JP2014035476A - Optical scanner and color image forming apparatus - Google Patents

Optical scanner and color image forming apparatus Download PDF

Info

Publication number
JP2014035476A
JP2014035476A JP2012177117A JP2012177117A JP2014035476A JP 2014035476 A JP2014035476 A JP 2014035476A JP 2012177117 A JP2012177117 A JP 2012177117A JP 2012177117 A JP2012177117 A JP 2012177117A JP 2014035476 A JP2014035476 A JP 2014035476A
Authority
JP
Japan
Prior art keywords
light beam
sub
region
reflection
intersection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012177117A
Other languages
Japanese (ja)
Inventor
Hidekazu Shimomura
秀和 下村
Motohiro Fukazawa
元浩 深沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2012177117A priority Critical patent/JP2014035476A/en
Publication of JP2014035476A publication Critical patent/JP2014035476A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laser Beam Printer (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Facsimile Scanning Arrangements (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce warpage of an internal reflection element integrally formed with resin, in an optical scanner and a color image forming apparatus having the internal reflection element.SOLUTION: An internal reflection element integrally formed with resin has a shape in which a sub-scanning cross section is notched by at least one of the following areas: a first area that is around an intersection of extended lines of a first internal reflection surface and a second internal reflection surface; a second area that is around an intersection of extended lines of a first transmission surface and the first internal reflection surface; and a third area that is around an intersection of extended lines of the second internal reflection surface and a second transmission surface.

Description

本発明は、光走査装置およびカラー画像形成装置に関る。   The present invention relates to an optical scanning device and a color image forming apparatus.

従来より、レーザービームプリンタ(LBP)やデジタル複写機やマルチファンクションプリンタ等には、光走査装置が用いられている。この光走査装置においては、画像信号に応じて光源手段から光変調され出射した光束(光ビーム)を、例えば回転多面鏡(ポリゴンミラー)より成る光偏向器により周期的に偏向させている。そして、偏向された光束をfθ特性を有する結像光学系によって感光性の記録媒体(感光体ドラム)面上にスポット状に集束させ、その面上を光走査して画像記録を行っている。   Conventionally, an optical scanning device has been used in a laser beam printer (LBP), a digital copying machine, a multifunction printer, and the like. In this optical scanning device, a light beam (light beam) that is light-modulated and emitted from the light source means in accordance with an image signal is periodically deflected by an optical deflector formed of, for example, a rotating polygon mirror (polygon mirror). The deflected light beam is focused in a spot shape on the surface of a photosensitive recording medium (photosensitive drum) by an imaging optical system having fθ characteristics, and image recording is performed by optically scanning the surface.

更に、光偏向器と感光体ドラムの間に台形状のプリズムを配置し、光路を折り返すことで必要な光路長を確保しつつ光走査装置の小型化を図った提案がされている(特許文献1)。通常、光路を折り返すためには、ガラス基板表面にアルミや銅などの薄膜を蒸着させた折り返しミラーを用いるのが一般的である。ただし、通常の折り返しミラーで光路を折り返した場合は、ガラス基板そのものの厚みだけ光走査装置が大きくなってしまう。特許文献1で提案された台形状のプリズムは、素子(プリズム)の内部を光が進行するため、光線通過領域以外に余分なスペースを必要としない。   In addition, a proposal has been made that a trapezoidal prism is arranged between the optical deflector and the photosensitive drum, and the optical scanning device is made smaller while ensuring the necessary optical path length by folding the optical path (Patent Literature). 1). Usually, in order to fold the optical path, it is common to use a folding mirror in which a thin film such as aluminum or copper is deposited on the surface of a glass substrate. However, when the optical path is folded by a normal folding mirror, the optical scanning device becomes larger by the thickness of the glass substrate itself. The trapezoidal prism proposed in Patent Document 1 does not require an extra space other than the light beam passage region because light travels inside the element (prism).

また、プリズムの内面で全反射を行うのでアルミや銅などを蒸着させる必要がなく、膜厚ムラなどによる反射率のバラツキ等の課題もない。更に、2つの直交する反射面を一体で形成しているため、プリズムが副走査方向に傾いたとしても、光線の出射角が変わらないといったメリットも有する。   Further, since total reflection is performed on the inner surface of the prism, it is not necessary to deposit aluminum, copper, or the like, and there are no problems such as variations in reflectance due to uneven film thickness. Furthermore, since two orthogonal reflecting surfaces are integrally formed, there is an advantage that even if the prism is tilted in the sub-scanning direction, the light emission angle does not change.

また、結像光学系として樹脂製の走査レンズを用いた場合、製造時に発生する長手方向の反りを一方向に揃えることを目的とし、走査レンズの副走査方向の上下のいずれか一方のみに副走査方向に突設したリブを設けた提案がされている(特許文献2)。   In addition, when a resin scanning lens is used as the imaging optical system, it is intended to align the warp in the longitudinal direction that occurs at the time of manufacture in one direction. A proposal has been made in which a rib projecting in the scanning direction is provided (Patent Document 2).

特開2001−51221号公報JP 2001-51221 A 特開2006−91774号公報JP 2006-91774 A

特許文献1では、光路折り返しのための台形状のプリズム(内面反射手段としての内面反射素子)はガラスで出来ているため、製造過程において長手方向に大きな反りを発生させる工程がない。しかし、ガラス母材を研磨工程を繰り返して作られる台形状のプリズムは、複雑な形状を取ることが難しく、且つ高価なものとなる。   In Patent Document 1, since the trapezoidal prism (inner surface reflecting element as the inner surface reflecting means) for turning the optical path is made of glass, there is no process of generating a large warp in the longitudinal direction in the manufacturing process. However, a trapezoidal prism made by repeating a polishing process of a glass base material is difficult and expensive.

ここで、台形状のプリズムを樹脂製のプリズムとすべく、プラスチックモールド成形にて作製した場合、大きな反りが発生することが予想される。光走査装置において、内面反射素子に大きな反りが発生した場合、主走査方向の倍率ズレ、像面湾曲、走査線曲がり、更には波面収差の捩れによるスポット形状の崩れなどといった光学性能の劣化が生じてしまう。   Here, when the trapezoidal prism is made of a resin mold so as to be a resin-made prism, it is expected that a large warp will occur. In an optical scanning device, when a large amount of warpage occurs in the internal reflection element, optical performance deterioration such as magnification deviation in the main scanning direction, curvature of field, bending of the scanning line, and deformation of the spot shape due to twist of wavefront aberration, etc. occur. End up.

特許文献2では、副走査方向に対称な形状をした走査レンズの上下いずれか一方に突設したリブを設け、そのリブを先に冷却させることで金型内の温度分布の不均一性などの理由から発生する長手方向の反りを一方向に揃えている。即ち、もともと素子自体が対称形状であるものを、わざと非対称な形状とすることで反りを一方向に発生させている。しかし、一方向に揃えたとは言え、反りが発生したままの走査レンズでは所望の光学性能を得ることはできない。そのため反りを矯正するための矯正機構が必要となり、反り矯正機構のスペースのために装置の大型化や高コスト化を招いてしまう。   In Patent Document 2, ribs protruding from either one of the upper and lower sides of a scanning lens having a symmetrical shape in the sub-scanning direction are provided, and the ribs are cooled first, thereby causing uneven temperature distribution in the mold. The warp in the longitudinal direction generated for the reason is aligned in one direction. That is, warping is generated in one direction by intentionally making the element itself symmetric with an asymmetric shape. However, although the scanning lenses are aligned in one direction, a desired optical performance cannot be obtained with a scanning lens that is still warped. For this reason, a correction mechanism for correcting the warp is required, and the space for the warp correction mechanism increases the size and cost of the apparatus.

本発明の目的は、一体的に樹脂で構成した内面反射手段を有する光走査装置およびカラー画像形成装置において、当該内面反射手段の反りを低減することにある。   An object of the present invention is to reduce the warpage of the inner surface reflecting means in the optical scanning device and the color image forming apparatus having the inner surface reflecting means integrally made of resin.

