JP2014034979A - Operating force transmission mechanism - Google Patents

Operating force transmission mechanism Download PDF

Info

Publication number
JP2014034979A
JP2014034979A JP2012174698A JP2012174698A JP2014034979A JP 2014034979 A JP2014034979 A JP 2014034979A JP 2012174698 A JP2012174698 A JP 2012174698A JP 2012174698 A JP2012174698 A JP 2012174698A JP 2014034979 A JP2014034979 A JP 2014034979A
Authority
JP
Japan
Prior art keywords
operating force
transmission mechanism
transmission
transmission member
force transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012174698A
Other languages
Japanese (ja)
Other versions
JP6068041B2 (en
Inventor
Kohei Kitagawa
浩平 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Alpha Co Ltd
Original Assignee
Japan Alpha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Alpha Co Ltd filed Critical Japan Alpha Co Ltd
Priority to JP2012174698A priority Critical patent/JP6068041B2/en
Publication of JP2014034979A publication Critical patent/JP2014034979A/en
Application granted granted Critical
Publication of JP6068041B2 publication Critical patent/JP6068041B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sink And Installation For Waste Water (AREA)
  • Flexible Shafts (AREA)

Abstract

PROBLEM TO BE SOLVED: To diversify the structure of an operating force transmission mechanism comprising a conduit and an inner material.SOLUTION: An operating force transmission mechanism comprises: a transmission member 10 made up of a closed coil spring; and an inner material 20 inserted thereinto and made up of a stranded wire. The inner material 20 is fixed to a portion to which the operating force transmission mechanism is attached. The transmission member 10 transmits an operating force by moving in the axial direction of the inner material 20. Operation members 31, 32 for applying an operating force are attached to the transmission member 10. Insertion holes 31a, 32a for inserting the transmission member 10 is formed in the operation members 31, 32, and the transmission member 10 is fixed by forming the inner surfaces of the insertion holes 31a, 32a into uneven surfaces matched with the uneven shape of the outer surface of the transmission member 10. Thus, when the transmission member 10 moves with respect to the inner material 20, the movement of the operation member 31 is transmitted to the other operation member 32, and the operation force transmission mechanism having a structure different from a conventional one can be configured.

Description

本発明は、作動力を伝達するための作動力伝達機構に関する。   The present invention relates to an operating force transmission mechanism for transmitting an operating force.

浴槽の排水栓装置等では、排水栓と別に設けられた操作部による遠隔操作で排水栓を開閉する機構が用いられることがある。特許文献1は、かかる排水栓装置の例を開示する。   In a drain plug device or the like for a bathtub, a mechanism for opening and closing the drain plug by a remote operation by an operation unit provided separately from the drain plug may be used. Patent Document 1 discloses an example of such a drain plug device.

図1は従来技術における排水栓装置4の構成を示す説明図である。排水栓装置4は、排水口装置1と操作部2で構成される。排水口装置1は、浴槽100の底部101に取り付けられており、排水口104を開閉する装置である。排水口装置1の開閉操作をするための操作部2は、浴槽100の側壁102の上部に張り出したフランジ部103に取り付けられている。
操作部2と排水口装置1との間は、作動力を伝達するための作動力伝達機構3で連結されている。この作動力伝達機構3は、樹脂製のチューブの内部に密着コイルバネが挿入された構造となっている。密着コイルバネの両端はそれぞれ可動部、即ち、操作部2の操作ボタンおよび排水口装置1の排水栓にラッチ機構等を介して間接的に取り付けられている。樹脂製チューブは、操作時に動かないよう、操作部2および排水口装置1に固定されている。
操作部2の操作ボタンを押すと、その作動力が、伝達機構3の密着コイルバネを介して排水口装置1に伝達され、排水栓を開閉する。
FIG. 1 is an explanatory view showing a configuration of a drain plug device 4 in the prior art. The drain plug device 4 includes a drain port device 1 and an operation unit 2. The drain port device 1 is attached to the bottom 101 of the bathtub 100 and is a device that opens and closes the drain port 104. An operation unit 2 for opening and closing the drain port device 1 is attached to a flange portion 103 that projects from the upper portion of the side wall 102 of the bathtub 100.
The operation unit 2 and the drain port device 1 are connected by an operating force transmission mechanism 3 for transmitting an operating force. The operating force transmission mechanism 3 has a structure in which a close coil spring is inserted into a resin tube. Both ends of the contact coil spring are indirectly attached to the movable part, that is, the operation button of the operation unit 2 and the drain plug of the drain port device 1 via a latch mechanism or the like. The resin tube is fixed to the operation unit 2 and the drain apparatus 1 so as not to move during operation.
When the operation button of the operation unit 2 is pressed, the operating force is transmitted to the drain port device 1 via the close contact coil spring of the transmission mechanism 3 to open and close the drain plug.

作動力伝達機構には、特許文献2に開示されているようにアウターケーシングが操作部側でインナーケーブルに対して相対的に移動する機構もある。   As disclosed in Patent Document 2, the operating force transmission mechanism includes a mechanism in which the outer casing moves relative to the inner cable on the operation unit side.

特開2011−246903号公報JP 2011-246903 A 特開2012−12833号公報JP 2012-12833 A

作動力を伝達すべき装置および部位は、多様であり、作動力伝達機構に要求される仕様も多様である。従って、従来の作動力伝達機構では、十分に要求に応えられない場合もあった。
本発明は、かかる課題に鑑み、従来と異なる構造の作動力伝達機構を提供することを目的とする。
The devices and parts to which the operating force is to be transmitted are diverse, and the specifications required for the operating force transmission mechanism are also various. Therefore, there are cases where the conventional operating force transmission mechanism cannot sufficiently meet the requirements.
The present invention has been made in view of the above problems, and an object thereof is to provide an operating force transmission mechanism having a structure different from the conventional one.

