JP2014031577A - Composition for forming metal pattern and method for forming metal pattern - Google Patents

Composition for forming metal pattern and method for forming metal pattern Download PDF

Info

Publication number
JP2014031577A
JP2014031577A JP2013144585A JP2013144585A JP2014031577A JP 2014031577 A JP2014031577 A JP 2014031577A JP 2013144585 A JP2013144585 A JP 2013144585A JP 2013144585 A JP2013144585 A JP 2013144585A JP 2014031577 A JP2014031577 A JP 2014031577A
Authority
JP
Japan
Prior art keywords
copper
metal
nitrate
metal pattern
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013144585A
Other languages
Japanese (ja)
Other versions
JP6188063B2 (en
Inventor
Katsuaki Suganuma
克昭 菅沼
Masaya Atagi
雅也 能木
Toru Sugawara
徹 菅原
Teppei Araki
徹平 荒木
Hiroshi Uchida
博 内田
Kenji Shinozaki
研二 篠崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, Osaka University NUC filed Critical Showa Denko KK
Priority to JP2013144585A priority Critical patent/JP6188063B2/en
Publication of JP2014031577A publication Critical patent/JP2014031577A/en
Application granted granted Critical
Publication of JP6188063B2 publication Critical patent/JP6188063B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a composition for forming a metal pattern, in which metal salt and a metal complex are used, and to provide a method for forming a metal pattern.SOLUTION: The composition for forming a metal pattern is prepared by mixing metal salt and/or a metal complex with a reductant. The reductant preferably includes at least one or more of ammonia, a primary amine, a secondary amine, and a tertiary amine, but the mixing may be performed with ethanol, water and the like. A metal pattern (conductive pattern) is formed by printing with the composition for forming a metal pattern on a substrate and radiating a light pulse thereto.

Description

本発明は、金属パターン形成用組成物及び金属パターン形成方法に関する。   The present invention relates to a metal pattern forming composition and a metal pattern forming method.

基板上に半導体、金属等の導電パターンを形成するには、例えば導電性粒子が分散されたインク組成物(導電性インク)を使用して基板上にインクパターンを印刷し、インクパターン中の導電性粒子を焼結して導電パターンとすることが考えられる。   In order to form a conductive pattern of a semiconductor, metal, etc. on a substrate, for example, an ink pattern is printed on the substrate using an ink composition (conductive ink) in which conductive particles are dispersed, and the conductive pattern in the ink pattern is printed. It is conceivable to sinter the conductive particles into a conductive pattern.

例えば、下記特許文献1には、基板に接着剤を塗布して接着層をコーティングし、接着層がコーティングされた基板に撥水層をコーティングし、接着層及び撥水層がコーティングされた基板に導電性インクを印刷し、印刷された導電性インクの焼結及び接着層の硬化を行う技術が開示されている。   For example, in the following Patent Document 1, an adhesive is applied to a substrate to coat an adhesive layer, a substrate coated with the adhesive layer is coated with a water repellent layer, and the substrate coated with the adhesive layer and the water repellent layer is coated. A technique for printing a conductive ink, sintering the printed conductive ink, and curing the adhesive layer is disclosed.

また、下記特許文献2には、熱硬化性樹脂で形成された絶縁パターンを備えた基材の上から金属微粒子を散布して該絶縁パターン上に金属微粒子を付着させ、上記絶縁パターンを加熱して溶融し、上記金属微粒子を絶縁パターン上に固着させ、絶縁パターン以外の基材の表面に付着した金属微粒子を除去することにより電子部品を製造する装置が開示されている。   Further, in Patent Document 2 below, metal fine particles are dispersed from a base material provided with an insulating pattern formed of a thermosetting resin so that the metal fine particles adhere to the insulating pattern, and the insulating pattern is heated. An apparatus is disclosed in which an electronic component is manufactured by melting and fixing the fine metal particles on an insulating pattern, and removing the fine metal particles adhering to the surface of a substrate other than the insulating pattern.

特許文献1の方法では、焼結条件が200℃で1時間の加熱であり(特許文献1の第0044段落)、特許文献2の方法では、絶縁パターンの加熱温度が150〜200℃である(特許文献2の第0028段落等)が、一般に基板上の導電性パターンや絶縁パターンを加熱する際には、基板ごと加熱するので、使用できる基板が高い耐熱性を有するもの、例えばビスマレイミドトリアジン化合物を含むBT樹脂などの高耐熱性熱硬化樹脂等に限られる。   In the method of Patent Document 1, the sintering condition is heating for 1 hour at 200 ° C. (paragraph 0044 of Patent Document 1), and in the method of Patent Document 2, the heating temperature of the insulating pattern is 150 to 200 ° C. ( In the case of heating a conductive pattern or an insulating pattern on a substrate, generally, the substrate that can be used has high heat resistance, such as a bismaleimide triazine compound. Limited to high heat-resistant thermosetting resins such as BT resin.

そこで、特許文献3〜5に記載のように、ナノ粒子を含むインク組成物を用いて、光照射やマイクロ波加熱により金属配線に転化させようとの試みがあった。光エネルギーやマイクロ波を加熱に用いる方法は、インク組成物(ナノ粒子)のみを加熱でき、耐熱温度が上記樹脂よりも低い樹脂を基板に使用できる可能性がある。   Therefore, as described in Patent Documents 3 to 5, there has been an attempt to use an ink composition containing nanoparticles to convert it into a metal wiring by light irradiation or microwave heating. The method using light energy or microwaves for heating can heat only the ink composition (nanoparticles) and may use a resin having a lower heat-resistant temperature than the above resin for the substrate.

特開2010−75911号公報JP 2010-75911 A 特開2005−203396号公報JP 2005-203396 A 特表2008−522369号公報Special table 2008-522369 国際公開2010/110969号パンフレットInternational Publication 2010/110969 Pamphlet 特表2010−528428号公報Special table 2010-528428 gazette

しかし、上記従来の光照射による焼結技術においては、インク組成物中に金属またはその酸化物のナノ粒子が含有されており、金属塩、金属錯体を金属膜形成用の主成分として使用するものではなかった。   However, in the conventional sintering technique by light irradiation, the ink composition contains metal or its oxide nanoparticles, and uses a metal salt or metal complex as a main component for forming a metal film. It wasn't.

