JP5991830B2 - Conductive pattern forming method and composition for forming conductive pattern by light irradiation or microwave heating - Google Patents

Conductive pattern forming method and composition for forming conductive pattern by light irradiation or microwave heating Download PDF

Info

Publication number
JP5991830B2
JP5991830B2 JP2012061816A JP2012061816A JP5991830B2 JP 5991830 B2 JP5991830 B2 JP 5991830B2 JP 2012061816 A JP2012061816 A JP 2012061816A JP 2012061816 A JP2012061816 A JP 2012061816A JP 5991830 B2 JP5991830 B2 JP 5991830B2
Authority
JP
Japan
Prior art keywords
conductive pattern
oxide particles
composition
forming
metal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012061816A
Other languages
Japanese (ja)
Other versions
JP2013196881A (en
Inventor
克昭 菅沼
克昭 菅沼
雅也 能木
雅也 能木
金▲てい▼ 酒
金▲てい▼ 酒
徹 菅原
徹 菅原
内田 博
博 内田
俊雄 藤田
俊雄 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Osaka University NUC
Original Assignee
Showa Denko KK
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK, Osaka University NUC filed Critical Showa Denko KK
Priority to JP2012061816A priority Critical patent/JP5991830B2/en
Publication of JP2013196881A publication Critical patent/JP2013196881A/en
Application granted granted Critical
Publication of JP5991830B2 publication Critical patent/JP5991830B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Description

本発明は、導電パターン形成方法及び光照射またはマイクロ波加熱による導電パターン形成用組成物の改良に関する。   The present invention relates to a method for forming a conductive pattern and improvement of a composition for forming a conductive pattern by light irradiation or microwave heating.

微細な配線パターンを作製する技術として、従来銅箔とフォトレジストを組み合わせてリソグラフィー法で配線パターンを形成する方法が一般的に用いられているが、この方法は工程数も長い上に、排水、廃液処理の負担が大きく、環境的に改善が望まれている。また、加熱蒸着法やスパッタリング法で作製した金属薄膜をフォトリソグラフィー法によりパターニングする手法も知られている。しかし、加熱蒸着法やスパッタリング法は真空環境が不可欠である上に、価格も非常に高価になり、配線パターンへ適用した場合には製造コストを低減させることが困難であった。   As a technique for producing a fine wiring pattern, a method of forming a wiring pattern by a lithography method using a combination of a copper foil and a photoresist is generally used, but this method has a long process number, drainage, The burden of waste liquid treatment is large, and environmental improvement is desired. Also known is a method of patterning a metal thin film produced by a heat deposition method or a sputtering method by a photolithography method. However, the heating vapor deposition method and the sputtering method are indispensable for a vacuum environment, and the price is very expensive. When applied to a wiring pattern, it is difficult to reduce the manufacturing cost.

そこで、金属インキ(酸化物を還元剤により還元して金属化するものも含む)を用いて印刷により配線を作製する技術が提案されている。印刷による配線技術は、低コストで多量の製品を高速に作製することが可能であるため、既に一部で実用的な電子デバイスの作製が検討されている。   In view of this, there has been proposed a technique for producing a wiring by printing using a metal ink (including a metal oxide obtained by reducing an oxide with a reducing agent). Since the wiring technology by printing is capable of producing a large quantity of products at low cost and at high speed, the production of practical electronic devices has already been studied in part.

しかし、加熱炉を用いて金属インキを加熱焼成する方法では、加熱工程で時間がかかる上に、金属インキの焼成に必要な加熱温度にプラスチック基材が耐えることが出来ない場合には、プラスチック基材の耐える温度で焼成せざるを得ず、満足な導電率に到達しないと言う問題があった。   However, in the method of heating and baking metal ink using a heating furnace, the heating process takes time, and if the plastic substrate cannot withstand the heating temperature required for baking the metal ink, the plastic substrate is used. There was a problem that the material had to be fired at a temperature that the material could withstand, and that it did not reach a satisfactory electrical conductivity.

そこで、特許文献1〜3に記載のように、ナノ粒子を含む組成物(インキ)を用いて、光照射により金属配線に転化させようとの試みがあった。   Therefore, as described in Patent Documents 1 to 3, there has been an attempt to convert the metal wiring by light irradiation using a composition (ink) containing nanoparticles.

光エネルギーやマイクロ波を加熱に用いる方法は、インキ部分のみを加熱出来る可能性があり、非常に良い方法ではあるが、金属粒子そのものを用いた場合には、得られる導電膜の導電率が満足に向上しないという問題や、酸化銅を用いた場合には、得られる導電膜の空隙率が大きかったり、一部還元されないまま、酸化銅粒子が残るという問題があった。   The method using light energy or microwave for heating may be able to heat only the ink part and is a very good method. However, when metal particles themselves are used, the conductivity of the resulting conductive film is satisfactory. When copper oxide is used, there is a problem that the porosity of the obtained conductive film is large, or copper oxide particles remain without being partially reduced.

また、これらの焼結には少なくとも直径が1μm以下の金属または金属酸化物粒子を用いる必要があり、これらのナノ粒子の調製には非常にコストがかかるという問題がある上に、照射時のエネルギーを強くすると、微粒子なので、焼結する前に飛散しやすいという欠点があった。   In addition, it is necessary to use metal or metal oxide particles having a diameter of 1 μm or less for the sintering, and there is a problem that the preparation of these nanoparticles is very expensive, and the energy during irradiation is also high. However, since the fine particles are fine particles, they have a drawback of being easily scattered before sintering.

特表2008−522369号公報Special table 2008-522369 国際公開2010/110969号パンフレットInternational Publication 2010/110969 Pamphlet 特表2010−528428号公報Special table 2010-528428 gazette

一般に、基板上に形成された導電膜は、導電率が高い(体積抵抗率が低い)ほど性能が高いといえる。そのため、上記従来の技術により形成された導電パターンも、さらに導電率を向上させることが望ましい。   In general, it can be said that a conductive film formed on a substrate has higher performance as the electrical conductivity is higher (volume resistivity is lower). Therefore, it is desirable to further improve the conductivity of the conductive pattern formed by the conventional technique.

本発明の目的は、光照射やマイクロ波加熱のような内部発熱による選択加熱により基板に印刷された組成物パターンを効率的に導電化するために好適に用いられる組成物および導電化するための方法を提供することにある。   An object of the present invention is to provide a composition suitably used for efficiently conducting a composition pattern printed on a substrate by selective heating by internal heat generation such as light irradiation or microwave heating, and for conducting the composition. It is to provide a method.

上記目的を達成するために、本発明の一実施形態は、光照射またはマイクロ波加熱による導電パターン形成用組成物であって、扁平状の形状を持つ酸化金属粒子、還元剤およびバインダー樹脂を含むことを特徴とする。   In order to achieve the above object, one embodiment of the present invention is a composition for forming a conductive pattern by light irradiation or microwave heating, and includes metal oxide particles having a flat shape, a reducing agent, and a binder resin. It is characterized by that.