上記目的を達成するため、本発明に係る光走査装置の代表的な構成は、少なくとも1本の光束を出射する光源手段と、前記光源手段から出射した光束を偏向面にて偏向走査する偏向手段と、前記偏向手段で偏向された光束を被走査面に結像させる結像光学系と、を有する光走査装置であって、前記偏向手段で偏向された光束を折り返す内面反射手段を、前記偏向手段と前記被走査面との間の光路中に有し、前記内面反射手段は、前記偏向手段で偏向された光束が入射する第1の透過面と、前記第1の透過面を透過した光束を反射する第1の内面反射面と、前記第1の内面反射面で反射された光束を反射する第2の内面反射面と、前記第2の内面反射面で反射された光束が出射する第2の透過面と、を一体的に樹脂で構成され、前記内面反射手段は、副走査断面内で、前記第1の内面反射面と前記第2の内面反射面とを共に延長した場合の交点周辺の第1領域と、前記第1の透過面と前記第1の内面反射面とを共に延長した場合の交点周辺の第2領域と、前記第2の内面反射面と前記第2の透過面とを共に延長した場合の交点周辺の第3領域の内、少なくとも一つの領域を切り欠いた形状を有することを特徴とする。   In order to achieve the above object, a typical configuration of an optical scanning device according to the present invention includes light source means for emitting at least one light beam, and deflecting means for deflecting and scanning the light beam emitted from the light source means on a deflection surface. And an imaging optical system that forms an image on the surface to be scanned with the light beam deflected by the deflecting means, the inner surface reflecting means for folding back the light beam deflected by the deflecting means, And the inner surface reflecting means includes a first transmitting surface on which the light beam deflected by the deflecting unit is incident and a light beam transmitted through the first transmitting surface. A first inner surface reflecting surface that reflects the first inner surface, a second inner surface reflecting surface that reflects the light beam reflected by the first inner surface reflecting surface, and a first light beam that is reflected by the second inner surface reflecting surface. 2 transmission surfaces are integrally made of resin, and the inner surface reflection hand In the sub-scan section, the first region around the intersection when the first inner reflective surface and the second inner reflective surface are extended together, the first transmission surface and the first inner surface. At least one of the second region around the intersection when the reflection surfaces are extended together and the third region around the intersection when the second inner reflection surface and the second transmission surface are extended together. It has a shape in which a region is cut out.

本発明によれば、一体的に樹脂で構成した内面反射手段を有する光走査装置およびカラー画像形成装置において、当該内面反射手段の反りを低減することができる。   According to the present invention, in the optical scanning device and the color image forming apparatus having the inner surface reflecting means integrally formed of resin, the warpage of the inner surface reflecting means can be reduced.

(A)は本発明の第1の実施形態に係る光走査装置の副走査断面図、(B)は副走査断面における要部拡大図である。(A) is a sub-scan sectional view of the optical scanning device according to the first embodiment of the present invention, and (B) is an enlarged view of a main part in the sub-scan section. (A)は本発明の第1の実施形態に係る光走査装置のブラックに対応した主走査方向の展開図、(B)はシアンに対応した主走査方向の展開図である。(A) is a development view in the main scanning direction corresponding to black of the optical scanning device according to the first embodiment of the present invention, and (B) is a development view in the main scanning direction corresponding to cyan. 様々な内面反射手段としての内面反射素子の副走査断面図である。It is a sub-scan sectional view of an internal reflection element as various internal reflection means. (A)は本発明の第2の実施形態に係る光走査装置の主走査方向中央部の内面反射素子を説明する図、(B)は主走査方向端部の内面反射素子を説明する図である。(A) is a figure explaining the internal reflection element of the main scanning direction center part of the optical scanning device concerning the 2nd Embodiment of this invention, (B) is a figure explaining the internal reflection element of the main scanning direction edge part. is there. (A)は本発明の第3の実施形態に係る光走査装置の主走査方向中央部の内面反射素子を説明する図、(B)は主走査方向端部の内面反射素子を説明する図である。(A) is a figure explaining the internal reflection element of the main scanning direction center part of the optical scanning device concerning the 3rd Embodiment of this invention, (B) is a figure explaining the internal reflection element of the main scanning direction edge part. is there. (A)乃至(E)は本発明の変形例を説明する図である。(A) thru | or (E) is a figure explaining the modification of this invention. 本発明の実施形態に係る光走査装置を搭載したカラー画像形成装置を示す図である。1 is a diagram illustrating a color image forming apparatus equipped with an optical scanning device according to an embodiment of the present invention.

以下、図面を用いて本発明の実施形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

《第1の実施形態》
(カラー画像形成装置)
図7は、本発明の実施形態に係る光走査装置を搭載したカラー画像形成装置の要部概略図である。本実施形態は、光走査装置(光結像光学系)を4個並べ各々並行して像担持体である感光ドラム面上に画像情報を記録するタンデムタイプのカラー画像形成装置である。図7において、60はカラー画像形成装置、12は光走査装置、21、22、23、24は各々像担持体としての感光ドラム、31、32、33、34は各々現像器、51は搬送ベルトである。なお、図7においては現像器で現像されたトナー像を被転写材に転写する転写器(不図示)と、転写されたトナー像を被転写材に定着させる定着器(不図示)とを有している。
<< First Embodiment >>
(Color image forming device)
FIG. 7 is a schematic diagram of a main part of a color image forming apparatus equipped with an optical scanning device according to an embodiment of the present invention. The present embodiment is a tandem type color image forming apparatus in which four optical scanning devices (optical imaging optical systems) are arranged in parallel and image information is recorded on a photosensitive drum surface as an image carrier. In FIG. 7, 60 is a color image forming apparatus, 12 is an optical scanning device, 21, 22, 23 and 24 are photosensitive drums as image carriers, 31, 32, 33 and 34 are developing units, and 51 is a conveyor belt. It is. In FIG. 7, there are a transfer device (not shown) for transferring the toner image developed by the developing device to the transfer material, and a fixing device (not shown) for fixing the transferred toner image to the transfer material. doing.

図7において、カラー画像形成装置60には、パーソナルコンピュータ等の外部機器52からR(レッド)、G(グリーン)、B(ブルー)の各色信号が入力する。これらの色信号は、装置内のプリンタコントローラ53によって、C(シアン),M(マゼンタ),Y(イエロー)、B(ブラック)の各画像データ(ドットデータ)に変換される。これらの画像データは、それぞれ光走査装置12に入力される。そして、光走査装置12からは、各画像データに応じて変調された光ビーム41、42、43、44が射出され、これらの光ビームによって感光ドラム21、22、23、24の感光面が主走査方向に走査される。   In FIG. 7, the color image forming apparatus 60 receives R (red), G (green), and B (blue) color signals from an external device 52 such as a personal computer. These color signals are converted into C (cyan), M (magenta), Y (yellow), and B (black) image data (dot data) by a printer controller 53 in the apparatus. These image data are respectively input to the optical scanning device 12. The optical scanning device 12 emits light beams 41, 42, 43, and 44 that are modulated according to each image data, and the photosensitive surfaces of the photosensitive drums 21, 22, 23, and 24 are mainly formed by these light beams. Scanned in the scanning direction.

本実施形態におけるカラー画像形成装置は、光走査装置12からC(シアン),M(マゼンタ),Y(イエロー)、B(ブラック)の各色に対応した走査光を出射している。そして、各々平行して感光ドラム21、22、23、24面上に画像信号(画像情報)を記録し、カラー画像を高速に印字するものである。   The color image forming apparatus according to the present embodiment emits scanning light corresponding to each color of C (cyan), M (magenta), Y (yellow), and B (black) from the optical scanning device 12. Then, image signals (image information) are recorded on the photosensitive drums 21, 22, 23, and 24 in parallel, and a color image is printed at high speed.

本実施形態におけるカラー画像形成装置は、上述の如く光走査装置12により、各々の画像データに基づいた光ビームを用い、各色の潜像を各々対応する感光ドラム21、22、23、24面上に形成している。その後、記録材に多重転写して1枚のフルカラー画像を形成している。   The color image forming apparatus according to the present embodiment uses the light beam based on each image data by the optical scanning device 12 as described above, and converts the latent images of the respective colors onto the corresponding photosensitive drums 21, 22, 23, and 24, respectively. Is formed. Thereafter, a single full color image is formed by multiple transfer onto a recording material.

外部機器52としては、例えばCCDセンサを備えたカラー画像読取装置が用いられても良い。この場合には、このカラー画像読取装置と、カラー画像形成装置60とで、カラーデジタル複写機が構成される。   As the external device 52, for example, a color image reading device including a CCD sensor may be used. In this case, the color image reading apparatus and the color image forming apparatus 60 constitute a color digital copying machine.

(光走査装置)
図1(A)は、本発明の第1の実施形態に係る光走査装置の副走査断面図である。図1(B)は、内面反射手段としての内面反射素子7周辺の副走査断面の拡大図である。図2(A)は、外側の感光ドラム8Aへ向かう光束RAが通過する結像光学系SAに関する主走査断面図である。また、図2(B)は、内側の感光ドラム8Bへ向かう光束RBが通過する結像光学系SBに関する主走査断面の展開図である。
(Optical scanning device)
FIG. 1A is a sub-scan sectional view of the optical scanning device according to the first embodiment of the present invention. FIG. 1B is an enlarged view of a sub-scanning cross section around the inner surface reflection element 7 as inner surface reflection means. FIG. 2A is a main scanning sectional view of the imaging optical system SA through which the light beam RA traveling toward the outer photosensitive drum 8A passes. FIG. 2B is a development view of the main scanning section regarding the imaging optical system SB through which the light beam RB traveling toward the inner photosensitive drum 8B passes.

