JP2014033467A - Surface acoustic wave element - Google Patents

Surface acoustic wave element Download PDF

Info

Publication number
JP2014033467A
JP2014033467A JP2013226393A JP2013226393A JP2014033467A JP 2014033467 A JP2014033467 A JP 2014033467A JP 2013226393 A JP2013226393 A JP 2013226393A JP 2013226393 A JP2013226393 A JP 2013226393A JP 2014033467 A JP2014033467 A JP 2014033467A
Authority
JP
Japan
Prior art keywords
piezoelectric substrate
support layer
acoustic wave
surface acoustic
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013226393A
Other languages
Japanese (ja)
Inventor
Masashi Omura
正志 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2013226393A priority Critical patent/JP2014033467A/en
Publication of JP2014033467A publication Critical patent/JP2014033467A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface acoustic wave element in which occurrence of warp can be prevented when a support layer is formed on a piezoelectric substrate after it is made thin.SOLUTION: A surface acoustic wave element 2 includes (a) an auxiliary layer 22 formed in an area of one main surface 10a of a piezoelectric substrate 10, on which a conductive pattern including an IDT electrode 20 is formed, excepting a vibration propagation area 11 where surface acoustic waves by the IDT electrode 20 propagate, and is a hollow protective film of resin provided between the vibration propagation area 11, at an interval, so as to cover the vibration propagation area 11, and (b) a support layer 12 formed of a metal or a ceramic so that the linear expansion coefficient is smaller than that of the piezoelectric substrate 10 on the other main surface 10b thereof. The auxiliary layer 22 is formed so as to cancel a first warp occurring due to bonding of the piezoelectric substrate 10 and the auxiliary layer 22 when the support layer 12 is not formed, with a second warp occurring due to bonding of the piezoelectric substrate 10 and the support layer 12 when the auxiliary layer 22 is not formed.

Description

本発明は、弾性表面波素子に関し、詳しくは、圧電基板を薄くした後に圧電基板に支持層を形成する弾性表面波素子に関する。   The present invention relates to a surface acoustic wave element, and more particularly to a surface acoustic wave element in which a support layer is formed on a piezoelectric substrate after the piezoelectric substrate is thinned.

弾性表面波素子は所望の特性を得るために圧電基板を薄くする必要があり、圧電基板が薄い弾性表面波素子を製造する方法が種々提案されている。   The surface acoustic wave element needs to have a thin piezoelectric substrate in order to obtain desired characteristics, and various methods for producing a surface acoustic wave element with a thin piezoelectric substrate have been proposed.

例えば、第1の製造方法として、圧電基板と支持基板とを貼り合わせた状態で圧電基板を切削・研磨して薄くした後、圧電基板に櫛型のIDT電極(IDT:interdigital transducer)を含む導電パターンを形成することが提案されている(例えば、特許文献1参照)。   For example, as a first manufacturing method, after a piezoelectric substrate is cut and polished with the piezoelectric substrate and a support substrate bonded together, the piezoelectric substrate includes a comb-shaped IDT electrode (IDT: interdigital transducer). It has been proposed to form a pattern (see, for example, Patent Document 1).

第2の製造方法として、支持基板の表面に結晶成長により圧電薄膜を形成した後、圧電薄膜上に導電パターンを形成することが提案されている(例えば、特許文献2参照)。   As a second manufacturing method, it has been proposed that a piezoelectric thin film is formed on a surface of a support substrate by crystal growth, and then a conductive pattern is formed on the piezoelectric thin film (see, for example, Patent Document 2).

特開2004−297693号公報JP 2004-297893 A 特開2006−345281号公報JP 2006-345281 A

これらの製造方法とは異なる第3の製造方法として、例えば図5の断面図に示す製造方法が考えられる。すなわち、図5(a)に示すように、ウェハ状の圧電基板10の表面10aにIDT電極20を含む導電パターンを形成する。次いで、図5(b)に示すように、圧電基板10の裏面10bについて研削・研磨などの除去加工を行なって圧電基板10を薄くする。次いで、図5(c)に示すように、圧電基板10の裏面10bに支持層12を形成する。   As a third manufacturing method different from these manufacturing methods, for example, the manufacturing method shown in the cross-sectional view of FIG. 5 can be considered. That is, as shown in FIG. 5A, a conductive pattern including the IDT electrode 20 is formed on the surface 10 a of the wafer-like piezoelectric substrate 10. Next, as shown in FIG. 5B, the back surface 10b of the piezoelectric substrate 10 is subjected to removal processing such as grinding and polishing to make the piezoelectric substrate 10 thin. Next, as shown in FIG. 5C, the support layer 12 is formed on the back surface 10 b of the piezoelectric substrate 10.

