下段の蓄電パックPは実質的に同じ構造であるため、主として上段の蓄電パックPの構造を説明する。   Next, the structure of the electricity storage packs P and P will be described with reference to FIGS. Since the upper storage pack P and the lower storage pack P have substantially the same structure, the structure of the upper storage pack P will be mainly described.

蓄電パックPは、積層方向に積層された25個の蓄電セルC…よりなる前側の第1蓄電モジュールM1と後側の第2蓄電モジュールM2とを備える。図4から明らかなように、第1、第2蓄電モジュールM1,M2を構成する蓄電セルCは、例えば直方体状に形成されたリチウムイオンバッテリからなるもので、その金属ケース21は、相互に対向する一対の主面21a,21aと、主面21a,21aに対して直交して相互に対向する一対の側面21b,21bと、主面21a,21aおよび側面21b,21bに対して直交して相互に対向する頂面21cおよび底面21dとを備えており、頂面21cには正負の電極21e,21eが設けられる。   The power storage pack P includes a front first power storage module M1 and a rear second power storage module M2 made up of 25 power storage cells C ... stacked in the stacking direction. As is apparent from FIG. 4, the storage cell C constituting the first and second storage modules M1, M2 is made of, for example, a lithium ion battery formed in a rectangular parallelepiped shape, and the metal case 21 faces each other. A pair of main surfaces 21a, 21a, a pair of side surfaces 21b, 21b orthogonal to each other and opposed to the main surfaces 21a, 21a, and the main surfaces 21a, 21a and the side surfaces 21b, 21b orthogonal to each other. Are provided with a top surface 21c and a bottom surface 21d. Positive and negative electrodes 21e and 21e are provided on the top surface 21c.

各蓄電セルCのアルミニウム合金製の金属ケース21の一対の主面21a,21aおよび一対の側面21b,21bは合成樹脂製の絶縁シート22で覆われており、金属ケース21を他の部材から絶縁している。但し、各蓄電セルCの頂面21cおよび底面21dは絶縁シート22で覆われておらず、金属の表面が露出している。   The pair of main surfaces 21a, 21a and the pair of side surfaces 21b, 21b of the metal case 21 made of aluminum alloy of each storage cell C are covered with an insulating sheet 22 made of synthetic resin, and the metal case 21 is insulated from other members. doing. However, the top surface 21c and the bottom surface 21d of each storage cell C are not covered with the insulating sheet 22, and the metal surface is exposed.

尚、本明細書において、蓄電セルCの積層方向に直交して頂面21cおよび底面21dを結ぶ方向を上下方向と定義し、積層方向に直交して蓄電セルCの一対の側面21b,21bを結ぶ方向を幅方向と定義する(図2参照)。   In this specification, the direction connecting the top surface 21c and the bottom surface 21d perpendicular to the stacking direction of the storage cell C is defined as the vertical direction, and the pair of side surfaces 21b and 21b of the storage cell C orthogonal to the stacking direction is defined as The connecting direction is defined as the width direction (see FIG. 2).

蓄電パックPの第1、第2蓄電モジュールM1,M2は、それぞれ一対のエンドプレート23,23および一対のクオータプレート24,24を備えるとともに、第1、第2蓄電モジュールM1,M2は共通の1個のセンタープレート25を備える。第1、第2蓄電モジュールM1,M2は、エンドプレート23,23、クオータプレート24,24およびセンタープレート25間に、基本的に6個ずつの蓄電セルC…が配置されるが、図10および図11から明らかなように、例外的に、上段の蓄電パックPでは左側のエンドプレート23と左側のクオータプレート24との間に7個の蓄電セルC…が配置され、下段の蓄電パックPでは右側のエンドプレート23と右側のクオータプレート24との間に7個の蓄電セルC…が配置される。   The first and second power storage modules M1 and M2 of the power storage pack P include a pair of end plates 23 and 23 and a pair of quarter plates 24 and 24, respectively, and the first and second power storage modules M1 and M2 are common 1 The center plate 25 is provided. In the first and second power storage modules M1 and M2, six power storage cells C are basically arranged between the end plates 23 and 23, the quarter plates 24 and 24, and the center plate 25. As is obvious from FIG. 11, in the upper storage pack P, seven storage cells C... Are arranged between the left end plate 23 and the left quarter plate 24, and in the lower storage pack P. Seven power storage cells C are arranged between the right end plate 23 and the right quarter plate 24.

図4から明らかなように、隣接する蓄電セルC…の間には絶縁体である合成樹脂製の蓄電セルホルダ26…が挟持され、これと同じ蓄電セルホルダ26…が、エンドプレート23,23、クオータプレート24,24およびセンタープレート25と蓄電セルC…との間にも挟持される。蓄電セルホルダ26は、波板状のプレート部26aと、プレート部26aの四隅から積層方向に突出する4個の係合部26b…と、プレート部26aの上縁から積層方向一方に突出する板状の頂面当接部26cと、プレート部26aの幅方向一方の側縁から積層方向一方に突出する板状の側面当接部26dとを備える。係合部26b…が相互に係合することで隣接する蓄電セルホルダ26,26どうしが相互に位置決めされるとともに、係合部26b…が蓄電セルCの四隅に係合し、かつ頂面当接部26cおよび側面当接部26dが蓄電セルCの頂面21cおよび一方の側面21bに当接することで、蓄電セルホルダ26に対して蓄電セルCが位置決めされる。そして波板状のプレート部26aと蓄電セルC,Cの主面21a,21aとの間に、幅方向に延びる複数の冷却媒体通路27…(図9参照)が形成される。   As is clear from FIG. 4, a synthetic resin storage cell holder 26, which is an insulator, is sandwiched between adjacent storage cells C, and the same storage cell holders 26 are connected to the end plates 23, 23 and the quarter. It is also sandwiched between the plates 24, 24 and the center plate 25 and the storage cells C. The storage cell holder 26 includes a corrugated plate portion 26a, four engaging portions 26b projecting in the stacking direction from the four corners of the plate portion 26a, and a plate shape projecting in one direction from the upper edge of the plate portion 26a. And a plate-like side surface contact portion 26d that protrudes from one side edge in the width direction of the plate portion 26a to one side in the stacking direction. The adjacent storage cell holders 26, 26 are positioned with each other by engaging the engaging portions 26 b..., And the engaging portions 26 b... Engage with the four corners of the storage cell C and contact the top surface. The storage cell C is positioned with respect to the storage cell holder 26 by the portion 26 c and the side contact portion 26 d contacting the top surface 21 c and the one side surface 21 b of the storage cell C. A plurality of cooling medium passages 27 (see FIG. 9) extending in the width direction are formed between the corrugated plate portion 26a and the main surfaces 21a, 21a of the storage cells C, C.

図9から明らかなように、蓄電セルホルダ26のプレート部26aの上縁および下縁はS字状断面に屈曲しており、その先端のシール突起26e…が蓄電セルCの絶縁シート22に食い込むように圧接されることで、冷却媒体通路27…の上部および下部から冷却空気よりなる冷却媒体が漏れないようにシールされる。   As is clear from FIG. 9, the upper edge and the lower edge of the plate portion 26a of the storage cell holder 26 are bent in an S-shaped cross section, and the seal projections 26e at the tip thereof bite into the insulating sheet 22 of the storage cell C. The cooling medium made of cooling air is sealed so as not to leak from the upper and lower portions of the cooling medium passages 27.