本発明は、
作動力を伝達する作動力伝達機構であって、
作動力を伝達するための可撓性のある管状の伝達部材と、
固定部材に固定され、少なくとも一部が前記伝達部材の内部に挿入されることで、該伝達部材を可動に支持する支持部材と
を備える作動力伝達機構である。
本発明の作動力伝達機構では、支持部材に支持された伝達部材が移動することで、伝達部材の一端から他端に作動力を伝達することができる。従来技術では、樹脂製チューブ内に挿入された密着コイルバネ等が移動するのに対し、本発明では、支持部材の外側に位置する伝達部材が移動するのである。外側に位置する部材が移動するため、例えば、伝達部材の複数箇所に付属部材を固定することによって、複数箇所に分散して作動力を伝達することが容易に実現できるなど、従来に比して作動力の伝達態様を多様化することができる。
支持部材は、ワイヤ、支柱などを用いることができる。支持部材は、必ずしも伝達部材の全体を貫通している必要はなく、伝達部材の両端からそれぞれ挿入される所定長さのボルト等としてもよい。伝達部材の可動範囲よりも長いボルトを用いれば、十分、支持部材として機能し得る。
本発明において、支持部材および伝達部材は可撓性を有する必要はないが、可撓性を有する材料を用いれば、作動力の伝達経路を柔軟に設定できる利点がある。
The present invention
An actuation force transmission mechanism for transmitting actuation force,
A flexible tubular transmission member for transmitting an actuation force;
And a support member that movably supports the transmission member by being fixed to the fixing member and having at least a portion inserted into the transmission member.
In the operating force transmission mechanism of the present invention, the operating force can be transmitted from one end of the transmitting member to the other end by moving the transmitting member supported by the support member. In the prior art, the close contact coil spring or the like inserted into the resin tube moves, whereas in the present invention, the transmission member positioned outside the support member moves. Because the member located on the outside moves, for example, by fixing the attachment member to multiple locations of the transmission member, it is possible to easily distribute the operating force in multiple locations, and so on, compared to the conventional case The transmission mode of the operating force can be diversified.
A wire, a support | pillar, etc. can be used for a supporting member. The support member does not necessarily pass through the entire transmission member, and may be a bolt having a predetermined length inserted from both ends of the transmission member. If a bolt longer than the movable range of the transmission member is used, it can sufficiently function as a support member.
In the present invention, the support member and the transmission member do not need to have flexibility, but if a material having flexibility is used, there is an advantage that the transmission path of the operating force can be set flexibly.

支持部材と伝達部材の径は種々の設定が可能であるが、支持部材の外径は、円滑な動きが確保できる程度に、伝達部材の内径よりもわずかに小さくすることが好ましい。支持部材の外径を細くしすぎると、伝達部材との間に遊びが大きくなりすぎ、伝達部材に無駄な動きが発生して作動力の伝達を損ねるおそれがある。   Although the diameters of the support member and the transmission member can be set in various ways, it is preferable that the outer diameter of the support member be slightly smaller than the inner diameter of the transmission member so that smooth movement can be ensured. If the outer diameter of the support member is made too thin, there is a possibility that play will be excessively large between the transmission member and useless movement will occur in the transmission member, impairing transmission of the operating force.

本発明の作動力伝達機構においては、一例として、
前記支持部材は、単線またはより線ワイヤで形成され、
前記伝達部材は、密着コイルバネで形成されているものとしてもよい。
ワイヤおよび密着コイルバネのいずれも可撓性を有する材料であるため、柔軟な作動力伝達機構を構成することができる。また、支持部材に樹脂製でなく金属のワイヤを用い、伝達部材として密着コイルバネを用いることにより、支持部材および伝達部材の変形を抑制でき、作動力を効率的に伝達できる利点がある。作動力伝達機構を比較的、細く構成することも可能である。
In the operating force transmission mechanism of the present invention, as an example,
The support member is formed of a single wire or a stranded wire,
The transmission member may be formed of a close coil spring.
Since both the wire and the close coil spring are flexible materials, a flexible operating force transmission mechanism can be configured. Further, by using a metal wire instead of resin for the support member and using a close coil spring as the transmission member, there is an advantage that the deformation of the support member and the transmission member can be suppressed and the operating force can be transmitted efficiently. It is also possible to make the operating force transmission mechanism relatively thin.

本発明の作動力伝達機構においては、
前記伝達部材の両端には、外部から作動力を受け、または外部に作動力を作用させるための作動部材がそれぞれ取り付けられており、
少なくとも一方の前記固定部材は、前記作動部材の一部が貫通可能な貫通孔を有しており、
前記貫通孔を設けた固定部材に対応する前記作動部材は、前記貫通孔を貫通し、一部が前記固定部材を挟んで前記伝達部材と反対の面側に突出する状態で組み付けられているものとしてもよい。
本発明においては、構造上、伝達部材は固定部材と固定部材との内側で移動することになるが、上記構成をとることにより、固定部材の外側から作動力を作用させることができる利点がある。
貫通孔は、種々の寸法、形状で設けることができるが、伝達部材に作動力を円滑に伝達可能とするため、支持部材が固定部材に固定されている取付部位に対して軸対称に設けられていることが好ましい。例えば、取付部位を挟んで上下または左右2箇所に貫通孔を形成し、作動部材の先端を二股に分岐させた上で、各貫通孔から突出させる構成とすることができる。
In the operating force transmission mechanism of the present invention,
At both ends of the transmission member, an operating member for receiving an operating force from the outside or for applying an operating force to the outside is attached, respectively.
At least one of the fixing members has a through-hole through which a part of the operating member can pass,
The actuating member corresponding to the fixing member provided with the through hole is assembled in a state of penetrating the through hole and partially protruding to the surface opposite to the transmission member with the fixing member interposed therebetween. It is good.
In the present invention, structurally, the transmission member moves inside the fixing member and the fixing member. However, by adopting the above configuration, there is an advantage that an operating force can be applied from the outside of the fixing member. .
The through-holes can be provided in various sizes and shapes, but in order to enable smooth transmission of the operating force to the transmission member, the support member is provided in an axial symmetry with respect to the attachment site fixed to the fixing member. It is preferable. For example, through holes can be formed in two places on the top and bottom or on the left and right sides of the attachment site, and the tip of the operating member can be branched into two and then protruded from each through hole.