本発明の目的は、金属塩、金属錯体を金属膜形成用の主成分として使用した金属パターン形成用組成物及び金属パターン形成方法を提供することにある。   An object of the present invention is to provide a metal pattern forming composition using a metal salt or a metal complex as a main component for forming a metal film, and a metal pattern forming method.

上記目的を達成するために本発明の一実施形態は、光照射による金属パターン形成用組成物であって、金属塩および/または金属錯体と、還元剤とを含むことを特徴とする。   In order to achieve the above object, one embodiment of the present invention is a composition for forming a metal pattern by light irradiation, and is characterized by containing a metal salt and / or a metal complex and a reducing agent.

上記金属塩および/または金属錯体の金属が、銅、ニッケルまたはコバルトであることを特徴とする。   The metal of the metal salt and / or metal complex is copper, nickel or cobalt.

上記還元剤が、アンモニア、1級アミン、2級アミン、3級アミンの少なくとも一つを含むことを特徴とする。   The reducing agent contains at least one of ammonia, primary amine, secondary amine, and tertiary amine.

また、上記金属塩および/または金属錯体が、蟻酸銅(四水和物)、酢酸銅、トリフルオロ酢酸銅、ペンタフルオロプロピオン酸銅、シュウ酸銅等の炭素数が4以下の有機酸の銅塩、銅メトキシド、銅ケトイミン、ネオデカン酸銅、オクタン酸銅、2−エチルヘキサン酸銅、硝酸銅(三水和物)、チオ硫酸銅、テトラアンミン銅(II)硝酸塩、蟻酸ニッケル、硝酸ニッケル(六水和物)、ヘキサアンミンニッケル(II)硝酸塩、蟻酸コバルト、酢酸コバルト、硝酸コバルト、ヘキサアンミンコバルト(III)硝酸塩の少なくとも一つを含むことを特徴とする。蟻酸銅(四水和物)、酢酸銅、硝酸銅(三水和物)、蟻酸ニッケル、硝酸ニッケル(六水和物)、蟻酸コバルト、硝酸コバルトを含むことがより好ましい。   In addition, the metal salt and / or the metal complex is an organic acid copper having 4 or less carbon atoms such as copper formate (tetrahydrate), copper acetate, copper trifluoroacetate, copper pentafluoropropionate, copper oxalate and the like. Salt, copper methoxide, copper ketoimine, copper neodecanoate, copper octoate, copper 2-ethylhexanoate, copper nitrate (trihydrate), copper thiosulfate, tetraammine copper (II) nitrate, nickel formate, nickel nitrate (six Hydrate), hexaammine nickel (II) nitrate, cobalt formate, cobalt acetate, cobalt nitrate, and hexaammine cobalt (III) nitrate. More preferably, it contains copper formate (tetrahydrate), copper acetate, copper nitrate (trihydrate), nickel formate, nickel nitrate (hexahydrate), cobalt formate, and cobalt nitrate.

また、本発明の他の実施形態は、金属パターン形成方法であって、上記いずれかの金属パターン形成用組成物を基板上に印刷して該組成物パターンを形成し、前記組成物パターンにパルス光を照射することにより加熱焼成し金属パターンを形成する、ことを特徴とする。   Another embodiment of the present invention is a method for forming a metal pattern, wherein the composition for forming a metal pattern is printed on a substrate to form the composition pattern, and the composition pattern is pulsed. A metal pattern is formed by heating and baking by irradiating light.

本発明によれば、金属塩、金属錯体を主成分として使用して金属パターンを基板にダメージを与えることなく簡単に形成することができる。   According to the present invention, a metal pattern can be easily formed using a metal salt or metal complex as a main component without damaging the substrate.

パルス光の定義を説明するための図である。It is a figure for demonstrating the definition of pulsed light.

以下、本発明を実施するための形態(以下、実施形態という)を説明する。   Hereinafter, modes for carrying out the present invention (hereinafter referred to as embodiments) will be described.

本実施形態にかかる金属パターン形成用組成物は、金属塩または金属錯体と還元剤とを混合して作製する。金属塩または金属錯体は粉体であってもよいし、液体であってもよい。また、還元剤としては、アンモニアまたはアミン溶液のほかにエタノール、水等を混合してもよい。なお、上記金属パターン形成用組成物には金属酸化物ナノ粒子を併用してもよい。   The metal pattern forming composition according to this embodiment is prepared by mixing a metal salt or metal complex and a reducing agent. The metal salt or metal complex may be a powder or a liquid. Further, as the reducing agent, ethanol, water or the like may be mixed in addition to ammonia or an amine solution. In addition, you may use a metal oxide nanoparticle together in the said composition for metal pattern formation.

上記還元剤としては、アンモニア、1級アミン、2級アミン、3級アミンの少なくとも一つを含むことが好ましい。1級アミンとしては、例えばn−ブチルアミン、n−オクチルアミン、2−エチルヘキシルアミン、エタノールアミン等が挙げられ、2級アミンとしては、例えばジエチルアミン、ジ−n−ブチルアミン、2,2’−イミノジエタノール(ジエタノールアミン)等が挙げられ、3級アミンとしては、例えばトリエチルアミン、トリ−n−ブチルアミン、トリ−n−オクチルアミン、トリエタノールアミン等が挙げられる。   The reducing agent preferably contains at least one of ammonia, primary amine, secondary amine, and tertiary amine. Examples of the primary amine include n-butylamine, n-octylamine, 2-ethylhexylamine, and ethanolamine. Examples of the secondary amine include diethylamine, di-n-butylamine, and 2,2′-iminodiethanol. (Diethanolamine) etc. are mentioned, As a tertiary amine, a triethylamine, a tri-n-butylamine, a tri-n-octylamine, a triethanolamine etc. are mentioned, for example.