以下の本実施形態の説明において、結像光学系の光軸または軸上とは、被走査面の中心を通り、被走査面に垂直方向の軸のことである。副走査方向(Z方向)とは、偏向手段の回転軸と平行な方向である。主走査断面とは、副走査方向を法線とする断面である。主走査方向(Y方向)とは、偏向手段で偏向走査される光束を主走査断面に投射した方向である。副走査断面とは、主走査方向を法線とする断面である。   In the following description of the present embodiment, the optical axis or axis of the imaging optical system is an axis that passes through the center of the scanned surface and is perpendicular to the scanned surface. The sub-scanning direction (Z direction) is a direction parallel to the rotation axis of the deflecting unit. The main scanning section is a section having the normal in the sub scanning direction. The main scanning direction (Y direction) is the direction in which the light beam deflected and scanned by the deflecting means is projected onto the main scanning section. The sub-scanning cross section is a cross section whose normal is the main scanning direction.

図2中、1は少なくとも1本の光束を出射する光源手段であり、例えば半導体レーザー等より成っている。2は開口絞りであり、通過光束を制限してビーム形状を整形している。3はアナモフィックレンズであり、光源手段1から出射された発散光束を主走査断面内において弱収束光に変換し、副走査断面内において光偏向器(偏向手段)5の偏向面5aに主走査方向を長手の線像として結像させるように変換している。なお、アナモフィックレンズ3を、主走査断面内及び副走査断面内において弱収束光に変換するコリメータレンズと、副走査方向のみにパワーを有するシリンドリカルレンズとの2枚の構成としても良い。   In FIG. 2, reference numeral 1 denotes light source means for emitting at least one light beam, which is composed of, for example, a semiconductor laser. Reference numeral 2 denotes an aperture stop that shapes the beam shape by limiting the passing light flux. An anamorphic lens 3 converts the divergent light beam emitted from the light source means 1 into weakly convergent light in the main scanning section, and in the main scanning direction on the deflecting surface 5a of the optical deflector (deflecting means) 5 in the sub-scanning section. Is converted into a long line image. The anamorphic lens 3 may be composed of two lenses, a collimator lens that converts weakly convergent light in the main scanning section and the sub-scanning section, and a cylindrical lens that has power only in the sub-scanning direction.

また、開口絞り2、アナモフィックレンズ3の各要素は、入射光学系(集光光学系)LAを構成している。光偏向器5は、外接円直径20mmの4面より成るポリゴンミラーより成り、駆動手段(不図示)により図中矢印A方向に一定速度で回転している。SA、SBは結像光学系であり、fθ特性を有する結像光学素子としての2枚の結像レンズ(プラスチックレンズ)61、62と、光束RBの光路を折り曲げる内面反射素子7を有している。   Each element of the aperture stop 2 and the anamorphic lens 3 constitutes an incident optical system (condensing optical system) LA. The optical deflector 5 is composed of a polygon mirror having four faces with a circumscribed circle diameter of 20 mm, and is rotated at a constant speed in the direction of arrow A in the figure by a driving means (not shown). SA and SB are imaging optical systems having two imaging lenses (plastic lenses) 61 and 62 as imaging optical elements having fθ characteristics and an internal reflection element 7 that bends the optical path of the light beam RB. Yes.

結像光学系SAは、光偏向器5によって偏向走査された画像情報に基づく光束を主走査断面内において被走査面としての感光ドラム面8A上にスポット状に結像させている。また、結像光学系SAは、副走査断面内において、光偏向器5の偏向面5aと感光ドラム面8Aとの間を光学的に共役関係にすることにより、面倒れ補正を行っている。通常、複数の偏向面が存在する光偏向器(ポリゴンミラー)の場合、偏向面毎に副走査方向への偏向面の倒れ角が異なるため、面倒れ補正光学系を採用することが一般的である。   The imaging optical system SA forms a light beam based on the image information deflected and scanned by the optical deflector 5 in a spot shape on the photosensitive drum surface 8A as the scanned surface in the main scanning section. In addition, the imaging optical system SA performs surface tilt correction by optically conjugating the deflection surface 5a of the optical deflector 5 and the photosensitive drum surface 8A in the sub-scan section. Usually, in the case of an optical deflector (polygon mirror) having a plurality of deflecting surfaces, the tilting angle of the deflecting surface in the sub-scanning direction is different for each deflecting surface. is there.

4は同期検出用の同期検知レンズであり、同期検出素子9の近傍に設けた不図示のスリット面上に同期検出用光束を結像させている。本実施形態では、同期検出素子9からの出力信号を検知して、得られた同期信号を用いて感光ドラム面8A上への画像記録の走査開始位置のタイミングを調整している。なお、同期検出用レンズ4、同期検出素子9の各要素は、同期位置検出系の一要素を構成している。同期位置検出系は、4つの感光ドラムに対応する4つの光束ごとに設けても良いが、部品点数削減のため、本実施形態のように感光ドラム8Aに向かう光束RAのみに設け、残りの光束の走査開始位置を制御することも可能である。   Reference numeral 4 denotes a synchronization detection lens for synchronization detection. The synchronization detection light beam is imaged on a slit surface (not shown) provided in the vicinity of the synchronization detection element 9. In the present embodiment, the output signal from the synchronization detection element 9 is detected, and the timing of the scanning start position of image recording on the photosensitive drum surface 8A is adjusted using the obtained synchronization signal. Each element of the synchronization detection lens 4 and the synchronization detection element 9 constitutes one element of the synchronization position detection system. The synchronization position detection system may be provided for each of the four light beams corresponding to the four photosensitive drums. However, in order to reduce the number of parts, the synchronization position detection system is provided only for the light beam RA directed to the photosensitive drum 8A as in the present embodiment, and the remaining light beams. It is also possible to control the scanning start position.

本実施形態において、画像情報に応じて半導体レーザー1から出射された光束は、主走査断面内で結像光学系の光軸に対し直交方向から偏向面5aに入射している。また、副走査断面内においては、偏向面5aに対し副走査方向に所定の角度(偏向面5aの法線に対して3°)を持って斜入射している。   In the present embodiment, the light beam emitted from the semiconductor laser 1 according to the image information is incident on the deflecting surface 5a from the direction orthogonal to the optical axis of the imaging optical system in the main scanning section. Further, in the sub-scan section, the light is incident obliquely at a predetermined angle (3 ° with respect to the normal line of the deflection surface 5a) in the sub-scanning direction with respect to the deflection surface 5a.

そして、光偏向器5の偏向面(ポリゴンミラー面)5aで偏向走査された光束RBは、結像レンズ61、62を通過し、後述する内面反射素子7で光路が折り返され、感光体ドラム8Bに到達している。また、光束RAは結像レンズ61、62を通過し、内面反射素子7の下側を素通りした後、折り返しミラー10Aにて光路を折り返され、感光体ドラム8Aに到達している。   Then, the light beam RB deflected and scanned by the deflecting surface (polygon mirror surface) 5a of the optical deflector 5 passes through the imaging lenses 61 and 62, the optical path is turned back by the inner surface reflecting element 7 described later, and the photosensitive drum 8B. Has reached. Further, the light beam RA passes through the imaging lenses 61 and 62, passes through the lower side of the inner surface reflection element 7, and then the optical path is folded back by the folding mirror 10A to reach the photosensitive drum 8A.

結像レンズ61、62を通過した光束RA、RBは、感光ドラム面8A、8B上にスポット状に結像され、光偏向器5を矢印A方向に回転させることによって、該感光ドラム面8上を矢印B方向(主走査方向)に等速度で光走査している。これにより記録媒体としての感光ドラム面8A、8B上に画像記録を行っている。   The light beams RA and RB that have passed through the imaging lenses 61 and 62 are imaged in a spot shape on the photosensitive drum surfaces 8A and 8B, and the optical deflector 5 is rotated in the direction of the arrow A, thereby Is scanned at an equal speed in the direction of arrow B (main scanning direction). Thus, image recording is performed on the photosensitive drum surfaces 8A and 8B as recording media.