しかしながら、この製造方法で弾性表面波素子を製造した場合、圧電基板10と支持層12の線膨張係数の違い、圧電基板10と支持層12の接合界面に生じる残留応力、圧電基板10の裏面10bを研磨するときの応力などにより、図5(c)において矢印40で示すように、支持層12が形成されたウェハに反りが発生することがある。ウェハに反りがあると、弾性表面波素子の個片に分割する際に、割れや欠けなどが発生する。ウェハに反りによって弾性表面波素子の個片に反りが生じると、弾性表面波素子の個片のピックアップが難しくなる。   However, when a surface acoustic wave element is manufactured by this manufacturing method, the difference in linear expansion coefficient between the piezoelectric substrate 10 and the support layer 12, the residual stress generated at the bonding interface between the piezoelectric substrate 10 and the support layer 12, the back surface 10 b of the piezoelectric substrate 10. The wafer on which the support layer 12 is formed may be warped as shown by the arrow 40 in FIG. If the wafer is warped, cracks, chips, and the like occur when the surface acoustic wave element is divided into individual pieces. If the surface acoustic wave element is warped due to warpage of the wafer, it becomes difficult to pick up the surface acoustic wave element.

本発明は、かかる実情に鑑み、圧電基板を薄くした後に圧電基板に支持層を形成すると生じる反りを防止することができる弾性表面波素子を提供しようとするものである。   In view of such circumstances, the present invention intends to provide a surface acoustic wave element capable of preventing warpage that occurs when a support layer is formed on a piezoelectric substrate after the piezoelectric substrate is thinned.

本発明は、以下のように構成された弾性表面波素子を提供する。   The present invention provides a surface acoustic wave device configured as follows.

弾性表面波素子は、(a)圧電基板と、(b)前記圧電基板の一方主面に形成された、IDT電極を含む導電パターンと、(c)前記圧電基板の前記一方主面のうち前記IDT電極による弾性表面波が伝搬する振動伝搬領域以外の領域に形成され、前記振動伝搬領域との間に間隔を設けて前記振動伝搬領域を覆う樹脂の中空保護膜である補助層と、(d)前記圧電基板の他方主面に形成され、線膨張係数が前記圧電基板より小さくなるように金属またはセラミックで形成された支持層とを備える。前記補助層は、前記支持層が無ければ前記圧電基板と前記補助層との接合によって生じる第1の反りが、前記補助層が無ければ前記圧電基板と前記支持層との接合によって生じる第2の反りを打ち消すように形成されている。   The surface acoustic wave element includes: (a) a piezoelectric substrate; (b) a conductive pattern including an IDT electrode formed on one main surface of the piezoelectric substrate; and (c) the first main surface of the piezoelectric substrate. An auxiliary layer that is a resin hollow protective film that is formed in a region other than the vibration propagation region in which surface acoustic waves are propagated by the IDT electrode, and that covers the vibration propagation region with a space between the vibration propagation region; And a support layer formed on the other main surface of the piezoelectric substrate and made of metal or ceramic so that the linear expansion coefficient is smaller than that of the piezoelectric substrate. The auxiliary layer has a first warp caused by joining the piezoelectric substrate and the auxiliary layer without the support layer, and a second warp caused by joining the piezoelectric substrate and the support layer without the auxiliary layer. It is formed so as to cancel the warpage.

上記構成によれば、圧電基板の他方主面に支持層を形成することにより生じる第2の反りを、補助層を圧電基板の一方主面に形成することにより生じる第1の反りで相殺し、全体として反りの発生を防止することができる。   According to the above configuration, the second warp caused by forming the support layer on the other main surface of the piezoelectric substrate is offset by the first warp caused by forming the auxiliary layer on the one main surface of the piezoelectric substrate, As a whole, the occurrence of warpage can be prevented.