また、上記金属塩、金属錯体としては、例えば、銅、ニッケルまたはコバルトの金属塩、金属錯体が挙げられる。より具体的には、炭素数が4以下の有機酸の銅塩(蟻酸銅(四水和物)、酢酸銅、トリフルオロ酢酸銅、ペンタフルオロプロピオン酸銅、シュウ酸銅等)、銅メトキシド、銅ケトイミン、ネオデカン酸銅、オクタン酸銅、2−エチルヘキサン酸銅、硝酸銅(三水和物)、チオ硫酸銅、テトラアンミン銅(II)硝酸塩、蟻酸ニッケル、硝酸ニッケル(六水和物)、ヘキサアンミンニッケル(II)硝酸塩、蟻酸コバルト、酢酸コバルト、硝酸コバルト、ヘキサアンミンコバルト(III)硝酸塩等を使用することができる。より好ましくは、蟻酸銅(四水和物)、酢酸銅、硝酸銅(三水和物)、蟻酸ニッケル、硝酸ニッケル(六水和物)、蟻酸コバルト、硝酸コバルトである。有機酸の塩、錯体を用いる場合は、炭素数が少ない方が少ないエネルギーで還元、焼結が進行しやすい傾向があり、また、塩、錯体中の金属含有量が高いため、炭素数が1または2のものがより好ましく、炭素数が1のものがさらに好ましいが、これらに限定されるものではない。蟻酸銅は四水和物でなくてもよく、硝酸銅は三水和物でなくてもよく、硝酸ニッケルは六水和物でなくてもよい。なお、金属錯体としてアンモニアを配位子として有するアンミン錯体、例えばテトラアンミン銅(II)硝酸塩、ヘキサアンミンニッケル(II)硝酸塩、ヘキサアンミンコバルト(III)硝酸塩等を用いる場合は、配位子のアンモニアが還元剤の機能を有するため還元剤を別途使用しなくてもよい。   Moreover, as said metal salt and a metal complex, the metal salt and metal complex of copper, nickel, or cobalt are mentioned, for example. More specifically, a copper salt of an organic acid having 4 or less carbon atoms (copper formate (tetrahydrate), copper acetate, copper trifluoroacetate, copper pentafluoropropionate, copper oxalate, etc.), copper methoxide, Copper ketimine, copper neodecanoate, copper octoate, copper 2-ethylhexanoate, copper nitrate (trihydrate), copper thiosulfate, tetraammine copper (II) nitrate, nickel formate, nickel nitrate (hexahydrate), Hexaammine nickel (II) nitrate, cobalt formate, cobalt acetate, cobalt nitrate, hexaammine cobalt (III) nitrate and the like can be used. More preferred are copper formate (tetrahydrate), copper acetate, copper nitrate (trihydrate), nickel formate, nickel nitrate (hexahydrate), cobalt formate, and cobalt nitrate. In the case of using a salt or complex of an organic acid, reduction and sintering tend to proceed with less energy when the number of carbon atoms is small, and since the metal content in the salt and complex is high, the number of carbon atoms is one. Alternatively, those having 2 carbon atoms are more preferable, and those having 1 carbon atom are more preferable, but not limited thereto. Copper formate may not be a tetrahydrate, copper nitrate may not be a trihydrate, and nickel nitrate may not be a hexahydrate. When an ammine complex having ammonia as a ligand as a metal complex, such as tetraammine copper (II) nitrate, hexaammine nickel (II) nitrate, hexaammine cobalt (III) nitrate, etc., the ligand ammonia is used. Since it has the function of a reducing agent, it is not necessary to use a reducing agent separately.

これらの金属塩または金属錯体は酸化物粒子や金属粒子の原料に使われるので、対応する粒子を使うよりも安価であるし、金属間化合物のような機能性金属化合物を作製する場合には、均一に量論比で反応させることが出来る。   Since these metal salts or metal complexes are used as raw materials for oxide particles and metal particles, they are cheaper than using the corresponding particles, and when producing functional metal compounds such as intermetallic compounds, The reaction can be carried out uniformly in a stoichiometric ratio.

本実施形態に係る金属パターン形成用組成物を使用して基板上に適宜なパターン等を印刷し、パルス光を照射することにより、金属パターン(導電パターン)を形成することができる。基板上に金属パターン形成用組成物のパターンを形成するには、例えばインクジェット印刷、スクリーン印刷、オフセット印刷、マスキング印刷等の方法により、所望のパターン(基板表面全面に金属パターン形成用組成物のベタパターンを形成する場合を含む)を形成する。   A metal pattern (conductive pattern) can be formed by printing an appropriate pattern or the like on a substrate using the composition for forming a metal pattern according to this embodiment and irradiating with pulsed light. In order to form the pattern of the metal pattern forming composition on the substrate, for example, by a method such as ink jet printing, screen printing, offset printing, masking printing, etc. Including the case of forming a pattern).

上記基板は、例えばポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリアクリレート、ポリオレフィン、ポリシクロオレフィン、ポリイミド等の樹脂をフィルム状に形成したもの又は紙が挙げられるが、材料はこれらに限定されず、基板として使用できる材料であればよい。また、基板の厚さは、10μm〜3mmであるのがよい。基板の厚みとしてはあまりに薄いとフィルム強度がなくなるために好ましくなく、厚いほうは特に制限はないがフレキシブル性が必要な場合にはあまりに厚いものは使えない。そのためにフィルムの厚さとしては、10μm〜3mm、フレキシブル性、入手の容易性も考慮するとより好ましくは16μm〜288μmである。   Examples of the substrate include polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyacrylate, polyolefin, polycycloolefin, polyimide and other resins formed into a film or paper, but the material is not limited to these, and the substrate Any material can be used as long as it can be used. The thickness of the substrate is preferably 10 μm to 3 mm. If the thickness of the substrate is too thin, the film strength is lost, which is not preferable. The thicker is not particularly limited, but if the flexibility is required, the too thick cannot be used. Therefore, the thickness of the film is preferably 10 μm to 3 mm, more preferably 16 μm to 288 μm in consideration of flexibility and availability.

次に、上記基板上に形成した金属パターン形成用組成物のパターンにパルス光を照射して金属パターン形成用組成物に含まれる金属塩、金属錯体を金属に還元、焼結し、金属パターンを形成する。   Next, the pattern of the metal pattern forming composition formed on the substrate is irradiated with pulsed light to reduce and sinter the metal salt and metal complex contained in the metal pattern forming composition into a metal, Form.