(内面反射素子)
ここで、図1(B)に示す台形状のプリズムなど、素子内面で全反射し光路を折り返すものを内面反射素子と定義する。光偏向器5から物理的に最も遠い感光ドラム8Aより物理的に近い光偏向器5側の感光ドラム8Bに向かう光束RBは、光路中に配置される内面反射素子7の第1の透過面(入射面)71を透過し、第1の内面反射面72、第2の内面反射面73で反射する。そして、第2の透過面(出射面)74を透過した後、折り返しミラー10Bで光路を折り曲げられ感光ドラム8Bに到達する。
(Internal reflection element)
Here, a trapezoidal prism shown in FIG. 1B or the like that is totally reflected on the inner surface of the element and turns the optical path is defined as an inner surface reflecting element. A light beam RB that travels toward the photosensitive drum 8B on the side of the optical deflector 5 that is physically closer to the photosensitive drum 8A that is physically farthest from the optical deflector 5 is a first transmission surface ( (Incident surface) 71, and is reflected by the first inner surface reflecting surface 72 and the second inner surface reflecting surface 73. Then, after passing through the second transmission surface (emission surface) 74, the optical path is bent by the folding mirror 10B and reaches the photosensitive drum 8B.

ここで、2つの内面反射面72、73は副走査断面内で略直交(88.5°)するように向かい合わせて構成することで、光束RBに関しては、光束の進行方向を略180度回転させることができる。また、第1の内面反射面72、第2の内面反射面73には、アルミや銅などの金属物質を蒸着しても良いが、本実施形態のようにプラスチック材料の全反射面とすると、低コスト化の点で有利である。ここで、全反射面とは全走査領域を走査する全ての光束に対し、内面反射面で全反射するように内面反射面に光束が入射しているような面をいう。   Here, the two inner reflecting surfaces 72 and 73 are configured to face each other so as to be substantially orthogonal (88.5 °) in the sub-scanning section, so that the traveling direction of the light beam is rotated by about 180 degrees. Can be made. In addition, a metal material such as aluminum or copper may be vapor-deposited on the first inner surface reflecting surface 72 and the second inner surface reflecting surface 73. This is advantageous in terms of cost reduction. Here, the total reflection surface is a surface in which the light beam is incident on the inner reflection surface so that all the light beams that scan the entire scanning region are totally reflected by the inner reflection surface.

また、第1、2の透過面、第1、2の内面反射面の4つの光学機能面を本実施形態のように平面で構成すると金型が簡素化されてよい。少なくとも主走査方向に屈折力が無い(ノンパワー)ように光学機能面を構成しておけば、光軸上を走査する光束が全反射すれば、軸外を走査する光束に対しても全反射するようになる。   In addition, the mold may be simplified if the four optical function surfaces of the first and second transmission surfaces and the first and second inner reflection surfaces are configured as a plane as in this embodiment. If the optical function surface is configured so that there is no refractive power in the main scanning direction (non-power), if the light beam scanning on the optical axis is totally reflected, the light beam scanning off-axis is also totally reflected. To come.

図1(B)に示したように光束RBと内面反射面(全反射面)72の面法線との副走査方向の為す角度は、α1=42.45°、光束RBと内面反射面(全反射面)73の面法線との副走査方向の為す角度は、α2=46.05°である。内面反射素子7は、屈折率1.52781の樹脂(プラスチック)材料で一体的に形成されているため、反射面への入射角40.88°以上であると全反射を生じる。   As shown in FIG. 1B, the angle formed by the sub-scanning direction between the light beam RB and the surface normal of the inner reflection surface (total reflection surface) 72 is α1 = 42.45 °, and the light beam RB and the inner reflection surface ( The angle formed by the sub-scanning direction with respect to the surface normal of the (total reflection surface) 73 is α2 = 46.05 °. Since the internal reflection element 7 is integrally formed of a resin (plastic) material having a refractive index of 1.52781, the total reflection occurs when the incident angle to the reflection surface is 40.88 ° or more.

なお、本実施形態のように2つの内面反射面(全反射面)72と73を略直交する平面として構成すると、内面反射素子が副走査方向に傾いたとしても、光線の出射角が変わらないといった効果を有する。   If the two internal reflection surfaces (total reflection surfaces) 72 and 73 are configured as substantially orthogonal planes as in this embodiment, the light emission angle does not change even if the internal reflection element is tilted in the sub-scanning direction. It has such an effect.

また、本実施形態のように第1の透過面(入射面)、第2の透過面(出射面)は独立した鏡面として構成することも(図1(B)において、α3=3.0°)プラスチックモールド成形であれば簡単に作製することができる。更に1つの鏡面(平面)として構成すれば、金型の構成が簡素化されるため、低コスト化の点で有利である。   Further, as in the present embodiment, the first transmission surface (incident surface) and the second transmission surface (output surface) may be configured as independent mirror surfaces (in FIG. 1B, α3 = 3.0 °). If it is plastic mold molding, it can be produced easily. Furthermore, if it is configured as one mirror surface (plane), the configuration of the mold is simplified, which is advantageous in terms of cost reduction.

(切り欠いた形状)
ここで、本願明細書において、切り欠いた形状とは副走査断面で頂点部が台形部に変形された形状をいうものとする。本実施形態では、先ず内面反射素子7を副走査断面内で見たとき、第1の内面反射面と第2の内面反射面とを共に延長した交点周辺の領域A(第1領域)を切り欠いた形状としている。これは、肉厚方向の厚さをより低減し成形サイクルを短縮する事で素子のコストダウンを図る目的で行っている。更に、第1の透過面と第1の内面反射面とを共に延長した交点周辺の領域B(第2領域)及び第2の透過面と第2の内面反射面とを共に延長した交点周辺の領域C(第3領域)を切り欠いた形状としている。
(Notched shape)
Here, in the specification of the present application, the notched shape means a shape in which a vertex portion is transformed into a trapezoidal portion in the sub-scanning cross section. In the present embodiment, when the internal reflection element 7 is first viewed in the sub-scan section, a region A (first region) around the intersection where both the first internal reflection surface and the second internal reflection surface are extended is cut. The shape is lacking. This is done for the purpose of reducing the cost of the device by further reducing the thickness in the thickness direction and shortening the molding cycle. Further, a region B (second region) around the intersection where both the first transmission surface and the first inner reflection surface are extended, and a region around the intersection where both the second transmission surface and the second inner reflection surface are extended. Region C (third region) is cut out.

これにより、後述する反り低減の効果を有する。具体的には、領域Aを切り欠いた際にできる第1の切り欠き面75と第1の内面反射面72との交点と、第1の切り欠き面75と第2の内面反射面73との交点と、の距離をHR=3.0mmとする。また、領域Bを切り欠いた際にできる第2の切り欠き面76と第1の透過面71との交点と、領域Cを切り欠いた際にできる第3の切り欠き面77と第2の透過面74との交点と、の距離をHL=12.6mmとする。   Thereby, it has the effect of the curvature reduction mentioned later. Specifically, the intersection of the first notch surface 75 and the first inner surface reflecting surface 72 formed when the region A is notched, the first notch surface 75 and the second inner surface reflecting surface 73, The distance from the intersection of HR is set to HR = 3.0 mm. Further, the intersection of the second notch surface 76 and the first transmission surface 71 formed when the region B is notched, and the third notch surface 77 and the second notch formed when the region C is notched. The distance from the intersection with the transmission surface 74 is HL = 12.6 mm.

更に、第1の透過面71と第1の内面反射面72とを共に延長した交点と、第2の透過面74と第2の内面反射面73とを共に延長した交点と、の距離をHLoとすると距離HLo=14.59mmとする。すると、12.59/14.59=0.863であり、以下の(式1)を満足する。   Further, the distance between the intersection where both the first transmission surface 71 and the first inner reflection surface 72 are extended and the intersection where both the second transmission surface 74 and the second inner reflection surface 73 are extended is defined as HLo. Then, the distance HLo = 14.59 mm. Then, 12.59 / 14.59 = 0.863, which satisfies the following (Formula 1).

0.65<HL/HLo<0.95 ・・・(式1)
(式1)の下限を超えると、内面反射素子の各端面と光束との距離が近づき過ぎ、屈折率分布の影響などを受ける為、良くない。また、上限を超えると、反り低減の効果が薄くなって良くない。
0.65 <HL / HLo <0.95 (Formula 1)
Exceeding the lower limit of (Equation 1) is not good because the distance between each end face of the inner surface reflection element and the light beam is too close and affected by the refractive index distribution. On the other hand, if the upper limit is exceeded, the effect of reducing warpage becomes thin.

また、各領域を切り欠いた際の内面反射素子の端部と光束の距離は、光束径の半分以上であることが望ましい。例えば、図1(B)に示す通り、第1の切り欠き面75において、内面反射素子端部と光束の距離h1=2.21、光束径w1=1.39とする。同様に、第2の切り欠き面76において、h2=1.51、光束径w2=1.46、第3の切り欠き面77において、h3=1.17、光束径w3=1.20とする。   Further, it is desirable that the distance between the end of the inner surface reflection element and the light beam when each region is cut out is at least half of the light beam diameter. For example, as shown in FIG. 1B, the distance between the end of the inner reflection element and the light beam h1 = 2.21 and the light beam diameter w1 = 1.39 on the first notch surface 75. Similarly, h2 = 1.51 and luminous flux diameter w2 = 1.46 at the second notch surface 76, and h3 = 1.17 and luminous flux diameter w3 = 1.20 at the third notch surface 77. .