また、中空保護膜を圧電基板の一方主面に形成することにより、第1の反りを容易に調整することができる。   Further, the first warp can be easily adjusted by forming the hollow protective film on the one main surface of the piezoelectric substrate.

また、圧電基板よりも線膨張係数が十分に小さい材料を用いて支持層を容易に形成することができ、支持層による温度特性の改善効果を大きくすることができる。また、圧電基板の他方主面に凹凸があっても、溶射であれば支持層を容易に形成することができ、直接接合の場合のように圧電基板の他方主面の平坦性について高い加工精度は要求されないため、製造が簡単である。   In addition, the support layer can be easily formed using a material having a sufficiently smaller linear expansion coefficient than the piezoelectric substrate, and the effect of improving the temperature characteristics by the support layer can be increased. Even if the other main surface of the piezoelectric substrate is uneven, the support layer can be easily formed by thermal spraying, and the flatness of the other main surface of the piezoelectric substrate is high as in the case of direct bonding. Is not required and is easy to manufacture.

本発明の弾性表面波素子は、圧電基板の他方主面に支持層を形成すると発生する反りを、圧電基板の一方主面に保護層を形成することにより発生する反りで相殺することで、圧電基板を薄くした後に圧電基板に支持層を形成すると生じる反りを防止することができる。   The surface acoustic wave device according to the present invention cancels the warpage that occurs when a support layer is formed on the other main surface of the piezoelectric substrate with the warpage that occurs when a protective layer is formed on one main surface of the piezoelectric substrate. Warpage that occurs when a support layer is formed on a piezoelectric substrate after the substrate is thinned can be prevented.

弾性表面波素子の製造工程を示す断面図である。(実施例)It is sectional drawing which shows the manufacturing process of a surface acoustic wave element. (Example) 弾性表面波素子の断面図である。(実施例)It is sectional drawing of a surface acoustic wave element. (Example) 弾性表面波素子の要部断面図である。(実施例)It is principal part sectional drawing of a surface acoustic wave element. (Example) 弾性表面波素子の要部断面図である。(実施例)It is principal part sectional drawing of a surface acoustic wave element. (Example) 弾性表面波素子の製造工程を示す断面図である。(比較例)It is sectional drawing which shows the manufacturing process of a surface acoustic wave element. (Comparative example)

以下、本発明の実施の形態について、図1〜図4を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS.

<実施例> 実施例の弾性表面波素子2の製造方法について、図1〜図4を参照しながら説明する。   <Example> The manufacturing method of the surface acoustic wave element 2 of an Example is demonstrated, referring FIGS. 1-4.

図2は、弾性表面波素子2の断面図である。図2に示すように、弾性表面波素子2は、圧電基板10の一方主面である表面10aに、IDT電極20を含む導電パターンと、補助層である中空保護膜22とが形成されている。中空保護膜22は、IDT電極20による弾性表面波が伝搬する振動伝搬領域11との間に間隔を設けて振動伝搬領域11を覆うように形成されている。   FIG. 2 is a cross-sectional view of the surface acoustic wave element 2. As shown in FIG. 2, in the surface acoustic wave element 2, a conductive pattern including the IDT electrode 20 and a hollow protective film 22 as an auxiliary layer are formed on the surface 10 a that is one main surface of the piezoelectric substrate 10. . The hollow protective film 22 is formed so as to cover the vibration propagation region 11 with a gap between the IDT electrode 20 and the vibration propagation region 11 in which the surface acoustic wave propagates.

次に、弾性表面波素子2の製造方法について、図1を参照しながら説明する。図1は、弾性表面波素子2の製造工程を模式的に示す断面図である。   Next, a method for manufacturing the surface acoustic wave element 2 will be described with reference to FIG. FIG. 1 is a cross-sectional view schematically showing a manufacturing process of the surface acoustic wave element 2.