また、上記酸化金属粒子の厚さが10〜800nmであることを特徴とする。また、上記酸化金属粒子のアスペクト比が5〜200であることを特徴とする。   The metal oxide particles have a thickness of 10 to 800 nm. The aspect ratio of the metal oxide particles is 5 to 200.

上記酸化金属粒子が酸化銅または酸化コバルトであることを特徴とする。また、上記酸化金属粒子が、種々の酸化状態を持つ酸化物のいずれかまたはこれらの混合粒子であることを特徴とする。   The metal oxide particles are copper oxide or cobalt oxide. Further, the metal oxide particles are any one of oxides having various oxidation states or a mixed particle thereof.

また、上記還元剤が、多価アルコールまたはカルボン酸であることを特徴とする。また、前記バインダー樹脂が、ポリビニルピロリドン、ポリエチレングリコール、ポリプロピレングリコール、ポリウレタンのいずれかであることを特徴とする。   Further, the reducing agent is a polyhydric alcohol or a carboxylic acid. Further, the binder resin is any one of polyvinyl pyrrolidone, polyethylene glycol, polypropylene glycol, and polyurethane.

また、上記酸化金属粒子100質量部に対して、還元剤20〜200質量部およびバインダー樹脂1〜50質量部を含むことを特徴とする。   Moreover, it is characterized by including 20-200 mass parts of reducing agents and 1-50 mass parts of binder resin with respect to 100 mass parts of said metal oxide particles.

本発明の一実施形態は、導電パターン形成方法であって、上記導電パターン形成用組成物を準備し、前記導電パターン形成用組成物に光照射またはマイクロ波加熱を行う、ことを特徴とする。   One embodiment of the present invention is a method for forming a conductive pattern, wherein the conductive pattern forming composition is prepared, and the conductive pattern forming composition is irradiated with light or subjected to microwave heating.

また、上記組成物に照射する光は、200〜3000nmの波長の連続光、または1回の光照射期間(on)が5マイクロ秒から1秒のパルス光であることを特徴とする。   In addition, the light applied to the composition is continuous light having a wavelength of 200 to 3000 nm or pulsed light having a single light irradiation period (on) of 5 microseconds to 1 second.

また、上記組成物を加熱するマイクロ波は、1m〜1mmの波長であることを特徴とする。   Further, the microwave for heating the composition has a wavelength of 1 m to 1 mm.

本発明の導電パターン形成用組成物によれば、光照射やマイクロ波加熱のような内部発熱による選択加熱により基板に印刷されたパターンを効率的に導電化することができる。   According to the composition for forming a conductive pattern of the present invention, a pattern printed on a substrate can be efficiently made conductive by selective heating by internal heat generation such as light irradiation or microwave heating.

パルス光の定義を説明するための図である。It is a figure for demonstrating the definition of pulsed light. 実施例1用に製造した扁平状酸化銅粒子1のSEM写真を示す図である。1 is a view showing an SEM photograph of flat copper oxide particles 1 produced for Example 1. FIG. 実施例1用に製造した扁平状酸化銅粒子1のTGAの測定結果を示す図である。It is a figure which shows the measurement result of TGA of the flat copper oxide particle 1 manufactured for Example 1. FIG. 実施例1用に製造した扁平状酸化銅粒子1のXRDの測定結果を示す図である。It is a figure which shows the measurement result of XRD of the flat copper oxide particle 1 manufactured for Example 1. FIG. 実施例2用に製造した扁平状酸化銅粒子2のSEM写真を示す図である。4 is a view showing an SEM photograph of flat copper oxide particles 2 produced for Example 2. FIG. 実施例2用に製造した扁平状酸化銅粒子2のXRDの測定結果を示す図である。It is a figure which shows the measurement result of XRD of the flat copper oxide particle 2 manufactured for Example 2. FIG. 実施例3用に製造した扁平状酸化銅粒子3のSEM写真を示す図である。4 is a view showing an SEM photograph of flat copper oxide particles 3 produced for Example 3. FIG. 実施例4用に製造した扁平状酸化銅粒子4のSEM写真を示す図である。6 is a view showing an SEM photograph of flat copper oxide particles 4 produced for Example 4. FIG. 実施例1で製造した印刷パターンのパルス光照射前後のSEM写真を示す図である。2 is a diagram showing SEM photographs of the printed pattern manufactured in Example 1 before and after irradiation with pulsed light. FIG. 比較例2で製造した印刷パターンのパルス光照射前後のSEM写真を示す図である。It is a figure which shows the SEM photograph before and behind the pulsed light irradiation of the printing pattern manufactured in the comparative example 2. FIG.

以下、本発明を実施するための形態(以下、実施形態という)について説明する。   Hereinafter, modes for carrying out the present invention (hereinafter referred to as embodiments) will be described.

本実施形態にかかる導電パターン形成方法では、扁平状の形状を持つ酸化金属粒子(以後、扁平状酸化金属粒子という)と還元剤とを含む組成物を準備し、この組成物に光照射またはマイクロ波加熱を行うことにより金属の焼結体を生成し、導電パターンとすることが特徴となっている。ここで、準備とは、例えばスクリーン印刷、グラビア印刷等により、あるいはインクジェットプリンタ等の印刷装置を使用し、適宜な基板上に上記組成物で所定の印刷パターンを形成すること、あるいは基板の全面に上記組成物層を形成すること等をいう。   In the conductive pattern forming method according to the present embodiment, a composition containing a metal oxide particle having a flat shape (hereinafter referred to as flat metal oxide particle) and a reducing agent is prepared, and the composition is irradiated with light or microscopically. A feature is that a metal sintered body is generated by wave heating to form a conductive pattern. Here, preparation refers to, for example, screen printing, gravure printing, or the like, or using a printing apparatus such as an ink jet printer, and forming a predetermined printing pattern with the above composition on an appropriate substrate, or on the entire surface of the substrate. It means forming the composition layer.

上記扁平状酸化金属粒子の厚みは10〜800nmが好適であり、好ましくは20nm〜500nmの範囲がよく、より好ましくは20nm〜300nmがよい。10nmより薄いものは調製するのが難しく、また800nmよりも厚いと焼結されにくくなるという問題が起こる。また、アスペクト比(粒子の幅/厚さ)については、ある程度大きくないと接触面積を大きくする効果が出ない。また、あまりに大きすぎると印刷精度が落ち、さらに粒子の分散をうまく行うことが出来ないという問題がある。そこで、好ましいアスペクト比は5〜200の範囲であり、より好ましくは5〜100の範囲である。扁平状酸化金属粒子の形状は、3万倍の倍率で観察箇所を変えて10点SEM観察して厚さと幅を実測し、厚さはその数平均値として求める。   The thickness of the flat metal oxide particles is preferably 10 to 800 nm, preferably 20 nm to 500 nm, more preferably 20 nm to 300 nm. If it is thinner than 10 nm, it is difficult to prepare, and if it is thicker than 800 nm, it becomes difficult to sinter. Further, the aspect ratio (particle width / thickness) must be large to some extent, and the effect of increasing the contact area cannot be obtained. On the other hand, if it is too large, the printing accuracy is lowered, and further, the particles cannot be dispersed well. Therefore, the preferred aspect ratio is in the range of 5 to 200, more preferably in the range of 5 to 100. The shape of the flat metal oxide particles is obtained by changing the observation location at a magnification of 30,000 times, observing the thickness and width by 10-point SEM observation, and obtaining the thickness as a number average value thereof.