内面反射素子7の端部と光束の距離を光束径の半分よりも近づけてしまうと、屈折率分布の影響を受けて耐久による副走査方向のピント位置の変化や、複屈折分布の影響を受けて、副走査方向のスポット径の肥大といった弊害が生じてしまう。本実施形態のように、ほぼ光束径と同等以上の余裕を持たせておけば、これら屈折率分布や複屈折分布の影響を受けずに済む。   If the distance between the end of the inner surface reflection element 7 and the light beam is made smaller than half of the light beam diameter, it is affected by the change in the focus position in the sub-scanning direction due to durability and the influence of the birefringence distribution. As a result, adverse effects such as enlargement of the spot diameter in the sub-scanning direction occur. As in this embodiment, if a margin equal to or greater than the light beam diameter is provided, it is not necessary to be affected by the refractive index distribution and the birefringence distribution.

〔本実施形態の作用・効果〕
次に本発明の特徴部分である内面反射素子7の反りの低減効果について説明を行う。図3に示すTypeAは、副走査断面で3つの頂点部に切り欠きの無い三角形の形状を示している。三角形の底辺14mm、高さ7mm、主走査方向の長さ130mmのサイズとなっている。TypeBは、TypeAに対し、領域A、B、Cをそれぞれ副走査方向2mm切り欠いた形状をしている。TypeCは、TypeBに対し、更に領域A近傍に副走査方向上下に2つの突設部を付加した形状をしている。
[Operations and effects of this embodiment]
Next, the effect of reducing warpage of the internal reflection element 7 which is a characteristic part of the present invention will be described. Type A shown in FIG. 3 shows a triangular shape having no notches at three apexes in the sub-scan section. The triangle has a base of 14 mm, a height of 7 mm, and a length of 130 mm in the main scanning direction. Type B has a shape in which regions A, B, and C are cut away from Type A by 2 mm in the sub-scanning direction. Type C has a shape in which two protruding portions are added in the vicinity of region A in the vertical direction in the sub-scanning direction with respect to Type B.

TypeAの領域Bと領域Cにおける内面反射面と第1、第2の透過面とのなす角は45°と鋭角であり、また領域Aにおける2つの内面反射面のなす角は90°であり、成形過程においてまずこれら鈍角でない部分の冷却が進行する。素子が金型から取り出された際、下底側よりも冷却が遅れる上底側の方に反るように内面反射素子に変形が生じる。これが、反り発生のメカニズムである。よって、素子を均等に冷却することができれば、反りを抑制することが可能となるが、略直交する2つの内面反射面をもつ内面反射素子は形状そのものが非対称であり、どうしても成形過程において素子内で温度分布が付いてしまう。   The angle formed between the inner reflective surface and the first and second transmission surfaces in the region B and the region C of Type A is 45 ° and an acute angle, and the angle formed between the two inner reflective surfaces in the region A is 90 °. In the molding process, first, the cooling of these non-obtuse parts proceeds. When the element is taken out of the mold, the internal reflection element is deformed so as to warp toward the upper bottom side where cooling is delayed from the lower bottom side. This is the mechanism of warpage. Therefore, warping can be suppressed if the element can be cooled evenly, but the internal reflection element having two internal reflection surfaces that are substantially orthogonal to each other is asymmetric in shape, and is inevitably in the element during the molding process. The temperature distribution is attached.

そこで、均等に冷却させることは不可能ではあるが、急激に冷却される箇所を取り去ることで反りの抑制を行うことはできる。更に、内面反射素子の形状を対称形状に近づけるべく、領域A近傍の副走査方向2箇所に突設部を設けたTypeCのような副走査断面の形状であれば、反りは、より小さくなる。   Therefore, although it is impossible to cool evenly, it is possible to suppress warpage by removing a portion that is rapidly cooled. Further, if the shape of the sub-scanning cross section such as Type C in which protrusions are provided at two locations in the sub-scanning direction in the vicinity of the region A in order to make the shape of the inner reflection element close to a symmetrical shape, the warp is further reduced.

TypeBの形状に関し、領域Bを切り欠いた際にできる第2の切り欠き面と第1の透過面との交点と、領域Cを切り欠いた際にできる第3の切り欠き面と第2の透過面との交点と、の距離HL=10mmである。また、第1の透過面と第1の内面反射面とを共に延長した交点と、第2の透過面と第2の内面反射面とを共に延長した交点と、の距離HLo=14mmであり、10/14=0.714で(式1)を満足する。   Regarding the shape of Type B, the intersection of the second cut-out surface and the first transmission surface formed when the region B is cut out, the third cut-out surface formed when the region C is cut out, and the second cut-out surface The distance HL = 10 mm from the intersection with the transmission surface. Further, a distance HLo = 14 mm between an intersection where the first transmission surface and the first inner reflection surface are extended together and an intersection where the second transmission surface and the second inner reflection surface are extended together, 10/14 = 0.714 is satisfied, and (Formula 1) is satisfied.

TypeCの形状に関し、第1の内面反射面と第1の切り欠き面とを延長した交点と、第2の内面反射面と第1の切り欠き面とを延長した交点と、の距離をHR、前記突設部の合計距離をHT(=HT1+HT2)とする。すると、HR=4mm、HT=4mmで、4/4=1.00と以下の(式2)を満足する。   Regarding the shape of Type C, the distance between the intersection of the first inner reflection surface and the first cutout surface and the intersection of the second inner reflection surface and the first cutout surface is HR, The total distance of the protruding portions is HT (= HT1 + HT2). Then, HR = 4 mm, HT = 4 mm, and 4/4 = 1.00, which satisfies the following (Formula 2).

0.50<HT/HR<1.50 ・・・(式2)
(式2)の下限を超えると、反り低減の効果が薄くなって良くない。また、上限を超えると、内面反射素子の内面反射面の面積が狭くなり、走査全領域で光束を反射させることができなくなるので良くない。
0.50 <HT / HR <1.50 (Formula 2)
If the lower limit of (Formula 2) is exceeded, the effect of reducing warpage becomes thin. On the other hand, if the upper limit is exceeded, the area of the inner reflection surface of the inner reflection element becomes narrow, and the light beam cannot be reflected in the entire scanning region, which is not good.

なお、反り低減の別の方法として、内面反射素子内部の冷却が早く進行する側の金型の温度を冷却が遅く進行する側の金型の温度に対して高くなるような温度分布をつける方法がある。しかし、大きな反りが発生する素子形状において、反りを無くすために大きな温度分布をつけてしまうと、金型の固定側と可動側で熱膨張量が異なり、型の合わせ等で不都合を生じてしまう。よって、本実施形態のように極力素子の形状で反りを低減させておくことが重要となる。   As another method for reducing the warpage, a method of providing a temperature distribution such that the temperature of the mold on the side where the internal cooling of the internal reflection element proceeds fast is higher than the temperature of the mold on the side where the cooling proceeds slowly. There is. However, if a large temperature distribution is applied in order to eliminate the warpage in an element shape where a large amount of warpage occurs, the amount of thermal expansion differs between the fixed side and the movable side of the mold, resulting in inconvenience due to mold matching and the like. . Therefore, it is important to reduce the warp with the shape of the element as much as possible as in this embodiment.

《第2の実施形態》
図4(A)は、本発明の第2の実施形態の内面反射素子近傍の光軸上(主走査方向中央部)の副走査断面図である。図4(B)は、内面反射素子近傍の最軸外(主走査方向端部)の副走査断面図である。本実施形態では、第1の実施形態と同様に、偏向手段の偏向面の面法線に対し、光源手段から出射した光束を副走査斜め方向から入射させている。本実施形態では、第1の透過面で透過した光束は第1の内面反射面で+Z方向に光束を折り返している。
<< Second Embodiment >>
FIG. 4A is a sub-scanning sectional view on the optical axis (center portion in the main scanning direction) in the vicinity of the inner surface reflection element according to the second embodiment of the present invention. FIG. 4B is a sub-scanning sectional view of the outermost axis (end in the main scanning direction) near the inner surface reflection element. In the present embodiment, similarly to the first embodiment, the light beam emitted from the light source unit is incident on the surface normal of the deflecting surface of the deflecting unit from the sub-scanning oblique direction. In the present embodiment, the light beam transmitted through the first transmission surface is folded back in the + Z direction by the first inner reflection surface.