(a)パターン形成工程
まず、図1(a)に示すように、ウェハ状の圧電基板10の一方主面である表面10aに、IDT電極20を含む導電パターンを形成する。
(A) Pattern formation process First, as shown to Fig.1 (a), the conductive pattern containing the IDT electrode 20 is formed in the surface 10a which is one main surface of the wafer-like piezoelectric substrate 10. FIG.

具体的には、タンタル酸リチウム(LiTaO)基板やニオブ酸リチウム(LiNbO)基板などの圧電基板10の表面10aに、IDT電極20と、不図示のパッドと、IDT電極20とパッドとの間を接続する不図示の配線とを含む導電パターンを、フォトリソグラフィー技術やエッチング技術を用いて形成する。 Specifically, an IDT electrode 20, a pad (not shown), an IDT electrode 20, and a pad are formed on the surface 10 a of the piezoelectric substrate 10 such as a lithium tantalate (LiTaO 3 ) substrate or a lithium niobate (LiNbO 3 ) substrate. A conductive pattern including a wiring (not shown) that connects between them is formed by using a photolithography technique or an etching technique.

(b)中空保護膜形成工程
次いで、図1(b)に示すように、圧電基板10の表面10aに、補助層である中空保護膜22を形成する。中空保護膜22は、IDT電極20による弾性表面波が伝搬する振動伝搬領域11の周囲に形成されたカバー枠層22aと、カバー枠層22aの上に形成されたカバー層22bとにより形成する。補助層としては、カバー枠層22aのみを形成し、カバー層22bが無い構成とすることも可能である。補助層として中空保護膜22を形成すると、カバー枠層22aやカバー層22bの材質や厚み等によって、支持層12が無ければ圧電基板10と補助層(中空保護膜22)との接合によって生じる第1の反りを容易に調整することができる。
(B) Hollow Protective Film Formation Step Next, as shown in FIG. 1B, a hollow protective film 22 that is an auxiliary layer is formed on the surface 10 a of the piezoelectric substrate 10. The hollow protective film 22 is formed by a cover frame layer 22a formed around the vibration propagation region 11 in which surface acoustic waves from the IDT electrode 20 propagate and a cover layer 22b formed on the cover frame layer 22a. As the auxiliary layer, only the cover frame layer 22a may be formed and the cover layer 22b may be omitted. When the hollow protective film 22 is formed as an auxiliary layer, the first and second layers formed by joining the piezoelectric substrate 10 and the auxiliary layer (hollow protective film 22) without the support layer 12 due to the material and thickness of the cover frame layer 22a and cover layer 22b. 1 warp can be easily adjusted.

具体的には、例えば感光性ポリイミド系樹脂を圧電基板10の表面10a全体に塗布した後、振動伝搬領域11をフォトリソグラフィー技術により開口(除去)してカバー枠層22aを形成する。次いで、カバー枠層22a上にラミネート等によりシート状のカバー層22bを形成する。カバー層22bには、例えば、低温硬化プロセスが可能となる非感光性エポキシ系フィルム樹脂を用いる。   Specifically, for example, a photosensitive polyimide resin is applied to the entire surface 10a of the piezoelectric substrate 10, and then the vibration propagation region 11 is opened (removed) by a photolithography technique to form the cover frame layer 22a. Next, a sheet-like cover layer 22b is formed on the cover frame layer 22a by lamination or the like. For the cover layer 22b, for example, a non-photosensitive epoxy film resin that enables a low-temperature curing process is used.