扁平状酸化金属粒子としては、酸化銅、酸化コバルト、酸化ニッケル、酸化鉄、酸化亜鉛、酸化インジウム、酸化錫等が挙げられる。これらの中でも還元された金属の導電性が高い点から酸化銅がより好ましい。また、磁性等他の物性の点では酸化コバルトがより好ましい。   Examples of the flat metal oxide particles include copper oxide, cobalt oxide, nickel oxide, iron oxide, zinc oxide, indium oxide, and tin oxide. Among these, copper oxide is more preferable because the reduced metal has high conductivity. Further, cobalt oxide is more preferable in terms of other physical properties such as magnetism.

また、扁平状酸化金属粒子には、種々の酸化状態を持つ酸化物、例えば酸化第一銅や酸化第二銅のように酸化状態の違うものも含まれる。   Further, the flat metal oxide particles include oxides having various oxidation states, for example, those having different oxidation states such as cuprous oxide and cupric oxide.

本発明の導電膜形成用組成物には上記扁平状酸化金属粒子を含むことが必須であるが、他の形状、例えば球状、棒状等の上記酸化金属粒子や銅、コバルト、ニッケル、鉄、亜鉛、インジウム、錫、あるいはこれらの合金の金属粒子を併用することができる。その場合扁平状酸化金属粒子が全粒子に対して70質量%以上であることが好ましく、80質量%以上であることがより好ましい。   The composition for forming a conductive film according to the present invention must contain the flat metal oxide particles, but the metal oxide particles may have other shapes, for example, a spherical shape or a rod shape, or copper, cobalt, nickel, iron, or zinc. Indium, tin, or metal particles of these alloys can be used in combination. In that case, the flat metal oxide particles are preferably 70% by mass or more, more preferably 80% by mass or more based on the total particles.

扁平状酸化金属粒子と併用せず、球状の酸化金属粒子のみを使用して光照射またはマイクロ波加熱により導電膜を形成する場合には、特に粒径の小さい酸化金属粒子を用いた場合には、化学還元焼結により、粒子が連続的に連結された金属膜を与えることができる。しかし、酸化金属粒子の中心部まですべて還元するためには、照射する光またはマイクロ波のエネルギーを大きくし、かつ小さい粒子径の酸化金属粒子を使用する必要がある。このため、光照射またはマイクロ波加熱中に酸化金属粒子が一部吹き飛んでしまい、導電膜の厚さを厚くすることが困難であるという問題がある。また、焼成時に吹き飛ばないように、粒径の大きな酸化金属粒子を用いた場合には、粒子の内部の金属酸化物が還元できず抵抗が下がらないという問題が起こる。   When a conductive film is formed by light irradiation or microwave heating using only spherical metal oxide particles without using flat metal oxide particles, especially when metal oxide particles with a small particle size are used. By chemical reduction sintering, a metal film in which particles are continuously connected can be provided. However, in order to reduce all the metal oxide particles to the center, it is necessary to increase the energy of the light or microwave to be irradiated and use metal oxide particles having a small particle diameter. For this reason, there is a problem that it is difficult to increase the thickness of the conductive film because part of the metal oxide particles blows off during light irradiation or microwave heating. In addition, when metal oxide particles having a large particle size are used so that they do not blow off during firing, there is a problem that the metal oxide inside the particles cannot be reduced and the resistance does not decrease.

これに対して、本実施形態では、扁平状の形状を持つ扁平状酸化金属粒子と還元剤とを混合した組成物に光照射またはマイクロ波加熱を行うことにより金属の焼結体を効率的に生成し、抵抗が十分に下がった導電膜を形成する点に特徴がある。   On the other hand, in the present embodiment, the metal sintered body is efficiently formed by performing light irradiation or microwave heating on a composition in which flat metal oxide particles having a flat shape and a reducing agent are mixed. It is characterized in that a conductive film is formed and the resistance is sufficiently lowered.

本実施形態の導電パターン形成用組成物は扁平状酸化金属粒子を主成分とするため、光照射またはマイクロ波加熱により導電パターンを形成するための還元剤を含む。還元剤としては、メタノール、エタノール、イソプロピルアルコール、ブタノール、シクロヘキサノール、テルペニオールのようなアルコール化合物、エチレングリコール、プロピレングリコール、グリセリン等の多価アルコール、蟻酸、酢酸、蓚酸、コハク酸のようなカルボン酸、アセトン、メチルエチルケトン、シクロヘキサン、ベンズアルデヒド、オクチルアルデヒドのようなカルボニル化合物、酢酸エチル、酢酸ブチル、酢酸フェニルのようなエステル化合物、ヘキサン、オクタン、トルエン、ナフタリン、デカリンのような炭化水素化合物を使用することが出来る。この中で、還元剤の効率を考えると、エチレングリコール、プロピレングリコールやグリセリン等の多価アルコール、蟻酸、酢酸、蓚酸のようなカルボン酸が好適である。上記還元剤の配合量は扁平状酸化金属粒子に対してその還元に必要な量であれば制限はいが、通常後述のバインダー樹脂を含む組成物の溶剤としての機能を兼ねるので扁平状酸化金属粒子100質量部に対して20〜200質量部配合される。   Since the composition for forming a conductive pattern of the present embodiment is mainly composed of flat metal oxide particles, it contains a reducing agent for forming a conductive pattern by light irradiation or microwave heating. Reducing agents include alcohol compounds such as methanol, ethanol, isopropyl alcohol, butanol, cyclohexanol, and terpeniol, polyhydric alcohols such as ethylene glycol, propylene glycol, and glycerin, and carboxylic acids such as formic acid, acetic acid, succinic acid, and succinic acid. , Carbonyl compounds like acetone, methyl ethyl ketone, cyclohexane, benzaldehyde, octyl aldehyde, ester compounds like ethyl acetate, butyl acetate, phenyl acetate, hydrocarbon compounds like hexane, octane, toluene, naphthalene, decalin I can do it. Among these, considering the efficiency of the reducing agent, polyhydric alcohols such as ethylene glycol, propylene glycol and glycerin, and carboxylic acids such as formic acid, acetic acid and oxalic acid are suitable. The amount of the reducing agent blended is not limited as long as it is an amount necessary for the reduction of the flat metal oxide particles, but since it also serves as a solvent for a composition containing a binder resin, which will be described later, the flat metal oxide particles 20-200 mass parts is mix | blended with respect to 100 mass parts.