蓄電セルCの金属ケース21の内部には、ロール状に巻いた電極シート28が電解液を含浸した状態で収納される。また電極シート28の外周には、更に図示しない絶縁性の部材が巻かれている。電極シート28の上下方向の中間部28aは金属ケース21の一対の主面21a,21aの内面に沿って上下方向に延びており、上部28bおよび下部28cは中間部28aの上下端からU字状に湾曲している。電極シート28は自己の弾性でロール状に巻かれる前の平坦な形状に戻ろうとするため、上部28bおよび下部28cの積層方向幅W1は、中間部28aの積層方向幅W2よりも僅かに大きくなっており、その結果、上部28bおよび下部28cは金属ケース21の一対の主面21a,21aの内面に押し付けられる。   Inside the metal case 21 of the storage cell C, an electrode sheet 28 wound in a roll shape is housed in an impregnated state with an electrolytic solution. Further, an insulating member (not shown) is wound around the outer periphery of the electrode sheet 28. The intermediate portion 28a in the vertical direction of the electrode sheet 28 extends in the vertical direction along the inner surfaces of the pair of main surfaces 21a, 21a of the metal case 21, and the upper portion 28b and the lower portion 28c are U-shaped from the upper and lower ends of the intermediate portion 28a. Is curved. Since the electrode sheet 28 tends to return to a flat shape before being rolled into a roll shape by its own elasticity, the stacking direction width W1 of the upper part 28b and the lower part 28c is slightly larger than the stacking direction width W2 of the intermediate part 28a. As a result, the upper portion 28 b and the lower portion 28 c are pressed against the inner surfaces of the pair of main surfaces 21 a and 21 a of the metal case 21.

上述のように構成された蓄電セルC…および蓄電セルホルダ26…は、一対のエンドプレート23,23、一対のクオータプレート24,24およびセンタープレート25によって所定個数ずつ挟まれた状態で積層方向に積層され、第1蓄電モジュールM1および第2蓄電モジュールM2を幅方向に並置した蓄電パックPを構成する。即ち、図6〜図8から明らかなように、1枚の平坦な金属板材よりなる下部拘束部材29上に一対のエンドプレート23,23、一対のクオータプレート24,24およびセンタープレート25を載置してボルト30…で締結するとともに、金属棒材よりなる3本の第1、第2、第3上部拘束部材31,32,33を一対のエンドプレート23,23、一対のクオータプレート24,24およびセンタープレート25の上面にボルト34…で締結することで、第1、第2蓄電モジュールM1,M2が一体化されて蓄電パックPが構成される。幅方向中央の第3上部拘束部材33は幅方向両端の第1、第2上部拘束部材31,32よりも幅広になっており、それを一対のエンドプレート23、一対のクオータプレート24およびセンタープレート25に跨がるように締結することで蓄電パックPの剛性が高められる。   The storage cells C... And the storage cell holders 26 configured as described above are stacked in the stacking direction in a state where a predetermined number is sandwiched between the pair of end plates 23, 23, the pair of quarter plates 24, 24 and the center plate 25. Thus, a power storage pack P is formed in which the first power storage module M1 and the second power storage module M2 are juxtaposed in the width direction. That is, as apparent from FIGS. 6 to 8, a pair of end plates 23, 23, a pair of quarter plates 24, 24 and a center plate 25 are placed on a lower restraining member 29 made of one flat metal plate material. The three first, second, and third upper restraining members 31, 32, 33 made of metal rods are fastened with bolts 30, and a pair of end plates 23, 23 and a pair of quarter plates 24, 24. And the 1st, 2nd electrical storage module M1, M2 is integrated by fastening with the volt | bolt 34 ... on the upper surface of the center plate 25, and the electrical storage pack P is comprised. The third upper restraining member 33 at the center in the width direction is wider than the first and second upper restraining members 31 and 32 at both ends in the width direction. The third upper restraining member 33 has a pair of end plates 23, a pair of quarter plates 24 and a center plate. By fastening so that it may straddle 25, the rigidity of the electricity storage pack P is increased.

図11から明らかなように、蓄電パックPの第1、第2蓄電モジュールM1,M2は、それぞれ一対のエンドプレート23,23、一対のクオータプレート24,24およびセンタープレート25によって、右側から左側に第1蓄電セル群G1、第2蓄電セル群G2、第3蓄電セル群G3および第4蓄電セル群G4に分割されており、前述したように、上段の蓄電パックPでは、第1〜第3蓄電セル群G1,G2,G3が各6個の蓄電セルC…を備え、第4蓄電セル群G4だけが7個の蓄電セルC…を備えている。それに対し、下段の蓄電パックPでは、第2〜第4蓄電セル群G2,G3,G4が各6個の蓄電セルC…を備え、第1蓄電セル群G1だけが7個の蓄電セルC…を備えている。   As is apparent from FIG. 11, the first and second power storage modules M1 and M2 of the power storage pack P are moved from the right side to the left side by the pair of end plates 23 and 23, the pair of quarter plates 24 and 24, and the center plate 25, respectively. The first storage cell group G1, the second storage cell group G2, the third storage cell group G3, and the fourth storage cell group G4 are divided. As described above, in the upper storage pack P, the first to third storage cells Each of the storage cell groups G1, G2, G3 includes six storage cells C ..., and only the fourth storage cell group G4 includes seven storage cells C .... On the other hand, in the lower storage pack P, the second to fourth storage cell groups G2, G3, G4 each have six storage cells C ..., and only the first storage cell group G1 has seven storage cells C ... It has.

図4から明らかなように、第1、第2蓄電モジュールM1,M2の第1蓄電セル群G1の下面にはトレー状の下部インシュレータ35…が嵌合するとともに、それらの上面には蓄電セルC…の電極21e…を露出させる開口を有するトレー状の上部インシュレータ36…が嵌合する。下部インシュレータ35…および上部インシュレータ36…は絶縁性を有する薄肉の合成樹脂で構成されており、蓄電セルC…の金属ケース21…が下部拘束部材29および第1〜第3上部拘束部材31,32,33に液絡するのを防止する。下部インシュレータ35は、底壁35aと、その周縁から立ち上がる側壁35b…とを備えており、底壁35aの上面には6個(あるいは7個)の蓄電セルC…の底面21d…を支持する支持凸部35c…が、各蓄電セルCに対して2個ずつ突設される。側壁35bには複数の水抜き孔35d…が形成されており、それらの水抜き孔35d…の高さは支持凸部35c,35c上に支持された蓄電セルCの底面21dよりも僅かに低い位置に設定される(図9参照)。第2蓄電セル群G2、第3蓄電セル群G3および第4蓄電セル群G4についても同様である。   As apparent from FIG. 4, tray-like lower insulators 35 are fitted to the lower surface of the first power storage cell group G1 of the first and second power storage modules M1, M2, and the power storage cell C is mounted on the upper surface thereof. A tray-like upper insulator 36 having an opening exposing the electrodes 21e is fitted. The lower insulators 35 and the upper insulators 36 are made of a thin synthetic resin having insulating properties, and the metal case 21 of the storage cell C is formed by the lower restraint member 29 and the first to third upper restraint members 31 and 32. , 33 is prevented from liquid junction. The lower insulator 35 includes a bottom wall 35a and side walls 35b rising from the periphery thereof, and supports the bottom surfaces 21d of the six (or seven) storage cells C on the upper surface of the bottom wall 35a. Two protrusions 35c are provided so as to protrude from each storage cell C. A plurality of drain holes 35d are formed in the side wall 35b, and the height of the drain holes 35d is slightly lower than the bottom surface 21d of the storage cell C supported on the support convex portions 35c and 35c. The position is set (see FIG. 9). The same applies to the second storage cell group G2, the third storage cell group G3, and the fourth storage cell group G4.

図3および図6から明らかなように、下部拘束部材29の上面には弾性を有する金属板よりなる8個の板ばね37…が配置される。6個の蓄電セルC…あるいは7個の蓄電セルC…について1個ずつ設けられた板ばね37は、直線状の取付部37aと、取付部37aから幅方向に櫛歯状に突出する複数の腕部37b…とを備えており、各2個の腕部37b,37bが下部インシュレータ35を介して蓄電セルCの底面21dに弾発的に当接することで、蓄電セルCを上向きに付勢する。   As is apparent from FIGS. 3 and 6, eight plate springs 37 made of a metal plate having elasticity are arranged on the upper surface of the lower restraining member 29. The leaf spring 37 provided for each of the six storage cells C... Or the seven storage cells C... Is provided with a linear attachment portion 37a and a plurality of comb-like protrusions protruding in the width direction from the attachment portion 37a. .., And each of the two arm portions 37b and 37b elastically abuts against the bottom surface 21d of the storage cell C via the lower insulator 35, thereby biasing the storage cell C upward. To do.