(c)外部電極形成工程
次いで、必要に応じて、圧電基板10に外部電極を形成する。例えば、レーザ加工により、中空保護膜22のカバー層22b及びカバー枠層22aに貫通孔(ビアホール)を形成し、ビアホールの底部にパッドを露出させる。次いで、ビアホールに電解メッキ(Cu、Ni等)にてアンダーバンプメタルを充填し、アンダーバンプメタルの表面に酸化防止のための厚さ0.05〜0.1μm程度のAu膜を形成する。アンダーバンプメタルの直上に、メタルマスクを介して、Sn−Ag−Cu等のはんだペーストを印刷し、はんだペーストが溶解する温度、例えば260℃くらいで加熱することで、はんだをアンダーバンプメタルと固着させ、フラックス洗浄剤によりフラックスを除去し、球状のはんだバンプを形成する。
(C) External Electrode Formation Step Next, external electrodes are formed on the piezoelectric substrate 10 as necessary. For example, through holes (via holes) are formed in the cover layer 22b and the cover frame layer 22a of the hollow protective film 22 by laser processing, and the pads are exposed at the bottom of the via holes. Next, the via hole is filled with under bump metal by electrolytic plating (Cu, Ni, etc.), and an Au film having a thickness of about 0.05 to 0.1 μm for preventing oxidation is formed on the surface of the under bump metal. A solder paste such as Sn-Ag-Cu is printed directly on the under bump metal via a metal mask, and the solder is fixed to the under bump metal by heating at a temperature at which the solder paste dissolves, for example, about 260 ° C. Then, the flux is removed by a flux cleaning agent to form spherical solder bumps.

なお、後述する基板薄化工程の後に、外部電極形成工程を行うことも可能であるが、この場合、接着材が残っていると、中空保護膜22のカバー層22b及びカバー枠層22aに貫通孔(ビアホール)を形成したときに汚れの原因となる。これに対し、基板薄化工程の前に外部電極形成工程を行うようにすれば、接着材による汚れの問題は生じないため、基板薄化工程の前に外部電極形成工程を行えば、接着力が強く、はがれにくい接着材を用いることができる。   It is possible to perform an external electrode forming step after the substrate thinning step described later. In this case, if the adhesive remains, the cover layer 22b and the cover frame layer 22a of the hollow protective film 22 are penetrated. When a hole (via hole) is formed, it causes contamination. On the other hand, if the external electrode forming step is performed before the substrate thinning step, the problem of contamination due to the adhesive does not occur. Therefore, if the external electrode forming step is performed before the substrate thinning step, the adhesion force It is possible to use an adhesive that is strong and difficult to peel off.

(d)基板薄化工程
次いで、図1(c)に示すように、圧電基板10の他方主面である裏面10bについて除去加工を行って、圧電基板10を薄くする。例えば、圧電基板10の表面10a側に、接着材としてワックスを塗布し、ワックスを介して圧電基板10を固定した状態で、圧電基板10の裏面10bについて研削、研磨等の除去加工を行い、圧電基板10を薄くする。
(D) Substrate Thinning Step Next, as shown in FIG. 1C, the back surface 10b, which is the other main surface of the piezoelectric substrate 10, is removed to thin the piezoelectric substrate 10. For example, in the state where wax is applied as an adhesive to the front surface 10a side of the piezoelectric substrate 10 and the piezoelectric substrate 10 is fixed via the wax, the back surface 10b of the piezoelectric substrate 10 is subjected to removal processing such as grinding and polishing, and piezoelectric processing is performed. The substrate 10 is thinned.

(e)支持層形成工程
次いで、図1(d)に示すように、圧電基板10の裏面10bに支持層12を形成する。
(E) Support Layer Formation Step Next, as shown in FIG. 1 (d), the support layer 12 is formed on the back surface 10 b of the piezoelectric substrate 10.

支持層12は、線膨張係数が、圧電基板10の線膨張係数よりも小さくなるように形成する。これにより、温度変化に伴う圧電基板10の伸縮が支持層12で抑制されるため、弾性表面波素子2は、温度変化に伴う周波数特性の変動が小さくなり、温度特性が改善される。   The support layer 12 is formed so that the linear expansion coefficient is smaller than the linear expansion coefficient of the piezoelectric substrate 10. As a result, the expansion and contraction of the piezoelectric substrate 10 due to the temperature change is suppressed by the support layer 12, and thus the surface acoustic wave element 2 is less affected by the frequency characteristic change due to the temperature change, and the temperature characteristic is improved.

支持層12は、溶射などの成膜、接着、直接接合などの方法で形成することができる。   The support layer 12 can be formed by a method such as film formation such as thermal spraying, adhesion, or direct bonding.