上記扁平状酸化金属粒子を主成分とする組成物を印刷するためには、バインダー樹脂が必要となる。バインダー樹脂として使用できる高分子化合物としては、ポリビニルピロリドン、ポリビニルカプロラクトンのようなポリ−N−ビニル化合物、ポリエチレングリコール、ポリプロピレングリコール、ポリTHFのようなポリアルキレングリコール化合物、ポリウレタン、セルロース化合物およびその誘導体、エポキシ化合物、ポリエステル化合物、塩素化ポリオレフィン、ポリアクリル化合物のような熱可塑性樹脂、熱硬化性樹脂が使用できる。これらのバインダー樹脂は効果の程度に差はあるが、いずれも還元剤としての機能を有する。この中でもバインダー効果を考えるとポリビニルピロリドンが、還元効果を考えるとポリエチレングリコール、ポリプロピレングリコール等のポリアルキレングリコールが、また、バインダーとしての粘着力の観点からはポリウレタン化合物が好ましい。なお、ポリエチレングリール、ポリプロピレングリコール等のポリアルキレングリコールは多価アルコールの分類に入り、特に還元剤として好適な特性を有する。   In order to print the composition mainly composed of the flat metal oxide particles, a binder resin is required. Examples of the polymer compound that can be used as the binder resin include poly-N-vinyl compounds such as polyvinyl pyrrolidone and polyvinyl caprolactone, polyalkylene glycol compounds such as polyethylene glycol, polypropylene glycol, and polyTHF, polyurethanes, cellulose compounds and derivatives thereof, Thermoplastic resins and thermosetting resins such as epoxy compounds, polyester compounds, chlorinated polyolefins, and polyacryl compounds can be used. These binder resins have a difference in the degree of effect, but all have a function as a reducing agent. Among these, polyvinyl pyrrolidone is preferable when considering the binder effect, polyalkylene glycol such as polyethylene glycol and polypropylene glycol is preferable when considering the reducing effect, and a polyurethane compound is preferable from the viewpoint of adhesive strength as a binder. Polyalkylene glycols such as polyethylene glycol and polypropylene glycol fall into the category of polyhydric alcohols, and have characteristics that are particularly suitable as reducing agents.

上記の通り扁平状酸化金属粒子を主成分とする導電パターン形成用組成物を印刷するためにはバインダー樹脂の存在は必須であるが、あまり多く用いると導電性が発現しにくくなるという問題があり、またあまりに少なすぎると粒子同士を繋ぎ止める能力が低くなってしまう。そのため、扁平状酸化金属粒子100質量部に対して、1〜50質量部、より好ましくは3〜20質量部の使用量が好ましい。上述の通りバインダー樹脂は還元剤としての機能を有するため、前述のバインダー樹脂を兼用しない還元剤は本発明の導電パターン形成用組成物における必須成分ではない。しかしながら、バインダー樹脂単独でその配合量が少ない場合には還元剤としては不十分となるため、バインダー樹脂の溶剤を兼ねる還元剤を上記配合割合を満たす範囲で併用することが好ましい。   As described above, the presence of a binder resin is indispensable for printing a composition for forming a conductive pattern mainly composed of flat metal oxide particles, but there is a problem that if it is used too much, it is difficult to develop conductivity. If the amount is too small, the ability to hold the particles together is lowered. Therefore, the usage-amount of 1-50 mass parts with respect to 100 mass parts of flat metal oxide particles, More preferably, 3-20 mass parts is preferable. Since the binder resin has a function as a reducing agent as described above, the reducing agent that does not serve as the binder resin is not an essential component in the conductive pattern forming composition of the present invention. However, when the amount of the binder resin alone is small, it is insufficient as a reducing agent. Therefore, it is preferable to use a reducing agent that also serves as a solvent for the binder resin in a range that satisfies the above-described mixing ratio.

上記扁平状酸化金属粒子を主成分とする導電パターン形成用組成物には、印刷する方法に応じて組成物の粘度調整等を目的として必要に応じて公知の有機溶媒、水溶媒等を使用することができる。   For the conductive pattern forming composition containing the flat metal oxide particles as a main component, a known organic solvent, water solvent, or the like is used as necessary for the purpose of adjusting the viscosity of the composition according to the printing method. be able to.

なお、本実施形態にかかる導電パターン形成用組成物には、公知のインキの添加剤(消泡剤や、表面調整剤、チクソ剤等)を必要に応じて存在させても良い。   The conductive pattern forming composition according to this embodiment may contain known ink additives (such as an antifoaming agent, a surface conditioner, and a thixotropic agent) as necessary.

上記導電パターン形成用組成物を導電性とするためには、導電パターン形成用組成物に光照射またはマイクロ波加熱を行う。また、基板上に導電性パターンを形成するためには、導電パターン形成用組成物を基板に印刷し、上記光照射またはマイクロ波加熱を行う。基板の材質は特に限定されず、例えばプラスチック基板、ガラス基板、セラミックス基板等を採用することができる。   In order to make the composition for forming a conductive pattern conductive, the composition for forming a conductive pattern is subjected to light irradiation or microwave heating. Moreover, in order to form a conductive pattern on a substrate, the composition for forming a conductive pattern is printed on the substrate, and the light irradiation or microwave heating is performed. The material of the substrate is not particularly limited, and for example, a plastic substrate, a glass substrate, a ceramic substrate, or the like can be employed.

導電パターン形成用組成物に照射する光としては、波長200nm〜3000nmの連続光またはパルス光がよく、焼成時の蓄熱が起こりにくいパルス光がより好ましい。本明細書中において「パルス光」とは、光照射期間(照射時間)が短時間の光であり、光照射を複数回繰り返す場合は図1に示すように、第一の光照射期間(on)と第二の光照射期間(on)との間に光が照射されない期間(照射間隔(off))を有する光照射を意味する。図1ではパルス光の光強度が一定であるように示しているが、1回の光照射期間(on)内で光強度が変化してもよい。上記パルス光は、キセノンフラッシュランプ等のフラッシュランプを備える光源から照射される。このような光源を使用して、上記組成物の層にパルス光を照射する。n回繰り返し照射する場合は、図1における1サイクル(on+off)をn回反復する。なお、繰り返し照射する場合には、次パルス光照射を行う際に、基材を室温付近まで冷却できるようにするため基材側から冷却することが好ましい。   As light irradiated to the composition for forming a conductive pattern, continuous light or pulsed light having a wavelength of 200 nm to 3000 nm is preferable, and pulsed light that is less likely to store heat during firing is more preferable. In this specification, “pulse light” means light having a short light irradiation period (irradiation time). When light irradiation is repeated a plurality of times, as shown in FIG. 1, the first light irradiation period (on ) And the second light irradiation period (on) means light irradiation having a period (irradiation interval (off)) in which light is not irradiated. Although FIG. 1 shows that the light intensity of the pulsed light is constant, the light intensity may change within one light irradiation period (on). The pulsed light is emitted from a light source including a flash lamp such as a xenon flash lamp. Using such a light source, the layer of the composition is irradiated with pulsed light. When irradiation is repeated n times, one cycle (on + off) in FIG. 1 is repeated n times. In addition, when irradiating repeatedly, when performing the next pulse light irradiation, it is preferable to cool from the base-material side so that a base material can be cooled to room temperature vicinity.