本明細書中において「パルス光」とは、光照射期間(照射時間)が短時間の光であり、光照射を複数回繰り返す場合は図1に示すように、第一の光照射期間(on)と第二の光照射期間(on)との間に光が照射されない期間(照射間隔(off))を有する光照射を意味する。図1ではパルス光の光強度が一定であるように示しているが、1回の光照射期間(on)内で光強度が変化してもよい。上記パルス光は、キセノンフラッシュランプ等のフラッシュランプを備える光源から照射される。このような光源を使用して、上記基板に堆積された金属ナノワイヤにパルス光を照射する。n回繰り返し照射する場合は、図1における1サイクル(on+off)をn回反復する。なお、繰り返し照射する場合には、次パルス光照射を行う際に、基材を室温付近まで冷却できるようにするため基材側から冷却することが好ましい。   In this specification, “pulse light” means light having a short light irradiation period (irradiation time). When light irradiation is repeated a plurality of times, as shown in FIG. 1, the first light irradiation period (on ) And the second light irradiation period (on) means light irradiation having a period (irradiation interval (off)) in which light is not irradiated. Although FIG. 1 shows that the light intensity of the pulsed light is constant, the light intensity may change within one light irradiation period (on). The pulsed light is emitted from a light source including a flash lamp such as a xenon flash lamp. Using such a light source, the metal nanowires deposited on the substrate are irradiated with pulsed light. When irradiation is repeated n times, one cycle (on + off) in FIG. 1 is repeated n times. In addition, when irradiating repeatedly, when performing the next pulse light irradiation, it is preferable to cool from the base-material side so that a base material can be cooled to room temperature vicinity.

パルス光の1回の照射期間(on)としては、5マイクロ秒から1秒、より好ましくは20マイクロ秒から10ミリ秒の範囲が好ましい。5マイクロ秒よりも短いと焼結が進まず、金属パターン形成用組成物のパターンを焼結する効果が低くなる。また、1秒よりも長いと光劣化、熱劣化による基板等への悪影響のほうが大きくなる。パルス光の照射は単発で実施しても効果はあるが、上記の通り繰り返し実施することもできる。繰返し実施する場合、照射間隔(off)は20マイクロ秒から30秒、より好ましくは2000マイクロ秒から5秒の範囲とすることが好ましい。20マイクロ秒よりも短いと、連続光と近くになってしまい一回の照射後に放冷される間も無く照射されるので、基材が加熱され温度が高くなって劣化する可能性がある。また、30秒より長いと、放冷が進むのでまったく効果が無いわけはないが、繰り返し実施する効果が低減する。なお、上記パルス光の照射には、0.5Hz以上で動作する光源を使用することができる。また、上記パルス光としては、1pm〜1mの波長範囲の電磁波を使用することができる。   One irradiation period (on) of the pulsed light is preferably in the range of 5 microseconds to 1 second, more preferably 20 microseconds to 10 milliseconds. If it is shorter than 5 microseconds, the sintering does not proceed and the effect of sintering the pattern of the metal pattern forming composition is lowered. On the other hand, if the time is longer than 1 second, the adverse effect on the substrate or the like due to light deterioration or heat deterioration becomes larger. Irradiation with pulsed light is effective even if performed in a single shot, but can also be performed repeatedly as described above. When it is repeated, the irradiation interval (off) is preferably in the range of 20 to 30 seconds, more preferably 2000 to 5 seconds. If it is shorter than 20 microseconds, it becomes close to continuous light and is irradiated without being allowed to cool after one irradiation, so that there is a possibility that the substrate is heated and the temperature becomes high and deteriorates. On the other hand, if the time is longer than 30 seconds, the cooling is progressed, so that the effect is not completely lost, but the effect of repeated execution is reduced. Note that a light source operating at 0.5 Hz or higher can be used for the irradiation with the pulsed light. Moreover, as the pulsed light, an electromagnetic wave having a wavelength range of 1 pm to 1 m can be used.

以下、本発明の実施例を具体的に説明する。なお、以下の実施例は、本発明の理解を容易にするためのものであり、本発明はこれらの実施例に制限されるものではない。   Examples of the present invention will be specifically described below. In addition, the following examples are for facilitating understanding of the present invention, and the present invention is not limited to these examples.

実施例1
市販されている和光純薬工業社製の蟻酸銅四水和物、酢酸銅、硝酸銅三水和物を用いてインク組成物(金属パターン形成用組成物の一例)を調製し、銅配線の作製を行った。
Example 1
Prepare an ink composition (an example of a metal pattern forming composition) using commercially available copper formate tetrahydrate, copper acetate, copper nitrate trihydrate manufactured by Wako Pure Chemical Industries, Ltd. Fabrication was performed.

各化合物に対して等モル量の2−エチルヘキシルアミン(和光純薬工業社製)とエタノール(化合物の質量に対して1.5倍の質量)を添加、または、各化合物に対して2倍のモル量の2,2−イミノジエタノール(ジエタノールアミン)(和光純薬工業社製) とエタノール(化合物の質量に対して1.5倍の質量)を添加した後、ミキサー(あわとり練太郎(登録商標)ARV−310、シンキー製)を用いて良く混合してインク組成物を調製した。インクの外観を表1に示す。   Add equimolar amounts of 2-ethylhexylamine (manufactured by Wako Pure Chemical Industries, Ltd.) and ethanol (1.5 times the mass of the compound) or double the amount of each compound. After adding a molar amount of 2,2-iminodiethanol (diethanolamine) (manufactured by Wako Pure Chemical Industries, Ltd.) and ethanol (1.5 times the mass of the compound), a mixer (Awatori Netaro (registered trademark)) ) ARV-310, manufactured by Shinky Corporation) and mixed well to prepare an ink composition. Table 1 shows the appearance of the ink.