図3および図6から明らかなように、蓄電パックPの前側に位置する第1蓄電モジュールM1の前面に左右方向に延びる吸入ダクト38が配置され、蓄電パックPの後側に位置する第2蓄電モジュールM2の後面に左右方向に延びる排出ダクト39が配置される。吸入ダクト38および排出ダクト39の上縁はそれぞれ第1、第2上部拘束部材31,32にボルト40…で締結され、それらの下縁は下部拘束部材29にボルト41…で締結される。上段の蓄電パックPは、吸入ダクト38の右端に吸入通路13が接続されて排出ダクト39の左端に排出通路14が接続されるが、下段の蓄電パックPは、吸入ダクト38の左端に吸入通路16が接続されて排出ダクト39の右端に排出通路17が接続される。吸入ダクト38および排出ダクト39は、第1、第2蓄電モジュールM1,M2の蓄電セルC…間に挟持された蓄電セルホルダ26…により区画される冷却媒体通路27…(図9および図10参照)に連通する。   As apparent from FIGS. 3 and 6, a suction duct 38 extending in the left-right direction is disposed on the front surface of the first power storage module M <b> 1 located on the front side of the power storage pack P, and the second power storage located on the rear side of the power storage pack P. A discharge duct 39 extending in the left-right direction is disposed on the rear surface of the module M2. The upper edges of the suction duct 38 and the discharge duct 39 are fastened to the first and second upper restraining members 31 and 32 by bolts 40... And the lower edges thereof are fastened to the lower restraining member 29 by bolts 41. The upper storage pack P has the suction passage 13 connected to the right end of the suction duct 38 and the discharge passage 14 connected to the left end of the discharge duct 39. The lower storage pack P has the suction passage connected to the left end of the suction duct 38. 16 is connected and the discharge passage 17 is connected to the right end of the discharge duct 39. The suction duct 38 and the discharge duct 39 are divided by the storage cell holders 26 sandwiched between the storage cells C of the first and second storage modules M1, M2, and so on (see FIGS. 9 and 10). Communicate with.

図5〜図7から明らかなように、蓄電パックPの第1、第2蓄電モジュールM1,M2間に、積層方向に延びる中間ダクト42が形成される。中間ダクト42の積層方向の両端部は、それぞれ一対のエンドプレート23,23の突き合わせ部によりシールされる。即ち、第1、第2蓄電モジュールM1,M2のエンドプレート23,23が対向する部分に突起23a,23aが相互に隙間を有して噛み合うように形成されており、これらの突起23a,23aにより形成されたラビリンスに弾性を有するシール部材43(図5参照)が挟持されてシールされる。   As apparent from FIGS. 5 to 7, an intermediate duct 42 extending in the stacking direction is formed between the first and second power storage modules M <b> 1 and M <b> 2 of the power storage pack P. Both ends of the intermediate duct 42 in the stacking direction are sealed by the butted portions of the pair of end plates 23 and 23, respectively. That is, the projections 23a, 23a are formed so that the end plates 23, 23 of the first and second power storage modules M1, M2 face each other with a gap therebetween, and these projections 23a, 23a An elastic seal member 43 (see FIG. 5) is sandwiched and sealed in the formed labyrinth.

また中間ダクト42の上部は、上部インシュレータ36が第3上部拘束部材33の下面に当接することでシールされるが(図6参照)、このとき板ばね37の弾発力で押し上げられた蓄電セルCの頂面21cが蓄電セルホルダ26の上側の係合部26bを介して上部インシュレータ36を第3上部拘束部材33の下面に押し付けることで、その部分のシール性が高められる。一方、中間ダクト42の下部は、上述した板ばね37の弾発力によるシール機能が望めないため、下部拘束部材29の上面と第1、第2蓄電モジュールM1,M2の下部インシュレータ35,35の対向部との間に弾性を有するシール部材44を配置することでシールされる(図6参照)。   The upper part of the intermediate duct 42 is sealed by the upper insulator 36 coming into contact with the lower surface of the third upper restraining member 33 (see FIG. 6). At this time, the storage cell is pushed up by the elastic force of the leaf spring 37. When the top surface 21c of C presses the upper insulator 36 against the lower surface of the third upper restraining member 33 via the upper engaging portion 26b of the storage cell holder 26, the sealing performance of that portion is enhanced. On the other hand, since the lower part of the intermediate duct 42 cannot be expected to have a sealing function due to the elastic force of the leaf spring 37 described above, the upper surface of the lower restraining member 29 and the lower insulators 35, 35 of the first and second power storage modules M 1, M 2. Sealing is performed by disposing an elastic seal member 44 between the opposing portions (see FIG. 6).

このようにして、中間ダクト42は積層方向両端部、上部および下部がそれぞれエンドプレート23…、第3上部拘束部材33および下部拘束部材29に囲まれて閉塞され、幅方向のみが冷却媒体通路27…を介して吸入ダクト38および排出ダクト39に連通する。また第1、第2蓄電モジュールM1,M2は1枚のセンタープレート25を共有しているため、中間ダクト42はセンタープレート25によって上流側部分および下流側部分に分断されている。   In this way, the intermediate duct 42 is closed by being surrounded by the end plates 23, the upper and lower ends, the third upper restraining member 33 and the lower restraining member 29 at both ends in the stacking direction, and the cooling medium passage 27 only in the width direction. Are communicated with the suction duct 38 and the discharge duct 39 via. Further, since the first and second power storage modules M1 and M2 share one center plate 25, the intermediate duct 42 is divided into an upstream portion and a downstream portion by the center plate 25.

次に、上記構成を備えた本発明の第1の実施の形態の作用を説明する。   Next, the operation of the first embodiment of the present invention having the above configuration will be described.

図11から明らかなように、ハイブリッド車両の走行に伴って蓄電ユニットUの蓄電セルC…は発熱するが、上段の蓄電パックPの冷却ファン15により吸入通路13の吸入口13aから吸入された冷却媒体は吸入ダクト38を右から左に向かって流れ、その間に後方に向きを変えて第1蓄電モジュールM1の冷却媒体通路27…(図9参照)を前から後に流れて蓄電セルC…を冷却した後、中間ダクト42において合流する。中間ダクト42の冷却媒体は第2蓄電モジュールM2の冷却媒体通路27…を前から後に流れて蓄電セルC…を冷却した後に排出ダクト39において合流し、排出ダクト39を右から左に流れて排出通路14の排出口14aから排出される。   As is apparent from FIG. 11, the storage cells C of the storage unit U generate heat as the hybrid vehicle travels, but the cooling sucked from the suction port 13a of the suction passage 13 by the cooling fan 15 of the upper storage pack P. The medium flows through the suction duct 38 from the right to the left, during which time the direction is changed to the rear, and flows through the cooling medium passage 27 (see FIG. 9) of the first power storage module M1 from the front to the rear to cool the storage cells C. After that, they merge at the intermediate duct 42. The cooling medium in the intermediate duct 42 flows from the front to the rear in the cooling medium passages 27 of the second power storage module M2 to cool the storage cells C, and then merges in the discharge duct 39, and flows through the discharge duct 39 from right to left. It is discharged from the discharge port 14a of the passage 14.

一方、下段の蓄電パックPの冷却ファン18により吸入通路16の吸入口16aから吸入された冷却媒体は吸入ダクト38を左から右に向かって流れ、その間に後方に向きを変えて第1蓄電モジュールM1の冷却媒体通路27…を前から後に流れて蓄電セルC…を冷却した後.中間ダクト42において合流する。中間ダクト42の冷却媒体は第2蓄電モジュールM2の冷却媒体通路27…を前から後に流れて蓄電セルC…を冷却した後に排出ダクト39において合流し、排出ダクト39を左から右に流れて排出通路17の排出口17aから排出される。   On the other hand, the cooling medium sucked from the suction port 16a of the suction passage 16 by the cooling fan 18 of the lower power storage pack P flows from the left to the right through the suction duct 38, and changes its direction to the rear in the meantime, so that the first power storage module After cooling the storage cells C through the cooling medium passages 27 of M1 from the front to the rear. They merge at the intermediate duct 42. The cooling medium of the intermediate duct 42 flows through the cooling medium passages 27 of the second power storage module M2 from the front to the rear, cools the storage cells C, and then merges in the discharge duct 39, and flows through the discharge duct 39 from left to right and is discharged. The gas is discharged from the discharge port 17a of the passage 17.