パルス光の1回の照射期間(on)としては、5マイクロ秒から1秒、より好ましくは20マイクロ秒から10ミリ秒の範囲が好ましい。5マイクロ秒よりも短いと焼結が進まず、導電性パターンの性能向上の効果が低くなる。また、1秒よりも長いと光劣化、熱劣化による悪影響のほうが大きくなる。パルス光の照射は単発で実施しても効果はあるが、上記の通り繰り返し実施することもできる。繰返し実施する場合、照射間隔(off)は20マイクロ秒から5秒、より好ましくは2000マイクロ秒から2秒の範囲とすることが好ましい。20マイクロ秒よりも短いと、連続光と近くになってしまい一回の照射後に放冷される間も無く照射されるので、基材が加熱され温度がかなり高くなってしまう。また、5秒より長いと、放冷が進むのでまったく効果が無いわけはないが、繰り返し実施する効果が低減する。   The irradiation period (on) of the pulsed light is preferably in the range of 5 microseconds to 1 second, more preferably 20 microseconds to 10 milliseconds. If it is shorter than 5 microseconds, sintering does not proceed, and the effect of improving the performance of the conductive pattern is reduced. On the other hand, if the time is longer than 1 second, the adverse effects due to light deterioration and heat deterioration become larger. Irradiation with pulsed light is effective even if performed in a single shot, but can also be performed repeatedly as described above. In the case of repeated execution, the irradiation interval (off) is preferably in the range of 20 microseconds to 5 seconds, more preferably 2000 microseconds to 2 seconds. If it is shorter than 20 microseconds, it becomes close to continuous light and is irradiated without being allowed to cool after one irradiation, so that the substrate is heated and the temperature becomes considerably high. Also, if it is longer than 5 seconds, the cooling is progressed, so there is no reason for no effect at all, but the effect of repeated execution is reduced.

また、導電パターン形成用組成物をマイクロ波により加熱することもできる。導電パターン形成用組成物をマイクロ波加熱する場合に使用するマイクロ波は、波長範囲が1m〜1mm(周波数が300MHz〜300GHz)の電磁波である。   Further, the conductive pattern forming composition can be heated by microwaves. The microwave used when heating the composition for forming a conductive pattern is an electromagnetic wave having a wavelength range of 1 m to 1 mm (frequency is 300 MHz to 300 GHz).

以下、本発明の実施例を具体的に説明する。なお、以下の実施例は、本発明の理解を容易にするためのものであり、本発明はこれらの実施例に制限されるものではない。   Examples of the present invention will be specifically described below. In addition, the following examples are for facilitating understanding of the present invention, and the present invention is not limited to these examples.

また、以下の実施例及び比較例において、体積抵抗率は、株式会社三菱アナリテック製 ロレスタGPにより測定し、扁平状の粒子の形状は、日立ハイテク株式会社製 FE−SEM S−5200により10点撮影し、厚さは実測値の数平均値を求めた。なお、比較例1で使用した球状粒子は日機装株式会社製 マイクロトラック粒度分布測定装置 MT3000IIシリーズ USVR(レーザー回折・散乱法)により測定し、球近似により粒径を求めメジアン径をD50とした。参考までに実施例に用いた扁平状酸化金属粒子の形状についても同様にD50を求めた。   Moreover, in the following Examples and Comparative Examples, the volume resistivity is measured by Loresta GP manufactured by Mitsubishi Analytech Co., Ltd., and the shape of the flat particles is 10 points by FE-SEM S-5200 manufactured by Hitachi High-Tech Co., Ltd. Images were taken, and the thickness was obtained as a number average value of actually measured values. The spherical particles used in Comparative Example 1 were measured with a microtrack particle size distribution measuring apparatus MT3000II series USVR (laser diffraction / scattering method) manufactured by Nikkiso Co., Ltd., and the particle size was determined by spherical approximation and the median diameter was D50. D50 was similarly calculated | required also about the shape of the flat metal oxide particle used for the Example for reference.

<扁平状酸化銅粒子1の調製>
ポリビニルピロリドン(0.245g)、Cu(NO(0.374g)、水(48ml)をそれぞれ室温で溶解させた後、NaOH(1.6g)を加えて、2〜3分混合した。この溶液をオートクレーブにより180℃で20時間加熱反応した。得られた析出物を遠心分離により単離し、乾燥して、本実施例にかかる扁平状酸化金属粒子としての扁平状酸化銅粒子1を得た。
<Preparation of flat copper oxide particles 1>
Polyvinylpyrrolidone (0.245 g), Cu (NO 3 ) 2 (0.374 g), and water (48 ml) were dissolved at room temperature, respectively, NaOH (1.6 g) was added, and the mixture was mixed for 2 to 3 minutes. This solution was heated and reacted at 180 ° C. for 20 hours in an autoclave. The obtained precipitate was isolated by centrifugation and dried to obtain flat copper oxide particles 1 as flat metal oxide particles according to this example.

図2(a)、(b)には、上記工程により得られた扁平状酸化銅粒子1のSEM写真が示される。図2(a)、(b)に示されるように、扁平状酸化銅粒子1は板状(扁平状)であり、粒子の厚さは80〜120nmの範囲内であり、平均値として100nm、アスペクト比は20であった。また、参考までに測定したD50は1.28μmであった。   2 (a) and 2 (b) show SEM photographs of the flat copper oxide particles 1 obtained by the above steps. As shown in FIGS. 2 (a) and 2 (b), the flat copper oxide particles 1 are plate-shaped (flat), the thickness of the particles is in the range of 80 to 120 nm, and the average value is 100 nm. The aspect ratio was 20. Further, D50 measured for reference was 1.28 μm.

また、この扁平状酸化銅粒子1を乾燥後、TGA(Rigaku社製、Thermo
plus Evo II差動型示差熱天秤TG8120(高温型赤外線加熱TG−DTA))(測定条件:窒素雰囲気で、5℃/minの昇温速度で室温から500℃まで昇温)を測定し、2.5質量%の熱重量減少が観測された。また、XRD(X線回折 Rigaku社製、湾曲IPX線回折装置 RINT RAPIDII、測定条件:標準ホルダーを用いて連続スキャン測定、X線管球:Cu(40kV/30mA)、コリメーター:f0.8mm、ω:20°、f:1/sec、スキャン時間:360sec、レシービングスリット(RS): 0.15mm)も測定した。TGAの測定結果を図3に、XRDの測定結果を図4にそれぞれ示す。TGAより、ポリマー分の残留がわかり、また、XRDより、合成時点ではほぼ酸化第二銅であったものが、TGAの測定時に一部酸化第一銅(亜酸化銅)に変化していることがわかる。
Further, after drying the flat copper oxide particles 1, TGA (manufactured by Rigaku, Thermo
plus Evo II differential type differential thermobalance TG8120 (high temperature infrared heating TG-DTA)) (measuring condition: temperature rising from room temperature to 500 ° C. at a temperature rising rate of 5 ° C./min in a nitrogen atmosphere) 2 A thermal weight loss of .5% by mass was observed. Also, XRD (X-ray diffraction manufactured by Rigaku, curved IPX-ray diffractometer RINT RAPIDII, measurement condition: continuous scan measurement using a standard holder, X-ray tube: Cu (40 kV / 30 mA), collimator: f0.8 mm, (ω: 20 °, f: 1 / sec, scan time: 360 sec, receiving slit (RS): 0.15 mm) were also measured. The measurement result of TGA is shown in FIG. 3, and the measurement result of XRD is shown in FIG. From TGA, it can be seen that the polymer remains, and from XRD, what was almost cupric oxide at the time of synthesis is partially changed to cuprous oxide (cuprous oxide) at the time of TGA measurement. I understand.