次に、ポリイミド基板(厚み70μm、カプトン(登録商標)300H、東レ・デュポン社製)上へ各インク組成物を35μm厚のポリイミドテープ(アズワン社製、PIST−01)で幅3mm、長さ2cmにマスキング印刷し、10分風乾後、Novacentrix社製PulseForge3300を用いて240V、照射期間(on)1400μ秒、3.03J/cmで配線全体が金属色になるまで複数回から数十回(各パルスを0.1秒〜2秒間隔で)パルス光を照射した。パルス光照射後の上記配線の膜厚は、レーザー顕微鏡による測定で略15μmであった。パルス光の照射回数と焼成後の1cmあたりの抵抗値を表2に示す。各インク組成物を使用して形成した配線は、パルス光の照射後、銅色の配線に変化して通電した。抵抗値は、三和電機計器株式会社製テスター(商品名:デジタルマルチメータ)を用い、上記配線上で2端子法により1cm間隔を取り測定した。その結果、全て30Ω以下であり、良好な導電性が得られた。
Next, each ink composition was placed on a polyimide substrate (thickness 70 μm, Kapton (registered trademark) 300H, manufactured by Toray DuPont) with a 35 μm-thick polyimide tape (manufactured by ASONE, PIST-01), 3 mm wide and 2 cm long. After masking printing to 10 minutes and air drying for 10 minutes, using a PulseForge 3300 manufactured by Novacentrix, 240V, irradiation period (on) 1400 μsec, 3.03 J / cm 2 until the entire wiring becomes metallic color several times to several tens of times (each Pulse light was irradiated at intervals of 0.1 second to 2 seconds. The film thickness of the wiring after irradiation with pulsed light was approximately 15 μm as measured by a laser microscope. Table 2 shows the number of pulsed light irradiations and the resistance value per 1 cm after firing. The wiring formed using each ink composition was changed into a copper-colored wiring and energized after irradiation with pulsed light. The resistance value was measured by using a tester (trade name: Digital Multimeter) manufactured by Sanwa Denki Keiki Co., Ltd. with a 1-cm interval on the wiring by the two-terminal method. As a result, all were 30Ω or less, and good conductivity was obtained.

Figure 2014031577
Figure 2014031577

Figure 2014031577
Figure 2014031577

実施例2
室温で液体のネオデカン酸銅インク(金属パターン形成用組成物の一例)を調製し、銅配線の作製を行った。
Example 2
A liquid copper neodecanoate ink (an example of a metal pattern forming composition) was prepared at room temperature, and a copper wiring was prepared.

ネオデカン酸銅インクの合成方法は、以下の通りである。水酸化ナトリウム450mg(11.25mモル)を水5mlに溶かし、撹拌下、バーサティック10(登録商標)(ネオデカン酸(RCCOOHで表される飽和カルボン酸の異性体混合物(R,R,Rは各々アルキル基を表し、R,R,Rの炭素数の合計が8))、酸価321mg/g)2gを加えた。30分撹拌し、分離層のないことを確認し、これに硝酸銅3水和物1.36g(5.63mモル)を3mlの水に溶かしたものを加え、撹拌した。遊離してきた濃緑青オイルをジエチルエーテル(和光純薬工業社製)で抽出し、濃縮してネオデカン酸銅インクを調製した。 The method for synthesizing the copper neodecanoate ink is as follows. 450 mg (11.25 mmol) of sodium hydroxide was dissolved in 5 ml of water, and under stirring, Versatic 10 (registered trademark) (an isomer mixture of saturated carboxylic acids represented by neodecanoic acid (R 1 R 2 R 3 CCOOH (R 1 , R 2 and R 3 each represents an alkyl group, and the total number of carbon atoms of R 1 , R 2 and R 3 is 8)), and an acid value of 321 mg / g) 2 g was added. The mixture was stirred for 30 minutes, and it was confirmed that there was no separated layer. To this, a solution obtained by dissolving 1.36 g (5.63 mmol) of copper nitrate trihydrate in 3 ml of water was added and stirred. The liberated dark patina oil was extracted with diethyl ether (manufactured by Wako Pure Chemical Industries, Ltd.) and concentrated to prepare a copper neodecanoate ink.

このネオデカン酸銅インクを、ポリイミド基板(厚み70μm、カプトン(登録商標)300H、東レ・デュポン社製)上へ35μm厚のポリイミドテープ(アズワン社製、PIST−01)で幅3mm、長さ2cmにマスキング印刷し、10分風乾後、Novacentrix社製PulseForge3300を用いて230V、照射期間(on)1200μ秒、2.41J/cmで配線全体が金属色になるまで5回パルス光を(各パルスを0.1秒〜2秒間隔で)照射(計12.1J/cmのエネルギーの光照射)した。なお、照射した光のエネルギー(12.1J/cm)は、PulseForge3300の菅球にかける電圧から装置が自動的に算出し表示するエネルギー値の積算値である。パルス光照射後の上記配線の膜厚は、レーザー顕微鏡による測定で略15μmであった。作製した銅配線について、実施例1同様1cmあたりの抵抗値を測定した結果、100Ωであった。 This neodecanoic acid copper ink is placed on a polyimide substrate (thickness 70 μm, Kapton (registered trademark) 300H, manufactured by Toray DuPont) to a width of 3 mm and a length of 2 cm using a 35 μm-thick polyimide tape (manufactured by ASONE, PIST-01). After masking printing and air-drying for 10 minutes, using a PulseForge 3300 manufactured by Novacentrix, 230 V, irradiation time (on) 1200 μsec, and 2.41 J / cm 2 until the entire wiring becomes metallic color (5 times pulse light) Irradiation was performed at intervals of 0.1 second to 2 seconds (light irradiation with energy of 12.1 J / cm 2 in total). The energy of the irradiated light (12.1 J / cm 2 ) is an integrated value of energy values that the apparatus automatically calculates and displays from the voltage applied to the Ryukyu of PulseForge 3300. The film thickness of the wiring after irradiation with pulsed light was approximately 15 μm as measured by a laser microscope. About the produced copper wiring, as a result of measuring the resistance value per 1cm like Example 1, it was 100 (ohm).

実施例3
シュウ酸銅粉末を合成し、この粉末とジエタノールアミン(和光純薬工業社製)および水で分散したインク(金属層形成用組成物の一例)を調製し、銅配線の作製を行った。
Example 3
A copper oxalate powder was synthesized, an ink (an example of a metal layer forming composition) dispersed with this powder, diethanolamine (manufactured by Wako Pure Chemical Industries, Ltd.) and water was prepared, and a copper wiring was prepared.

シュウ酸銅粉末の合成方法は、以下の通りである。水酸化ナトリウム200mg(5mモル)を水3mlに溶かし、撹拌下、シュウ酸225mg(2.5mモル)を加えた。この時、発熱があるものの、そのまま30分間撹拌し、放冷で室温にした。完溶していないが、これに硝酸銅3水和物604mg(2.5mモル)を1mlの水に溶かしたものを加え、30分撹拌した。析出している淡青色の沈殿物を濾取し水洗乾燥し、シュウ酸銅粉末を得た。次に、得られたシュウ酸銅粉末とジエタノールアミン(和光純薬工業社製)および水を質量比1:0.7:10で分散したシュウ酸銅インクを作製した。   The method for synthesizing the copper oxalate powder is as follows. 200 mg (5 mmol) of sodium hydroxide was dissolved in 3 ml of water, and 225 mg (2.5 mmol) of oxalic acid was added with stirring. At this time, although exothermic, it was stirred for 30 minutes as it was, and allowed to cool to room temperature. Although not completely dissolved, 604 mg (2.5 mmol) of copper nitrate trihydrate dissolved in 1 ml of water was added thereto and stirred for 30 minutes. The deposited pale blue precipitate was collected by filtration, washed with water and dried to obtain copper oxalate powder. Next, copper oxalate ink was prepared by dispersing the obtained copper oxalate powder, diethanolamine (manufactured by Wako Pure Chemical Industries, Ltd.) and water in a mass ratio of 1: 0.7: 10.

