JP2014035812A - Sulfide solid state battery - Google Patents

Sulfide solid state battery Download PDF

Info

Publication number
JP2014035812A
JP2014035812A JP2012174829A JP2012174829A JP2014035812A JP 2014035812 A JP2014035812 A JP 2014035812A JP 2012174829 A JP2012174829 A JP 2012174829A JP 2012174829 A JP2012174829 A JP 2012174829A JP 2014035812 A JP2014035812 A JP 2014035812A
Authority
JP
Japan
Prior art keywords
sulfide solid
solid electrolyte
state battery
average particle
electrolyte material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012174829A
Other languages
Japanese (ja)
Other versions
JP5920097B2 (en
Inventor
Hiroshi Nagase
浩 長瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012174829A priority Critical patent/JP5920097B2/en
Publication of JP2014035812A publication Critical patent/JP2014035812A/en
Application granted granted Critical
Publication of JP5920097B2 publication Critical patent/JP5920097B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a sulfide solid state battery capable of suppressing deterioration in after-endurance battery characteristics.SOLUTION: In a sulfide solid state battery, a negative electrode layer comprises a particulate metal or a metal compound and a particulate sulfide solid electrolyte material, and a ratio (D/D) between the average particle size (D) of the metal or metal compound and the average particle size (D) of the sulfide solid electrolyte material is 2 or more and less than 7.

Description

本発明は、硫化物固体電池に関し、さらに詳しくは負極層を特定の構成にすることにより耐久後の電池特性の低下を抑制し得る硫化物固体電池に関する。   The present invention relates to a sulfide solid-state battery, and more particularly to a sulfide solid-state battery that can suppress deterioration of battery characteristics after durability by making a negative electrode layer into a specific configuration.

近年、高電圧および高エネルギー密度を有する電池としてリチウム電池が実用化されている。リチウム電池の用途が広い分野に拡大していることおよび高性能の要求から、リチウム電池の更なる性能向上のために様々な研究が行われている。
その中で、従来用いられてきた非水電解液系のリチウム電池に比べて電解液を用いないため、非水電解液を用いる場合の安全性向上のために必要なシステムを簡略化し得て構造の自由度が増し補器の数を減らすことができる等の多くの利点を有し得ることから、固体電池の実用化が期待されている。
In recent years, lithium batteries have been put into practical use as batteries having high voltage and high energy density. Due to the expansion of the use of lithium batteries in a wide range of fields and the demand for high performance, various studies have been conducted to further improve the performance of lithium batteries.
Among them, since the electrolyte is not used compared to the conventional non-aqueous electrolyte lithium battery, the system required for improving the safety when using the non-aqueous electrolyte can be simplified. Therefore, the practical use of a solid battery is expected.

しかし、固体電池の実用化が実現するためには、高容量・高出力を与え得る固体電解質の創出および/又は高電極利用効率を実現し得る電極を創出することなどの様々な改良が必要である。
この固体電池の高容量・高出力を実現し得る技術の1つとして、LiS−Pなどの硫化物固体電解質材料が提案された。
しかし、前記のLiS−Pなどの硫化物固体電解質材料を用いた硫化物固体電池は、耐久後に電池特性が低下することが知られている。この耐久後の電池特性の低下の要因の1つとして考えられるのは、電極の少なくとも一部を構成する活物質と硫化物固体電解質材料との界面で活物質と硫化物固体電解質材料とが直接接触して反応が起こって絶縁層が形成されてリチウムイオンの電荷移導度が低下し、硫化物固体電池の反応抵抗が上昇することにあると考えられている。
However, in order to realize the practical application of solid state batteries, various improvements such as the creation of a solid electrolyte capable of providing high capacity and high output and / or the creation of electrodes capable of realizing high electrode utilization efficiency are required. is there.
A sulfide solid electrolyte material such as Li 2 S—P 2 S 5 has been proposed as one of the technologies capable of realizing the high capacity and high output of this solid battery.
However, it is known that a sulfide solid battery using a sulfide solid electrolyte material such as Li 2 S—P 2 S 5 described above deteriorates battery characteristics after durability. One possible cause of the deterioration in battery characteristics after endurance is that the active material and the sulfide solid electrolyte material are directly connected to each other at the interface between the active material constituting at least a part of the electrode and the sulfide solid electrolyte material. It is considered that the reaction occurs by contact and an insulating layer is formed, the charge conductivity of lithium ions is lowered, and the reaction resistance of the sulfide solid state battery is increased.

この硫化物固体電解質材料を用いた硫化物固体電池における反応抵抗を抑制するために様々な検討がなされている。
例えば、硫化物固体電池において、正極活物質と硫化物固体電解質材料層との界面で反応が起って界面に高抵抗の反応層が形成されるのを防止するために、正極活物質表面や硫化物固体電解質材料表面に反応抑制層を形成する試みがなされている。例えば、反応抑制層を形成するために、ニオブ酸リチウム、チタン酸リチウム、リン酸リチウムなどを使用する試みがなされているが、初期の反応抑制については効果があるものの、耐久性に劣るものであった。
Various studies have been made to suppress reaction resistance in a sulfide solid state battery using the sulfide solid electrolyte material.
For example, in a sulfide solid state battery, in order to prevent a reaction from occurring at the interface between the positive electrode active material and the sulfide solid electrolyte material layer and forming a high resistance reaction layer at the interface, Attempts have been made to form a reaction suppression layer on the surface of the sulfide solid electrolyte material. For example, in order to form a reaction suppression layer, attempts have been made to use lithium niobate, lithium titanate, lithium phosphate, etc., but although the initial reaction suppression is effective, it is inferior in durability. there were.

さらに、特許文献1には、正極活物質及び硫化物系固体電解質をメカニカルミリング処理して得られた正極合材、硫化物系固体電解質からなる電解質層及び負極を備えたリチウム電池が記載されており、具体例として正極活物質が互いに平均粒径の異なる2つの正極活物質粉体からなり、それらの粒径比が0.08〜1の混合物であり、負極がグラファイト及び硫化物系固体電解質を混合して得られた負極合材であるリチウム電池が示されている。   Furthermore, Patent Document 1 describes a lithium battery including a positive electrode mixture obtained by mechanically milling a positive electrode active material and a sulfide-based solid electrolyte, an electrolyte layer composed of a sulfide-based solid electrolyte, and a negative electrode. As a specific example, the positive electrode active material is a mixture of two positive electrode active material powders having different average particle diameters, the particle size ratio of which is 0.08 to 1, and the negative electrode is graphite and a sulfide-based solid electrolyte. A lithium battery, which is a negative electrode mixture obtained by mixing the above, is shown.