冷却媒体が冷却媒体通路27…を流れるとき、冷却媒体通路27…の上部および下部から冷却媒体が漏れてしまうと蓄電セルC…の冷却効果が低下してしまうが、本実施の形態によれば、絶縁シート22…および蓄電セルホルダ26…によって冷却媒体の漏れを防止することができる。即ち、蓄電セルCおよび蓄電セルホルダ26が重ね合わされて積層方向に締結されると、蓄電セルホルダ26の上下のシール突起26e…が蓄電セルCの金属ケース21の主面21aを覆う絶縁シート22に食い込むことで、その部分がシールされて冷却媒体通路27…からの冷却媒体の漏れが防止される(図9参照)。このように、特別のシール部材を必要とせずに冷却媒体通路27…をシールすることができるので、部品点数の削減に寄与することができる。しかも弾性を有する絶縁シート22に蓄電セルホルダ26のシール突起26e…が食い込むので、蓄電セルCの主面21aの歪みを絶縁シート22の弾性変形で吸収してシール効果を確保することができる。   When the cooling medium flows through the cooling medium passages 27, if the cooling medium leaks from the upper and lower portions of the cooling medium passages 27, the cooling effect of the storage cells C is reduced. The insulating sheet 22 and the storage cell holders 26 can prevent leakage of the cooling medium. That is, when the storage cell C and the storage cell holder 26 are overlapped and fastened in the stacking direction, the upper and lower seal protrusions 26e of the storage cell holder 26 bite into the insulating sheet 22 covering the main surface 21a of the metal case 21 of the storage cell C. As a result, the portion is sealed and leakage of the cooling medium from the cooling medium passages 27 is prevented (see FIG. 9). Thus, the cooling medium passages 27 can be sealed without the need for a special sealing member, which can contribute to a reduction in the number of parts. In addition, since the sealing protrusions 26e of the storage cell holder 26 bite into the elastic insulating sheet 22, the distortion of the main surface 21a of the storage cell C can be absorbed by the elastic deformation of the insulating sheet 22 to ensure a sealing effect.

また蓄電セルホルダ26のシール突起26e…を絶縁シート22に確実に食い込ませるには蓄電セルCの主面21aが充分な剛性を備えることが必要であるが、図9から明らかなように、蓄電セルCのシール突起26e…の近傍の金属ケース21の主面21aの内側に、電極シート28の剛性が高い上部28bおよび下部28cが対峙しており、これらの上部28bおよび下部28で主面21aを内側から支持して変形しないように支えることで、主面21aの剛性を高めることができる。特に、電極シート28の上部28bおよび下部28cの積層方向の幅W1は、中間部28aの積層方向の幅W2よりも僅かに大きくなっているため、上部28bおよび下部28cを金属ケース21の一対の主面21a,21aの内面に押し付けて剛性を更に効果的に高めることができる。   Further, in order for the sealing projections 26e of the energy storage cell holder 26 to securely bite into the insulating sheet 22, the main surface 21a of the energy storage cell C needs to have sufficient rigidity, but as is apparent from FIG. An upper portion 28b and a lower portion 28c having high rigidity of the electrode sheet 28 are opposed to each other on the inner side of the main surface 21a of the metal case 21 in the vicinity of the C seal projections 26e, and the upper surface 28a and the lower portion 28 define the main surface 21a. By supporting from the inside so as not to be deformed, the rigidity of the main surface 21a can be increased. In particular, since the width W1 in the stacking direction of the upper part 28b and the lower part 28c of the electrode sheet 28 is slightly larger than the width W2 in the stacking direction of the intermediate part 28a, the upper part 28b and the lower part 28c are paired with the pair of metal cases 21. The rigidity can be further effectively increased by pressing against the inner surfaces of the main surfaces 21a and 21a.

ところで、図11から明らかなように、上段の蓄電パックPでは、吸入ダクト38を右から左に流れる冷却媒体は慣性で直進しようとし、吸入ダクト38の下流端(左端)に突き当たってから後方に向きを変えて冷却媒体通路27…に流入する傾向があるため、その上流側(第1蓄電セル群G1側)で冷却媒体通路27…を流れる冷却媒体の流量が小さくなり、その下流側(第4蓄電セル群G4側)で冷却媒体通路27…を流れる冷却媒体の流量が大きくなる。このように、冷却媒体の流量が大きくなる下流側の第4蓄電セル群G4の蓄電セルC…の数(7個)を、他の第1〜第3蓄電セル群G1〜G3の蓄電セルC…の数(6個)よりも多くすることで、各蓄電セルC…をできるだけ均一に冷却して温度差を減少させ、蓄電セルC…の寿命を延長することができる。   As is apparent from FIG. 11, in the upper storage pack P, the cooling medium flowing from the right to the left in the suction duct 38 tries to go straight by inertia, and after hitting the downstream end (left end) of the suction duct 38, Since there is a tendency to change the direction and flow into the cooling medium passages 27, the flow rate of the cooling medium flowing through the cooling medium passages 27 on the upstream side (first storage cell group G1 side) becomes small and the downstream side (the first storage cell group G1 side). The flow rate of the cooling medium flowing through the cooling medium passages 27 in the (4 storage cell group G4 side) increases. Thus, the number (seven) of the storage cells C... In the fourth storage cell group G4 on the downstream side where the flow rate of the cooling medium increases is set to the storage cells C of the other first to third storage cell groups G1 to G3. .. (6), the power storage cells C can be cooled as uniformly as possible to reduce the temperature difference, and the life of the storage cells C can be extended.

また下段の蓄電パックPでは、冷却媒体は吸入ダクト38を左から右に流れるため、下流側の第1蓄電セル群G1を流れる冷却媒体の流量が最大になるが、その第1蓄電セル群G1の蓄電セルC…の数(7個)を他の第2〜第4蓄電セル群G2〜G4側の蓄電セルC…の数(6個)よりも多くすることで、各蓄電セルC…をできるだけ均一に冷却して温度差を減少させ、蓄電セルC…の寿命を延長することができる。   In the lower storage pack P, since the cooling medium flows from the left to the right through the suction duct 38, the flow rate of the cooling medium flowing through the first storage cell group G1 on the downstream side is maximized, but the first storage cell group G1. By increasing the number (seven) of the storage cells C ... from the number (six) of the other storage cells C ... on the second to fourth storage cell groups G2-G4, each storage cell C ... The temperature difference can be reduced by cooling as uniformly as possible, and the life of the storage cells C can be extended.

また上段の蓄電パックPでは、吸入ダクト38の上流側の第1蓄電モジュールM1の第1蓄電セル群G1を流れる冷却媒体は流量が小さいため、第1蓄電モジュールM1の第1蓄電セル群G1を通過した冷却媒体は比較的に高温になり、その比較的に高温の冷却媒体がそのまま第2蓄電モジュールM2の第1蓄電セル群G1に流入すると、その第1蓄電セル群G1の蓄電セルC…の冷却効率が低下してしまう。一方、吸入ダクト38の下流側の第1蓄電モジュールM1の第4蓄電セル群G4を流れる冷却媒体は流量が大きいため、第1蓄電モジュールM1の第4蓄電セル群G4を通過した冷却媒体は比較的に低温になり、その比較的に低温の冷却媒体がそのまま第2蓄電モジュールM2の第4蓄電セル群G4に流入すると、その第4蓄電セル群G4の蓄電セルC…の冷却効率が高くなり、第2蓄電モジュールM2の第1蓄電セル群G1の蓄電セルC…と第4蓄電セル群G4の蓄電セルC…との間の温度差が著しくなる問題がある。   In the upper storage pack P, since the cooling medium flowing through the first storage cell group G1 of the first storage module M1 upstream of the suction duct 38 has a small flow rate, the first storage cell group G1 of the first storage module M1 The passing cooling medium becomes a relatively high temperature, and when the relatively high temperature cooling medium flows into the first storage cell group G1 of the second storage module M2 as it is, the storage cells C of the first storage cell group G1. The cooling efficiency will be reduced. On the other hand, since the cooling medium flowing through the fourth power storage cell group G4 of the first power storage module M1 on the downstream side of the suction duct 38 has a large flow rate, the cooling medium that has passed through the fourth power storage cell group G4 of the first power storage module M1 is compared. When the temperature becomes low and the relatively low-temperature cooling medium flows into the fourth storage cell group G4 of the second storage module M2 as it is, the cooling efficiency of the storage cells C of the fourth storage cell group G4 increases. There is a problem that the temperature difference between the storage cells C ... of the first storage cell group G1 of the second storage module M2 and the storage cells C ... of the fourth storage cell group G4 becomes significant.