このシュウ酸銅インクをポリイミド基板(厚み70μm、カプトン(登録商標)300H、東レ・デュポン社製)上へ35μm厚のポリイミドテープ(アズワン社製、PIST−01)で幅3mm、長さ2cmにマスキング印刷し、10分風乾後、Novacentrix社製PulseForge3300を用いて200V、照射期間(on)1800μ秒、2.42J/cmで配線全体が金属色になるまで5回パルス光を(各パルスを0.1秒〜2秒間隔で)照射(計12.1J/cmのエネルギーの光照射)した。なお、照射した光のエネルギー(12.1J/cm)は、PulseForge3300の菅球にかける電圧から装置が自動的に算出し表示するエネルギー値の積算値である。パルス光照射後の上記配線の膜厚は、レーザー顕微鏡による測定で略15μmであった。作製した銅配線について、実施例1同様1cmあたりの抵抗値を測定した結果、80Ωのであった。 This copper oxalate ink is masked on a polyimide substrate (thickness 70 μm, Kapton (registered trademark) 300H, manufactured by Toray DuPont) to a width of 3 mm and a length of 2 cm with a 35 μm-thick polyimide tape (manufactured by ASONE, PIST-01). After printing and air-drying for 10 minutes, using a PulseForge 3300 manufactured by Novacentrix, 200 V, irradiation period (on) 1800 μsec, 2.42 J / cm 2 , and pulse light 5 times until the entire wiring becomes metallic color (each pulse is 0 (1 second to 2 second intervals) (irradiation with a total energy of 12.1 J / cm 2 ). The energy of the irradiated light (12.1 J / cm 2 ) is an integrated value of energy values that the apparatus automatically calculates and displays from the voltage applied to the Ryukyu of PulseForge 3300. The film thickness of the wiring after irradiation with pulsed light was approximately 15 μm as measured by a laser microscope. About the produced copper wiring, as a result of measuring the resistance value per 1 cm like Example 1, it was 80 ohms.

実施例4
市販されている和光純薬工業社製の硝酸ニッケル六水和物粉末を用いて金属錯体インク(金属(磁性体)パターン形成用組成物の一例)を調製し、磁性体の作製を行った。
Example 4
A metal complex ink (an example of a metal (magnetic material) pattern forming composition) was prepared using a commercially available nickel nitrate hexahydrate powder manufactured by Wako Pure Chemical Industries, Ltd., and a magnetic material was prepared.

硝酸ニッケル六水和物に対して2倍のモル量の2,2’−イミノジエタノール(ジエタノールアミン)(和光純薬工業社製)とエタノール200μLを添加した後、ミキサー(あわとり練太郎(登録商標)ARV−310、シンキー製)を用いてよく混合してNi系金属錯体インクを作製した。金属錯体インクの外観は、濃青透明である。この金属錯体インクを用いて実施例1から3と同様にポリイミド基板へマスキング印刷し、その配線の形状をうまく保つため、Novacentrix社製PulseForge3300を用い、マルチパルス(0.01秒間隔に280Vで100μ秒、100μ秒、100μ秒、200μ秒、500μ秒、100μ秒、100μ秒パルス光を照射)を10回、その後シングルパルス(250V、照射期間(on)1400μ秒)を(各パルスを0.1秒〜2秒間隔で)20回与えて、計101.9J/cmのエネルギーの光照射を行い、配線を形成した。なお、照射した光のエネルギー(101.9J/cm)は、PulseForge3300の菅球にかける電圧から装置が自動的に算出し表示するエネルギー値の積算値である。パルス光照射後の上記配線の膜厚は、レーザー顕微鏡による測定で略15μmであった。実施例1同様1cmあたりの抵抗値を測定した配線の抵抗値は540Ωであり、磁石にもつくことを確認した。 After adding a molar amount of 2,2′-iminodiethanol (diethanolamine) (manufactured by Wako Pure Chemical Industries, Ltd.) and 200 μL of ethanol to nickel nitrate hexahydrate, a mixer (Awatori Netaro (registered trademark)) ) ARV-310, manufactured by Shinky Corporation), and mixed well to prepare a Ni-based metal complex ink. The appearance of the metal complex ink is dark blue and transparent. Using this metal complex ink, mask printing is performed on a polyimide substrate in the same manner as in Examples 1 to 3, and in order to keep the shape of the wiring well, a Novacentrix PulseForge 3300 is used, and a multi-pulse (100 μm at 280 V at intervals of 0.01 seconds) is used. Second, 100 μsec, 100 μsec, 200 μsec, 500 μsec, 100 μsec, 100 μsec pulse light irradiation) 10 times, and then a single pulse (250 V, irradiation period (on) 1400 μsec) (each pulse is 0.1 20 times (at intervals of 2 seconds to 2 seconds), light irradiation with a total energy of 101.9 J / cm 2 was performed, and wiring was formed. The energy of the irradiated light (101.9 J / cm 2 ) is an integrated value of energy values that the apparatus automatically calculates and displays from the voltage applied to the Ryukyu of PulseForge 3300. The film thickness of the wiring after irradiation with pulsed light was approximately 15 μm as measured by a laser microscope. Similar to Example 1, the resistance value of the wiring measured per 1 cm was 540Ω, and it was confirmed that it also attached to the magnet.

参考例1
市販のシーアイ化成社製CuOナノ粒子NanoTek(登録商標)を用い、アミン系物質が有りまたは無しのインクを用意し、銅配線の作製を試み、CuOの還元力を配線の外観と電気抵抗値測定によって確認した。
Reference example 1
Using commercially available CuO Nanoparticle NanoTek (registered trademark) manufactured by C-I Kasei Co., Ltd., prepare ink with or without amine-based materials, try to produce copper wiring, and measure the reduction power of CuO and the appearance and electrical resistance of CuO Confirmed by.