溶射などの成膜方法によって、Si、Al、SiOなど、金属やセラミック等を用いて、圧電基板10の裏面10bに支持層12を形成する。例えば、厚さ20〜30μmまで薄くしたタンタル酸リチウムやニオブ酸リチウム基板の圧電基板10の裏面10bに、溶射によりAlの支持層12を形成する。 The support layer 12 is formed on the back surface 10b of the piezoelectric substrate 10 by using a metal, ceramic, or the like, such as Si, Al 2 O 3 , or SiO 2 , by a film forming method such as thermal spraying. For example, the Al 2 O 3 support layer 12 is formed by thermal spraying on the back surface 10b of the piezoelectric substrate 10 of a lithium tantalate or lithium niobate substrate having a thickness of 20 to 30 μm.

特に溶射で支持層12を形成すると、圧電基板10よりも十分に線膨張係数が小さい支持層12を容易に形成することができ、温度特性の改善効果を大きくすることができる。また、圧電基板10の裏面10bに凹凸があっても支持層12を形成することができ、圧電基板10の裏面10bの平坦性について高い加工精度は要求されないため、製造が簡単である。   In particular, when the support layer 12 is formed by thermal spraying, the support layer 12 having a sufficiently smaller linear expansion coefficient than the piezoelectric substrate 10 can be easily formed, and the effect of improving temperature characteristics can be increased. In addition, the support layer 12 can be formed even when the back surface 10b of the piezoelectric substrate 10 is uneven, and high processing accuracy is not required for the flatness of the back surface 10b of the piezoelectric substrate 10, so that the manufacturing is simple.

接着の場合には、圧電基板10の裏面10bに、接着材を介して支持基板を接着し、支持基板によって支持層12を形成する。必要に応じて、例えば基板薄化工程と同様の方法で、接着した支持基板を薄くしてもよい。   In the case of bonding, a support substrate is bonded to the back surface 10b of the piezoelectric substrate 10 via an adhesive, and the support layer 12 is formed by the support substrate. If necessary, the bonded support substrate may be thinned by, for example, the same method as the substrate thinning step.

直接接合の場合には、圧電基板10の裏面10bと支持基板の接合面とを親水化処理して重ね合わせて熱処理を行なうことにより、直接接合する。直接接合の場合には、圧電基板10の裏面10bと支持基板の接合面とを高精度に平坦に加工する必要がある。必要に応じて、例えば基板薄化工程と同様の方法で、直接接合した支持基板を薄くしてもよい。   In the case of direct bonding, the back surface 10b of the piezoelectric substrate 10 and the bonding surface of the support substrate are hydrophilized and superposed to perform heat treatment, thereby directly bonding. In the case of direct bonding, it is necessary to process the back surface 10b of the piezoelectric substrate 10 and the bonding surface of the support substrate flat with high accuracy. If necessary, the directly bonded support substrate may be thinned, for example, by the same method as the substrate thinning step.

(f)基板分割工程
次いで、ダイシング等により圧電基板10を個片に分割し、図2に示す弾性表面波素子2が完成する。
(F) Substrate Dividing Step Next, the piezoelectric substrate 10 is divided into individual pieces by dicing or the like, and the surface acoustic wave element 2 shown in FIG. 2 is completed.

以上に説明したように、弾性表面波素子2は、圧電基板10を薄くした後に圧電基板10に支持層12を形成すると生じる反りを防止することができる。   As described above, the surface acoustic wave element 2 can prevent warping that occurs when the support layer 12 is formed on the piezoelectric substrate 10 after the piezoelectric substrate 10 is thinned.

すなわち、図3の断面図に模式的に示すように、支持層12が無ければ圧電基板10と中空保護膜22との接合によって、例えば矢印30で示すように、圧電基板10の裏面10b側が突出する反り(第1の反り)が発生する。第1の反りは、例えば中空保護膜22の硬化時の収縮によって発生する。   That is, as schematically shown in the cross-sectional view of FIG. 3, if the support layer 12 is not provided, the back surface 10 b side of the piezoelectric substrate 10 protrudes as shown by an arrow 30 by joining the piezoelectric substrate 10 and the hollow protective film 22, for example. Warping (first warping) occurs. The first warpage is caused by, for example, shrinkage when the hollow protective film 22 is cured.