また、特許文献2には、固体電解質を挟み正極と負極との2つの電極層を有し、少なくとも1つの電極層が少なくとも1種類以上の電極活物質粒子と固体電解質粒子とを含む混合物質の焼結体からなり、電極活物質粒子を囲む粒界の少なくとも30面積%の部分に厚さ1〜200nmの被覆層を有する全固体電池が記載されており、具体例として非硫化物系固体電解質を含む電極層前駆体を焼成して全固体電池を得た例が示され、さらに電極活物質粉末の平均粒子径は電極反応面積を上げるために0.1〜10μmが好ましく、0.1〜3μmがより好ましく、0.1〜1μmが最も好ましく、電極層前駆体に含む固体電解質粉末の平均粒子径は反応面積を上げるため0.1〜10μmが好ましく、0.1〜1μmがより好ましく、0.1〜0.6μmが最も好ましいことが示されている。   Patent Document 2 discloses a mixed substance having two electrode layers, a positive electrode and a negative electrode, sandwiching a solid electrolyte, and at least one electrode layer including at least one kind of electrode active material particles and solid electrolyte particles. An all-solid battery comprising a sintered body and having a coating layer with a thickness of 1 to 200 nm in at least 30 area% of a grain boundary surrounding the electrode active material particles is described. As a specific example, a non-sulfide solid electrolyte is described. An example in which an all-solid battery is obtained by firing an electrode layer precursor containing benzene is shown, and the average particle size of the electrode active material powder is preferably 0.1 to 10 μm in order to increase the electrode reaction area, 3 μm is more preferable, 0.1 to 1 μm is most preferable, and the average particle size of the solid electrolyte powder included in the electrode layer precursor is preferably 0.1 to 10 μm, more preferably 0.1 to 1 μm, in order to increase the reaction area, 0.1-0. 6 μm is shown to be most preferred.

特開2010−67499号公報JP 2010-67499 A 特開2011−86610号公報JP 2011-86610 A

しかし、これら公知の技術を適用しても、得られる硫化物固体電池は耐久後の電池特性低下が大きいものである。
従って、本発明の目的は、耐久後の電池特性低下を抑制し得る硫化物固体電池を提供することである。
However, even when these known techniques are applied, the obtained sulfide solid state battery has a large deterioration in battery characteristics after durability.
Accordingly, an object of the present invention is to provide a sulfide solid state battery capable of suppressing deterioration of battery characteristics after durability.

本発明は、硫化物固体電池であって、負極層が粒子状の金属又は金属化合物と粒子状の硫化物固体電解質材料とからなり、前記金属又は金属化合物の平均粒径(D)と前記硫化物固体電解質材料の平均粒径(DSE)との比率(D/DSE)が2以上7未満である、前記固体電池に関する。
なお、前記金属又は金属化合物および前記硫化物固体電解質材料の各平均粒径(D、DSE)は、後述の実施例の欄に詳述する測定法によって求められる平均粒径D50である。
The present invention is a sulfide solid state battery, wherein the negative electrode layer is composed of a particulate metal or metal compound and a particulate sulfide solid electrolyte material, and the average particle diameter (D M ) of the metal or metal compound and the above the average particle size of the sulfide solid electrolyte material (D SE) the ratio of (D M / D SE) is less than 2 to 7, regarding the solid-state battery.
In addition, each average particle diameter (D M , D SE ) of the metal or the metal compound and the sulfide solid electrolyte material is an average particle diameter D50 obtained by a measurement method described in detail in the column of Examples described later.

本発明によれば、耐久後の電池特性の低下を防止乃至は抑制し得る硫化物固体電池を得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the sulfide solid state battery which can prevent thru | or suppress the fall of the battery characteristic after durability can be obtained.

図1は、本発明の実施態様の硫化物固体電池および本発明の範囲外の硫化物固体電池における粒子状の金属の平均粒径(D)と粒子状の硫化物固体電解質材料の平均粒径(DSE)との比率(D/DSE)と、硫化物固体電池の100サイクル後の放電容量維持率との関係を比較して示すグラフである。FIG. 1 shows the average particle size (D M ) of particulate metal and the average particle size of particulate sulfide solid electrolyte material in the sulfide solid state battery of the embodiment of the present invention and the sulfide solid state battery outside the scope of the present invention. It is a graph which compares and shows the relationship between the ratio (D M / D SE ) with the diameter (D SE ) and the discharge capacity retention rate after 100 cycles of the sulfide solid state battery.

特に、本発明において、以下の実施態様を挙げることができる。
1)前記負極層がさらに炭素材を含む前記硫化物固体電池。
2)前記負極層が粒子状の炭素材と粒子状の金属と粒子状の硫化物固体電解質材料とを含む前記硫化物固体電池。
3)前記金属がAlである前記硫化物固体電池。
4)前記負極層中の前記硫化物固体電解質材料の割合が25〜75質量%である前記硫化物固体電池。
5)前記硫化物電解質材料が、LiSおよびPを含む前記硫化物固体電池。
6)前記粒子状の金属又は金属化合物の平均粒径(D)が2〜10μmである前記硫化物固体電池。
7)前記硫化物固体電解質材料の平均粒径(DSE)が0.5〜5μmである前記硫化物固体電池。
8)前記炭素材の平均粒径(DSE)が5〜20μmである前記硫化物固体電池。
9)前記炭素材と金属又は金属化合物との割合が20:1〜5:1(質量比)である前記硫化物固体電池。
In particular, in the present invention, the following embodiments can be mentioned.
1) The sulfide solid state battery wherein the negative electrode layer further contains a carbon material.
2) The sulfide solid state battery in which the negative electrode layer includes a particulate carbon material, a particulate metal, and a particulate sulfide solid electrolyte material.
3) The sulfide solid state battery wherein the metal is Al.
4) The said sulfide solid battery whose ratio of the said sulfide solid electrolyte material in the said negative electrode layer is 25-75 mass%.
5) The sulfide solid state battery wherein the sulfide electrolyte material contains Li 2 S and P 2 S 5 .
6) The sulfide solid state battery wherein an average particle diameter (D M ) of the particulate metal or metal compound is 2 to 10 μm.
7) The sulfide solid state battery wherein an average particle diameter (D SE ) of the sulfide solid electrolyte material is 0.5 to 5 μm.
8) wherein the sulfide-based solid battery average particle size of the carbon material (D SE) is 5 to 20 [mu] m.
9) The said sulfide solid battery whose ratio of the said carbon material and a metal or a metal compound is 20: 1-5: 1 (mass ratio).

本発明の実施態様の硫化物固体電池は、正極層と硫化物固体電解質材料層と負極層とが積層されてなる硫化物固体電池であって、前記負極層が炭素材と粒子状の金属又は金属化合物とからなる負極活物質と粒子状の硫化物固体電解質材料との負極合剤からなり、前記金属又は金属化合物の平均粒径(D)と前記硫化物固体電解質材料の平均粒径(DSE)との比率(D/DSE)が2以上7未満である硫化物固体電池であることが必要であり、これによって負極活物質の膨張・収縮および固体電池における反応抵抗の悪化を抑制して硫化物固体電池の耐久後の電池特性低下を抑制し得る。 A sulfide solid state battery according to an embodiment of the present invention is a sulfide solid state battery in which a positive electrode layer, a sulfide solid electrolyte material layer, and a negative electrode layer are laminated, and the negative electrode layer includes a carbon material and particulate metal or It consists of a negative electrode mixture of a negative electrode active material composed of a metal compound and a particulate sulfide solid electrolyte material, and an average particle diameter (D M ) of the metal or metal compound and an average particle diameter of the sulfide solid electrolyte material ( D SE) ratio of (D M / D SE) is required to be a sulfide solid battery is less than 2 or 7, whereby the deterioration of the reaction resistance in the expansion and contraction and solid state battery of the negative electrode active material It can suppress and the battery characteristic fall after durability of a sulfide solid state battery can be suppressed.