しかしながら、本実施の形態によれば、第1蓄電モジュールM1および第2蓄電モジュールM2間に中間ダクト42が設けられているため、第1蓄電モジュールM1を通過した温度差を有する冷却媒体は中間ダクト42において混合して温度が均一になり、第2蓄電モジュールM2の第1〜第4蓄電セル群G1〜G4に均一な温度の冷却媒体を供給して蓄電セルC…間の温度差を最小限に抑えることができる。尚、本実施の形態では、中間ダクト42がセンタープレート25で分断されているため、中間ダクト42が冷却媒体の温度を均一化する効果は若干低下するが、それでもなお充分な効果を達成することができる。よって、センタープレート25に開口を形成する等の手段で中間ダクト42を分断しないように構成すれば、冷却媒体の温度を更に均一化することができる。   However, according to the present embodiment, since the intermediate duct 42 is provided between the first power storage module M1 and the second power storage module M2, the cooling medium having a temperature difference that has passed through the first power storage module M1 is the intermediate duct. 42, the temperature becomes uniform and the cooling medium having a uniform temperature is supplied to the first to fourth power storage cell groups G1 to G4 of the second power storage module M2 to minimize the temperature difference between the power storage cells C. Can be suppressed. In this embodiment, since the intermediate duct 42 is divided by the center plate 25, the effect of the intermediate duct 42 equalizing the temperature of the cooling medium is slightly reduced, but still a sufficient effect can be achieved. Can do. Therefore, if the intermediate duct 42 is not divided by a means such as forming an opening in the center plate 25, the temperature of the cooling medium can be made more uniform.

また中間ダクト42を、特別のダクト部材を設けることなく、エンドプレート23…と、下部拘束部材29と、第3上部拘束部材33と、蓄電セルC…の側面21b…とで取り囲んで構成したので部品点数の削減に寄与することができる。しかも中間ダクト42の積層方向両端部を、一対のエンドプレート23,23の突起23a,23aよりなるラビリンスと、そのラビリンスに嵌合するシール部材43(図5参照)とでシールするので、簡単な構造で中間ダクト42の積層方向両端部からの冷却媒体の漏れを確実に防止することができる。   Further, since the intermediate duct 42 is configured to be surrounded by the end plate 23, the lower restraining member 29, the third upper restraining member 33, and the side surface 21b of the storage cell C ... without providing any special duct member. This can contribute to a reduction in the number of parts. In addition, since both ends of the intermediate duct 42 in the stacking direction are sealed with a labyrinth composed of the projections 23a and 23a of the pair of end plates 23 and 23, and a seal member 43 (see FIG. 5) fitted to the labyrinth, it is simple. With the structure, leakage of the cooling medium from both ends of the intermediate duct 42 in the stacking direction can be reliably prevented.

また中間ダクト42の上部を、板ばね37の弾発力で押し上げられた蓄電セルCの頂面21cが蓄電セルホルダ26の上側の係合部26bを介して上部インシュレータ36を第3上部拘束部材33の下面に押し付けることでシールし(図6参照)、かつ中間ダクト42の下部を、下部拘束部材29の上面と第1、第2蓄電モジュールM1,M2の下部インシュレータ35,35の対向部との間に弾性を有するシール部材44を配置することでシールするので(図6参照)、簡単な構造で中間ダクト42の上部および下部をシールして冷却媒体の漏れを防止することができる。   In addition, the top surface 21c of the storage cell C pushed up by the elastic force of the leaf spring 37 from the upper portion of the intermediate duct 42 causes the upper insulator 36 to be connected to the third upper restraining member 33 via the upper engaging portion 26b of the storage cell holder 26. The lower portion of the intermediate duct 42 is sealed between the upper surface of the lower restraining member 29 and the opposing portions of the lower insulators 35, 35 of the first and second power storage modules M1, M2. Since sealing is performed by disposing an elastic seal member 44 between them (see FIG. 6), the upper and lower portions of the intermediate duct 42 can be sealed with a simple structure to prevent leakage of the cooling medium.

また図11から明らかなように、上段の蓄電パックPは吸入ダクト38の右端側から冷却媒体を吸入して排出ダクト39の左端側から冷却媒体を排出するため、冷却媒体の流量が少ない右半部(第1、第2蓄電セル群G1,G2側)が高温になり、冷却媒体の流量が多い左半部(第3、第4蓄電セル群G3,G4側)が低温になる。一方、下段の蓄電パックPは吸入ダクト38の左端側から冷却媒体を吸入して排出ダクト39の右端側から冷却媒体を排出するため、冷却媒体の流量が少ない左半部(第3、第4蓄電セル群G3,G4側)が高温になり、冷却媒体の流量が多い右半部(第1、第2蓄電セル群G1,G2側)が低温になる。よって、下段の蓄電パックPの低温部および高温部に、上段の蓄電パックPの高温部および低温部がそれぞれ重なり合うことで、下段および上段の蓄電パックP,P間で熱交換を行って各蓄電セルC…の温度を均一化することができる。   As is clear from FIG. 11, the upper storage pack P sucks the cooling medium from the right end side of the suction duct 38 and discharges the cooling medium from the left end side of the discharge duct 39. Part (first and second storage cell groups G1 and G2 side) becomes high temperature, and the left half (third and fourth storage cell group G3 and G4 side) where the flow rate of the cooling medium is large becomes low temperature. On the other hand, since the lower storage pack P sucks the cooling medium from the left end side of the suction duct 38 and discharges the cooling medium from the right end side of the discharge duct 39, the left half (third, fourth) with a small flow rate of the cooling medium. The storage cell group G3, G4 side) becomes hot, and the right half (the first and second storage cell groups G1, G2 side) where the flow rate of the cooling medium is large becomes low. Therefore, the low-temperature part and the high-temperature part of the lower storage pack P overlap the high-temperature part and the low-temperature part of the upper storage pack P, respectively. The temperature of the cells C can be made uniform.

ところで、蓄電セルCの金属ケース21は負の電位を有するため、それが下部拘束部材29や第1、第2、第3上部拘束部材31,32,33に接触すると漏電が発生するが、蓄電セルCの金属ケース21と下部拘束部材29および第1、第2、第3上部拘束部材31,32,33との間に絶縁性の下部インシュレータ35および上部インシュレータ36を配置することで漏電の発生が防止される。   By the way, since the metal case 21 of the electricity storage cell C has a negative potential, if it contacts the lower restraint member 29 or the first, second, and third upper restraint members 31, 32, 33, a leakage occurs. Electric leakage is generated by disposing an insulating lower insulator 35 and upper insulator 36 between the metal case 21 of the cell C, the lower restraining member 29, and the first, second and third upper restraining members 31, 32, 33. Is prevented.

また蓄電セルCの温度が低下すると金属ケース21の表面に空気中の水分が凝縮して結露水が発生する。蓄電セルCの主面21a,21aおよび側面21b,21bは絶縁シート22で覆われているが結露水の発生を完全に防止することはできず、この結露水が下方に流れて金属製の下部拘束部材29に接触すると液絡による漏電が発生する可能性がある。しかしながら、本実施の形態によれば、第1〜第4蓄電セル群G1〜G4の6個乃至7個の蓄電セルC…の下部がトレー状の下部インシュレータ35によって覆われているため、結露水を下部インシュレータ35内に保持して下部拘束部材29に液絡するのを防止することができる。   Further, when the temperature of the storage cell C decreases, moisture in the air condenses on the surface of the metal case 21 and condensed water is generated. Although the main surfaces 21a, 21a and the side surfaces 21b, 21b of the storage cell C are covered with the insulating sheet 22, the generation of condensed water cannot be completely prevented, and the condensed water flows downward to form a metal lower portion. When it comes into contact with the restraining member 29, there is a possibility that electric leakage due to a liquid junction occurs. However, according to the present embodiment, the lower part of the six to seven storage cells C... Of the first to fourth storage cell groups G1 to G4 is covered with the tray-like lower insulator 35. Can be held in the lower insulator 35 and liquid junction with the lower restraining member 29 can be prevented.