<扁平状酸化銅粒子2の調製>
ポリビニルピロリドン(0.245g)、Cu(NO(0.374g)、水(48ml)をそれぞれ室温で溶解させた後、NaOH(1.6g)を加えて、2〜3分混合した。この溶液をオートクレーブにより120℃で20時間加熱反応した。得られた析出物を遠心分離により単離し、乾燥して、本実施例にかかる扁平状酸化金属粒子としての扁平状酸化銅粒子2を得た。
<Preparation of flat copper oxide particles 2>
Polyvinylpyrrolidone (0.245 g), Cu (NO 3 ) 2 (0.374 g), and water (48 ml) were dissolved at room temperature, respectively, and NaOH (1.6 g) was added and mixed for 2 to 3 minutes. This solution was heated and reacted at 120 ° C. for 20 hours in an autoclave. The obtained precipitate was isolated by centrifugation and dried to obtain flat copper oxide particles 2 as flat metal oxide particles according to this example.

図5(a)、(b)には、上記工程により得られた扁平状酸化銅粒子2のSEM写真が示される。図5(a)、(b)に示されるように、扁平状酸化銅粒子2は板状(扁平状)であり、粒子の厚さは50nm、アスペクト比は40であった。また、参考までに測定したD50は0.808μmであった。   5A and 5B show SEM photographs of the flat copper oxide particles 2 obtained by the above process. As shown in FIGS. 5A and 5B, the flat copper oxide particles 2 were plate-like (flat), the particle thickness was 50 nm, and the aspect ratio was 40. Moreover, D50 measured for reference was 0.808 μm.

また、この扁平状酸化銅粒子2を乾燥後、扁平状酸化銅粒子1と同じ測定条件でXRD(X線回折)も測定した。XRDの測定結果を図6に示す。XRDの結果より、扁平状酸化銅粒子1と異なり、より薄片になったために、還元されやすくなりほぼ銅になっていることがわかる。   Further, after the flat copper oxide particles 2 were dried, XRD (X-ray diffraction) was also measured under the same measurement conditions as the flat copper oxide particles 1. The measurement result of XRD is shown in FIG. From the results of XRD, it can be seen that, unlike the flat copper oxide particles 1, since the flakes became thinner, they are easily reduced and become almost copper.

<扁平状酸化銅粒子3の調製>
ポリビニルピロリドン(0.245g)、Cu(NO(0.374g)、水(48ml)をそれぞれ室温で溶解させた後、NaOH(1.6g)を加えて、2〜3分混合した。この溶液をオートクレーブにより80℃で20時間加熱反応した。得られた析出物を遠心分離により単離し、乾燥して、本実施例にかかる扁平状酸化金属粒子としての扁平状酸化銅粒子3を得た。
<Preparation of flat copper oxide particles 3>
Polyvinylpyrrolidone (0.245 g), Cu (NO 3 ) 2 (0.374 g), and water (48 ml) were dissolved at room temperature, respectively, and NaOH (1.6 g) was added and mixed for 2 to 3 minutes. This solution was heated and reacted at 80 ° C. for 20 hours in an autoclave. The obtained precipitate was isolated by centrifugation and dried to obtain flat copper oxide particles 3 as flat metal oxide particles according to this example.

図7(a)、(b)には、上記工程により得られた扁平状酸化銅粒子3のSEM写真が示される。図7(a)、(b)に示されるように、扁平状酸化銅粒子3は板状(扁平状)であり、粒子の厚さは30nm、アスペクト比は68であった。また、参考までに測定したD50は3.69μmであった。   FIGS. 7A and 7B show SEM photographs of the flat copper oxide particles 3 obtained by the above steps. As shown in FIGS. 7A and 7B, the flat copper oxide particles 3 were plate-shaped (flat), the particle thickness was 30 nm, and the aspect ratio was 68. The D50 measured for reference was 3.69 μm.

<扁平状酸化銅粒子4の調製>
ポリビニルピロリドン(0.245g)、Cu(NO(0.374g)、水(48ml)をそれぞれ室温で溶解させた後、NaOH(1.6g)を加えて、2〜3分混合した。この溶液をガラス容器でそのまま80℃で2時間加熱反応した。得られた析出物を遠心分離により単離し、乾燥して、本実施例にかかる扁平状酸化金属粒子としての扁平状酸化銅粒子4を得た。
<Preparation of flat copper oxide particles 4>
Polyvinylpyrrolidone (0.245 g), Cu (NO 3 ) 2 (0.374 g), and water (48 ml) were dissolved at room temperature, respectively, and NaOH (1.6 g) was added and mixed for 2 to 3 minutes. This solution was heated and reacted at 80 ° C. for 2 hours in a glass container. The obtained precipitate was isolated by centrifugation and dried to obtain flat copper oxide particles 4 as flat metal oxide particles according to this example.

図8(a)、(b)には、上記工程により得られた扁平状酸化銅粒子4のSEM写真が示される。図8(a)、(b)に示されるように、扁平状酸化銅粒子4は板状(扁平状)であり、粒子の厚さは35nm、アスペクト比は30であった。また、参考までに測定したD50は1.62μmであった。   8 (a) and 8 (b) show SEM photographs of the flat copper oxide particles 4 obtained by the above process. As shown in FIGS. 8A and 8B, the flat copper oxide particles 4 were plate-shaped (flat), the particle thickness was 35 nm, and the aspect ratio was 30. Moreover, D50 measured for reference was 1.62 μm.