本発明の作動力伝達機構においては、
前記支持部材の少なくとも一方の端は、前記固定部材の内部または前記伝達部材と反対の面側において屈曲させた状態で固定されているものとしてもよい。
このように支持部材を屈曲させることにより、堅固に固定することが可能となる。特に、支持部材に引っ張り荷重がかかる場合に有用である。
固定部材の内部で屈曲させる方法としては、予め固定部材を分割して形成しておき、支持部材を挟み込んで密着させるようにすればよい。固定部材の反対の面側で屈曲させる方法としては、支持部材の端部を貫通させるための貫通孔を固定部材に設け、この貫通孔を貫通させた上で支持部材を屈曲させればよい。
先に説明した通り、本発明では、固定部材に、作動部材を突出させるための貫通孔を設けることもある。かかる構造においては、作動部材の貫通孔および支持部材の取付部位を包含する最小面積の凸領域を避けた位置で、支持部材を固定してもよい。支持部材を固定するためには、固定方法に応じた一定の範囲が必要となるが、このように凸領域を避けて支持部材を固定すれば、固定に要する範囲を考慮する必要なく作動部材の貫通孔を設定できるため、貫通孔の間隔を狭めることが可能となり、作動部材を小型化することができる利点がある。
In the operating force transmission mechanism of the present invention,
At least one end of the support member may be fixed in a state where it is bent inside the fixing member or on the side opposite to the transmission member.
Thus, it becomes possible to fix firmly by bending a support member. This is particularly useful when a tensile load is applied to the support member.
As a method of bending the inside of the fixing member, the fixing member may be divided and formed in advance, and the support member may be sandwiched and adhered. As a method of bending on the opposite surface side of the fixing member, a through hole for penetrating the end of the supporting member may be provided in the fixing member, and the supporting member may be bent after passing through the through hole.
As described above, in the present invention, the fixing member may be provided with a through hole for projecting the operating member. In such a structure, the support member may be fixed at a position that avoids the convex area of the minimum area including the through hole of the operating member and the attachment site of the support member. In order to fix the support member, a certain range corresponding to the fixing method is required. However, if the support member is fixed so as to avoid the convex region as described above, it is not necessary to consider the range required for fixing. Since the through-holes can be set, there is an advantage that the interval between the through-holes can be reduced and the operating member can be downsized.

本発明の作動力伝達機構においては、
前記伝達部材の軸に交差する方向の動きを、該伝達部材の外側から規制する規制部材を備えるものとしてもよい。
規制部材としては、例えば、伝達部材が挿入させる導管、伝達部材を屈曲させる部分に設けられるローラー、滑車、ギヤ、支柱などを用いることができる。
こうすることにより、作動力伝達機構の形状、即ち作動力の伝達経路を安定させることができ、効率的に作動力を伝達することができる。ローラーなど規制部材自体が回転可能な構造をとる場合、伝達部材の動きを規制部材によって回転動力として抽出することができる利点もある。
In the operating force transmission mechanism of the present invention,
It is good also as providing the control member which controls the motion of the direction which cross | intersects the axis | shaft of the said transmission member from the outer side of this transmission member.
As the regulating member, for example, a conduit inserted by the transmission member, a roller, a pulley, a gear, a column, or the like provided in a portion where the transmission member is bent can be used.
By doing so, the shape of the operating force transmission mechanism, that is, the transmission path of the operating force can be stabilized, and the operating force can be transmitted efficiently. When the restriction member itself such as a roller has a rotatable structure, there is an advantage that the movement of the transmission member can be extracted as rotational power by the restriction member.

本発明は、必ずしも上述の特徴の全てを備えている必要はなく、適宜、一部を省略したり、組み合わせたりして構成することができる。
また、本発明の作動力伝達機構は、必ずしも排水栓装置用に限定されるものではない。
The present invention does not necessarily have all of the above-described features, and may be configured by omitting some or combining them as appropriate.
Moreover, the operating force transmission mechanism of the present invention is not necessarily limited to the drain plug device.

排水栓装置の構成を示す説明図である。It is explanatory drawing which shows the structure of a drain plug device. 作動力伝達機構の構造を示す説明図である。It is explanatory drawing which shows the structure of an operating force transmission mechanism. 実施例2における作動力伝達機構の構造を示す説明図である。It is explanatory drawing which shows the structure of the operating force transmission mechanism in Example 2. FIG. インナー材の固定方法を示す説明図である。It is explanatory drawing which shows the fixing method of an inner material. 実施例3における作動力伝達機構の構造を示す説明図である。It is explanatory drawing which shows the structure of the operating force transmission mechanism in Example 3. FIG.