CuOナノ粒子(平均粒子径48nm(カタログ値))とジエタノールアミン(和光純薬工業社製)および水を質量比1:0.3:1.2で分散したインクA、または、CuOナノ粒子とエタノールを質量比1:1で分散したインクB、CuOナノ粒子と水を質量比1:1で分散したインクCを作製した。各インクをポリイミド基板(厚み70μm、カプトン(登録商標)300H、東レ・デュポン社製)上へ35μm厚のポリイミドテープ(アズワン社製、PIST−01)で幅3mm、長さ2mmにマスクキング印刷し、1分風乾後、Novacentrix社製PulseForge3300を用いて配線全体が変色するまで複数回パルス光を(各パルスを0.1秒〜2秒間隔で)照射した。配線焼成時の総エネルギーと実施例1同様測定した1cmあたりの配線の抵抗値を表3に示す。なお、総エネルギーは、PulseForge3300の菅球にかける電圧から装置が自動的に算出し表示するエネルギー値の積算値である。アミン系物質を用いた際、一番還元力が強く、低抵抗値を得られている。   Ink A in which CuO nanoparticles (average particle size 48 nm (catalog value)), diethanolamine (manufactured by Wako Pure Chemical Industries, Ltd.) and water are dispersed at a mass ratio of 1: 0.3: 1.2, or CuO nanoparticles and ethanol Ink B, CuO nanoparticles and water dispersed at a mass ratio of 1: 1 were prepared. Each ink was mask-king printed on a polyimide substrate (70 μm thick, Kapton (registered trademark) 300H, manufactured by Toray DuPont) with a 35 μm-thick polyimide tape (manufactured by ASONE, PIST-01) to a width of 3 mm and a length of 2 mm. After air-drying for 1 minute, pulse light was irradiated a plurality of times (each pulse at intervals of 0.1 second to 2 seconds) using a PulseForge 3300 manufactured by Novacentrix until the entire wiring was discolored. Table 3 shows the total energy at the time of wiring firing and the resistance value of the wiring per 1 cm measured in the same manner as in Example 1. The total energy is an integrated value of energy values that the apparatus automatically calculates and displays from the voltage applied to the Ryukyu of PulseForge 3300. When an amine-based substance is used, it has the strongest reducing power and a low resistance value is obtained.

Figure 2014031577
Figure 2014031577

Claims (7)

光照射による金属パターン形成用組成物であって、金属塩および/または金属錯体と、還元剤とを含むことを特徴とする金属パターン形成用組成物。   A composition for forming a metal pattern by light irradiation, comprising a metal salt and / or a metal complex and a reducing agent. 前記金属塩および/または金属錯体の金属が、銅、ニッケルまたはコバルトである請求項1に記載の金属パターン形成用組成物。   The metal pattern forming composition according to claim 1, wherein a metal of the metal salt and / or metal complex is copper, nickel, or cobalt. 前記還元剤が、アンモニア、1級アミン、2級アミン、3級アミンの少なくとも一つを含むことを特徴とする請求項1または請求項2に記載の金属パターン形成用組成物。   The metal pattern forming composition according to claim 1 or 2, wherein the reducing agent contains at least one of ammonia, primary amine, secondary amine, and tertiary amine. 前記金属塩および/または金属錯体が、炭素数が4以下の有機酸の銅塩、銅メトキシド、銅ケトイミン、ネオデカン酸銅、オクタン酸銅、2−エチルヘキサン酸銅、硝酸銅(三水和物)、チオ硫酸銅、テトラアンミン銅(II)硝酸塩、蟻酸ニッケル、硝酸ニッケル(六水和物)、ヘキサアンミンニッケル(II)硝酸塩、蟻酸コバルト、酢酸コバルト、硝酸コバルト、ヘキサアンミンコバルト(III)硝酸塩の少なくとも一つを含むことを特徴とする請求項1から請求項3のいずれか一項に記載の金属パターン形成用組成物。   The metal salt and / or the metal complex is a copper salt of an organic acid having 4 or less carbon atoms, copper methoxide, copper ketimine, copper neodecanoate, copper octoate, copper 2-ethylhexanoate, copper nitrate (trihydrate) ), Copper thiosulfate, tetraammine copper (II) nitrate, nickel formate, nickel nitrate (hexahydrate), hexaammine nickel (II) nitrate, cobalt formate, cobalt acetate, cobalt nitrate, hexaammine cobalt (III) nitrate The metal pattern forming composition according to any one of claims 1 to 3, comprising at least one. 前記炭素数が4以下の有機酸の銅塩が蟻酸銅(四水和物)、酢酸銅、トリフルオロ酢酸銅、ペンタフルオロプロピオン酸銅、シュウ酸銅の少なくとも一つである請求項4に記載の金属パターン形成用組成物。   The copper salt of an organic acid having 4 or less carbon atoms is at least one of copper formate (tetrahydrate), copper acetate, copper trifluoroacetate, copper pentafluoropropionate, and copper oxalate. A metal pattern forming composition. 前記金属塩および/または金属錯体が蟻酸銅(四水和物)、酢酸銅、硝酸銅(三水和物)、蟻酸ニッケル、硝酸ニッケル(六水和物)、蟻酸コバルト、硝酸コバルトの少なくとも一つを含むことを特徴とする請求項4に記載の金属パターン形成用組成物。   The metal salt and / or metal complex is at least one of copper formate (tetrahydrate), copper acetate, copper nitrate (trihydrate), nickel formate, nickel nitrate (hexahydrate), cobalt formate, and cobalt nitrate. The composition for forming a metal pattern according to claim 4, comprising: 請求項1から請求項6のいずれか一項に記載の金属パターン形成用組成物を基板上に印刷して該組成物パターンを形成し、前記組成物パターンにパルス光を照射することにより加熱焼成し金属パターンを形成する、ことを特徴とする金属パターン形成方法。   A metal pattern forming composition according to any one of claims 1 to 6 is printed on a substrate to form the composition pattern, and the composition pattern is heated and fired by irradiating pulse light. And forming a metal pattern.
JP2013144585A 2012-07-11 2013-07-10 Ink composition for forming metal pattern and method for forming metal pattern Active JP6188063B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013144585A JP6188063B2 (en) 2012-07-11 2013-07-10 Ink composition for forming metal pattern and method for forming metal pattern