実施例1
還元剤としてエチレングコール、グリセリン(関東化学株式会社製の試薬)の混合水溶液(質量比 エチレングリコール:グリセリン:水=70:15:15)を調製し、この混合水溶液にバインダー樹脂としてポリビニルピロリドン(日本触媒株式会社製)を溶解して、40質量%のバインダー樹脂溶液を調製した。このバインダー樹脂溶液1.5gと上記混合水溶液0.5gとを混合し、上記調製した扁平状酸化銅粒子1を6.0g加え、自転・公転真空ミキサー あわとり練太郎 ARV−310(株式会社シンキー製)を用いて良く混合し、印刷用のペーストを作製した。
Example 1
Echirengu recall as the reducing agent, mixed aqueous solution of glycerol (reagent manufactured by Kanto Chemical Co., Inc.) (weight ratio of ethylene glycol: glycerol: water = 70: 15: 15) were prepared, polyvinylpyrrolidone as the binder resin in the mixed aqueous solution ( Nippon Catalyst Co., Ltd.) was dissolved to prepare a 40% by mass binder resin solution. 1.5 g of this binder resin solution and 0.5 g of the above mixed aqueous solution are mixed, 6.0 g of the prepared flat copper oxide particles 1 are added, and a rotating / revolving vacuum mixer Awatori Netaro ARV-310 (Sinky Corporation) Were mixed well to produce a paste for printing.

得られたペーストをスクリーン印刷にて、2cm×2cm角のパターンをポリイミドフィルム(厚さ25μm)(カプトン100N、東レ・デュポン株式会社製)上に印刷し、溶媒を室温大気雰囲気下で乾燥除去した。このようにして得られたサンプルの印刷パターンに対して、Novacentrix社製PulseForge3300を用いてパルス光照射を行い、上記パターンを導電パターンに転化した。照射条件は、電圧250V、パルス幅1600マイクロ秒で単発照射した。その際のパルスエネルギーは3.47J/cmであった。以上により形成した導電パターンの厚さは25μmで、体積抵抗率は2.05×10−5Ω・cmであった。表1に測定結果を示す。なお、光照射前の乾燥除去後の印刷パターンは絶縁性であり、株式会社三菱アナリテック製 ロレスタGPでは体積抵抗率は測定できなかった。 The obtained paste was screen printed to print a 2 cm × 2 cm square pattern on a polyimide film (thickness 25 μm) (Kapton 100N, manufactured by Toray DuPont Co., Ltd.), and the solvent was removed by drying in a room temperature atmosphere. . The sample print pattern thus obtained was irradiated with pulsed light using PulseForge 3300 manufactured by Novacentrix to convert the pattern into a conductive pattern. The irradiation conditions were a single irradiation with a voltage of 250 V and a pulse width of 1600 microseconds. The pulse energy at that time was 3.47 J / cm 2 . The thickness of the conductive pattern formed as described above was 25 μm, and the volume resistivity was 2.05 × 10 −5 Ω · cm. Table 1 shows the measurement results. In addition, the printed pattern after drying removal before light irradiation was insulative, and volume resistivity could not be measured with Mitsubishi Analitech's Loresta GP.

図9(a)、(b)には、パルス光照射前後の上記パターンのSEM写真が示される。パルス光照射前である図9(a)に較べて、パルス光照射後である図9(b)の方が空孔が少ないことがわかる。   FIGS. 9A and 9B show SEM photographs of the pattern before and after pulse light irradiation. It can be seen that there are fewer vacancies in FIG. 9B after the pulse light irradiation than in FIG. 9A before the pulse light irradiation.

実施例2〜4
実施例1と同様にして、他の扁平状酸化銅粒子2〜4をそれぞれ用いてインク化(ペースト作製)、印刷後光照射を行った。結果を表1に示す。
Examples 2-4
In the same manner as in Example 1, the other flat copper oxide particles 2 to 4 were used to make ink (paste preparation), and light irradiation after printing was performed. The results are shown in Table 1.

比較例1
球状の酸化銅粒子として、古河ケミカルズ株式会社製1−550(D50=720nm)6gを使用し、実施例1と同様にして印刷用のペーストを作製した。得られたペーストを実施例1と同様にしてパターン印刷し、光照射を行った。形成した導電パターンの厚さは23μmであったが、体積抵抗率が高く、株式会社三菱アナリテック製 ロレスタGPでは測定できなかった。測定結果を表1に示す。
Comparative Example 1
As spherical copper oxide particles, 6 g of 1-550 (D50 = 720 nm) manufactured by Furukawa Chemicals Co., Ltd. was used, and a paste for printing was produced in the same manner as in Example 1. The obtained paste was pattern-printed in the same manner as in Example 1 and irradiated with light. The thickness of the formed conductive pattern was 23 μm, but the volume resistivity was high and could not be measured with a Loresta GP manufactured by Mitsubishi Analitech Co., Ltd. The measurement results are shown in Table 1.

比較例2
球状の酸化金属粒子として、シーアイ化成株式会社製NanoTek CuO(D50=270nm)6.0gを使用し、実施例1と同様にして印刷用のペーストを作製した。得られたペーストを実施例1と同様にしてパターン印刷し、光照射を行った。形成した導電パターンの厚さは22μmであり、体積抵抗率は7.68×10−4Ω・cmであった。測定結果を表1に示す。
Comparative Example 2
As a spherical metal oxide particle, 6.0 g of NanoTek CuO (D50 = 270 nm) manufactured by CII Kasei Co., Ltd. was used, and a paste for printing was produced in the same manner as in Example 1. The obtained paste was pattern-printed in the same manner as in Example 1 and irradiated with light. The formed conductive pattern had a thickness of 22 μm and a volume resistivity of 7.68 × 10 −4 Ω · cm. The measurement results are shown in Table 1.

図10(a)、(b)には、比較例2のパルス光照射前後の上記パターンのSEM写真が示される。パルス光照射前である図10(a)に較べて、パルス光照射後である図10(b)では非常に空孔が多いことがわかる。粒径が小さい球状の粒子を使用したため、短時間に強い光照射を行った場合に吹き飛びやすく、転化された導体内部に空隙が生じやすいためと考えられる。   10A and 10B show SEM photographs of the pattern before and after the pulsed light irradiation of Comparative Example 2. FIG. It can be seen that there are very many holes in FIG. 10B after the pulse light irradiation, compared to FIG. 10A before the pulse light irradiation. Since spherical particles having a small particle diameter are used, it is considered that air is easily blown out when intense light irradiation is performed in a short time, and voids are easily generated inside the converted conductor.

Figure 0005991830
Figure 0005991830

表1に示されるように、比較例1、2にかかる導電パターンに較べて、実施例1〜4にかかる導電パターンは、体積抵抗率が一桁低下していることがわかる。   As shown in Table 1, it can be seen that the volume resistivity of the conductive patterns according to Examples 1 to 4 is one digit lower than that of the conductive patterns according to Comparative Examples 1 and 2.