図2は、作動力伝達機構の構造を示す説明図である。図2(a)は斜視図を示し、図2(b)は断面図を示している。これらに示す通り、作動力伝達機構は、管状の伝達部材10とその中に挿入されたインナー材20を有している。インナー材20は、作動力伝達機構を取り付ける固定部40R、40Lに固定され、伝達部材10を支持するとともに、作動力の伝達経路を決める機能を奏する部材である。伝達部材10は、インナー材20の軸方向に移動することによって作動力を伝達する機能を奏する部材である。
伝達部材10は、密着コイルバネで形成されている。伝達部材10には、種々の材質を適用可能であるが、腐食に対する耐久性という観点から、ステンレス鋼(SUS材)を用いることが好ましい。
インナー材20は、本実施例では、より線ワイヤを用いているが、単線のワイヤを用いても良い。また、荷重が比較的小さい場合には、樹脂製としてもよい。インナー材20としては、伝達部材10の内径よりも外径が細い密着コイルバネを用いることも可能であるが、このような構造にすると、伝達部材10を形成する密着コイルバネの内面側の凹凸と、インナー材20を形成する密着コイルバネの外面の凹凸とが噛み合う形となり、円滑な動きが損なわれるおそれがある。インナー材20として、より線や単線のように、伝達部材10の内面側の凹凸形状と符合しない外面の形状を有する部材を用いれば、こうした弊害を回避でき、円滑な動きを実現できる利点がある。
伝達部材10とインナー材20の径は、種々の設計が可能である。円滑な動きを実現するためには、インナー材20の外径は、伝達部材10の内径よりも小さいことが必要である。一方、作動力の伝達時に、インナー材20と伝達部材10との間の遊びが大きく、伝達部材10が、インナー材20に対して軸と交差する方向に動くと、そのような無駄な動きによって作動力の伝達遅れなどの弊害が生じる。伝達部材10とインナー材20の径は、これらの点を考慮して設定することが望ましく、例えば、インナー材20の外径を、伝達部材10の内径よりも、円滑な動きが確保できる程度にわずかに小さくしておくことが好ましい。
FIG. 2 is an explanatory view showing the structure of the operating force transmission mechanism. 2A shows a perspective view, and FIG. 2B shows a cross-sectional view. As shown in these figures, the operating force transmission mechanism has a tubular transmission member 10 and an inner member 20 inserted therein. The inner member 20 is a member that is fixed to the fixing portions 40R and 40L to which the operating force transmission mechanism is attached, supports the transmission member 10, and has a function of determining the transmission path of the operating force. The transmission member 10 is a member that has a function of transmitting an operating force by moving in the axial direction of the inner member 20.
The transmission member 10 is formed of a close coil spring. Various materials can be applied to the transmission member 10, but it is preferable to use stainless steel (SUS material) from the viewpoint of durability against corrosion.
In the present embodiment, the inner material 20 is a stranded wire, but a single wire may be used. Further, when the load is relatively small, it may be made of resin. As the inner member 20, a close contact coil spring having an outer diameter smaller than the inner diameter of the transmission member 10 can be used. However, with such a structure, the inner surface side of the close contact coil spring forming the transmission member 10 has unevenness, The unevenness on the outer surface of the close contact coil spring forming the inner material 20 is in mesh with the surface, and smooth movement may be impaired. If a member having an outer surface shape that does not coincide with the concavo-convex shape on the inner surface side of the transmission member 10 such as a stranded wire or a single wire is used as the inner material 20, there is an advantage that such adverse effects can be avoided and smooth movement can be realized. .
Various designs can be used for the diameters of the transmission member 10 and the inner member 20. In order to realize smooth movement, the outer diameter of the inner member 20 needs to be smaller than the inner diameter of the transmission member 10. On the other hand, when the operating force is transmitted, the play between the inner member 20 and the transmission member 10 is large, and if the transmission member 10 moves in a direction intersecting the axis with respect to the inner member 20, such wasteful movement is caused. Detrimental effects such as transmission delay of operating force occur. The diameters of the transmission member 10 and the inner member 20 are preferably set in consideration of these points. For example, the outer diameter of the inner member 20 can be set to a level that can ensure smoother movement than the inner diameter of the transmission member 10. It is preferable to keep it slightly small.

伝達部材10には、外部からの作動力を受け、また外部に作動力を及ぼすための作動部材31、32が取り付けられている。図2(b)に示すように、作動部材31、32は、伝達部材10をはめ込むための貫通孔31a、32aが形成されており、その内面は、伝達部材10の外面の凹凸と符合する凹凸形状が形成されている。こうすることにより、作動部材31、32を容易に伝達部材10に固定することが可能となる。
図示を省略したが、作動部材31、32が伝達部材10の軸周りに相対的に回転することを抑制するための突起等を、伝達部材10および作動部材31、32の一方または双方に形成しておいてもよい。別の態様として、作動部材31、32が伝達部材10の軸周りに回転しても支障がないよう、作動部材31、32を軸対称な形状としてもよい。
Actuating members 31 and 32 are attached to the transmission member 10 for receiving an actuating force from the outside and exerting the actuating force on the outside. As shown in FIG. 2 (b), the operating members 31 and 32 are formed with through holes 31 a and 32 a for fitting the transmission member 10, and the inner surface of the operation members 31 and 32 matches the unevenness of the outer surface of the transmission member 10. A shape is formed. By doing so, the operating members 31 and 32 can be easily fixed to the transmission member 10.
Although not shown, a protrusion or the like for suppressing the operation members 31 and 32 from rotating relatively around the axis of the transmission member 10 is formed on one or both of the transmission member 10 and the operation members 31 and 32. You may keep it. As another aspect, the actuating members 31 and 32 may have an axisymmetric shape so that there is no problem even if the actuating members 31 and 32 rotate around the axis of the transmission member 10.