また電気的に直列に接続された複数の蓄電セルC…のアルムニウム合金製の金属ケース21…が下部インシュレータ35内に溜まった結露水に浸かると、各蓄電セルC…間に存在する電位差によって下記反応が起こって金属ケース21の表面が電食され、金属ケース21から電解液が漏れ出す虞がある。   Further, when the metal case 21 made of an aluminum alloy of the plurality of storage cells C ... electrically connected in series is immersed in the condensed water accumulated in the lower insulator 35, the potential difference existing between the storage cells C ... There is a risk that the reaction will occur and the surface of the metal case 21 will be eroded and the electrolyte will leak from the metal case 21.

Al→Al3++3e-
2H2 O+2e- →H2 +2OH-
Al3++3OH- →Al(OH)3
Al → Al 3+ + 3e
2H 2 O + 2e → H 2 + 2OH
Al 3+ + 3OH → Al (OH) 3

しかしながら、本実施の形態によれば、下部インシュレータ35に溜まった結露水を側壁35bに形成した水抜き孔35d…(図4および図9参照)から排出することで、蓄電セルC…の下部が結露水に浸からないようにして電食に対する耐久性を高めることができる。   However, according to the present embodiment, the condensed water accumulated in the lower insulator 35 is discharged from the drain holes 35d (see FIGS. 4 and 9) formed in the side wall 35b, so that the lower part of the storage cells C is formed. Durability against electrolytic corrosion can be increased by preventing immersion in condensed water.

尚、水抜き孔35d…を下部インシュレータ35の側壁35bに設けて底壁35aに設けないのは、底壁35aの下面には下部拘束部材29が位置しており、水抜き孔35d…から出た結露水により液絡する虞があるためである。   The reason why the drainage holes 35d are provided in the side wall 35b of the lower insulator 35 but not in the bottom wall 35a is that the lower restraining member 29 is located on the lower surface of the bottom wall 35a and the drainage holes 35d. This is because there is a risk of liquid junction due to the condensed water.

上述のようにしても、蓄電セルC…の下部が結露水に浸かるのを完全に防止するのは困難であるため電食の発生が懸念されるが、本実施の形態では以下のようにして電食の被害を最小限に抑えることができる。本実施の形態の各蓄電パックPの50個の蓄電セルC…は電気的に直列に接続されているため、その両端の蓄電セルC,Cの金属ケース21,21間の電位差は大きなものとなり、仮に結露水によって両端の蓄電セルC,C間の液絡が発生すると電食の被害は大きなものとなる。しかしながら、本実施の形態によれば、各蓄電パックPの50個の蓄電セルC…は8個の第1〜第4蓄電セル群G1〜G4に分割され、各々の群が独立した下部インシュレータ35…を備えるため、両端の蓄電セルC,Cの金属ケース21,21間の電位差は蓄電セルC…の6個分あるいは7個分に抑えられる。これにより、蓄電セルC…の金属ケース21…に発生する電食の被害を最小限に抑えて耐久性を高めることができる。   Even as described above, since it is difficult to completely prevent the lower part of the storage cells C ... from being immersed in the dew condensation water, there is a concern about the occurrence of electrolytic corrosion. However, in the present embodiment, as follows. Damage to electric corrosion can be minimized. Since 50 storage cells C of each storage pack P of the present embodiment are electrically connected in series, the potential difference between the metal cases 21 and 21 of the storage cells C and C at both ends thereof is large. If the liquid junction between the power storage cells C and C at both ends is generated by the dew condensation water, the damage of the electric corrosion becomes large. However, according to the present embodiment, 50 power storage cells C of each power storage pack P are divided into eight first to fourth power storage cell groups G1 to G4, and each group is an independent lower insulator 35. Is provided, the potential difference between the metal cases 21 and 21 of the storage cells C and C at both ends is suppressed to six or seven storage cells C. As a result, it is possible to increase the durability by minimizing the damage of the electric corrosion generated in the metal cases 21 of the storage cells C.

図12のグラフは、50°Cの雰囲気下で3.5重量%のNaCl水溶液にアルミニウム製およびステンレス製の金属ケース21を有する蓄電セルCを直列に接続した蓄電モジュール7日間浸した場合において、前記蓄電モジュールの総電圧と金属ケース21と電食による孔食の深さとの関係を示すものであり、何れの場合も総電圧の増加に応じて孔食の深さが増加し、かつアルミニウム製の方がステンレス製よりも孔食の深さが大きいことが分かる。   The graph of FIG. 12 shows a case where the storage cell C having the metal case 21 made of aluminum and stainless steel is connected in series in a 3.5 wt% NaCl aqueous solution in an atmosphere of 50 ° C. for 7 days, The relationship between the total voltage of the power storage module, the metal case 21 and the depth of pitting corrosion due to electrolytic corrosion is shown. In any case, the depth of pitting corrosion increases as the total voltage increases, and the product is made of aluminum. It can be seen that the depth of pitting corrosion is greater than that of stainless steel.

よって、蓄電セル群の総電圧と、蓄電セルCの金属ケーシング21の厚さ(特に、金属ケース21のうち、結露水が接触し易い底面21d、主面21aおよび側面21bの厚さ)と、蓄電セルCの金属ケーシング21の材質と、予め設定した蓄電セルCの想定環境温度と、予め設定した蓄電セルCの耐用期間とに基づいて、蓄電セル群を構成する蓄電セルC…の最大個数を設定することができる。   Therefore, the total voltage of the storage cell group and the thickness of the metal casing 21 of the storage cell C (particularly, the thickness of the bottom surface 21d, the main surface 21a, and the side surface 21b in the metal case 21 where the condensed water easily comes into contact), Based on the material of the metal casing 21 of the storage cell C, the preset assumed environmental temperature of the storage cell C, and the preset lifetime of the storage cell C, the maximum number of storage cells C constituting the storage cell group Can be set.

Figure 2014035971
Figure 2014035971

表1に示すように、厚さ1mmのアルミニウム合金製の金属ケース21を採用すると、総電圧23.35Vの場合(蓄電セルC…を7個直列に接続した場合)には、総電圧167.5Vの場合(蓄電セルC…を50個直列に接続した場合)に比べて、雰囲気温度(環境温度)が25°C、50°Cの何れの場合でも、孔食が金属ケース21を貫通するまでの期間が7倍以上に延長されることが分かる。例えば、金属ケース21がその底面21d、主面21aおよび側面21bの厚さが1mmのアルミニウム合金製であり、環境温度が50°Cで、715日の耐用期間とする場合には、蓄電セルCの個数を最大7個以下とすることが好ましいことが分かる。   As shown in Table 1, when a metal case 21 made of aluminum alloy having a thickness of 1 mm is adopted, when the total voltage is 23.35 V (when seven storage cells C... Are connected in series), the total voltage 167. Compared to the case of 5V (when 50 storage cells C ... are connected in series), the pitting corrosion penetrates the metal case 21 regardless of whether the ambient temperature (environment temperature) is 25 ° C or 50 ° C. It can be seen that the period until is extended more than 7 times. For example, when the metal case 21 is made of an aluminum alloy having a bottom surface 21d, a main surface 21a, and a side surface 21b having a thickness of 1 mm, the environmental temperature is 50 ° C., and the lifetime is 715 days, the storage cell C It can be seen that it is preferable to make the number of the maximum 7 or less.

第2の実施の形態Second embodiment

以下、図13〜図15に基づいて本発明の第2の実施の形態を説明する。   Hereinafter, a second embodiment of the present invention will be described with reference to FIGS.