本発明の実施態様の硫化物固体電池によれば、図1に示すように、粒子状の金属又は金属化合物の平均粒径(D)と粒子状の硫化物固体電解質材料の平均粒径(DSE)とが略等しい場合および粒子状の金属又は金属化合物の平均粒径(D)と粒子状の硫化物固体電解質材料の平均粒径(DSE)との比率(D/DSE)が7以上である場合に比べて、硫化物固体電池の耐久特性を示す100サイクル後の放電容量維持率が高い。 According to the sulfide solid state battery of the embodiment of the present invention, as shown in FIG. 1, the average particle diameter (D M ) of the particulate metal or metal compound and the average particle diameter of the particulate sulfide solid electrolyte material ( D SE) ratio between the substantially equal average particle sizes (D M) and particulate sulfide solid electrolyte material when and particulate metal or metal compound (D SE) (D M / D SE ) Is higher than 7, the discharge capacity retention rate after 100 cycles showing the durability characteristics of the sulfide solid state battery is high.

本発明の実施態様の硫化物固体電池により100サイクル後の放電容量維持率が本発明の範囲外の硫化物固体電池に比べて高い理論的な解明は十分にはなされていないが、次のように考えられる。すなわち、粒子状の金属又は金属化合物の活物質は充放電に伴う体積膨張が大きく、そのため金属活物質の周囲は体積膨張に伴う亀裂が生じやすい。また、金属又は金属化合物自体が過度に大きい場合には充放電に伴う体積膨張の絶対値(一つの粒子の変化量の絶対値)が大きいため電極層の破壊につながり得る。さらに、硫化物固体電解質材料の粒子が余りに小さくなると硫化物固体電解質材料の粒子同士の界面が多数存在し抵抗を高め得る。これに対して、本発明の実施態様の硫化物固体電池においては、これらの金属活物質の周囲での体積膨張に伴う亀裂の発生や電極層の破壊および硫化物固体電解質材料の粒子界面での抵抗の上昇が防止乃至は抑制され、さらに炭素材との混合による膨張収縮の緩和により硫化物固体電解質材料と負極活物質との接触不良が抑制されると考えられる。   The sulfide solid state battery according to the embodiment of the present invention has not been sufficiently theoretically elucidated as the discharge capacity retention rate after 100 cycles is higher than that of the sulfide solid state battery outside the scope of the present invention. Can be considered. That is, the active material of particulate metal or metal compound has a large volume expansion associated with charging / discharging, and therefore, the periphery of the metal active material is likely to be cracked due to the volume expansion. Further, when the metal or metal compound itself is excessively large, the absolute value of volume expansion (absolute value of the amount of change of one particle) accompanying charging / discharging is large, which may lead to destruction of the electrode layer. Furthermore, when the particles of the sulfide solid electrolyte material become too small, there are many interfaces between the particles of the sulfide solid electrolyte material, and the resistance can be increased. On the other hand, in the sulfide solid state battery according to the embodiment of the present invention, cracks due to volume expansion around these metal active materials, destruction of the electrode layer, and the particle interface of the sulfide solid electrolyte material It is considered that the increase in resistance is prevented or suppressed, and further, the contact failure between the sulfide solid electrolyte material and the negative electrode active material is suppressed by relaxation of expansion and contraction due to mixing with the carbon material.

また、本発明の実施態様の硫化物固体電池においては、前記負極層が炭素材と粒子状の金属又は金属化合物の負極活物質および粒子状の硫化物固体電解質材料との負極合剤からなり、前記粒子状の金属又は金属化合物の平均粒径(D)と前記硫化物固体電解質材料の平均粒径(DSE)との比率が前記の範囲内であることにより、粒子状の金属又は金属化合物による電池エネルギー密度の向上を図り得る。 In the sulfide solid state battery of the embodiment of the present invention, the negative electrode layer is composed of a negative electrode mixture of a carbon material and a negative active material of a particulate metal or metal compound and a particulate sulfide solid electrolyte material, When the ratio of the average particle diameter (D M ) of the particulate metal or metal compound and the average particle diameter (D SE ) of the sulfide solid electrolyte material is within the above range, the particulate metal or metal The battery energy density can be improved by the compound.

本発明の実施態様においては、負極活物質として粒子状の金属又は金属化合物が用いられる。
前記粒子状の金属又は金属化合物としては、粒子状の金属あるいは合金、例えばAl、Sn、Si、In、CuSnなど、又は粒子状の金属化合物、例えば前記金属の酸化物、硫化物あるいはりん化合物あるいは他の金属との合金や合金の酸化物、硫化物あるいはりん化合物など、例えばSiO、SnO、SnS、SnP、TiSnOなど、好適には金属、例えばAlが挙げられる。前記の粒子状の金属又は金属化合物は好適には平均粒径(D)が2〜10μmであり得る。
In the embodiment of the present invention, a particulate metal or metal compound is used as the negative electrode active material.
Examples of the particulate metal or metal compound include a particulate metal or alloy such as Al, Sn, Si, In, Cu 6 Sn 5 or the like, or a particulate metal compound such as an oxide, sulfide, or the like of the metal. Phosphorus compounds or alloys with other metals, oxides of alloys, sulfides or phosphorus compounds, such as SiO, SnO, SnS, SnP, Ti 2 SnO 6 and the like, preferably metals such as Al. The particulate metal or metal compound may preferably have an average particle size (D M ) of 2 to 10 μm.

前記の粒子状の金属又は金属化合物を含むことによって負極層の体積容量、すなわち電池エネルギー密度(電池の単位体積当たり取りだせるエネルギー、すなわち電気量)が向上し得て、さらに前記の硫化物固体電解質材料の平均粒径(DSE)との比率(D/DSE)を2以上7未満の範囲に制御することによって電池のサイクル特性を改善し得る。
また、本発明の実施態様において、前記炭素材と前記金属又は金属化合物との割合は好適には20:1〜5:1(質量比)である。
By including the particulate metal or metal compound, the volume capacity of the negative electrode layer, that is, the battery energy density (energy that can be taken out per unit volume of the battery, that is, the amount of electricity) can be improved. By controlling the ratio (D M / D SE ) to the average particle diameter (D SE ) of the material in the range of 2 or more and less than 7, the cycle characteristics of the battery can be improved.
In the embodiment of the present invention, the ratio of the carbon material to the metal or metal compound is preferably 20: 1 to 5: 1 (mass ratio).