図2(b)には、作動力伝達機構の動作を併せて示した。作動部材31に対して、矢印Lまたは矢印R方向に移動させる作動力が加えられたとする。この作動力は、伝達部材10に伝達され、伝達部材10をインナー材20に対して相対的に移動させ、伝達部材10に取り付けられた作動部材32を矢印Lまたは矢印R方向に移動させる。このように本実施例の作動力伝達機構では、インナー材20の外側に設けられた伝達部材10の移動によって作動力を伝達することができる。
図2(b)では、作動部材を2箇所に取り付けた例を示したが、本実施例の作動力伝達機構では、伝達部材10に更に多くの作動部材を取り付けることが可能である。従って、作動力を、容易に2箇所以上に分散して伝達することも可能となる。
FIG. 2B also shows the operation of the operating force transmission mechanism. It is assumed that an operating force that moves in the direction of the arrow L or the arrow R is applied to the operating member 31. This operating force is transmitted to the transmission member 10, moves the transmission member 10 relative to the inner member 20, and moves the operation member 32 attached to the transmission member 10 in the direction of arrow L or arrow R. Thus, in the operating force transmission mechanism of the present embodiment, the operating force can be transmitted by the movement of the transmission member 10 provided outside the inner material 20.
In FIG. 2B, an example in which the operation members are attached at two positions is shown, but in the operation force transmission mechanism of the present embodiment, it is possible to attach more operation members to the transmission member 10. Therefore, the operating force can be easily distributed and transmitted to two or more places.

図3は、実施例2における作動力伝達機構の構造を示す説明図である。図3(a)は斜視図を示し、図3(b)は断面図を示している。実施例2においても、作動力伝達機構は、インナー材20に対して相対的に移動する伝達部材10を用いて作動力を伝達する点では、実施例1と同様である。実施例2では、伝達部材10に取り付けられる作動部材およびインナー材20が固定される固定部材の形状に特徴がある。
図3(a)に示すように、実施例2の作動力伝達機構では、固定部材45R、45Lには、2つの矩形の貫通孔46R、46Lが形成されている。伝達部材10の端部には、作動部材35R、35Lがそれぞれ取り付けられているが、作動部材35R、35Lの先端に形成された2枚の平行板状の先端部36R、36Lは、貫通孔46R、46Lを貫通している。
図3(b)により、各部材の組み付け状態を説明する。固定部材45R、45Lには、実施例1と同様、インナー材20が固定されている。そして、インナー材20の外側には、軸方向に移動可能に密着コイルバネからなる伝達部材10が取り付けられている。伝達部材10の両端には、それぞれ作動部材35R、35Lが取り付けられている。作動部材35R、35Lには、伝達部材10を挿入するための挿入孔37R、37Lが設けられており、その内面は、伝達部材10の外面の凹凸形状に符合する凹凸面となっている。こうすることにより、作動部材35R、35Lを容易に伝達部材10に固定することができる。
作動部材35R、35Lには、二枚の平板状の先端部36R、36Lが設けられている。そして、この先端部36R、36Lが、固定部材45R、45Lに形成された貫通孔46R、46Lを貫通しているのである。図3の態様では、二枚の先端部36R、36Lに挟まれる中央の位置で、インナー材20が固定されていることになる。
実施例2の作動力伝達機構によれば、次の利点がある。即ち、固定部材45R、45Lで挟まれた側、即ちインナー材20が固定されている側を内側と呼ぶとすれば、図3(a)、図3(b)の構造によれば、作動力を、固定部材45R、45Lの外側から作用させることができることになる。つまり、固定部材45R、45Lやインナー材20が邪魔にならない態様で作動力を作用させることが可能となる。
FIG. 3 is an explanatory diagram illustrating the structure of the operating force transmission mechanism according to the second embodiment. 3A shows a perspective view, and FIG. 3B shows a cross-sectional view. Also in the second embodiment, the operating force transmission mechanism is similar to the first embodiment in that the operating force is transmitted using the transmission member 10 that moves relative to the inner member 20. The second embodiment is characterized by the shape of the operating member attached to the transmission member 10 and the fixing member to which the inner member 20 is fixed.
As shown in FIG. 3A, in the operating force transmission mechanism of the second embodiment, the fixing members 45R and 45L are formed with two rectangular through holes 46R and 46L. The operating members 35R and 35L are attached to the end portions of the transmission member 10, respectively, but the two parallel plate-shaped tip portions 36R and 36L formed at the tips of the operating members 35R and 35L are through holes 46R. , 46L.
The assembly state of each member will be described with reference to FIG. As in the first embodiment, the inner member 20 is fixed to the fixing members 45R and 45L. And the transmission member 10 which consists of a close_contact | adherence coil spring is attached to the outer side of the inner material 20 so that the movement to an axial direction is possible. Actuating members 35R and 35L are attached to both ends of the transmission member 10, respectively. The operating members 35R and 35L are provided with insertion holes 37R and 37L for inserting the transmission member 10, and the inner surfaces thereof are uneven surfaces that match the uneven shape of the outer surface of the transmission member 10. Thus, the operating members 35R and 35L can be easily fixed to the transmission member 10.
The actuating members 35R and 35L are provided with two plate-like tip portions 36R and 36L. And these front-end | tip parts 36R and 36L penetrate the through-holes 46R and 46L formed in the fixing members 45R and 45L. In the aspect of FIG. 3, the inner material 20 is fixed at a central position between the two tip portions 36R and 36L.
The operating force transmission mechanism according to the second embodiment has the following advantages. That is, if the side sandwiched between the fixing members 45R and 45L, that is, the side on which the inner member 20 is fixed is referred to as the inner side, according to the structure shown in FIGS. Can be operated from the outside of the fixing members 45R and 45L. That is, it is possible to apply the operating force in such a manner that the fixing members 45R and 45L and the inner material 20 do not get in the way.