第1蓄電モジュールM1の冷却媒体通路27…から中間ダクト42に流入した冷却媒体が、直ちに第2蓄電モジュールM2の冷却媒体通路27…に流出してしまうと、中間ダクト42における冷却媒体の混合を充分に行えなくなり、第2蓄電モジュールM2の蓄電セルC…を均一に冷却できなくなる。   If the cooling medium flowing into the intermediate duct 42 from the cooling medium passage 27 of the first power storage module M1 immediately flows out into the cooling medium passage 27 of the second power storage module M2, mixing of the cooling medium in the intermediate duct 42 is performed. It becomes impossible to perform sufficiently, and the storage cells C of the second storage module M2 cannot be cooled uniformly.

本実施の形態によれば、第2蓄電モジュールM2の蓄電セルホルダ26が中間ダクト42に臨む部分の一部に仕切り板26f…設けられており、中間ダクト42に流入した冷却媒体を仕切り板26f…で阻止して第2蓄電モジュールM2の冷却媒体通路27…に流出し難くすることで、冷却媒体が中間ダクト42に滞留する時間が長くして混合を促進し、第2蓄電モジュールM2の冷却媒体通路27…を流れる冷却媒体の温度を一層均一化することが可能となる。本実施の形態の仕切り板26f…の数は各蓄電セルホルダ26について3個であり、各蓄電セルホルダ26の6個の冷却媒体通路27…のうちの3個を閉塞しているが、仕切り板26f…の数はそれに限定されるものではない。   According to the present embodiment, the partition plate 26f is provided at a part of the portion where the storage cell holder 26 of the second storage module M2 faces the intermediate duct 42, and the cooling medium flowing into the intermediate duct 42 is separated from the partition plate 26f. To prevent the cooling medium from flowing out into the cooling medium passage 27 of the second power storage module M2, thereby increasing the time during which the cooling medium stays in the intermediate duct 42 and promoting the mixing. It becomes possible to make the temperature of the cooling medium flowing through the passages 27 more uniform. The number of the partition plates 26f in the present embodiment is three for each storage cell holder 26, and closes three of the six cooling medium passages 27 of each storage cell holder 26, but the partition plate 26f. The number of… is not limited to that.

第3の実施の形態Third embodiment

以下、図16に基づいて本発明の第3の実施の形態を説明する。   Hereinafter, a third embodiment of the present invention will be described with reference to FIG.

第2の実施の形態では、蓄電セルホルダ26に仕切り板26f…を設けることで、第1蓄電モジュールM1の冷却媒体通路27…が中間ダクト42に開口する開口面積に対して、中間ダクト42が第2蓄電モジュールM2の冷却媒体通路27…に開口する開口面積を小さくしているが、第3の実施の形態では、第1蓄電モジュールM1の蓄電セルC…と第2蓄電モジュールM2の蓄電セルC…とを積層方向にずらし、第1蓄電モジュールM1の冷却媒体通路27…と第2蓄電モジュールM2の冷却媒体通路27…とを中間ダクト42においてクランク状に屈曲させたものである。   In the second embodiment, the partition plate 26f... Is provided in the energy storage cell holder 26, so that the intermediate duct 42 is the first with respect to the opening area in which the cooling medium passage 27 of the first energy storage module M1 opens in the intermediate duct 42. Although the opening area opened to the cooling medium passages 27 of the two power storage modules M2 is reduced, in the third embodiment, the power storage cells C of the first power storage modules M1 and the power storage cells C of the second power storage modules M2 are used. Are shifted in the stacking direction, and the cooling medium passage 27 of the first power storage module M1 and the cooling medium passage 27 of the second power storage module M2 are bent in a crank shape in the intermediate duct.

この第3の実施の形態によっても、冷却媒体が中間ダクト42に滞留する時間を長くして混合を促進することで、第2蓄電モジュールM2の冷却媒体通路27…を流れる冷却媒体の温度を一層均一化することが可能となる。   Also in the third embodiment, the temperature of the cooling medium flowing through the cooling medium passages 27 of the second power storage module M2 is further increased by increasing the time during which the cooling medium stays in the intermediate duct 42 to promote mixing. It becomes possible to make uniform.

以上、本発明の実施の形態を説明したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。   The embodiments of the present invention have been described above, but various design changes can be made without departing from the scope of the present invention.

例えば、実施の形態の蓄電セルCはリチウムイオンバッテリに限定されず、他種のバッテリやキャパシタであっても良い。   For example, the storage cell C of the embodiment is not limited to a lithium ion battery, and may be another type of battery or capacitor.

また実施の形態では中間ダクト42をエンドプレート23…、下部拘束部材29、第3上部拘束部材33および蓄電セルC…の側面21b…で囲んで構成しているが、吸入ダクト38や排出ダクト39のような特別のダクトを設けても良い。   In the embodiment, the intermediate duct 42 is surrounded by the end plate 23, the lower restraining member 29, the third upper restraining member 33, and the side surface 21 b of the storage cell C. A special duct such as the above may be provided.

また実施の形態では、上段の蓄電パックPでは左側のエンドプレート23と左側のクオータプレート24との間に7個の蓄電セルC…が配置され、下段の蓄電パックPでは右側のエンドプレート23と右側のクオータプレート24との間に7個の蓄電セルC…が配置されるが、上段および下段とも同様に、左側のエンドプレート23と左側のクオータプレート24との間に7個の蓄電セルC…が配置されても良いし、右側のエンドプレート23と右側のクオータプレート24との間に7個の蓄電セルC…が配置されても良い。   In the embodiment, in the upper storage pack P, seven storage cells C are arranged between the left end plate 23 and the left quarter plate 24, and in the lower storage pack P, the right end plate 23 and Seven storage cells C... Are arranged between the right quarter plate 24, and similarly, the seven storage cells C are disposed between the left end plate 23 and the left quarter plate 24 in the upper and lower stages. .. May be arranged, or seven power storage cells C may be arranged between the right end plate 23 and the right quarter plate 24.

23 エンドプレート
25 センタープレート(分割部)
27 冷却媒体通路
29 下部拘束部材
33 第3上部拘束部材(拘束部材)
37 板ばね(付勢手段)
38 吸入ダクト
39 排出ダクト
42 中間ダクト
44 シール部材
C 蓄電セル
P 蓄電パック
M1 第1蓄電モジュール
M2 第2蓄電モジュール
23 End plate 25 Center plate (divided part)
27 Cooling medium passage 29 Lower restraint member 33 Third upper restraint member (restraint member)
37 Leaf spring (biasing means)
38 Intake duct 39 Exhaust duct 42 Intermediate duct 44 Seal member C Power storage cell P Power storage pack M1 First power storage module M2 Second power storage module

Claims (8)