本発明における硫化物固体電解質材料としては、粒子状の硫化物固体電解質であれば特に制限はなく、例えばLiSとSiSとを含むもの、例えばLiS−SiS、LiI−LiS−SiS、liI−liS−P、LiI−LiS−B、LiPO−LiS−SiS、LiPO−LiS−SiS、LiPO−LiS−SiS、LiI−LiS−P、LiI−LiPO−P、LiPS、LiS−Pなどの硫化物系非晶質固体電解質、好適にはLiS−Pが挙げられる。 The sulfide solid electrolyte material in the present invention is not particularly limited as long as it is a particulate sulfide solid electrolyte. For example, a material containing Li 2 S and SiS 2 , for example, Li 2 S—SiS 2 , LiI—Li 2. S-SiS 2, liI-li 2 S-P 2 S 5, LiI-Li 2 S-B 2 S 3, Li 3 PO 4 -Li 2 S-Si 2 S, Li 3 PO 4 -Li 2 S-SiS 2 , sulfides such as LiPO 4 —Li 2 S—SiS, LiI—Li 2 S—P 2 O 5 , LiI—Li 3 PO 4 —P 2 S 5 , Li 3 PS 4 , Li 2 S—P 2 S 5 A physical amorphous solid electrolyte, preferably Li 2 S—P 2 S 5 is used.

前記のLiS−Pは、硫化リチウムと、五硫化二燐及び/又は、単体燐及び単体硫黄から得るができ、例えばこれら原料を溶融反応した後、急冷するか、又は原料をメカニカルミリング法により処理して得られる硫化物ガラスを加熱処理することによって得ることができる。硫化リチウムと、五硫化二燐又は単体燐及び単体硫黄の混合モル比は、通常50:50〜80:20、好ましくは60:40〜75:25であり、好適にはLiS:P=70:30〜75:25(モル比)程度である。
本発明の硫化物固体電池において、前記硫化物固体電解質材料の平均粒半径(DSE)は好適には0.5〜5μm、特に0.5〜3μmである。前記の硫化物固体電解質材料の平均粒径(DSE)は製造時の遊星ボールミルによるメカニカルミリングの条件(ミリング時間、ボール径)を変更することによって調整し得る。
The Li 2 S—P 2 S 5 can be obtained from lithium sulfide and diphosphorus pentasulfide and / or simple phosphorus and simple sulfur. For example, these raw materials are melt-reacted and then rapidly cooled or the raw materials are used. It can be obtained by heat-treating sulfide glass obtained by processing by a mechanical milling method. The mixing molar ratio of lithium sulfide to diphosphorus pentasulfide or simple phosphorus and simple sulfur is usually 50:50 to 80:20, preferably 60:40 to 75:25, and preferably Li 2 S: P 2. S 5 = 70: 30~75: is about 25 (mole ratio).
In the sulfide solid state battery of the present invention, the sulfide solid electrolyte material preferably has an average particle radius (D SE ) of 0.5 to 5 μm, particularly 0.5 to 3 μm. The average particle diameter (D SE ) of the sulfide solid electrolyte material can be adjusted by changing the mechanical milling conditions (milling time, ball diameter) by the planetary ball mill at the time of manufacture.

本発明の実施態様の負極合剤に用いられる炭素材としては、特に制限はないが、粒子状の炭素材、例えばグラファイト、例えば天然黒鉛、人造黒鉛、あるいはカーボン、例えばソフトカーボン、ハードカーボンなどが挙げられる。前記炭素材の平均粒径(DCB)は好適には5〜20μmである。 The carbon material used in the negative electrode mixture of the embodiment of the present invention is not particularly limited, but particulate carbon materials such as graphite, such as natural graphite, artificial graphite, or carbon, such as soft carbon, hard carbon, etc. Can be mentioned. The average particle diameter (D CB ) of the carbon material is preferably 5 to 20 μm.

本発明の実施態様の硫化物固体電池における負極層を構成する負極合剤は、前記の炭素材と粒子状の金属又は金属化合物と粒子状の硫化物固体電解質材料とを混合することによって得ることができる。前記の混合は混合によって炭素材と粒子状の金属又は金属化合物と粒子状の硫化物固体電解質材料の各粒径、従って各粒径比が実質的に変化しない方法により行うことが好適である。
前記の方法として、例えば両成分の粒子を炭化水素溶媒、例えばヘキサン、ヘプタン、オクタンなどの鎖状アルカンあるいはシクロヘキサン、シクロヘプタン、シクロオクタンなどの環状アルカンの存在下に、超音波ホモジナイザーを使って超音波分散させた後、乾燥して炭化水素溶媒を蒸発させることによって混合粉末を得る方法が挙げられる。
本発明の実施態様において、負極層中(負極合剤中)の前記硫化物固体電解質材料の割合は好適には25〜75質量%である。
The negative electrode mixture constituting the negative electrode layer in the sulfide solid state battery of the embodiment of the present invention is obtained by mixing the carbon material, the particulate metal or metal compound, and the particulate sulfide solid electrolyte material. Can do. The mixing is preferably performed by a method in which the particle diameters of the carbon material, the particulate metal or metal compound, and the particulate sulfide solid electrolyte material, and thus the particle diameter ratio, do not change substantially.
As the above-mentioned method, for example, particles of both components are superposed using an ultrasonic homogenizer in the presence of a hydrocarbon solvent, for example, a chain alkane such as hexane, heptane, and octane or a cyclic alkane such as cyclohexane, cycloheptane, and cyclooctane. A method of obtaining a mixed powder by sonicating and then drying and evaporating the hydrocarbon solvent may be mentioned.
In the embodiment of the present invention, the ratio of the sulfide solid electrolyte material in the negative electrode layer (in the negative electrode mixture) is preferably 25 to 75% by mass.

本発明の実施態様の硫化物固体電池は、前記の負極層を構成する負極合剤と他の構成材である正極層と硫化物固体電解質材料層とを、硫化物固体電解質材料層の片側に正極層を他の側に負極層を積層することにより得ることができる。
前記の硫化物固体電解質材料層における硫化物固体電解質材料としては、前記負極層において示したものあるいは別の硫化物固体電解質材料、好適には同じ硫化物固体電解質材料が挙げられる。
In the sulfide solid state battery of the embodiment of the present invention, the negative electrode mixture constituting the negative electrode layer, the positive electrode layer which is another constituent material, and the sulfide solid electrolyte material layer are arranged on one side of the sulfide solid electrolyte material layer. The positive electrode layer can be obtained by laminating the negative electrode layer on the other side.
Examples of the sulfide solid electrolyte material in the sulfide solid electrolyte material layer include those shown in the negative electrode layer or other sulfide solid electrolyte materials, preferably the same sulfide solid electrolyte material.