実施例2の作動力伝達機構において、固定部材へのインナー材20の固定は、種々の方法が可能である。
図4は、インナー材20の固定方法を示す説明図である。それぞれ固定部材にインナー材20を固定している部分を拡大して示した。インナー材20の端には、金属製の端部21a,21b、21cが接着、かしめ等によって取り付けられている。端部21a,21b、21cは、インナー材20の直径よりも大きい外接円直径となる断面円形、矩形など種々の形状の部材とすることができる。
図4(a)は、インナー材20を90度屈曲させて端部21aを固定部材45aに形成された凹部に埋め込むようにして固定した例である。この例では、作動部材が貫通するための貫通孔46aの間に固定している。この方法によれば、簡易にインナー材20を固定できる利点がある。
図4(b)は、図4(a)と同様の方法でインナー材20を固定部材45bに固定しているが、その端部21bが貫通孔46bを包含する最小面積の凸領域(図中の破線で囲んだ領域A)の外側で固定されている。こうすることにより、端部21bを固定するためのスペースに関わりなく貫通孔46bの位置を設定できるため、貫通孔46bの間隔dを狭くすることができる。従って、貫通孔46bを貫通させる作動部材も小型にすることができ、作動力伝達機構全体の小型化を図ることができる利点がある。
図4(c)は、インナー材20を固定部材45cの表面ではなく、内部に埋め込んで固定する例である。図4(c)に示すように、固定部材45cの内部に、インナー材20の端部21cを保持する空隙を形成し、ここにインナー材20を埋め込むのである。固定部材45cを分割して形成しておき、インナー材20を挟み込んだ上で接着等すればよい。図4(c)の例では、貫通孔46cの間で端部21cを固定している例を示したが、図4(b)のように貫通孔46cで定まる凸領域を回避して端部21cを固定するようにしてもよい。このように、固定部材45cの内部に埋め込む方法によれば、インナー材20を強固に固定することができるとともに、外観も向上させることができる利点がある。
In the operating force transmission mechanism of the second embodiment, various methods can be used to fix the inner member 20 to the fixing member.
FIG. 4 is an explanatory view showing a method for fixing the inner member 20. The portions where the inner member 20 is fixed to the fixing members are shown enlarged. Metal ends 21a, 21b, and 21c are attached to the end of the inner member 20 by bonding, caulking, or the like. The end portions 21 a, 21 b, and 21 c can be members having various shapes such as a circular cross section and a rectangle having a circumscribed circle diameter larger than the diameter of the inner material 20.
FIG. 4A shows an example in which the inner member 20 is bent by 90 degrees and the end portion 21a is fixed so as to be embedded in a recess formed in the fixing member 45a. In this example, it fixes between the through-holes 46a for an operation member to penetrate. According to this method, there is an advantage that the inner material 20 can be easily fixed.
In FIG. 4B, the inner member 20 is fixed to the fixing member 45b in the same manner as in FIG. 4A, but the end 21b has a minimum convex area including the through hole 46b (in the drawing). Is fixed outside the area A) surrounded by the broken line. By doing so, the position of the through hole 46b can be set regardless of the space for fixing the end portion 21b, so that the interval d between the through holes 46b can be narrowed. Therefore, the operating member that penetrates the through hole 46b can be reduced in size, and there is an advantage that the entire operating force transmission mechanism can be reduced in size.
FIG. 4C shows an example in which the inner member 20 is embedded and fixed not in the surface of the fixing member 45c. As shown in FIG. 4C, a gap for holding the end 21c of the inner material 20 is formed inside the fixing member 45c, and the inner material 20 is embedded therein. The fixing member 45c may be divided and formed, and the inner material 20 may be sandwiched and bonded or the like. In the example of FIG. 4C, the end portion 21c is fixed between the through holes 46c. However, as shown in FIG. 4B, the end portion is avoided by avoiding the convex region defined by the through hole 46c. 21c may be fixed. Thus, according to the method of embedding in the fixing member 45c, there is an advantage that the inner material 20 can be firmly fixed and the appearance can be improved.