一方、図4の断面図に模式的に示すように、中空保護膜22が無ければ圧電基板10と支持層12との接合によって、例えば矢印40で示すように、圧電基板10の表面10a側が突出する反り(第2の反り)が発生する。第2の反りは、例えば圧電基板10と支持層12との接合界面に残留する接合時の圧縮応力よって発生する。   On the other hand, as schematically shown in the cross-sectional view of FIG. 4, if there is no hollow protective film 22, the surface 10 a side of the piezoelectric substrate 10 protrudes as shown by an arrow 40, for example, by joining the piezoelectric substrate 10 and the support layer 12. Warping (second warping) occurs. The second warp is caused by, for example, compressive stress at the time of bonding remaining at the bonding interface between the piezoelectric substrate 10 and the support layer 12.

例えば中空保護膜22の材質や厚みなどを選択することで、第1の反りが第2の反りを打ち消すように、圧電基板10に中空保護膜22を形成することができる。これによって、全体として反りの発生を防止することができる。   For example, the hollow protective film 22 can be formed on the piezoelectric substrate 10 by selecting the material and thickness of the hollow protective film 22 so that the first warp cancels the second warp. As a result, it is possible to prevent warpage as a whole.

したがって、圧電基板10を薄くした後に圧電基板10に支持層12を形成すると生じる反りを防止することができる。   Therefore, it is possible to prevent warping that occurs when the support layer 12 is formed on the piezoelectric substrate 10 after the piezoelectric substrate 10 is thinned.

なお、本発明は、上記実施の形態に限定されるものではなく、種々変更を加えて実施することが可能である。   The present invention is not limited to the above embodiment, and can be implemented with various modifications.

2 弾性表面波素子
10 圧電基板
10a 表面(一方主面)
10b 裏面(他方主面)
11 振動伝搬領域
12 支持層
20 IDT電極
22 中空保護膜(補助層)
22a カバー枠層
22b カバー層
2 Surface acoustic wave element 10 Piezoelectric substrate 10a Surface (one main surface)
10b Back side (the other main side)
11 vibration propagation region 12 support layer 20 IDT electrode 22 hollow protective film (auxiliary layer)
22a Cover frame layer 22b Cover layer

Claims (1)

圧電基板と、
前記圧電基板の一方主面に形成された、IDT電極を含む導電パターンと、
前記圧電基板の前記一方主面のうち前記IDT電極による弾性表面波が伝搬する振動伝搬領域以外の領域に形成され、前記振動伝搬領域との間に間隔を設けて前記振動伝搬領域を覆う樹脂の中空保護膜である補助層と、
前記圧電基板の他方主面に形成され、線膨張係数が前記圧電基板より小さくなるように金属またはセラミックで形成された支持層と、
を備え、
前記補助層は、前記支持層が無ければ前記圧電基板と前記補助層との接合によって生じる第1の反りが、前記補助層が無ければ前記圧電基板と前記支持層との接合によって生じる第2の反りを打ち消すように形成されていることを特徴とする、弾性表面波素子。
A piezoelectric substrate;
A conductive pattern including an IDT electrode formed on one main surface of the piezoelectric substrate;
The resin is formed in a region other than the vibration propagation region in which the surface acoustic wave from the IDT electrode propagates on the one main surface of the piezoelectric substrate, and covers the vibration propagation region with a space between the vibration propagation region. An auxiliary layer that is a hollow protective membrane;
A support layer formed on the other principal surface of the piezoelectric substrate and made of metal or ceramic so that the linear expansion coefficient is smaller than that of the piezoelectric substrate;
With
The auxiliary layer has a first warp caused by joining the piezoelectric substrate and the auxiliary layer without the support layer, and a second warp caused by joining the piezoelectric substrate and the support layer without the auxiliary layer. A surface acoustic wave device characterized by being formed so as to cancel warping.
JP2013226393A 2013-10-31 2013-10-31 Surface acoustic wave element Pending JP2014033467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013226393A JP2014033467A (en) 2013-10-31 2013-10-31 Surface acoustic wave element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013226393A JP2014033467A (en) 2013-10-31 2013-10-31 Surface acoustic wave element