前記の正極層は、例えば正極活物質と硫化物固体電解質材料とを含む正極合剤から形成され得る。
前記の正極活物質としては、Liイオン電池に使用できる活物質であれば特に制限はなく、例えばコバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、ニッケルマンガンコバルト酸リチウム(Li1+xNi1/3Mn1/3Co1/3)、リチウムコバルト酸ニッケル(LiCo0.3Ni0.7)、マンガン酸リチウム(LiMn)、チタン酸リチウム(Li4/3Ti5/3)、リチウムマンガン酸化合物(Li1+xMn2−x−y;M=Al、Mg、Fe、Cr、Co、Ni、Zn)、チタン酸リチウム(LiTiO)、リン酸金属リチウム(LiMPO、M=Fe、Mn、Co、Ni)、酸化バナジウム(V)、酸化モリブデン(MoO3)、硫化チタン(TiS)、リチウムコバルト窒化物(LiCoN)、リチウムシリコン窒化物(LiCoN)、リチウム金属、リチウム合金(LiM、M=Sn、Si、Al、Ge、Sb、P)、リチウム貯蔵性金属間化合物(MgxM、M=Sn、Ge、Sb、あるいはXySb、X=In、Cu、Mn)やそれらの誘導体が挙げられる。
特に、LiCoO、LiNiO、LiMn、LiNi1/2Mn1/2、LiNi1/3Co1/3Mn1/3、Li[NiLi1/3−2y/3]O(0≦x≦1、0<y<1/2)やこれらのリチウム遷移金属酸化物のリチウム又は遷移金属を他の元素で置換したリチウム遷移金属化合物、特にLiCoOやLiNiOなどの層状、オリビンあるいはスピネルが挙げられる。
The positive electrode layer can be formed of, for example, a positive electrode mixture containing a positive electrode active material and a sulfide solid electrolyte material.
The positive electrode active material is not particularly limited as long as it is an active material that can be used for a Li-ion battery. For example, lithium cobaltate (Li x CoO 2 ), lithium nickelate (Li x NiO 2 ), nickel manganese lithium cobaltate (Li 1 + x Ni 1/3 Mn 1/3 Co 1/3 O 2 ), nickel nickel cobaltate (LiCo 0.3 Ni 0.7 O 2 ), lithium manganate (Li x Mn 2 O 4 ), titanic acid Lithium (Li 4/3 Ti 5/3 O 4 ), lithium manganate compound (Li 1 + x M y Mn 2−xy O 4 ; M = Al, Mg, Fe, Cr, Co, Ni, Zn), titanium lithium acid (Li x TiO y), phosphate metal lithium (LiMPO 4, M = Fe, Mn, Co, Ni), vanadium oxide (V 2 O 5), Molybdenum (MoO3), titanium sulfide (TiS 2), lithium cobalt nitride (LiCoN), lithium silicon nitride (LiCoN), lithium metal, lithium alloy (LiM, M = Sn, Si , Al, Ge, Sb, P ), Lithium-storable intermetallic compounds (MgxM, M = Sn, Ge, Sb, or XySb, X = In, Cu, Mn) and derivatives thereof.
In particular, Li x CoO 2 , Li x NiO 2 , Li x Mn 2 O 4 , Li x Ni 1/2 Mn 1/2 O 2 , Li x Ni 1/3 Co 1/3 Mn 1/3 O 2 , Li x [Ni y Li 1 / 3-2y / 3 ] O 3 (0 ≦ x ≦ 1, 0 <y <1/2) and lithium or transition metal of these lithium transition metal oxides were substituted with other elements Examples include lithium transition metal compounds, particularly layered layers such as LiCoO 2 and LiNiO 2 , olivine or spinel.

前記の正極層を構成する正極合剤は、前記の正極活物質と硫化物固体電解質材料とを含むものであり得て、他の成分、例えば導電助剤をさらに含み得る。
前記の導電助剤としては、VGCF(気相成長法炭素繊維、Vapor Grown Carbon Fiber)、カーボンブラック、カーボンナノチューブ、カーボンナノ繊維などの炭素材、金属材を用い得る。
前記の正極層を構成する正極合剤中の各構成材の割合は、好適には正極合剤100質量%中、正極活物質が30〜80質量%、特に50〜80質量%で、硫化物固体電解質材料が10〜50質量%、特に15〜50質量%で、導電助剤が10質量%以下、特に1〜10質量%であり得る。
The positive electrode mixture constituting the positive electrode layer may include the positive electrode active material and the sulfide solid electrolyte material, and may further include other components such as a conductive additive.
As the conductive aid, carbon materials such as VGCF (Vapor Grown Carbon Fiber), carbon black, carbon nanotube, and carbon nanofiber, and metal materials can be used.
The proportion of each constituent material in the positive electrode mixture constituting the positive electrode layer is preferably 30 to 80% by mass, particularly 50 to 80% by mass of the positive electrode active material in 100% by mass of the positive electrode mixture, and sulfide. The solid electrolyte material may be 10 to 50% by mass, particularly 15 to 50% by mass, and the conductive additive may be 10% by mass or less, and particularly 1 to 10% by mass.

本発明の硫化物固体電池は、例えば硫化物固体電解質材料を金型に収容したセルに入れ、プレスして硫化物固体電解質材料層を形成し、その片側に正極合剤を入れ、プレスして正極層を形成し、次いでその逆側に負極合剤を入れ、プレスして負極層を形成し、正極層および負極層に各々集電体を取付けることによって製造することができる。
前記の正極層用の集電体として金属箔、例えばAl箔を、前記の負極層用の集電体として金属箔、例えばCu箔を用い得る。
The sulfide solid state battery of the present invention is, for example, placed in a cell containing a sulfide solid electrolyte material in a mold and pressed to form a sulfide solid electrolyte material layer, and a positive electrode mixture is placed on one side and pressed. It can be manufactured by forming a positive electrode layer, then putting a negative electrode mixture on the opposite side, pressing to form a negative electrode layer, and attaching a current collector to each of the positive electrode layer and the negative electrode layer.
A metal foil, such as an Al foil, can be used as the current collector for the positive electrode layer, and a metal foil, such as a Cu foil, can be used as the current collector for the negative electrode layer.

以下、本発明の実施例を示す。
以下の実施例は単に説明するためのものであり、本発明を限定するものではない。
なお、以下に示す測定法は例示であって、当業者が同等と考える測定法も同様に用い得る。
以下の各例において、各材料の平均粒径は以下の方法によって粒度分布をレーザー回析散乱法により測定し、得られた粒度分布における微粒側からの累積で50質量%となる平均粒径(D、DSE)を求めた。
Examples of the present invention will be described below.
The following examples are for illustrative purposes only and do not limit the invention.
Note that the measurement methods shown below are merely examples, and measurement methods considered equivalent to those skilled in the art can be used as well.
In each of the following examples, the average particle size of each material is determined by measuring the particle size distribution by the laser diffraction scattering method according to the following method, and the average particle size (cumulative from the fine particle side in the obtained particle size distribution is 50% by mass ( D M , D SE ) were determined.

実施例1
1)硫化物固体電解質材料の合成
LiS(日本化学工業株式会社製)0.7656gとP(アルドリッチ社)1.2344gとを秤量し、メノウ乳鉢で5分間混合し、その後ヘプタンを4g入れ、遊星型ボールミルを用いて40時間メカニカルミリングした。続けて、ボール径1mmのZrOボールを用いて、ヘプタン及びブチルエーテル溶剤中にて、150rpmで15時間メカニカルミリングすることで、平均粒径1.5μmの硫化物固体電解質材料を得た。
Example 1
1) Synthesis of sulfide solid electrolyte material 0.7656 g of Li 2 S (manufactured by Nippon Chemical Industry Co., Ltd.) and 1.2344 g of P 2 S 5 (Aldrich) are weighed and mixed for 5 minutes in an agate mortar, and then heptane 4 g was added, and mechanical milling was performed for 40 hours using a planetary ball mill. Subsequently, a sulfide solid electrolyte material having an average particle diameter of 1.5 μm was obtained by mechanical milling at 150 rpm in a heptane and butyl ether solvent using a ZrO 2 ball having a ball diameter of 1 mm.