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012155426 2012-07-11
JP2012155426 2012-07-11
JP2013144585A JP6188063B2 (en) 2012-07-11 2013-07-10 Ink composition for forming metal pattern and method for forming metal pattern

Publications (2)

Publication Number Publication Date
JP2014031577A true JP2014031577A (en) 2014-02-20
JP6188063B2 JP6188063B2 (en) 2017-08-30

Family

ID=50281629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013144585A Active JP6188063B2 (en) 2012-07-11 2013-07-10 Ink composition for forming metal pattern and method for forming metal pattern

Country Status (1)

Country Link
JP (1) JP6188063B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016183296A (en) * 2015-03-26 2016-10-20 東ソー株式会社 Conductive ink composition
JP2019006903A (en) * 2017-06-26 2019-01-17 東ソー株式会社 Conductive copper ink composition
WO2019225340A1 (en) * 2018-05-24 2019-11-28 学校法人芝浦工業大学 Method for manufacturing conductor, method for manufacturing wiring board, and composition for forming conductor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62196378A (en) * 1986-02-21 1987-08-29 Brother Ind Ltd Forming method for thin film
JP2004190109A (en) * 2002-12-12 2004-07-08 Ebara Corp Plating method and plating apparatus
JP2004204265A (en) * 2002-12-24 2004-07-22 Ebara Corp Plating method and plating apparatus
JP2004253794A (en) * 2003-01-29 2004-09-09 Fuji Photo Film Co Ltd Ink for forming printed wiring board, method for forming printed wiring board, and the printed wiring board
US20100051091A1 (en) * 2008-08-29 2010-03-04 Kwangyeol Lee Electrode formation based on photo-induced reduction of metal ions in the presence of metal nanomaterials
JP2011026698A (en) * 2009-04-14 2011-02-10 Jsr Corp Method for forming metallic structure, composition for forming metallic structure, and electronic component

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62196378A (en) * 1986-02-21 1987-08-29 Brother Ind Ltd Forming method for thin film
JP2004190109A (en) * 2002-12-12 2004-07-08 Ebara Corp Plating method and plating apparatus
JP2004204265A (en) * 2002-12-24 2004-07-22 Ebara Corp Plating method and plating apparatus
JP2004253794A (en) * 2003-01-29 2004-09-09 Fuji Photo Film Co Ltd Ink for forming printed wiring board, method for forming printed wiring board, and the printed wiring board
US20100051091A1 (en) * 2008-08-29 2010-03-04 Kwangyeol Lee Electrode formation based on photo-induced reduction of metal ions in the presence of metal nanomaterials
JP2011026698A (en) * 2009-04-14 2011-02-10 Jsr Corp Method for forming metallic structure, composition for forming metallic structure, and electronic component

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016183296A (en) * 2015-03-26 2016-10-20 東ソー株式会社 Conductive ink composition
JP2019006903A (en) * 2017-06-26 2019-01-17 東ソー株式会社 Conductive copper ink composition
WO2019225340A1 (en) * 2018-05-24 2019-11-28 学校法人芝浦工業大学 Method for manufacturing conductor, method for manufacturing wiring board, and composition for forming conductor
JPWO2019225340A1 (en) * 2018-05-24 2021-10-21 学校法人 芝浦工業大学 Conductor manufacturing method, wiring board manufacturing method, and conductor forming composition
JP7340179B2 (en) 2018-05-24 2023-09-07 学校法人 芝浦工業大学 Method for manufacturing a conductor, method for manufacturing a wiring board, and composition for forming a conductor

Also Published As

Publication number Publication date
JP6188063B2 (en) 2017-08-30

Similar Documents

Publication Publication Date Title
KR101608295B1 (en) Conductive-pattern formation method and composition for forming conductive pattern via light exposure or microwave heating
JP5505695B2 (en) Metal paste for conductive film formation
JP6188063B2 (en) Ink composition for forming metal pattern and method for forming metal pattern
WO2016136753A1 (en) Copper-containing particles, conductor-forming composition, method for manufacturing conductor, conductor and device
JP2019090110A (en) Structure having conductive pattern region and method for manufacturing the same
JP6737773B2 (en) Composition for forming conductive pattern and method for forming conductive pattern
JP6293412B2 (en) Method of forming a composition of palladium unsaturated carboxylate and palladium nanoparticles
JP2007280881A (en) Conductive composition, formation method of conductive coating, and conductive coating
JP5991830B2 (en) Conductive pattern forming method and composition for forming conductive pattern by light irradiation or microwave heating
JP5707133B2 (en) Method for producing composite nanoparticles
JP2017101307A (en) Copper-containing particle, conductor forming composition, method for producing conductor, conductor and electronic component
JP7031187B2 (en) Conductor and its forming method, as well as structure and its manufacturing method
WO2016080544A1 (en) Method for treating metal surface, silver-coated copper treated by said method, and composite metal body
JP6350475B2 (en) Method for producing copper powder and method for producing conductive paste using the same
CN113956721B (en) Method for preparing Cu/Cu6Sn5 conductive ink by adopting photon sintering technology
KR102240015B1 (en) Copper nanoparticle manufacturing method using solution process
JP2016157708A (en) Light-emitting device arranged by use of silver nanoparticles, and manufacturing method thereof
TWI668709B (en) Method for synthesizing copper-silver alloy, forming method of conducting part, copper-silver alloy and conducting part
JP7340179B2 (en) Method for manufacturing a conductor, method for manufacturing a wiring board, and composition for forming a conductor
JP2017204371A (en) Conductor-forming composition, method for producing conductor, method for producing plating layer, conductor, laminate, and device
JP6996100B2 (en) Conductors and their manufacturing methods, conductor forming compositions, laminates, and equipment
JP6574553B2 (en) Conductive pattern forming composition and conductive pattern forming method
JP2016039008A (en) Method for manufacturing copper-layer attached substrate, and copper-layer attached substrate
JP2018092967A (en) Conductor and forming method thereof, structure and manufacturing method thereof
JP2017122260A (en) Conductor forming composition, method for producing conductor, conductor and device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170727

R150 Certificate of patent or registration of utility model

Ref document number: 6188063

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350