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009057210A Division JP5446338B2 (en) 2009-03-10 2009-03-10 Manufacturing method of surface acoustic wave element and surface acoustic wave element

Publications (1)

Publication Number Publication Date
JP2014033467A true JP2014033467A (en) 2014-02-20

Family

ID=50282923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013226393A Pending JP2014033467A (en) 2013-10-31 2013-10-31 Surface acoustic wave element

Country Status (1)

Country Link
JP (1) JP2014033467A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160248398A1 (en) * 2015-02-19 2016-08-25 Taiyo Yuden Co., Ltd. Acoustic wave device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08191228A (en) * 1995-01-11 1996-07-23 Murata Mfg Co Ltd Surface acoustic wave device
JP2003032075A (en) * 2001-07-12 2003-01-31 Toshiba Corp Surface acoustic wave device and its manufacturing method
JP2006128809A (en) * 2004-10-26 2006-05-18 Kyocera Corp Acoustic surface wave element and communication apparatus
WO2007059733A1 (en) * 2005-11-23 2007-05-31 Epcos Ag Electroacoustic component
WO2009001650A1 (en) * 2007-06-28 2008-12-31 Kyocera Corporation Surface acoustic wave device and method for fabricating the same
JP2009188844A (en) * 2008-02-08 2009-08-20 Fujitsu Media Device Kk Surface acoustic wave device and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08191228A (en) * 1995-01-11 1996-07-23 Murata Mfg Co Ltd Surface acoustic wave device
JP2003032075A (en) * 2001-07-12 2003-01-31 Toshiba Corp Surface acoustic wave device and its manufacturing method
JP2006128809A (en) * 2004-10-26 2006-05-18 Kyocera Corp Acoustic surface wave element and communication apparatus
WO2007059733A1 (en) * 2005-11-23 2007-05-31 Epcos Ag Electroacoustic component
WO2009001650A1 (en) * 2007-06-28 2008-12-31 Kyocera Corporation Surface acoustic wave device and method for fabricating the same
JP2009188844A (en) * 2008-02-08 2009-08-20 Fujitsu Media Device Kk Surface acoustic wave device and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160248398A1 (en) * 2015-02-19 2016-08-25 Taiyo Yuden Co., Ltd. Acoustic wave device
US9831850B2 (en) * 2015-02-19 2017-11-28 Taiyo Yuden Co., Ltd. Acoustic wave device with a piezoelectric substrate that is not located in some regions

Similar Documents

Publication Publication Date Title
JP5077714B2 (en) Elastic wave device and manufacturing method thereof
JP5180889B2 (en) Composite substrate, elastic wave device using the same, and method of manufacturing composite substrate
JP2010187373A (en) Composite substrate and elastic wave device using the same
JP5056837B2 (en) Method for manufacturing piezoelectric device
KR101661361B1 (en) Composite substrate, and elastic surface wave filter and resonator using the same
JP2011071967A (en) Method for manufacturing composite substrate
JP2007228319A (en) Piezoelectric thin-film device and method of manufacturing same
JP2007228356A (en) Piezoelectric thin-film device
JPWO2009093376A1 (en) Method for manufacturing acoustic wave device
JP2005229455A (en) Compound piezoelectric substrate
JP6810599B2 (en) Electronic components and their manufacturing methods
JP2018537888A5 (en)
JP2007214902A (en) Surface acoustic wave device
JP2007228341A (en) Piezoelectric thin-film device
JP5458651B2 (en) Surface acoustic wave element substrate and surface acoustic wave element manufacturing method
US20100269319A1 (en) Method for manufacturing surface acoustic wave device
JP4863097B2 (en) Manufacturing method of surface acoustic wave device
JP5446338B2 (en) Manufacturing method of surface acoustic wave element and surface acoustic wave element
JP5304386B2 (en) Manufacturing method of surface acoustic wave device
JP2014033467A (en) Surface acoustic wave element
JP5252007B2 (en) Manufacturing method of electronic parts
WO2010103713A1 (en) Surface acoustic wave element
JP5020612B2 (en) Piezoelectric thin film device
JP2021027383A (en) Elastic wave device
JP4963229B2 (en) Piezoelectric thin film device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140916

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150203