2)硫化物固体電池の作製
正極活物質としてのLiNi1/3Co1/3Mn1/3(日亜化学工業株式会社)12.03mgとVGCF(昭和電工株式会社)を0.51mg、前記の硫化物固体電解質材料5.03mgとを秤量し、ヘプタン溶媒中に投入し超音波ホモジナイザーで超音波分散させた後、乾燥することにより正極合剤を得た。
平均粒径10μmのグラファイト(三菱化学株式会社)と平均粒径3μmのアルミニウム(株式会社高純度研究所)0.68mgと、前記1)で得た平均粒径1.5μmの硫化物固体電解質材料8.24mgとを秤量し、ヘプタン溶媒中に投入し超音波ホモジナイザーで超音波分散させた後、乾燥することにより負極合剤[D/DSE=2.0]を得た。
1cmの金型に前記の硫化物固体電解質材料を18mg秤量し、1ton/cmでプレスして硫化物固体電解質材料層を形成し、その片側に前記の正極合剤17.57mgを入れ、1ton/cmでプレスし正極層を形成した。その逆側に上記負極合剤16.16mgを入れ、4ton/cmでプレスし負極層を形成した。また、集電体として、正極側に15μmのAl箔(日本製箔株式会社)を、負極側に10μmのCu箔(日本製箔株式会社)を用いて硫化物固体電池を作製した。
2) Preparation of sulfide solid-state battery LiNi 1/3 Co 1/3 Mn 1/3 O 2 (Nichia Corporation) as positive electrode active material 12.03 mg and VGCF (Showa Denko) 0.51 mg Then, 5.03 mg of the above-mentioned sulfide solid electrolyte material was weighed, put into a heptane solvent, ultrasonically dispersed with an ultrasonic homogenizer, and then dried to obtain a positive electrode mixture.
A sulfide solid electrolyte material having an average particle diameter of 1.5 μm obtained from graphite (Mitsubishi Chemical Corporation) having an average particle diameter of 10 μm and 0.68 mg of aluminum having an average particle diameter of 3 μm (High Purity Research Institute Co., Ltd.) and 1) above. 8.24 mg was weighed, put into a heptane solvent, subjected to ultrasonic dispersion with an ultrasonic homogenizer, and then dried to obtain a negative electrode mixture [D M / D SE = 2.0].
The sulfide solid electrolyte material into a mold of 1 cm 2 to 18mg weighed and pressed to form a sulfide solid electrolyte material layer with 1 ton / cm 2, placed the positive electrode mixture 17.57mg one side thereof, The positive electrode layer was formed by pressing at 1 ton / cm 2 . On the opposite side, 16.16 mg of the negative electrode mixture was put and pressed at 4 ton / cm 2 to form a negative electrode layer. Further, as a current collector, a sulfide solid battery was produced using a 15 μm Al foil (Nihon Foil Co., Ltd.) on the positive electrode side and a 10 μm Cu foil (Nihon Foil Co., Ltd.) on the negative electrode side.

3)電池の評価
得られた硫化物固体電池を用い、下記の条件で評価を行った。
1)0.3mAで4.2Vまでcccv(定電流定電圧)充電した後、3V、0.3mAで放電を行って初期容量を確認した。
2)60℃にて3mAで4.2Vまでcc充電した後、3V、0.3mAで放電を100サイクル行った。
3)3mAで4.2Vまでcccv充電した後、3V、0.3mAで放電を行って耐久後の容量を確認した。
得られた100サイクル後の放電容量の初期容量に対する割合(%)を100サイクル後放電容量維持率とし、他の結果とまとめて図1に示す。
3) Battery evaluation The obtained sulfide solid state battery was evaluated under the following conditions.
1) After charging cccv (constant current constant voltage) to 4.2 V at 0.3 mA, the initial capacity was confirmed by discharging at 3 V and 0.3 mA.
2) After cc charging to 4.2 V at 3 mA at 60 ° C., discharging was performed 100 cycles at 3 V and 0.3 mA.
3) After cccv charging to 4.2 V at 3 mA, discharging was performed at 3 V and 0.3 mA to confirm the capacity after endurance.
The ratio (%) of the obtained discharge capacity after 100 cycles to the initial capacity is taken as the discharge capacity retention rate after 100 cycles, and is shown together with other results in FIG.

実施例2
平均粒径1.5μmの硫化物固体電解質材料に代えて、硫化物固体電解質材料合成時の条件を変えた(ボール径を0.3mmに変更)他は実施例1と同様にして平均粒径0.8μmの硫化物固体電解質材料を合成し、この硫化物固体電解質材料を用いた他は実施例1と同様にして粒子状グラファイトと粒子状アルミニウムと粒子状硫化物固体電解質材料とからなる負極合剤[D/DSE=3.75]を作製し、この負極合剤を用いた他は実施例1と同様にして硫化物固体電池を作製した。
得られた電池について実施例1と同様にして100サイクル後放電容量維持率を得た。他の結果とまとめて図1に示す。
Example 2
In place of the sulfide solid electrolyte material having an average particle diameter of 1.5 μm, the conditions for the synthesis of the sulfide solid electrolyte material were changed (the ball diameter was changed to 0.3 mm). A negative electrode composed of particulate graphite, particulate aluminum, and particulate sulfide solid electrolyte material in the same manner as in Example 1 except that a sulfide solid electrolyte material of 0.8 μm was synthesized and this sulfide solid electrolyte material was used. A mixture [D M / D SE = 3.75] was produced, and a sulfide solid state battery was produced in the same manner as in Example 1 except that this negative electrode mixture was used.
About the obtained battery, it carried out similarly to Example 1, and obtained the discharge capacity maintenance factor after 100 cycles. FIG. 1 shows the results together with other results.

実施例3
平均粒径3μmのアルミニウム(株式会社高純度研究所)に代えて平均粒径10μmのアルミニウム(株式会社高純度研究所)、および平均粒径1.5μmの硫化物固体電解質材料に代えて、硫化物固体電解質材料合成時の条件を変えた(メカニカルミリング時間を5時間に変更)他は実施例1と同様にして合成した平均粒径2.5μmの硫化物固体電解質材料を用いた他は実施例1と同様にして粒子状グラファイトと粒子状アルミニウムと粒子状硫化物固体電解質材料とからなる負極合剤[D/DSE=4.0]を作製し、この負極合剤を用いた他は実施例1と同様にして硫化物固体電池を作製した。
得られた電池について実施例1と同様にして100サイクル後放電容量維持率を得た。他の結果とまとめて図1に示す。
Example 3
Instead of aluminum having an average particle diameter of 3 μm (High Purity Research Institute Co., Ltd.), it was replaced by aluminum having an average particle diameter of 10 μm (High Purity Research Institute Co., Ltd.) and a sulfide solid electrolyte material having an average particle diameter of 1.5 μm. Other than using the sulfide solid electrolyte material having an average particle diameter of 2.5 μm synthesized in the same manner as in Example 1 except that the conditions for the synthesis of the solid electrolyte material were changed (the mechanical milling time was changed to 5 hours). In the same manner as in Example 1, a negative electrode mixture [D M / D SE = 4.0] composed of particulate graphite, particulate aluminum, and a particulate sulfide solid electrolyte material was prepared, and this negative electrode mixture was used. Produced a sulfide solid state battery in the same manner as in Example 1.
About the obtained battery, it carried out similarly to Example 1, and obtained the discharge capacity maintenance factor after 100 cycles. FIG. 1 shows the results together with other results.