複数の蓄電セル(C)を積層方向に積層した第1蓄電モジュール(M1)および第2蓄電モジュール(M2)を幅方向に並置して蓄電パック(P)を構成し、前記第1蓄電モジュール(M1)の幅方向一方の外面に沿って冷却媒体の吸入ダクト(38)を設けるとともに、前記第2蓄電モジュール(M2)の幅方向他方の外面に沿って冷却媒体の排出ダクト(39)を設け、前記吸入ダクト(38)から供給した冷却媒体を前記第1、第2蓄電モジュール(M1,M2)の前記蓄電セル(C)間に形成した冷却媒体通路(27)を通過させて前記排出ダクト(39)に排出する蓄電装置において、
前記第1、第2蓄電モジュール(M1,M2)間に、前記第1蓄電モジュール(M1)の冷却媒体通路(27)および前記第2蓄電モジュール(M2)の冷却媒体通路(27)に連通して積層方向に延びる中間ダクト(42)を形成し、前記中間ダクト(42)の積層方向両端部を閉塞したことを特徴とする蓄電装置。
A first storage module (M) having a plurality of storage cells (C) stacked in the stacking direction is juxtaposed in the width direction to form a storage pack (P), and the first storage module ( A cooling medium suction duct (38) is provided along one outer surface in the width direction of M1), and a cooling medium discharge duct (39) is provided along the other outer surface in the width direction of the second power storage module (M2). The cooling medium supplied from the suction duct (38) is allowed to pass through the cooling medium passage (27) formed between the storage cells (C) of the first and second storage modules (M1, M2) and the discharge duct. In the power storage device discharged to (39),
The first and second power storage modules (M1, M2) communicate with the cooling medium passage (27) of the first power storage module (M1) and the cooling medium passage (27) of the second power storage module (M2). And forming an intermediate duct (42) extending in the stacking direction and closing both ends of the intermediate duct (42) in the stacking direction.
前記中間ダクト(42)の積層方向両端部は、前記第1、第2蓄電モジュール(M1,M2)の積層方向両端部にそれぞれ配置したエンドプレート(23)により閉塞され、前記中間ダクト(42)の上下部は、前記エンドプレート(23)間を接続する上部拘束部材(33)および下部拘束部材(29)により閉塞されることを特徴とする、請求項1に記載の蓄電装置。   Both ends of the intermediate duct (42) in the stacking direction are closed by end plates (23) respectively disposed at both ends of the first and second power storage modules (M1, M2) in the stacking direction, and the intermediate duct (42) 2. The power storage device according to claim 1, wherein upper and lower portions are closed by an upper restraining member (33) and a lower restraining member (29) that connect the end plates (23). 前記第1、第2蓄電モジュール(M1,M2)を前記上部拘束部材(33)に向けて付勢する付勢手段(37)を備えることを特徴とする、請求項2に記載の蓄電装置。   The power storage device according to claim 2, further comprising biasing means (37) for biasing the first and second power storage modules (M1, M2) toward the upper restraining member (33). 前記第1、第2蓄電モジュール(M1,M2)と前記下部拘束部材(29)との間に配置された弾性を有するシール部材(44)を備えることを特徴とする、請求項3に記載の蓄電装置。   The elastic sealing member (44) disposed between the first and second power storage modules (M1, M2) and the lower restraining member (29), according to claim 3, Power storage device. 前記第2蓄電モジュール(M2)の冷却媒体通路(27)の上流端が前記中間ダクト(42)に開口する面積は、前記第1蓄電モジュール(M1)の冷却媒体通路(27)の下流端が前記中間ダクト(42)に開口する面積よりも小さいことを特徴とする、請求項1〜請求項4の何れか1項に記載の蓄電装置。   The area where the upstream end of the cooling medium passage (27) of the second power storage module (M2) opens into the intermediate duct (42) is such that the downstream end of the cooling medium passage (27) of the first power storage module (M1) is open. 5. The power storage device according to claim 1, wherein the power storage device is smaller than an area opened in the intermediate duct (42). 前記第1蓄電モジュール(M1)の冷却媒体通路(27)と前記第2蓄電モジュール(M2)の冷却媒体通路(27)とを積層方向にずらしたことを特徴とする、請求項1〜請求項4の何れか1項に記載の蓄電装置。   The cooling medium passage (27) of the first power storage module (M1) and the cooling medium passage (27) of the second power storage module (M2) are shifted in the stacking direction. 5. The power storage device according to claim 1. 一対の前記蓄電パック(P)を上下2段に重ね合わせ、下段の前記蓄電パック(P)は前記吸入ダクト(38)の積層方向一端側から冷却媒体を吸入して前記排出ダクト(39)の積層方向他端側から冷却媒体を排出し、上段の前記蓄電パック(P)は前記吸入ダクト(38)の積層方向他端側から冷却媒体を吸入して前記排出ダクト(39)の積層方向一端側から冷却媒体を排出することを特徴とする、請求項1〜請求項6の何れか1項に記載の蓄電装置。   A pair of the power storage packs (P) are stacked in two upper and lower stages, and the lower power storage pack (P) sucks the cooling medium from one end side in the stacking direction of the suction duct (38) to form the discharge duct (39). The cooling medium is discharged from the other end side in the stacking direction, and the upper storage pack (P) sucks the cooling medium from the other end side in the stacking direction of the suction duct (38) and ends one end in the stacking direction of the discharge duct (39). The power storage device according to claim 1, wherein the cooling medium is discharged from the side. 前記中間ダクト(42)は分割部(25)において積層方向に2分割され、前記吸入ダクト(38)の冷却媒体の流れ方向に対して、前記分割部(25)の上流側の前記蓄電セル(C)の積層数よりも、前記分割部(25)の下流側の前記蓄電セル(C)の積層数を大きく設定したことを特徴とする、請求項1〜請求項7の何れか1項に記載の蓄電装置。   The intermediate duct (42) is divided into two in the stacking direction in the split section (25), and the storage cell (upstream side of the split section (25) with respect to the flow direction of the cooling medium in the suction duct (38) ( The number of stacks of the storage cells (C) on the downstream side of the dividing unit (25) is set larger than the number of stacks of C), according to any one of claims 1 to 7, The power storage device described.
JP2012177928A 2012-08-10 2012-08-10 Power storage device Pending JP2014035971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012177928A JP2014035971A (en) 2012-08-10 2012-08-10 Power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012177928A JP2014035971A (en) 2012-08-10 2012-08-10 Power storage device

Publications (1)

Publication Number Publication Date
JP2014035971A true JP2014035971A (en) 2014-02-24

Family

ID=50284821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012177928A Pending JP2014035971A (en) 2012-08-10 2012-08-10 Power storage device

Country Status (1)

Country Link
JP (1) JP2014035971A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015162938A1 (en) * 2014-04-25 2015-10-29 三洋電機株式会社 Assembled battery and vehicle provided with same
JP2017021898A (en) * 2015-07-07 2017-01-26 株式会社Gsユアサ Power storage device and spacer
WO2017169729A1 (en) * 2016-03-30 2017-10-05 三洋電機株式会社 Battery pack
US10027003B2 (en) 2014-07-30 2018-07-17 Gs Yuasa International Ltd. Energy storage apparatus
JPWO2017126286A1 (en) * 2016-01-21 2018-08-16 日立オートモティブシステムズ株式会社 Power storage device
JP2021044228A (en) * 2019-09-13 2021-03-18 本田技研工業株式会社 Battery pack

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015162938A1 (en) * 2014-04-25 2015-10-29 三洋電機株式会社 Assembled battery and vehicle provided with same
JPWO2015162938A1 (en) * 2014-04-25 2017-04-13 三洋電機株式会社 Battery pack and vehicle equipped with the same
US10027003B2 (en) 2014-07-30 2018-07-17 Gs Yuasa International Ltd. Energy storage apparatus
JP2017021898A (en) * 2015-07-07 2017-01-26 株式会社Gsユアサ Power storage device and spacer
US9947910B2 (en) 2015-07-07 2018-04-17 Gs Yuasa International Ltd. Energy storage apparatus and spacer
JPWO2017126286A1 (en) * 2016-01-21 2018-08-16 日立オートモティブシステムズ株式会社 Power storage device
WO2017169729A1 (en) * 2016-03-30 2017-10-05 三洋電機株式会社 Battery pack
JP2021044228A (en) * 2019-09-13 2021-03-18 本田技研工業株式会社 Battery pack

Similar Documents

Publication Publication Date Title
JP5916124B2 (en) Power storage device
KR101205181B1 (en) Cooling Member of Novel Structure and Battery Module Employed with the Same
JP5108618B2 (en) Battery holder
JP2014035970A (en) Power storage device
KR101259757B1 (en) Battery Module with Excellent Cooling Efficiency and Compact Structure and Middle or Large-sized Battery Pack
JP2014035971A (en) Power storage device
KR101218751B1 (en) Middle or Large-sized Battery Pack of Improved Cooling Efficiency
KR101205180B1 (en) Cooling Member of Compact Structure and Excellent Stability and Battery Module Employed with the Same
US9786880B2 (en) Cell module assembly
JP2008159439A (en) Accumulation of electricity module
CN110959224A (en) Battery module, battery pack, and combined battery pack
KR20070081584A (en) Medium and large size battery module of vertical stacking structure
JP2007200778A (en) Cooling structure of secondary battery
JP2016526758A (en) Battery assembly
KR20150025308A (en) Battery Module Having Structure for Prevention of Coolant and Venting Gas Mixing
JP2008103248A (en) Holding structure of secondary battery
JP2014525118A (en) Rechargeable electric battery
JP2014130780A (en) Battery module and battery unit
JP5285489B2 (en) Battery assembly
US10263273B2 (en) In-vehicle fuel cell stack
JP2014093239A (en) Battery module
JP2010015958A (en) Power storage module and its manufacturing method
JP2007296935A (en) Power source device
JP2014154401A (en) Battery module and battery unit
JP6102455B2 (en) Assembled battery