Claims (9)

光照射またはマイクロ波加熱による導電パターン形成用組成物であって、扁平状の形状を持つ酸化金属粒子、還元剤およびバインダー樹脂を含み
前記酸化金属粒子の厚さが10〜800nmであり、前記酸化金属粒子のアスペクト比が20〜200であり、前記酸化金属粒子が酸化銅、酸化コバルト又は酸化ニッケルであることを特徴とする導電パターン形成用組成物。
A composition for forming a conductive pattern by light irradiation or microwave heating, comprising metal oxide particles having a flat shape, a reducing agent and a binder resin ,
The conductive pattern, wherein the metal oxide particles have a thickness of 10 to 800 nm, the metal oxide particles have an aspect ratio of 20 to 200, and the metal oxide particles are copper oxide, cobalt oxide, or nickel oxide. Forming composition.
前記酸化金属粒子が酸化銅または酸化コバルトであることを特徴とする請求項1に記載の導電パターン形成用組成物。 The composition for forming a conductive pattern according to claim 1, wherein the metal oxide particles are copper oxide or cobalt oxide. 前記酸化金属粒子が、種々の酸化状態を持つ酸化物のいずれかまたはこれらの混合粒子であることを特徴とする請求項1または請求項2に記載の導電パターン形成用組成物。 The metal oxide particles, any or claims 1 or conductive pattern forming composition according to claim 2, characterized in that mixtures of these oxide particles having various oxidation states. 前記還元剤が、多価アルコールまたはカルボン酸であることを特徴とする請求項1から請求項のいずれか一項に記載の導電パターン形成用組成物。 Wherein the reducing agent is a polyhydric alcohol or a conductive pattern forming composition according to any one of claims 1 to 3, characterized in that a carboxylic acid. 前記バインダー樹脂が、ポリビニルピロリドン、ポリエチレングリコール、ポリプロピレングリコール、ポリウレタンのいずれかであることを特徴とする請求項1から請求項のいずれか一項に記載の導電パターン形成用組成物。 The binder resin is polyvinyl pyrrolidone, polyethylene glycol, polypropylene glycol, the conductive pattern forming composition as claimed in any one of claims 4, characterized in that any one of polyurethanes. 前記酸化金属粒子100質量部に対して、還元剤20〜200質量部およびバインダー樹脂1〜50質量部を含む請求項1から請求項のいずれか一項に記載の導電パターン形成用組成物。 The relative metal oxide particles 100 parts by mass, the reducing agent 20 to 200 parts by mass of the conductive pattern forming composition as claimed in any one of claims 5, including a binder resin 1 to 50 parts by weight. 請求項1から請求項のいずれか一項に記載の導電パターン形成用組成物を準備し、
前記導電パターン形成用組成物に光照射またはマイクロ波加熱を行う、
ことを特徴とする導電パターン形成方法。
A conductive pattern forming composition according to any one of claims 1 to 6 is prepared,
Performing light irradiation or microwave heating on the composition for forming a conductive pattern;
A method of forming a conductive pattern.
前記組成物に照射する光は、200〜3000nmの波長の連続光、または1回の光照射期間が5マイクロ秒から1秒のパルス光であることを特徴とする請求項に記載の導電パターン形成方法。 8. The conductive pattern according to claim 7 , wherein the light applied to the composition is continuous light having a wavelength of 200 to 3000 nm, or pulsed light having a single light irradiation period of 5 microseconds to 1 second. Forming method. 前記組成物を加熱するマイクロ波は、1m〜1mmの波長であることを特徴とする請求項に記載の導電パターン形成方法。
The method for forming a conductive pattern according to claim 7 , wherein the microwave for heating the composition has a wavelength of 1 to 1 mm.
JP2012061816A 2012-03-19 2012-03-19 Conductive pattern forming method and composition for forming conductive pattern by light irradiation or microwave heating Active JP5991830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012061816A JP5991830B2 (en) 2012-03-19 2012-03-19 Conductive pattern forming method and composition for forming conductive pattern by light irradiation or microwave heating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012061816A JP5991830B2 (en) 2012-03-19 2012-03-19 Conductive pattern forming method and composition for forming conductive pattern by light irradiation or microwave heating

Publications (2)

Publication Number Publication Date
JP2013196881A JP2013196881A (en) 2013-09-30
JP5991830B2 true JP5991830B2 (en) 2016-09-14

Family

ID=49395591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012061816A Active JP5991830B2 (en) 2012-03-19 2012-03-19 Conductive pattern forming method and composition for forming conductive pattern by light irradiation or microwave heating

Country Status (1)

Country Link
JP (1) JP5991830B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014067617A (en) * 2012-09-26 2014-04-17 Fujifilm Corp Method for producing conductive film and conductive film-forming composition
WO2015152625A1 (en) 2014-04-01 2015-10-08 전자부품연구원 Ink composition for light sintering, wiring board using same and manufacturing method therefor
JP2017112257A (en) * 2015-12-17 2017-06-22 株式会社フジクラ Wiring board and wiring board manufacturing method
TWI668709B (en) 2017-07-25 2019-08-11 日商千住金屬工業股份有限公司 Method for synthesizing copper-silver alloy, forming method of conducting part, copper-silver alloy and conducting part

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6355807A (en) * 1986-08-27 1988-03-10 古河電気工業株式会社 Conducting paste
CN104894538A (en) * 2008-10-17 2015-09-09 Ncc纳诺责任有限公司 Method for reducing thin films on low temperature substrates
JP2012028136A (en) * 2010-07-22 2012-02-09 Showa Denko Kk Conductive particle dispersed body for conductive film formation, method of manufacturing printed wiring board, and conductive film formation method

Also Published As

Publication number Publication date
JP2013196881A (en) 2013-09-30

Similar Documents

Publication Publication Date Title
JP6295080B2 (en) Conductive pattern forming method and composition for forming conductive pattern by light irradiation or microwave heating
JP5618309B2 (en) Conductive pattern forming method and composition for forming conductive pattern by light irradiation or microwave heating
Cook et al. Inkjet catalyst printing and electroless copper deposition for low-cost patterned microwave passive devices on paper
WO2013076999A1 (en) Conductive pattern formation method
WO2014050828A1 (en) Microwave heating device
JP5991830B2 (en) Conductive pattern forming method and composition for forming conductive pattern by light irradiation or microwave heating
KR20140044743A (en) Conductive hybrid cu ink and light sintering method using the same
TWI694469B (en) Composition for forming conductive pattern and method of forming conductive pattern
JP2019090110A (en) Structure having conductive pattern region and method for manufacturing the same
KR20170133158A (en) Forming method FPCB electrode by laser sintering of copper ink comprising thermal decomposion copper nano particles
JP6562196B2 (en) Copper fine particle sintered body and method for producing conductive substrate
JP2016146291A (en) Method for producing conductive film, conductor obtained thereby, and device produced using the conductive film
JP6188063B2 (en) Ink composition for forming metal pattern and method for forming metal pattern
JP6574553B2 (en) Conductive pattern forming composition and conductive pattern forming method
JP2007095525A (en) Conductive paste
CN113956721B (en) Method for preparing Cu/Cu6Sn5 conductive ink by adopting photon sintering technology
JP2016039007A (en) Method for manufacturing copper-layer attached substrate, and copper-layer attached substrate
JP2010050205A (en) Membrane wiring board and method of manufacturing the same
JP2016039009A (en) Method for manufacturing conductive laminate, and conductive laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160816

R150 Certificate of patent or registration of utility model

Ref document number: 5991830

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350