これは、光源手段から出射した光の副走査方向の入射方向と同じ側である。このような場合、光軸上の光束よりも軸外の光束の方が、第1の透過面を透過する光束の副走査方向の位置が高く(+Z方向側)なる。同様に、光軸上の光束よりも軸外の光束の方が、第1の内面反射面で反射する光束の副走査方向の位置が高く(+Z方向側)なる。   This is the same side as the incident direction in the sub-scanning direction of the light emitted from the light source means. In such a case, the off-axis light beam has a higher position in the sub-scanning direction (+ Z direction side) of the light beam that passes through the first transmission surface than the light beam on the optical axis. Similarly, the off-axis light beam has a higher position in the sub-scanning direction (+ Z direction side) of the light beam reflected by the first inner reflection surface than the light beam on the optical axis.

内面反射素子としては、光束が通過していない余分な領域を極力削った方が、成形サイクル対して有利である。そのため、内面反射素子の主走査方向端部と主走査方向中央部とで、切り欠いた形状を異なるようにしている。つまり、第1の内面反射面と第1の切り欠き面との交点と、第2の内面反射面と第1の切り欠き面との交点と、の距離HRを、該内面反射素子の主走査方向端部(HRe)よりも主走査方向中央部(HRc)の方が長くなるようにしている。即ち、軸上の方をより大きく切り欠いているようにしている。   As the internal reflection element, it is more advantageous for the molding cycle to cut off the extra area through which the luminous flux does not pass as much as possible. For this reason, the notched shape is made different between the end portion in the main scanning direction of the internal reflection element and the central portion in the main scanning direction. That is, the distance HR between the intersection between the first inner reflection surface and the first notch surface and the intersection between the second inner reflection surface and the first notch surface is determined as the main scanning of the inner reflection element. The central part (HRc) in the main scanning direction is made longer than the direction end part (HRe). That is, a larger notch is formed on the axis.

また、内面反射素子としては、光束が通過していない余分な領域を極力削った方が、反り低減に対して有利であるため、第1の透過面と第2の切り欠き面の交点と、第2の透過面と第3の切り欠き面の交点と、の距離を主走査方向で変化させるようにしている。つまり、内面反射素子の主走査方向端部と主走査方向中央部とで、切り欠いた形状を異ならせるようにしている。即ち、距離HLを該内面反射素子の主走査方向端部(HLe)よりも主走査方向中央(HLc)の方が長くなるように、軸外の方をより大きく切り欠いている。   In addition, as an internal reflection element, it is advantageous for reducing warpage to cut as much as possible an extra region through which the light flux does not pass, and therefore, the intersection of the first transmission surface and the second cut-out surface, The distance between the intersection of the second transmission surface and the third notch surface is changed in the main scanning direction. That is, the notched shape is made different between the end portion in the main scanning direction of the inner surface reflection element and the central portion in the main scanning direction. In other words, the off-axis direction is cut larger so that the distance HL is longer at the center (HLc) in the main scanning direction than at the main scanning direction end (HLe) of the inner surface reflecting element.

そして、それぞれの像高における内面反射素子の副走査断面形状において、(式1)を満足するようにしている。軸上断面に対しては、HLc=12.59mm、HLo=14.59mm、であるので、HLc/HLo=0.863となる。また、最軸外断面に対しては、HLe=11.38mm、HLo=14.59mm、であるので、HLe/HLo=0.780となる。   The sub-scanning sectional shape of the internal reflection element at each image height satisfies (Equation 1). For the axial cross section, HLc = 12.59 mm and HLo = 14.59 mm, so HLc / HLo = 0.863. For the outermost axis cross section, HLe = 11.38 mm and HLo = 14.59 mm, so that HLe / HLo = 0.780.

本実施形態のように、光源から出射した光束が副走査斜め方向に偏向手段に入射している光学系の場合、切り欠く量を主走査方向に変化させ、内面反射素子の余分な領域を極力切り落とすことで、更なる成形サイクルの短縮と反り低減の効果が得られる。   In the case of an optical system in which the light beam emitted from the light source is incident on the deflecting means in the sub-scanning oblique direction as in this embodiment, the amount of notch is changed in the main scanning direction, and the extra area of the internal reflection element is made as much as possible. By cutting off, the effect of further shortening the molding cycle and reducing warpage can be obtained.

《第3の実施形態》
図5(A)は、本発明の第3の実施形態の内面反射素子近傍の光軸上(主走査方向中央部)の副走査断面図である。また図5(B)は、内面反射素子近傍の最軸外(主走査方向端部)の副走査断面図である。本実施形態では、第1の実施形態と同様に、偏向手段の偏向面の面法線に対し、光源手段から出射した光束を副走査斜め方向から入射させている。本実施形態では、第1の透過面で透過した光束は第1の内面反射面で−Z方向に光束を折り返している。これは、光源手段から出射した光の副走査方向の入射方向と逆側である。
<< Third Embodiment >>
FIG. 5A is a sub-scanning sectional view on the optical axis (center portion in the main scanning direction) in the vicinity of the inner surface reflection element according to the third embodiment of the present invention. FIG. 5B is a sub-scanning cross-sectional view of the outermost axis (end in the main scanning direction) near the inner surface reflection element. In the present embodiment, similarly to the first embodiment, the light beam emitted from the light source unit is incident on the surface normal of the deflecting surface of the deflecting unit from the sub-scanning oblique direction. In the present embodiment, the light beam transmitted through the first transmission surface is folded back in the −Z direction by the first inner reflection surface. This is opposite to the incident direction of the light emitted from the light source means in the sub-scanning direction.

このような場合、光軸上の光束よりも軸外の光束の方が、第1の透過面を透過する光束の副走査方向の位置が高く(+Z方向側)なる。同様に、光軸上の光束よりも軸外の光束の方が、第1の内面反射面で反射する光束の副走査方向の位置が高く(+Z方向側)なる。   In such a case, the off-axis light beam has a higher position in the sub-scanning direction (+ Z direction side) of the light beam that passes through the first transmission surface than the light beam on the optical axis. Similarly, the off-axis light beam has a higher position in the sub-scanning direction (+ Z direction side) of the light beam reflected by the first inner reflection surface than the light beam on the optical axis.

内面反射素子としては光束が通過していない余分な領域を極力削った方が、成形サイクル対して有利であるため、第1の内面反射面と第1の切り欠き面との交点と、第2の内面反射面と第1の切り欠き面との交点と、の距離HRを主走査方向で変化させる。つまり、内面反射素子の主走査方向端部と主走査方向中央部とで、切り欠いた形状を異ならせる。即ち、内面反射素子の主走査方向端部(HRe)よりも主走査方向中央部(HRc)の方が短くなるように、軸外の方をより大きく切り欠いている。   As an internal reflection element, it is more advantageous for the molding cycle to cut off an extra region through which the light beam does not pass. Therefore, the intersection between the first internal reflection surface and the first notch surface, The distance HR between the intersection of the inner reflection surface and the first notch surface is changed in the main scanning direction. That is, the notched shape is made different between the end portion in the main scanning direction of the inner surface reflection element and the central portion in the main scanning direction. That is, the off-axis side is cut out more greatly so that the main scanning direction center portion (HRc) is shorter than the main scanning direction end portion (HRe) of the internal reflection element.

また、内面反射素子としては光束が通過していない余分な領域を極力削った方が、反り低減に対して有利であるため、第1の透過面と第2の切り欠き面の交点と、第2の透過面と第3の切り欠き面の交点と、の距離はHLを主走査方向で変化させる。つまり、内面反射素子の主走査方向端部と主走査方向中央部とで、切り欠いた形状を異ならせる。即ち、内面反射素子の主走査方向端部(HLe)よりも主走査方向中央部(HLc)の方が短くなるように、軸上の方をより大きく切り欠いている。   Further, as an internal reflection element, it is advantageous for reducing warpage to cut as much as possible an extra region through which the light beam does not pass. Therefore, the intersection of the first transmission surface and the second notch surface, The distance between the intersection of the second transmission surface and the third notch surface changes HL in the main scanning direction. That is, the notched shape is made different between the end portion in the main scanning direction of the inner surface reflection element and the central portion in the main scanning direction. In other words, the axially larger portion is cut out so that the central portion (HLc) in the main scanning direction is shorter than the end portion (HLe) in the main scanning direction of the internal reflection element.

更に、それぞれの像高における内面反射素子の副走査断面形状においても(式1)を満足するようにしている。軸上断面に対しては、HLc=16.49mm、HLo=20.98mm、であるので、HLc/HLo=0.786となる。また、最軸外断面に対しては、HLe=18.30mm、HLo=20.98mm、であるので、HLe/HLo=0.872となる。   Furthermore, (Formula 1) is also satisfied in the sub-scanning cross-sectional shape of the internal reflection element at each image height. For the axial section, HLc = 16.49 mm and HLo = 20.98 mm, so HLc / HLo = 0.786. For the outermost axis cross section, since HLe = 18.30 mm and HLo = 20.98 mm, HLe / HLo = 0.877.

本実施形態のように、光源から出射した光束が副走査斜め方向に偏向手段に入射している光学系の場合、切り欠く量を主走査方向に変化させ、内面反射素子の余分な領域を極力切り落とすことで、更なる成形サイクルの短縮と反り低減の効果が得られる。   In the case of an optical system in which the light beam emitted from the light source is incident on the deflecting means in the sub-scanning oblique direction as in this embodiment, the amount of notch is changed in the main scanning direction, and the extra area of the internal reflection element is made as much as possible. By cutting off, the effect of further shortening the molding cycle and reducing warpage can be obtained.

(金型および成形法)
以上説明した樹脂製の内面反射素子7を成形するには、先ず金型が、内面反射素子7の形状(凸)に対して相補的な形状(凹)として予め準備される。即ち、内面反射素子7は上述した実施形態で述べたように領域A乃至Cが切り欠いた形状となるが、金型は領域A乃至Cにおいて頂点部ではなく台形部として形成される。このような金型に樹脂を流し込み、冷却させ、冷却後に金型が外されて、一体成形された内面反射素子7が取り出される。
(Mold and molding method)
In order to mold the resin-made internal reflection element 7 described above, first, a mold is prepared in advance as a shape (concave) complementary to the shape (convex) of the internal reflection element 7. That is, the inner surface reflection element 7 has a shape in which the regions A to C are cut out as described in the above-described embodiment, but the mold is formed as a trapezoidal portion instead of the apex portion in the regions A to C. The resin is poured into such a mold and cooled, and after cooling, the mold is removed, and the integrally formed internal reflection element 7 is taken out.

(変形例)
上述した実施形態においては、領域A(第1領域)、領域B(第2領域)、領域C(第3領域)を共に切り欠いた形状としたが、本発明はこれに限らず、これら3つの領域の内、少なくとも一つの領域を切り欠いた形状とするようにしても良い。図6(A)に示す形態では、領域Aを切り欠かずに領域Bと領域Cのみ切り欠いた形状としている。また図6(B)に示す形態では、図6(A)に示す形態に対し、領域Aに上下の突設部を付加した形態としている。
(Modification)
In the above-described embodiment, the region A (first region), the region B (second region), and the region C (third region) are cut out, but the present invention is not limited to this, and the three Of the two regions, at least one region may be cut out. In the form shown in FIG. 6A, the region A is not cut out, and only the region B and the region C are cut out. In the form shown in FIG. 6B, an upper and lower projecting portion is added to the area A in contrast to the form shown in FIG.

また図6(C)に示す形態では、領域A、領域Cを切り欠かずに領域Bのみ切り欠いた形状とし、領域Cに突設部を付加した形態としている。更に図6(D)に示す形態では、図6(C)に示す形態に対し、領域Aに上下の突設部を付加した形態としている。また図6(E)に示す形態では、領域A、領域Bを切り欠き、領域Cを切り欠かずに領域Cに突設部を付加した形態としている。   In the form shown in FIG. 6C, the area A and the area C are not cut out, but only the area B is cut out, and a protruding portion is added to the area C. Further, in the form shown in FIG. 6D, an upper and lower projecting portion is added to the region A with respect to the form shown in FIG. In the form shown in FIG. 6E, the area A and the area B are cut out, and a protruding portion is added to the area C without cutting out the area C.

これら変形例において、上述した実施形態と同様に、内面反射素子は副走査断面内で鋭角部分を備えない形状となっている。   In these modifications, as in the above-described embodiment, the internal reflection element has a shape that does not include an acute angle portion in the sub-scanning cross section.

1・・光源手段、5・・光偏向器(偏向手段)、61,62・・結像レンズ(結像光学系)、7・・内面反射素子、71・・第1の透過面(入射面)、72・・第1の内面反射面、73・・第2の内面反射面、74・・第2の透過面(出射面)、領域A・・第1領域、領域B・・第2領域、領域C・・第3領域 1 ··· Light source means, 5 ··· Optical deflector (deflection means), 61, 62 ·· Imaging lens (imaging optical system), 7 · · Internal reflection element, 71 · · · First transmission surface (incident surface) ), 72... First inner surface reflecting surface, 73... Second inner surface reflecting surface, 74... Second transmitting surface (outgoing surface), Region A .. First region, Region B. , Region C ··· Third region

Claims (13)

少なくとも1本の光束を出射する光源手段と、前記光源手段から出射した光束を偏向面にて偏向走査する偏向手段と、前記偏向手段で偏向された光束を被走査面に結像させる結像光学系と、を有する光走査装置であって、
前記偏向手段で偏向された光束を折り返す内面反射手段を、前記偏向手段と前記被走査面との間の光路中に有し、
前記内面反射手段は、前記偏向手段で偏向された光束が入射する第1の透過面と、前記第1の透過面を透過した光束を反射する第1の内面反射面と、前記第1の内面反射面で反射された光束を反射する第2の内面反射面と、前記第2の内面反射面で反射された光束が出射する第2の透過面と、を一体的に樹脂で構成され、
前記内面反射手段は、副走査断面内で、前記第1の内面反射面と前記第2の内面反射面とを共に延長した場合の交点周辺の第1領域と、前記第1の透過面と前記第1の内面反射面とを共に延長した場合の交点周辺の第2領域と、前記第2の内面反射面と前記第2の透過面とを共に延長した場合の交点周辺の第3領域の内、少なくとも一つの領域を切り欠いた形状を有することを特徴とする光走査装置。
Light source means for emitting at least one light beam, deflection means for deflecting and scanning the light beam emitted from the light source means on a deflection surface, and imaging optics for imaging the light beam deflected by the deflection means on the surface to be scanned An optical scanning device having a system,
An inner surface reflecting means for folding the light beam deflected by the deflecting means in an optical path between the deflecting means and the scanned surface;
The inner surface reflecting means includes a first transmitting surface on which the light beam deflected by the deflecting means is incident, a first inner surface reflecting surface that reflects the light beam transmitted through the first transmitting surface, and the first inner surface. The second inner surface reflecting surface that reflects the light beam reflected by the reflecting surface and the second transmission surface from which the light beam reflected by the second inner surface reflecting surface is integrally formed of resin,
The inner surface reflecting means includes a first region around an intersection when the first inner surface reflecting surface and the second inner surface reflecting surface are extended in the sub-scan section, the first transmitting surface, and the first transmitting surface. A second region around the intersection when the first inner reflection surface is extended together and a third region around the intersection when the second inner reflection surface and the second transmission surface are both extended. An optical scanning device having a shape in which at least one region is cut out.
前記内面反射手段は、前記副走査断面内で、鋭角部分を備えないことを特徴とする請求項1に記載の光走査装置。   The optical scanning device according to claim 1, wherein the inner surface reflecting means does not include an acute angle portion in the sub-scanning cross section. 前記内面反射手段は、前記第1領域、前記第2領域、前記第3領域のいずれかの周辺に副走査方向に突設する突設部を付加したことを特徴とする請求項1または2に記載の光走査装置。   3. The projecting portion according to claim 1, wherein the inner surface reflecting means includes a projecting portion projecting in the sub-scanning direction around any one of the first region, the second region, and the third region. The optical scanning device described. 前記第1領域、前記第2領域、前記第3領域のいずれかの領域において、主走査方向の中央部と端部とで、前記切り欠いた形状が異なることを特徴とする請求項1乃至3のいずれか1項に記載の光走査装置。   4. The cutout shape is different between a central portion and an end portion in the main scanning direction in any one of the first region, the second region, and the third region. The optical scanning device according to any one of the above. 前記第1領域を切り欠いた形状における面である第1の切り欠き面、前記第2領域を切り欠いた形状における面である第2の切り欠き面、前記第3領域を切り欠いた形状における面である第3の切り欠き面、に対し、第1の透過面と第2の切り欠き面の交点と第2の透過面と第3の切り欠き面の交点との距離をHL、第1の透過面と第1の内面反射面を共に延長した場合の交点と第2の透過面と第2の内面反射面を共に延長した場合の交点との距離をHLoとするとき、以下の式を満たすことを特徴とする請求項1乃至4のいずれか1項に記載の光走査装置。
0.65 < HL/HLo < 0.95
In a first notch surface that is a surface in a shape in which the first region is notched, a second notch surface that is a surface in a shape in which the second region is notched, and in a shape in which the third region is notched The distance between the intersection of the first transmission surface and the second cutout surface and the intersection of the second transmission surface and the third cutout surface with respect to the third cutout surface, which is a surface, is HL, When the distance between the intersection when both the transmission surface and the first inner reflection surface are extended and the intersection when the second transmission surface and the second inner reflection surface are both extended is HLo, the following equation is obtained: The optical scanning device according to claim 1, wherein the optical scanning device is satisfied.
0.65 <HL / HLo <0.95
前記副走査断面内で、前記第1の内面反射面と第1の切り欠き面を共に延長した場合の交点と第2の内面反射面と第1の切り欠き面を共に延長した場合の交点との距離をHR、前記第1領域、前記第2領域、前記第3領域のいずれかの周辺において副走査方向に突設する突設部における副走査方向の合計距離をHTとするとき、
0.50 < HT/HR < 1.50
を満足することを特徴とする請求項5に記載の光走査装置。
In the sub-scanning section, an intersection when the first inner reflection surface and the first cutout surface are extended together and an intersection when the second inner reflection surface and the first cutout surface are extended together HR, and the total distance in the sub-scanning direction of the projecting portion projecting in the sub-scanning direction around any one of the first region, the second region, and the third region is HT,
0.50 <HT / HR <1.50
The optical scanning device according to claim 5, wherein:
前記光源手段から出射した少なくとも1本の光束は、前記偏向面の面法線に対し副走査斜め方向から偏向手段に入射しており、
副走査断面内において、前記内面反射手段の前記第1の透過面を透過した光束が、第1の内面反射面で反射される方向と、前記光源手段から出射した光束が偏向手段に向かう方向とが同じ側の場合、
前記HRは、前記内面反射手段の主走査方向端部よりも主走査方向中央部の方が長いことを特徴とする請求項6に記載の光走査装置。
At least one light beam emitted from the light source means is incident on the deflection means from a sub-scanning oblique direction with respect to the surface normal of the deflection surface,
In the sub-scan section, a direction in which the light beam transmitted through the first transmission surface of the inner surface reflection means is reflected by the first inner surface reflection surface, and a direction in which the light beam emitted from the light source means heads toward the deflection means. Are on the same side,
7. The optical scanning device according to claim 6, wherein the HR is longer in a central portion in the main scanning direction than in an end portion in the main scanning direction of the inner surface reflecting means.
前記光源手段から出射した少なくとも1本の光束は偏向面の面法線に対し副走査斜め方向から偏向手段に入射しており、
副走査断面内において、前記内面反射手段の第1の透過面を透過した光束が、第1の内面反射面で反射される方向と、前記光源手段から出射した光束が偏向手段に向かう方向とが同じ側の場合、
前記HLは、前記内面反射手段の主走査方向端部よりも主走査方向中央部の方が長いことを特徴とする請求項5または6に記載の光走査装置。
At least one light beam emitted from the light source means is incident on the deflection means from a sub-scanning oblique direction with respect to the surface normal of the deflection surface,
In the sub-scan section, the direction in which the light beam transmitted through the first transmission surface of the inner surface reflection means is reflected by the first inner surface reflection surface and the direction in which the light beam emitted from the light source means heads toward the deflection means. On the same side,
7. The optical scanning device according to claim 5, wherein the HL has a longer central portion in the main scanning direction than an end portion in the main scanning direction of the inner surface reflecting means.
前記光源手段から出射した少なくとも1本の光束は偏向面の面法線に対し副走査斜め方向から偏向手段に入射しており、
副走査断面内において、前記内面反射手段の第1の透過面を透過した光束が、第1の内面反射面で反射される方向と、前記光源手段から出射した光束が偏向手段に向かう方向とが逆側の場合、
前記HRは、前記内面反射手段の主走査方向端部よりも主走査方向中央部の方が短いことを特徴とする請求項6に記載の光走査装置。
At least one light beam emitted from the light source means is incident on the deflection means from a sub-scanning oblique direction with respect to the surface normal of the deflection surface,
In the sub-scan section, the direction in which the light beam transmitted through the first transmission surface of the inner surface reflection means is reflected by the first inner surface reflection surface and the direction in which the light beam emitted from the light source means heads toward the deflection means. On the other side,
7. The optical scanning device according to claim 6, wherein the HR is shorter in a central portion in the main scanning direction than in an end portion in the main scanning direction of the inner surface reflecting means.
前記光源手段から出射した少なくとも1本の光束は偏向面の面法線に対し副走査斜め方向から偏向手段に入射しており、
副走査断面内において、前記内面反射手段の第1の透過面を透過した光束が、第1の内面反射面で反射される方向と、前記光源手段から出射した光束が偏向手段に向かう方向が逆側の場合、
前記HLは、前記内面反射手段の主走査方向端部よりも主走査方向中央部の方が短いことを特徴とする請求項5または6に記載の光走査装置。
At least one light beam emitted from the light source means is incident on the deflection means from a sub-scanning oblique direction with respect to the surface normal of the deflection surface,
In the sub-scan section, the direction in which the light beam transmitted through the first transmission surface of the inner surface reflection means is reflected by the first inner surface reflection surface is opposite to the direction in which the light beam emitted from the light source means is directed to the deflection means. On the side,
7. The optical scanning device according to claim 5, wherein the HL has a shorter central portion in the main scanning direction than an end portion in the main scanning direction of the inner surface reflecting means.
前記第1の透過面、前記第1の内面反射面、前記第2の内面反射面、前記第2の透過面は、少なくとも主走査方向は屈折力が無い面であることを特徴とする請求項1乃至10のいずれか1項に記載の光走査装置。   The first transmission surface, the first inner surface reflection surface, the second inner surface reflection surface, and the second transmission surface are surfaces having no refractive power at least in the main scanning direction. The optical scanning device according to any one of 1 to 10. 前記内面反射手段の前記第1の内面反射面および前記第2の内面反射面は、全反射面であることを特徴とする請求項1乃至11のいずれか1項に記載の光走査装置。   12. The optical scanning device according to claim 1, wherein the first inner surface reflecting surface and the second inner surface reflecting surface of the inner surface reflecting means are total reflection surfaces. 請求項1乃至12のいずれか1項に記載の光走査装置と、複数の前記被走査面に各々配置された複数の感光体と、を有するカラー画像形成装置。   A color image forming apparatus comprising: the optical scanning device according to claim 1; and a plurality of photosensitive members respectively disposed on the plurality of scanned surfaces.
JP2012177117A 2012-08-09 2012-08-09 Optical scanner and color image forming apparatus Pending JP2014035476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012177117A JP2014035476A (en) 2012-08-09 2012-08-09 Optical scanner and color image forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012177117A JP2014035476A (en) 2012-08-09 2012-08-09 Optical scanner and color image forming apparatus

Publications (1)

Publication Number Publication Date
JP2014035476A true JP2014035476A (en) 2014-02-24

Family

ID=50284485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012177117A Pending JP2014035476A (en) 2012-08-09 2012-08-09 Optical scanner and color image forming apparatus

Country Status (1)

Country Link
JP (1) JP2014035476A (en)

Similar Documents

Publication Publication Date Title
JP5094318B2 (en) Optical scanning device and image forming apparatus using the same
US9658449B2 (en) Light scanning apparatus and image forming apparatus having the same
JP5171029B2 (en) Optical scanning device and image forming apparatus using the same
JP5100018B2 (en) Optical scanning device and image forming apparatus using the same
JP2010026055A (en) Optical scanner and image forming apparatus using the same
JP5950769B2 (en) Optical scanning device and image forming apparatus using the same
JP2006330688A (en) Optical scanner and image forming apparatus using the same
JP2009003393A (en) Optical scanner and image forming device provided with same
JP2005134624A (en) Optical scanner and image forming apparatus using same
JP2008170487A (en) Optical scanner and image forming apparatus using the same
JP6132701B2 (en) Optical scanning device and image forming apparatus using the same
US7526145B2 (en) Optical scanning device and image forming apparatus using the same
JP2006171419A (en) Optical scanner and image forming apparatus using the same
JP2018101028A (en) Optical scanner and image forming apparatus using the same
JP2009271384A (en) Optical scanning apparatus and image forming apparatus using the same
JP4455309B2 (en) Optical scanning device and image forming apparatus using the same
JP4902279B2 (en) Image forming apparatus
JP2015052727A (en) Optical scanning device and image forming device having the same
JP2014035476A (en) Optical scanner and color image forming apparatus
JP2014016404A (en) Optical scanner and color image forming apparatus
JP5882692B2 (en) Optical scanning apparatus and image forming apparatus
JP2010049059A (en) Scanning optical apparatus and image forming apparatus using the same
JP2014006277A (en) Optical scanner and image forming apparatus
JP2012128085A (en) Optical scanner and image forming apparatus including the same
JP2017207539A (en) Optical scanner and image forming apparatus using the same