図5は、実施例3における作動力伝達機構の構造を示す説明図である。実施例3も、基本的な構造は実施例1と同様であり、固定部材40R、40Lに固定されたインナー材20に対して相対的に可動な伝達部材10を用いて作動力を伝達する機構である。伝達部材10には作動部材が取り付けられているが、ここでは図示を省略した。
本実施例では、インナー材20および伝達部材10のいずれも可撓性の材料を用いているため、作動力の伝達経路は直線状に限らず、曲線状(両端だけが固定された自由曲線形状も含む)であっても構わない。実施例3の例では、このように曲線状の伝達経路で作動力を伝達できるよう、屈曲する箇所にガイド50、51を備えている。これらのガイド50、51は、矢印のように中心軸周りに回転可能なロ−ラ、ギヤ等で構成されている。伝達部材10が常にガイド50、51に接触している態様とする必要はなく、伝達部材10とガイド50、51との間に遊びを持たせた構造としてもよい。
かかる構造において、伝達部材10が矢印Mのように移動し、作動力を伝達させる場合を考える。このとき、ガイド50、51は、伝達部材10の動きに合わせて、矢印のように回転する。このようにガイド50、51を介在させることによって、作動力の伝達経路を予め規定された位置に保持することが可能となる。また、ガイド50、51が回転するため、摩擦力による作動力のロスを抑制することができる。
さらに、ガイド50、51の回転を、動力として抽出することも可能である。ガイド50、51の回転を積極的に抽出する場合には、伝達部材10がガイド50、51に確実に接触するよう、伝達経路の形状等を十分に規制しておくことが好ましい。また、ガイド50、51と伝達部材10との間の滑りを抑制するため、ガイド50、51を、伝達部材10の凹凸面に符号するギヤなどとすることも好適である。
実施例3において、実施例2の構造を適用することも可能である。
FIG. 5 is an explanatory diagram illustrating the structure of the operating force transmission mechanism according to the third embodiment. The basic structure of the third embodiment is the same as that of the first embodiment, and a mechanism for transmitting the operating force using the transmission member 10 that is relatively movable with respect to the inner member 20 fixed to the fixing members 40R and 40L. It is. Although an operating member is attached to the transmission member 10, the illustration thereof is omitted here.
In this embodiment, since both the inner member 20 and the transmission member 10 are made of a flexible material, the transmission path of the operating force is not limited to a straight line, but a curved line (a free curved line shape with both ends fixed). May also be included). In the example of the third embodiment, the guides 50 and 51 are provided at the bent portions so that the operating force can be transmitted through the curved transmission path. These guides 50 and 51 are constituted by a roller, a gear or the like that can rotate around the central axis as indicated by an arrow. It is not necessary that the transmission member 10 is always in contact with the guides 50 and 51, and a structure in which play is provided between the transmission member 10 and the guides 50 and 51 may be used.
In this structure, consider a case where the transmission member 10 moves as indicated by an arrow M to transmit the operating force. At this time, the guides 50 and 51 rotate as indicated by arrows in accordance with the movement of the transmission member 10. By interposing the guides 50 and 51 in this way, the transmission path for the operating force can be held at a predetermined position. In addition, since the guides 50 and 51 rotate, it is possible to suppress a loss of operating force due to frictional force.
Further, the rotation of the guides 50 and 51 can be extracted as power. When the rotation of the guides 50 and 51 is positively extracted, it is preferable to sufficiently restrict the shape of the transmission path and the like so that the transmission member 10 reliably contacts the guides 50 and 51. Further, in order to suppress slipping between the guides 50 and 51 and the transmission member 10, it is also preferable that the guides 50 and 51 are gears that code on the uneven surface of the transmission member 10.
In the third embodiment, the structure of the second embodiment can be applied.

本発明は、上述の実施例に限らず、種々の変形例を構成することが可能である。例えば、実施例1〜3の構造は、必ずしも密着コイルバネを用いる必要はなく、樹脂製の伝達部材としてもよい。   The present invention is not limited to the above-described embodiment, and various modifications can be made. For example, the structures of the first to third embodiments do not necessarily use a contact coil spring, and may be a resin transmission member.

本発明は、離隔した2点間で作動力を伝達するために利用可能である。本実施例の作動力伝達機構は、水栓、排水栓装置、洗浄便座の操作機構など、狭く屈曲した経路で、人が操作する比較的小さい作動力を伝達する機構に適しているが、必ずしもかかる用途に限定されるものではない。作動力の伝達経路に柔軟性が求められる種々の機構に利用可能である。   The present invention can be used to transmit an operating force between two spaced points. The operating force transmission mechanism of this embodiment is suitable for a mechanism that transmits a relatively small operating force operated by a person through a narrow and bent path, such as an operation mechanism of a faucet, a drain plug device, and a washing toilet seat. The application is not limited to this. The present invention is applicable to various mechanisms that require flexibility in the transmission path of the operating force.

1…排水口装置
2…操作部
3…伝達機構
4…排水栓装置
10…伝達部材
20…インナー材
21a、21b、21c…端部
31、32、35R、35L…作動部材
31a、32a、37R、37L…挿入孔
36R、36L…端部
40R、40L、45R、45L、45a、45b、45c…固定部材
46R、46L、46a、46b、46c…貫通孔
50、51…ガイド
100…浴槽
101…底部
102…側壁
103…フランジ部
104…排水口
DESCRIPTION OF SYMBOLS 1 ... Drain port apparatus 2 ... Operation part 3 ... Transmission mechanism 4 ... Drain plug apparatus 10 ... Transmission member 20 ... Inner material 21a, 21b, 21c ... End part 31, 32, 35R, 35L ... Actuation member 31a, 32a, 37R, 37L: Insertion hole 36R, 36L ... End 40R, 40L, 45R, 45L, 45a, 45b, 45c ... Fixing member 46R, 46L, 46a, 46b, 46c ... Through hole 50, 51 ... Guide 100 ... Bathtub 101 ... Bottom 102 ... Side wall 103 ... Flange part 104 ... Drain port

Claims (5)