実施例4
平均粒子径3μmのアルミニウム(株式会社高純度研究所)に代えて平均粒径10μmのアルミニウム(株式会社高純度研究所)を用いた他は実施例1と同様にして粒子状グラファイトと粒子状アルミニウムと粒子状硫化物固体電解質材料とからなる負極合剤[D/DSE=6.7]を作製し、この負極合剤を用いた他は実施例1と同様にして硫化物固体電池を作製した。
得られた電池について実施例1と同様にして100サイクル後放電容量維持率を得た。他の結果とまとめて図1に示す。
Example 4
Particulate graphite and particulate aluminum were used in the same manner as in Example 1 except that aluminum having an average particle size of 3 μm (high purity research institute) was used instead of aluminum having an average particle size of 10 μm (high purity research institute). A negative electrode mixture [D M / D SE = 6.7] composed of a particulate sulfide solid electrolyte material and a negative electrode mixture was used in the same manner as in Example 1 except that this negative electrode mixture was used. Produced.
About the obtained battery, it carried out similarly to Example 1, and obtained the discharge capacity maintenance factor after 100 cycles. FIG. 1 shows the results together with other results.

比較例1
平均粒径1.5μmの硫化物固体電解質材料に代えて平均粒径2.5μmの硫化物固体電解質材料を用いた他は実施例1と同様にして負極合剤[D/DSE=1.2]、硫化物固体電池を作製した。
得られた電池について実施例1と同様にして100サイクル後放電容量維持率を得た。他の結果とまとめて図1に示す。
Comparative Example 1
A negative electrode mixture [D M / D SE = 1] in the same manner as in Example 1 except that a sulfide solid electrolyte material having an average particle diameter of 2.5 μm was used instead of the sulfide solid electrolyte material having an average particle diameter of 1.5 μm. .2], a sulfide solid state battery was produced.
About the obtained battery, it carried out similarly to Example 1, and obtained the discharge capacity maintenance factor after 100 cycles. FIG. 1 shows the results together with other results.

比較例2
平均粒径3μmのアルミニウム(株式会社高純度研究所)に代えて平均粒径20μmのアルミニウム(株式会社高純度研究所)を用い、平均粒径1.5μmの硫化物固体電解質材料に代えて平均粒径2.5μmの硫化物固体電解質材料を用いた他は実施例1と同様にして負極合剤[D/DSE=8.0]、硫化物固体電池を作製した。
得られた電池について実施例1と同様にして100サイクル後放電容量維持率を得た。他の結果とまとめて図1に示す。
Comparative Example 2
Instead of aluminum having an average particle size of 3 μm (High Purity Research Institute Co., Ltd.), using aluminum having an average particle size of 20 μm (High Purity Research Institute Co., Ltd.) and replacing the sulfide solid electrolyte material having an average particle size of 1.5 μm with an average A negative electrode mixture [D M / D SE = 8.0] and a sulfide solid state battery were produced in the same manner as in Example 1 except that a sulfide solid electrolyte material having a particle size of 2.5 μm was used.
About the obtained battery, it carried out similarly to Example 1, and obtained the discharge capacity maintenance factor after 100 cycles. FIG. 1 shows the results together with other results.

比較例3
平均粒径3μmのアルミニウム(株式会社高純度研究所)に代えて平均粒径20μmのアルミニウム(株式会社高純度研究所)を用いた他は実施例1と同様にして負極合剤[D/DSE=13.3]、硫化物固体電池を作製した。
得られた電池について実施例1と同様にして100サイクル後放電容量維持率を得た。他の結果とまとめて図1に示す。
Comparative Example 3
A negative electrode mixture [D M /] in the same manner as in Example 1 except that aluminum having an average particle diameter of 3 μm (high purity research institute) was used instead of aluminum having an average particle diameter of 20 μm (high purity research institute). D SE = 13.3], a sulfide solid state battery was fabricated.
About the obtained battery, it carried out similarly to Example 1, and obtained the discharge capacity maintenance factor after 100 cycles. FIG. 1 shows the results together with other results.

図1から、粒子状のアルミニウム平均粒径と粒子状の硫化物固体電解質材料の平均粒径との比率(D/DSE)が2以上7未満の範囲である硫化物固体電池は、粒子状のアルミニウム平均粒径と粒子状の硫化物固体電解質材料の平均粒径との比率(D/DSE)が前記の範囲外の負極合剤を含む硫化物固体電池に比較して100サイクル後放電容量維持率が高いことが理解される。 From FIG. 1, the sulfide solid state battery in which the ratio (D M / D SE ) between the particulate aluminum average particle size and the average particle size of the particulate sulfide solid electrolyte material is in the range of 2 to less than 7, The ratio (D M / D SE ) of the average particle diameter of the aluminum particles and the average particle diameter of the particulate sulfide solid electrolyte material is 100 cycles compared to a sulfide solid battery containing a negative electrode mixture outside the above range. It is understood that the post-discharge capacity retention rate is high.

本発明によって、耐久後の電池特性の低下を抑制し得る硫化物固体電池を得ることができる。   According to the present invention, it is possible to obtain a sulfide solid state battery capable of suppressing deterioration of battery characteristics after endurance.

Claims (10)

硫化物固体電池であって、負極層が粒子状の金属又は金属化合物と粒子状の硫化物固体電解質材料とからなり、前記金属又は金属化合物の平均粒径(D)と前記硫化物固体電解質材料の平均粒径(DSE)との比率(D/DSE)が2以上7未満である、前記固体電池。 A sulfide solid-state battery, wherein the negative electrode layer is made of a particulate metal or metal compound and a particulate sulfide solid electrolyte material, and the average particle diameter (D M ) of the metal or metal compound and the sulfide solid electrolyte The solid battery, wherein the ratio (D M / D SE ) to the average particle diameter (D SE ) of the material is 2 or more and less than 7. 前記負極層がさらに炭素材を含む請求項1に記載の硫化物固体電池。   The sulfide solid state battery according to claim 1, wherein the negative electrode layer further contains a carbon material. 前記負極層が粒子状の炭素材と粒子状の金属と粒子状の硫化物固体電解質材料とを含む請求項2に記載の硫化物固体電池。   The sulfide solid state battery according to claim 2, wherein the negative electrode layer includes a particulate carbon material, a particulate metal, and a particulate sulfide solid electrolyte material. 前記金属がAlである請求項3に記載の硫化物固体電池。   The sulfide solid state battery according to claim 3, wherein the metal is Al. 前記負極層中の前記硫化物固体電解質材料の割合が25〜75質量%である請求項1〜4のいずれか1項に記載の硫化物固体電池。   The sulfide solid state battery according to any one of claims 1 to 4, wherein a ratio of the sulfide solid electrolyte material in the negative electrode layer is 25 to 75 mass%. 前記硫化物電解質材料が、LiSおよびPを含む請求項1〜5のいずれか1項に記載の硫化物固体電池。 The sulfide electrolyte material, sulfide-solid-state cell according to any one of claims 1 to 5 containing Li 2 S and P 2 S 5. 前記粒子状の金属又は金属化合物の平均粒径(D)が2〜10μmである請求項1〜6のいずれか1項に記載の硫化物固体電池。 The sulfide solid state battery according to any one of claims 1 to 6, wherein an average particle diameter (D M ) of the particulate metal or metal compound is 2 to 10 µm. 前記硫化物固体電解質材料の平均粒径(DSE)が0.5〜5μmである請求項1〜7のいずれか1項に記載の硫化物固体電池。 Sulfide-solid-state cell according to any one of claims 1 to 7 mean particle size of the sulfide solid electrolyte material (D SE) is 0.5 to 5 [mu] m. 前記炭素材の平均粒径(DSE)が5〜20μmである請求項3〜8のいずれか1項に記載の硫化物固体電池。 9. The sulfide solid state battery according to claim 3, wherein the carbon material has an average particle diameter (D SE ) of 5 to 20 μm. 前記炭素材と前記金属又は金属化合物との割合が20:1〜5:1(質量比)である請求項2に記載の硫化物固体電池。   The sulfide solid state battery according to claim 2, wherein a ratio of the carbon material to the metal or metal compound is 20: 1 to 5: 1 (mass ratio).
JP2012174829A 2012-08-07 2012-08-07 Sulfide solid state battery Active JP5920097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012174829A JP5920097B2 (en) 2012-08-07 2012-08-07 Sulfide solid state battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012174829A JP5920097B2 (en) 2012-08-07 2012-08-07 Sulfide solid state battery

Publications (2)

Publication Number Publication Date
JP2014035812A true JP2014035812A (en) 2014-02-24
JP5920097B2 JP5920097B2 (en) 2016-05-18

Family

ID=50284725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012174829A Active JP5920097B2 (en) 2012-08-07 2012-08-07 Sulfide solid state battery

Country Status (1)

Country Link
JP (1) JP5920097B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015049991A (en) * 2013-08-30 2015-03-16 出光興産株式会社 Method for manufacturing negative electrode mixture
JP2018120709A (en) * 2017-01-24 2018-08-02 日立造船株式会社 All-solid battery and method for manufacturing the same
CN110112412A (en) * 2019-05-10 2019-08-09 国联汽车动力电池研究院有限责任公司 A kind of selenium sulphur solid solution cathode material and its preparation method and application

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08195219A (en) * 1994-11-14 1996-07-30 Matsushita Electric Ind Co Ltd Fuel-solid lithium secondary battery
JP2010003679A (en) * 2008-05-23 2010-01-07 Idemitsu Kosan Co Ltd Anode mixture, anode mixture mixed liquid, anode, lithium battery and device
WO2012091111A1 (en) * 2010-12-28 2012-07-05 住友電気工業株式会社 Method for producing non-aqueous electrolyte battery, and non-aqueous electrolyte battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08195219A (en) * 1994-11-14 1996-07-30 Matsushita Electric Ind Co Ltd Fuel-solid lithium secondary battery
JP2010003679A (en) * 2008-05-23 2010-01-07 Idemitsu Kosan Co Ltd Anode mixture, anode mixture mixed liquid, anode, lithium battery and device
WO2012091111A1 (en) * 2010-12-28 2012-07-05 住友電気工業株式会社 Method for producing non-aqueous electrolyte battery, and non-aqueous electrolyte battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015049991A (en) * 2013-08-30 2015-03-16 出光興産株式会社 Method for manufacturing negative electrode mixture
JP2018120709A (en) * 2017-01-24 2018-08-02 日立造船株式会社 All-solid battery and method for manufacturing the same
WO2018139448A1 (en) * 2017-01-24 2018-08-02 日立造船株式会社 All-solid-state battery and method for producing same
JP7129144B2 (en) 2017-01-24 2022-09-01 日立造船株式会社 All-solid-state battery and manufacturing method thereof
US11876171B2 (en) 2017-01-24 2024-01-16 Hitachi Zosen Corporation All-solid-state battery and production method of the same
CN110112412A (en) * 2019-05-10 2019-08-09 国联汽车动力电池研究院有限责任公司 A kind of selenium sulphur solid solution cathode material and its preparation method and application

Also Published As

Publication number Publication date
JP5920097B2 (en) 2016-05-18

Similar Documents

Publication Publication Date Title
JP5594379B2 (en) Secondary battery positive electrode, secondary battery positive electrode manufacturing method, and all-solid secondary battery
JP5516755B2 (en) Electrode body and all-solid battery
KR102240980B1 (en) Lithium manganese oxide composite, secondary battery, and manufacturing method thereof
KR101314031B1 (en) All-solid battery
JP2019096610A (en) All-solid type secondary battery and charging method thereof
JP5072110B2 (en) Positive electrode material used for lithium battery
WO2015125800A1 (en) Solid electrolyte composition, production method for same, electrode sheet for battery using same, and all-solid secondary cell
JP2018120705A (en) Positive electrode active material for all-solid type secondary battery, positive electrode active material layer for all-solid type secondary battery, and all-solid type secondary battery
JP5928252B2 (en) Negative electrode for all solid state battery and all solid state battery
JP5300241B2 (en) Positive electrode for high-power lithium-ion battery
JP6927292B2 (en) All-solid-state lithium-ion secondary battery
JP5747848B2 (en) Method for producing positive electrode active material layer-containing body
JP2015191778A (en) All-solid type secondary battery
JP6576033B2 (en) Lithium ion secondary battery and method for producing positive electrode active material for lithium ion secondary battery
JP5644951B2 (en) Non-sintered laminate for all solid state battery, all solid state battery and method for producing the same
JP5920097B2 (en) Sulfide solid state battery
KR20220077081A (en) Coated cathode active material, method for producing coated cathode active material, and all solid state battery
JP6295966B2 (en) All solid battery
JP6074989B2 (en) Solid battery manufacturing method
JP7386060B2 (en) All solid state battery
WO2012157047A1 (en) All-solid-state secondary battery
JP7433004B2 (en) all solid state battery
JP7331873B2 (en) All-solid battery
JP2015018777A (en) Method for manufacturing electrode
KR20230106531A (en) Postive electrode for solid rechargable battery and solid rechargable battery including the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160328

R151 Written notification of patent or utility model registration

Ref document number: 5920097

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151