作動力を伝達する作動力伝達機構であって、
作動力を伝達するための可撓性のある管状の伝達部材と、
固定部材に固定され、少なくとも一部が前記伝達部材の内部に挿入されることで、該伝達部材を可動に支持する支持部材と
を備える作動力伝達機構。
An actuation force transmission mechanism for transmitting actuation force,
A flexible tubular transmission member for transmitting an actuation force;
An operating force transmission mechanism comprising: a support member that is fixed to the fixing member and at least a part of which is inserted into the transmission member to movably support the transmission member.
請求項1記載の作動力伝達機構であって、
前記支持部材は、単線またはより線ワイヤで形成され、
前記伝達部材は、密着コイルバネで形成されている作動力伝達機構。
The operating force transmission mechanism according to claim 1,
The support member is formed of a single wire or a stranded wire,
The transmission member is an operating force transmission mechanism formed of a close coil spring.
請求項1または2記載の作動力伝達機構であって、
前記伝達部材の両端には、外部から作動力を受け、または外部に作動力を作用させるための作動部材がそれぞれ取り付けられており、
少なくとも一方の前記固定部材は、前記作動部材の一部が貫通可能な貫通孔を有しており、
前記貫通孔を設けた固定部材に対応する前記作動部材は、前記貫通孔を貫通し、一部が前記固定部材を挟んで前記伝達部材と反対の面側に突出する状態で組み付けられている作動力伝達機構。
The operating force transmission mechanism according to claim 1 or 2,
At both ends of the transmission member, an operating member for receiving an operating force from the outside or for applying an operating force to the outside is attached, respectively.
At least one of the fixing members has a through-hole through which a part of the operating member can pass,
The actuating member corresponding to the fixing member provided with the through-hole is assembled in a state of passing through the through-hole and partially protruding to the surface opposite to the transmission member with the fixing member interposed therebetween. Power transmission mechanism.
請求項1〜3いずれか記載の作動力伝達機構であって、
前記支持部材の少なくとも一方の端は、前記固定部材の内部または前記伝達部材と反対の面側において屈曲させた状態で固定されている作動力伝達機構。
The operating force transmission mechanism according to any one of claims 1 to 3,
An operating force transmission mechanism in which at least one end of the support member is fixed in a state where it is bent inside the fixed member or on the side opposite to the transmission member.
請求項1〜4いずれか記載の作動力伝達機構であって、
前記伝達部材の軸に交差する方向の動きを、該伝達部材の外側から規制する規制部材を備える作動力伝達機構。
The operating force transmission mechanism according to any one of claims 1 to 4,
An operating force transmission mechanism comprising a regulating member that regulates movement in a direction intersecting the axis of the transmission member from the outside of the transmission member.
JP2012174698A 2012-08-07 2012-08-07 Actuation force transmission mechanism Expired - Fee Related JP6068041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012174698A JP6068041B2 (en) 2012-08-07 2012-08-07 Actuation force transmission mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012174698A JP6068041B2 (en) 2012-08-07 2012-08-07 Actuation force transmission mechanism

Publications (2)

Publication Number Publication Date
JP2014034979A true JP2014034979A (en) 2014-02-24
JP6068041B2 JP6068041B2 (en) 2017-01-25

Family

ID=50284097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012174698A Expired - Fee Related JP6068041B2 (en) 2012-08-07 2012-08-07 Actuation force transmission mechanism

Country Status (1)

Country Link
JP (1) JP6068041B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50136549A (en) * 1974-04-18 1975-10-29
JPS5397245U (en) * 1972-01-26 1978-08-07
JPS53155941U (en) * 1977-05-13 1978-12-07
JPS5417446A (en) * 1977-07-07 1979-02-08 Kaichirou Teraura Flexible remote controlling cable
JPS5852312U (en) * 1981-10-06 1983-04-09 日本ケ−ブル・システム株式会社 Control cable stroke automatic adjustment device
JPS6256817U (en) * 1985-09-30 1987-04-08
JPH0446221U (en) * 1990-08-24 1992-04-20
JP2004284586A (en) * 2004-05-20 2004-10-14 Shimano Inc Anti-theft system for bicycle
JP2012012833A (en) * 2010-06-30 2012-01-19 Hi-Lex Corporation Drain plug operation mechanism

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5397245U (en) * 1972-01-26 1978-08-07
JPS50136549A (en) * 1974-04-18 1975-10-29
JPS53155941U (en) * 1977-05-13 1978-12-07
JPS5417446A (en) * 1977-07-07 1979-02-08 Kaichirou Teraura Flexible remote controlling cable
JPS5852312U (en) * 1981-10-06 1983-04-09 日本ケ−ブル・システム株式会社 Control cable stroke automatic adjustment device
JPS6256817U (en) * 1985-09-30 1987-04-08
JPH0446221U (en) * 1990-08-24 1992-04-20
JP2004284586A (en) * 2004-05-20 2004-10-14 Shimano Inc Anti-theft system for bicycle
JP2012012833A (en) * 2010-06-30 2012-01-19 Hi-Lex Corporation Drain plug operation mechanism

Also Published As

Publication number Publication date
JP6068041B2 (en) 2017-01-25

Similar Documents

Publication Publication Date Title
US20200324406A1 (en) Rotary actuator and robot
JP6306357B2 (en) Lens drive device
DE602008003429D1 (en) SWIVELING EQUIPMENT FOR ONE WAVE IN ONE CLOCK
JP6068041B2 (en) Actuation force transmission mechanism
JP5881901B2 (en) Insertion device operation mechanism, insertion device
CN111315525B (en) Welding wire supply cable
KR101354602B1 (en) Locking device for pipe member
JP2007120106A (en) Brace device for sliding door
JP2013169226A (en) Medical equipment
FR3058004B1 (en) ELECTRICAL APPARATUS INCLUDING A LOCKING DEVICE FOR LOCKING THIS ELECTRICAL APPARATUS ON A MOUNTING RAIL
JP5466130B2 (en) Scalp care equipment
KR100783612B1 (en) Structure preventing free rotation of gear
JP4665256B2 (en) Panel anchor
JP2009201668A (en) Drive unit
JP2014034978A (en) Operating force transmission mechanism
KR20100083004A (en) Articulation mechanism for robot
JP2020022319A (en) Rotary actuator and robot
JP2014117958A (en) Wiper arm
JP2017227232A (en) Driving device
JP2016044425A (en) Operation device
JP2012040115A (en) Bend shape holding operation device for body-cavity insertion tubes
JP2012087475A (en) Door inside handle device of vehicle
JP4745354B2 (en) Drive device
JP6149256B2 (en) Control cable
KR20180020340A (en) Stick length adjust apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161222

R150 Certificate of patent or registration of utility model

Ref document number: 6068041

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees