JP2014030843A - Pipe end welding method, air-cooling type heat exchanger and manufacturing method of air-cooling type heat exchanger - Google Patents

Pipe end welding method, air-cooling type heat exchanger and manufacturing method of air-cooling type heat exchanger Download PDF

Info

Publication number
JP2014030843A
JP2014030843A JP2012173911A JP2012173911A JP2014030843A JP 2014030843 A JP2014030843 A JP 2014030843A JP 2012173911 A JP2012173911 A JP 2012173911A JP 2012173911 A JP2012173911 A JP 2012173911A JP 2014030843 A JP2014030843 A JP 2014030843A
Authority
JP
Japan
Prior art keywords
tube
hole
pipe end
heat transfer
side plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012173911A
Other languages
Japanese (ja)
Inventor
Junichi Kataoka
淳一 片岡
Yoshiyuki Matsugawara
由之 松川原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sasakura Engineering Co Ltd
Original Assignee
Sasakura Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sasakura Engineering Co Ltd filed Critical Sasakura Engineering Co Ltd
Priority to JP2012173911A priority Critical patent/JP2014030843A/en
Publication of JP2014030843A publication Critical patent/JP2014030843A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a pipe end welding method capable of welding a pipe end on an inner surface side surface of a side plate, by supporting an object on the support cylinder tip without run-out, even if the support cylinder tip of a pipe end automatic welder is not inserted into a pipe hole of a welding part.SOLUTION: The present invention is provided with means having a support cylinder 12, and preparing a pipe end automatic welder 10 capable of detachably installing a guide member 15 even in any of both sides of the support cylinder 12. A heat transfer pipe 3 is inserted into the pipe hole 4, and is pushed in until an end part 3a reaches an inside surface 2a1 of a side plate 2a. Next, the guide member 15 is installed in the pipe end automatic welder 10. Next, the support cylinder 12 is inserted from a plug hole 5 corresponding to the pipe hole 4 of a welding part, and is pushed in until the tip reaches this side vicinal position of the pipe hole 4, and the guide member 5 is inserted from a laterally adjacent plug hole 5 of the plug hole 5 corresponding to the pipe hole 4 of the welding part, and is pushed in until the tip reaches the inside of the pipe hole 4 corresponding to the plug hole 5. Next, the pipe end is welded in an inside surface position of the side plate 2a by an arc from a welding torch 13.

Description

本発明は、空冷式熱交換器の製造過程において、多数の伝熱管を箱型のヘッダーに接合するために行われる管端溶接技術に関するものである。   The present invention relates to a tube end welding technique performed in order to join a large number of heat transfer tubes to a box-shaped header in the manufacturing process of an air-cooled heat exchanger.

通常、熱交換器の製造工程では、多数の伝熱管と、管支持用の板(管板と称する)とを接合するため、各伝熱管の端部外周囲と、伝熱管が挿通された管板の各孔の周縁とを周溶接する管端溶接と呼ばれている溶接作業が行われている(以下の特許文献1参照)。   Usually, in the heat exchanger manufacturing process, a large number of heat transfer tubes and tube support plates (referred to as tube plates) are joined together, so that the outer periphery of the end of each heat transfer tube and the tube through which the heat transfer tubes are inserted. A welding operation called pipe end welding in which the peripheral edges of the holes of the plate are circumferentially welded is performed (see Patent Document 1 below).

一方、空冷式熱交換器では、予め箱型にヘッダーを組み立てておき、この箱型のヘッダーに多数の伝熱管を管端溶接して伝熱管と箱型のヘッダーとを接合している。以下、図8及び図9を参照して、空冷式熱交換器における管端溶接作業を説明する。箱型のヘッダー100の一方の側板101には、多数の管孔102が形成されており、箱型のヘッダー100の他方の側板103には、多数のプラグ孔104が形成されている。管端溶接に際しては、管端自動溶接機105の支持筒106を、溶接する部分のプラグ孔104及び管孔102に挿入する。このとき、支持筒106の先端は、側板101の内側表面101aから例えば10mm程度奥まった位置まで挿入されている。このような状態では、支持筒106は、プラグ孔104及び管孔102の2点で支持される。そして、このような支持状態で、支持筒106の先端内部に設けられているタングステン電極を含む溶接トーチ(図示せず)を、支持筒106の軸回りに回転させ、伝熱管108の周縁の溶接を行っている。なお、図8において参照符号Aは溶接部分を示す。   On the other hand, in an air-cooled heat exchanger, a header is assembled in a box shape in advance, and a number of heat transfer tubes are welded to the box header to join the heat transfer tubes and the box header. Hereinafter, with reference to FIG.8 and FIG.9, the pipe end welding operation | work in an air-cooling type heat exchanger is demonstrated. A large number of tube holes 102 are formed in one side plate 101 of the box-shaped header 100, and a large number of plug holes 104 are formed in the other side plate 103 of the box-shaped header 100. At the time of pipe end welding, the support tube 106 of the pipe end automatic welder 105 is inserted into the plug hole 104 and the pipe hole 102 of the part to be welded. At this time, the tip of the support cylinder 106 is inserted from the inner surface 101a of the side plate 101 to a position recessed about 10 mm, for example. In such a state, the support cylinder 106 is supported at two points: the plug hole 104 and the tube hole 102. In such a support state, a welding torch (not shown) including a tungsten electrode provided inside the tip of the support tube 106 is rotated around the axis of the support tube 106 to weld the periphery of the heat transfer tube 108. It is carried out. In FIG. 8, reference symbol A indicates a welded portion.

なお、参考までに述べると、空冷式熱交換器の製造に際しては、先ず、側板101に多数の伝熱管108を管端溶接し、その後、その側板101を含む複数の金属板を溶接して箱型のヘッダー100に組み立てることも可能である。このような方法であれば、箱型のヘッダー組み立て後に管端溶接する方法に比べて、溶接作業が容易である。しかしながら、空冷式熱交換器の場合、箱型のヘッダー組み立て後に管端溶接する方法は、以下の理由により採用できない。即ち、空冷式熱交換器のヘッダーは法令(高圧ガス保安法)等で溶接部は溶接後応力除去熱処理が義務付けられている。従って、仮に、先に管端溶接を行ってしまうと、ヘッダー自身の溶接部の熱処理ができなくなり、空冷式熱交換器の使用中に応力腐食割れ等の発生により漏れが生じる危険がある。そこで、現在はヘッダーを溶接で作製し、ヘッダー単体で応力除去熱処理を行った後、伝熱管を取付け、管端溶接を行っている。   For reference, when manufacturing an air-cooled heat exchanger, first, a large number of heat transfer tubes 108 are welded to the side plate 101, and then a plurality of metal plates including the side plate 101 are welded to form a box. It is also possible to assemble the mold header 100. With such a method, welding work is easier compared to the method of pipe end welding after box-shaped header assembly. However, in the case of an air-cooled heat exchanger, the method of pipe end welding after assembling a box-type header cannot be employed for the following reason. That is, the header of the air-cooled heat exchanger is required to be subjected to post-weld stress relief heat treatment in accordance with laws and regulations (high-pressure gas safety law). Therefore, if pipe end welding is performed first, heat treatment of the welded portion of the header itself cannot be performed, and there is a risk of leakage due to stress corrosion cracking or the like during use of the air-cooled heat exchanger. Therefore, at present, the header is manufactured by welding, and after the header is subjected to stress relief heat treatment, the heat transfer tube is attached and the end of the tube is welded.

特開2006−75870号公報JP 2006-75870 A

上記従来例では、側板101の内側表面101aから10mm程度奥まった位置で管端溶接を行っている。このような管端位置での溶接では、箱型のヘッダー100の側板101の厚みを大きくする必要がある。特に、箱型のヘッダー100や伝熱管108の材料として、腐食防止を図るためにチタン、インコロイ等の高級材料を用いる場合にはコスト高となる。そこで、側板の内面側表面で管端溶接を行うようにして、側板の厚みを薄くしてコストの低減を図ることが要請されている。   In the conventional example, pipe end welding is performed at a position recessed by about 10 mm from the inner surface 101 a of the side plate 101. In such welding at the pipe end position, it is necessary to increase the thickness of the side plate 101 of the box-shaped header 100. In particular, when a high-grade material such as titanium or incoloy is used as a material for the box-shaped header 100 or the heat transfer tube 108 to prevent corrosion, the cost becomes high. Therefore, it is required to reduce the cost by reducing the thickness of the side plate by performing pipe end welding on the inner surface of the side plate.

しかしながら、上記要望に応じるために側板101の内面側表面101aで管端溶接を行おうとすると、支持筒106の先端を管孔102から引き抜き、支持筒106の先端を管孔102の近傍位置で支持させる必要がある。しかしながら、支持筒106の先端を管孔102から引き抜いた状態では、支持筒106はプラグ孔104の1点にのみ支持された状態であり、管孔102とプラグ孔104の2点で支持されている従来例に比べて支持筒106の支持が不安なものとなり、支持筒106の先端の溶接トーチにぶれが生じ、正確な円周溶接を行うことができない。   However, if pipe end welding is to be performed on the inner surface 101a of the side plate 101 in order to meet the above requirements, the tip of the support tube 106 is pulled out from the tube hole 102, and the tip of the support tube 106 is supported at a position near the tube hole 102. It is necessary to let However, when the tip of the support tube 106 is pulled out from the tube hole 102, the support tube 106 is supported only at one point of the plug hole 104 and is supported at two points of the tube hole 102 and the plug hole 104. Compared to the conventional example, the support cylinder 106 is uneasy to be supported, and the welding torch at the tip of the support cylinder 106 is shaken, and accurate circumferential welding cannot be performed.

そこで、現在行われている、箱型のヘッダー100における側板101の内面側表面での管端溶接は、管端自動溶接機を用いた自動溶接ではなく、プラグ孔104から溶接機を挿入し、他のプラグ孔104を介して溶接部分を目視して手作業で行う手動溶接である。   Therefore, the pipe end welding on the inner surface of the side plate 101 in the box-shaped header 100 currently performed is not automatic welding using a pipe end automatic welding machine, but a welding machine is inserted from the plug hole 104, Manual welding is performed manually by visually observing the welded portion through another plug hole 104.

なお、特許文献1のようなシャフトの先端に軸合わせ用芯金治具を備えるとともに、溶接トーチが軸合わせ用芯金治具の後方側に配置された管端自動溶接機を用いて、軸合わせ用芯金治具を伝熱管内に挿入すれば、軸合わせ用芯金治具による先端部及びシャフトによる基端部の2点により支持されるので、溶接トーチによる内面側表面101aでの管端溶接を行うことは可能なようにも思われる。しかしながら、現実には、溶接トーチがシャフトの外側に配置されているため、溶接トーチがプラグ孔104から挿入できない。勿論、プラグ孔104の径が極めて大きければ、溶接トーチがプラグ孔104から挿入できるが、現実の空冷式熱交換器の箱型のヘッダー100のプラグ孔104の径はそれ程大きくなく、当該溶接トーチを挿入できないのが現実である。従って、特許文献1のような管端自動溶接機を用いて、箱型のヘッダー100の管端溶接を行うことはできない。また、特許文献1のような管端自動溶接機を用いた場合には、管端溶接部の一部がシャフト外周面に垂れ下がってしまう場合があり、シャフトの引き抜きが困難になるという問題もある。   It is to be noted that a shaft end metal jig is provided at the tip of the shaft as in Patent Document 1, and a tube end automatic welding machine in which a welding torch is arranged on the rear side of the shaft alignment core metal jig is used to If the alignment cored bar jig is inserted into the heat transfer tube, it is supported by two points, that is, the distal end part by the axis alignment cored bar jig and the base end part by the shaft, so that the tube on the inner surface 101a by the welding torch It seems possible to do end welding. However, in reality, since the welding torch is disposed outside the shaft, the welding torch cannot be inserted from the plug hole 104. Of course, if the diameter of the plug hole 104 is extremely large, the welding torch can be inserted from the plug hole 104, but the diameter of the plug hole 104 of the box-type header 100 of the actual air-cooled heat exchanger is not so large. It is a reality that cannot be inserted. Therefore, it is not possible to perform pipe end welding of the box-shaped header 100 using a pipe end automatic welder as in Patent Document 1. In addition, when a pipe end automatic welder such as that disclosed in Patent Document 1 is used, a part of the pipe end welded portion may hang down on the outer peripheral surface of the shaft, which makes it difficult to pull out the shaft. .

本願発明は、上記課題に鑑みて考え出されたものであり、その目的は、管端自動溶接機の支持筒先端を、溶接する部分の管孔に挿入しなくとも、支持筒先端にぶれがなく安定した状態で支持して、側板の内面側表面で管端溶接を行うことを可能にした管端溶接方法、その管端溶接方法を用いた空冷式熱交換器の製造方法、及び空冷式熱交換器を提供することである。   The present invention has been conceived in view of the above problems, and its purpose is to sway the tip of the support tube without inserting the tip of the support tube of the automatic pipe end welder into the tube hole of the welded portion. The tube end welding method that enables the tube end welding to be performed on the inner surface of the side plate, the method of manufacturing the air cooling heat exchanger using the tube end welding method, and the air cooling type It is to provide a heat exchanger.

本発明は、対向する一対の側板のうちの一方の側板には所定の配列で多数の管孔が形成され、他方の側板には前記管孔に対応して管孔と同様の配列で多数のプラグ孔が形成された箱型のヘッダーにおいて、前記各管孔に伝熱管の端部を挿入し、各伝熱管を順次的に管端溶接するに際して、溶接する部分の管孔に対応したプラグ孔から管端自動溶接機の支持筒を挿入し、その支持筒先端に備えられた溶接トーチにより管端溶接を行う方法であって、前記管端自動溶接機として、前記支持筒と平行に延びるガイド部材を着脱自在に装着することができるように構成された管端自動溶接機を準備し、伝熱管を管孔に挿入し、伝熱管の端部が前記一方の側板の内側表面に到達するまで押し込む第1ステップと、前記管端自動溶接機の支持筒をプラグ孔から挿入するに先立って、前記ガイド部材を管端自動溶接機に装着する第2ステップと、前記管端自動溶接機の支持筒を、溶接する部分の管孔に対応したプラグ孔から挿入し、支持筒の先端が当該管孔の手前側近傍位置に達するまで押し込む第3ステップと、前記第3ステップにおける支持筒の押し込み動作に随伴して、前記ガイド部材が、溶接する部分の管孔に対応したプラグ孔以外のプラグ孔から挿入され、ガイド部材の先端が当該プラグ孔に対応する管孔内に到達するまで押し込まれる第4ステップと、前記支持筒先端に備えられた溶接トーチからのアークにより前記一方の側板の内側表面位置で管端溶接を行う第5ステップと、を含むことを特徴とする。   In the present invention, one side plate of a pair of opposed side plates has a plurality of tube holes in a predetermined arrangement, and the other side plate has a plurality of tube holes in the same arrangement as the tube holes corresponding to the tube holes. In a box-shaped header in which plug holes are formed, plug holes corresponding to the tube holes of the portions to be welded when the end portions of the heat transfer tubes are inserted into the respective tube holes and the respective heat transfer tubes are sequentially welded to the tube ends. A pipe end automatic welder is inserted into the tube, and pipe end welding is performed with a welding torch provided at the tip of the support cylinder, the pipe end automatic welder serving as a guide extending in parallel with the support tube Prepare a pipe end automatic welder configured so that members can be detachably attached, insert the heat transfer tube into the tube hole, and until the end of the heat transfer tube reaches the inner surface of the one side plate The first step of pushing, and the support tube of the pipe end automatic welding machine is plugged Prior to insertion, a second step of mounting the guide member on a pipe end automatic welder, and inserting a support tube of the pipe end automatic welder from a plug hole corresponding to a pipe hole of a portion to be welded, A third step of pushing in until the tip of the support tube reaches a position in the vicinity of the front side of the tube hole, and the guide member corresponds to the tube hole of the portion to be welded in association with the push-in operation of the support tube in the third step. A fourth step that is inserted through a plug hole other than the plug hole and pushed until the tip of the guide member reaches the inside of the tube hole corresponding to the plug hole, and an arc from a welding torch provided at the tip of the support cylinder And a fifth step of performing pipe end welding at the inner surface position of the one side plate.

上記の如く、管端自動溶接機の支持筒を、溶接する部分の管孔に対応したプラグ孔から挿入し、支持筒の先端が当該管孔の手前側近傍位置に達するまで押し込むことにより、ガイド部材が、溶接する部分の管孔に対応したプラグ孔以外のプラグ孔から挿入され、ガイド部材の先端が当該プラグ孔に対応する管孔内に到達するまで押し込まれる。これにより、支持筒はプラグ孔で支持固定され、加えて、ガイド部材による管孔及びプラグ孔で支持固定される。そのため、支持筒の支持状態は安定しており、支持筒の先端がぶれることはなく、安定した支持状態が維持される。この結果、管端自動溶接機の支持筒先端を、溶接する部分の管孔に挿入しなくとも、支持筒先端にぶれがなく安定した状態で支持して、側板の内面側表面で管端溶接を行うことができる。   As described above, the guide tube is inserted by inserting the support tube of the pipe end automatic welder from the plug hole corresponding to the tube hole to be welded, and pushing the tip of the support tube until the position near the front side of the tube hole. The member is inserted from a plug hole other than the plug hole corresponding to the pipe hole of the portion to be welded, and pushed in until the tip of the guide member reaches the pipe hole corresponding to the plug hole. Thereby, the support cylinder is supported and fixed by the plug hole, and in addition, is supported and fixed by the tube hole and the plug hole by the guide member. Therefore, the support state of the support cylinder is stable, the tip of the support cylinder is not shaken, and the stable support state is maintained. As a result, even if the tip of the support tube of the automatic pipe end welder is not inserted into the tube hole of the part to be welded, the tip of the support tube is supported in a stable and stable state, and the tube end welding is performed on the inner surface of the side plate. It can be performed.

また、本発明は、対向する一対の側板のうちの一方の側板には所定の配列で多数の管孔が形成され、他方の側板には前記管孔に対応して管孔と同様の配列で多数のプラグ孔が形成されている一対の箱型のヘッダーを備え、該一対の箱型のヘッダー間を連結する多数の伝熱管の両端部が、各箱型のヘッダーの前記管孔に挿入された構造の空冷式熱交換器であって、前記各伝熱管の両端部が各ヘッダーの内側表面位置で自動管端溶接され、各伝熱管が各ヘッダーに支持固定されていることを特徴とする。   Further, according to the present invention, one side plate of a pair of opposing side plates has a plurality of tube holes formed in a predetermined arrangement, and the other side plate has the same arrangement as the tube holes corresponding to the tube holes. It has a pair of box-shaped headers in which a large number of plug holes are formed, and both ends of a large number of heat transfer tubes connecting the pair of box-shaped headers are inserted into the tube holes of each box-shaped header. An air-cooled heat exchanger having the above structure, wherein both ends of each heat transfer tube are automatically welded at the inner surface position of each header, and each heat transfer tube is supported and fixed to each header. .

上記構成により、従来例に比べて、ヘッダーの厚みを薄くすることができるので、材料費の低減を図ることができる。特に、高級材料(例えば、チタン、インコロイ)を使用する場合にそのメリットが大きい。   According to the above configuration, the thickness of the header can be reduced as compared with the conventional example, so that the material cost can be reduced. In particular, when using high-grade materials (for example, titanium and incoloy), the merit is great.

本発明に係る空冷式熱交換器は、前記管孔の径と前記プラグ孔の径の比が、1.00:1.01〜1.00:1.50の範囲内である場合もある。   In the air-cooled heat exchanger according to the present invention, the ratio of the diameter of the tube hole to the diameter of the plug hole may be within a range of 1.00: 1.01 to 1.00: 1.50.

また、本発明は、一対の箱型のヘッダーと、一対の箱型のヘッダー間を連結する多数の伝熱管とを備える空冷式熱交換器を製造する方法であって、対向する一対の側板のうちの一方の側板には所定の配列で多数の管孔が形成され、他方の側板には前記管孔に対応して管孔と同様の配列で多数のプラグ孔が形成された箱型のヘッダーを作製するヘッダー作製工程と、多数の伝熱管の端部を、前記ヘッダー作製工程により作製された箱型のヘッダーの内側表面位置で自動管端溶接する工程と、を含むことを特徴とする。   In addition, the present invention is a method of manufacturing an air-cooled heat exchanger including a pair of box-type headers and a large number of heat transfer tubes connecting between the pair of box-type headers. A box-shaped header in which a large number of tube holes are formed in one side plate in a predetermined arrangement, and a plurality of plug holes are formed in the other side plate in the same arrangement as the tube holes corresponding to the tube holes. And a step of automatically welding the end portions of a large number of heat transfer tubes at the inner surface position of the box-shaped header produced by the header production step.

上記構成により、箱型のヘッダーの内側表面位置での管端溶接を自動で行うようにしたので、従来のように手動で行う場合に比べて、作業性が向上すると共に、精度のバラツキがなく高精度の空冷式熱交換器を得ることができる。   With the above configuration, pipe end welding is automatically performed at the inner surface position of the box-shaped header, so that workability is improved and accuracy variation is eliminated as compared with the case where it is manually performed as in the prior art. A highly accurate air-cooled heat exchanger can be obtained.

本発明に係る空冷式熱交換器の製造方法は、前記自動管端溶接工程が、先端に溶接トーチを備えた支持筒と、該支持筒と平行に延びる着脱自在なガイド部材とを有する管端自動溶接機を準備し、伝熱管を管孔に挿入し、伝熱管の端部が前記一方の側板の内側表面に到達するまで押し込む第1ステップと、前記管端自動溶接機の支持筒をプラグ孔から挿入するに先立って、前記ガイド部材を管端自動溶接機に装着する第2ステップと、前記管端自動溶接機の支持筒を、溶接する部分の管孔に対応したプラグ孔から挿入し、支持筒の先端が当該管孔の手前側近傍位置に達するまで押し込む第3ステップと、前記第3ステップにおける支持筒の押し込み動作に随伴して、前記ガイド部材が、溶接する部分の管孔に対応したプラグ孔以外のプラグ孔から挿入され、ガイド部材の先端が当該プラグ孔に対応する管孔内に到達するまで押し込まれる第4ステップと、前記支持筒先端に備えられた溶接トーチからのアークにより前記一方の側板の内側表面位置で管端溶接を行う第5ステップと、を含むことが好ましい。   In the method for manufacturing an air-cooled heat exchanger according to the present invention, the automatic pipe end welding step includes a support cylinder having a welding torch at the tip, and a detachable guide member extending in parallel with the support cylinder. Prepare an automatic welder, insert the heat transfer tube into the tube hole, push the end of the heat transfer tube until it reaches the inner surface of the one side plate, and plug the support tube of the tube end automatic welder Prior to insertion from the hole, a second step of mounting the guide member on the automatic pipe end welder and a support tube of the automatic pipe end welder are inserted from the plug hole corresponding to the pipe hole of the portion to be welded. A third step of pushing in until the tip of the support tube reaches a position near the near side of the tube hole, and the guide member is inserted into the tube hole of the portion to be welded in accordance with the pushing operation of the support tube in the third step. Plug hole other than the corresponding plug hole A fourth step that is inserted and pushed until the tip of the guide member reaches the inside of the tube hole corresponding to the plug hole, and an inner surface position of the one side plate by an arc from a welding torch provided at the tip of the support cylinder And 5th step of performing pipe end welding.

上記したように特許文献1のような管端自動溶接機を用いた製造方法においては、管端溶接部の一部がシャフト(本発明の支持筒に相当)外周面に垂れ下がってしまい、シャフトの引き抜きが困難になるという問題がある。この点に関し、本発明では、支持筒の先端が溶接する部分の管孔に挿入されないので、管端溶接部が垂れ下がったとしても、支持筒の引き抜きになんら支障が生じないという利点がある。   As described above, in the manufacturing method using the pipe end automatic welder as in Patent Document 1, a part of the pipe end welded part hangs down on the outer peripheral surface of the shaft (corresponding to the support cylinder of the present invention), There is a problem that it becomes difficult to pull out. In this regard, in the present invention, since the tip of the support tube is not inserted into the tube hole of the portion to be welded, even if the tube end welded portion hangs down, there is an advantage that there is no problem in pulling out the support tube.

本発明の管端溶接方法によれば、支持筒はプラグ孔で支持固定され、加えて、ガイド部材による管孔及びプラグ孔で支持固定される。そのため、支持筒の支持状態は安定しており、支持筒の先端がぶれることはなく、安定した支持状態が維持される。この結果、管端自動溶接機の支持筒先端を、溶接する部分の管孔に挿入しなくとも、支持筒先端にぶれがなく安定した状態で支持して側板の内面側表面で管端溶接を行うことができる。   According to the pipe end welding method of the present invention, the support cylinder is supported and fixed by the plug hole, and in addition, is supported and fixed by the pipe hole and the plug hole by the guide member. Therefore, the support state of the support cylinder is stable, the tip of the support cylinder is not shaken, and the stable support state is maintained. As a result, pipe end welding is performed on the inner surface of the side plate by supporting the tip of the support cylinder in a stable state without shaking, without inserting the tip of the support cylinder of the automatic pipe end welder into the pipe hole of the welded part. It can be carried out.

また、本発明の空冷式熱交換器によれば、各伝熱管の両端部が各ヘッダーの内側表面位置で管端溶接されることにより、従来例に比べて、ヘッダーの厚みを薄くすることができるので、材料費の低減を図ることができる。   In addition, according to the air-cooled heat exchanger of the present invention, both ends of each heat transfer tube are welded to the end of the inner surface of each header, thereby reducing the thickness of the header compared to the conventional example. Therefore, the material cost can be reduced.

また、本発明の空冷式熱交換器の製造方法によれば、箱型のヘッダーの内側表面位置での管端溶接を自動で行うようにしたので、従来のように手動で行う場合に比べて、作業性が向上すると共に、均一な精度の向上した空冷式熱交換器を得ることができる。   In addition, according to the method for manufacturing an air-cooled heat exchanger of the present invention, since the pipe end welding is automatically performed at the inner surface position of the box-shaped header, compared with the case where it is manually performed as in the prior art. Thus, an air-cooled heat exchanger with improved workability and uniform accuracy can be obtained.

本発明に係る管端溶接方法を用いて製造された空冷式熱交換器の正面図。The front view of the air-cooling type heat exchanger manufactured using the pipe end welding method which concerns on this invention. 空冷式熱交換器に備えられるヘッダー付近の分解斜視図。The disassembled perspective view of the header vicinity provided in an air-cooled heat exchanger. 図2とは反対方向から見たヘッダー付近の分解斜視図。The disassembled perspective view of the header vicinity seen from the direction opposite to FIG. 空冷式熱交換器に備えられるヘッダーの縦断面図。The longitudinal cross-sectional view of the header with which an air-cooling type heat exchanger is equipped. 穴効率の定義を説明するための図。The figure for demonstrating the definition of hole efficiency. 管端自動溶接機がヘッダーに挿入された状態を示す横断面図。The cross-sectional view which shows the state by which the pipe end automatic welder was inserted in the header. 管端自動溶接機がヘッダーに挿入された状態を示す縦断面図。The longitudinal cross-sectional view which shows the state by which the pipe end automatic welder was inserted in the header. 従来例の管端溶接方法を説明するための図。The figure for demonstrating the pipe end welding method of a prior art example. 図8の一部拡大図。FIG. 9 is a partially enlarged view of FIG. 8.

以下、本発明を実施の形態に基づいて詳述する。なお、本発明は、以下の実施の形態に限定されるものではない。
図1は本発明に係る管端溶接方法を用いて製造された空冷式熱交換器の正面図、図2は空冷式熱交換器に備えられるヘッダー付近の分解斜視図、図3は図2とは反対方向から見たヘッダー付近の分解斜視図、図4は空冷式熱交換器に備えられるヘッダーの縦断面図である。本実施の形態に係る空冷式熱交換器1は、後述するように、管端自動溶接機を用いた自動管端溶接方法により製造されたものである。この空冷式熱交換器1は、一対の箱型のヘッダー2,2と、一対のヘッダー2,2間を連結する多数のフィン付伝熱管(いわゆるフィンチューブ)3とを有する。ヘッダー2における一対の側板2a,2bのうちの一方の側板2a(一対の箱型のヘッダー2の対向する側の側板)には、図2に示すように、多数の管孔4が千鳥格子状に配列されて形成されている。本実施の形態では、管孔4は千鳥格子状に配列されているが、本発明はこれに限定されず、例えば碁盤目状或いはその他配列であってもよい。この各管孔4には、伝熱管3の端部3aが挿入されており、その端部3aは管端溶接されている。これにより、多数の伝熱管3は側板2aに支持固定されている。
Hereinafter, the present invention will be described in detail based on embodiments. Note that the present invention is not limited to the following embodiments.
1 is a front view of an air-cooled heat exchanger manufactured by using the pipe end welding method according to the present invention, FIG. 2 is an exploded perspective view of the vicinity of a header provided in the air-cooled heat exchanger, and FIG. Is an exploded perspective view of the vicinity of the header as seen from the opposite direction, and FIG. 4 is a longitudinal sectional view of the header provided in the air-cooled heat exchanger. The air-cooled heat exchanger 1 according to the present embodiment is manufactured by an automatic pipe end welding method using a pipe end automatic welder, as will be described later. The air-cooled heat exchanger 1 includes a pair of box-shaped headers 2 and 2 and a number of finned heat transfer tubes (so-called fin tubes) 3 connecting the pair of headers 2 and 2. In one side plate 2a (a side plate on the opposite side of the pair of box-type headers 2) of the pair of side plates 2a and 2b in the header 2, as shown in FIG. Are arranged in a shape. In the present embodiment, the tube holes 4 are arranged in a staggered pattern, but the present invention is not limited to this, and may be, for example, a grid pattern or other arrangements. The end 3a of the heat transfer tube 3 is inserted into each tube hole 4, and the end 3a is welded to the end of the tube. Thereby, the many heat exchanger tubes 3 are supported and fixed to the side plate 2a.

ここで注目すべきは、管端溶接位置が側板2aの内側表面2a1で管端溶接が行われていることである。図4において参照符号Aは溶接部分を示している。これにより、側板2aの厚みを薄くすることができるので、材料費の低減を図ることができる。特に、高級材料(例えば、チタン、インコロイ)を使用する場合にそのメリットが大きい。また、伝熱管3の交換作業時に伝熱管3を容易に剥がすことができるので、交換作業の作業性が良好となる。   It should be noted here that the pipe end welding position is such that the pipe end welding is performed on the inner surface 2a1 of the side plate 2a. In FIG. 4, reference symbol A indicates a welded portion. Thereby, since the thickness of the side plate 2a can be reduced, the material cost can be reduced. In particular, when using high-grade materials (for example, titanium and incoloy), the merit is great. In addition, since the heat transfer tube 3 can be easily peeled off when the heat transfer tube 3 is replaced, the workability of the replacement operation is improved.

また、ヘッダー2における他方の側板2bには、図3に示すように、予め各管孔4に対応して管孔4と同様の配列で多数のプラグ孔5が形成されている。このプラグ孔5の内周面にはネジが切られており、プラグ6のネジ部が螺合している。   In addition, as shown in FIG. 3, a number of plug holes 5 are formed in advance in the same arrangement as the tube holes 4 in the other side plate 2 b of the header 2 corresponding to the tube holes 4. A screw is cut on the inner peripheral surface of the plug hole 5, and a screw portion of the plug 6 is screwed.

ここで、管孔4の径は、20mm〜40mmの範囲である。プラグ孔5の径は、25mm〜50mmの範囲である。また、管孔4の径とプラグ孔5の径の比は、1.00:1.01〜1.00:1.50の範囲、好ましくは1.00:1.08〜1.00:1.25範囲である。上記のようにプラグ孔5の径及び、管孔4の径に対するプラグ孔5の径の比を規制するのは以下の理由による。即ち、プラグ孔5の径が大き過ぎる場合には、ヘッダー2の強度が小さくなり、それを解消しようとすると側板2bの板厚を大きくする必要があり、材料費が高くなるからである。   Here, the diameter of the tube hole 4 is in the range of 20 mm to 40 mm. The diameter of the plug hole 5 is in the range of 25 mm to 50 mm. The ratio of the diameter of the tube hole 4 to the diameter of the plug hole 5 is in the range of 1.00: 1.01 to 1.00: 1.50, preferably 1.00: 1.08 to 1.00: 1. .25 range. The reason for regulating the diameter of the plug hole 5 and the ratio of the diameter of the plug hole 5 to the diameter of the tube hole 4 as described above is as follows. That is, when the diameter of the plug hole 5 is too large, the strength of the header 2 is reduced, and to eliminate this, it is necessary to increase the plate thickness of the side plate 2b, which increases the material cost.

一方、プラグ孔5の径が小さ過ぎる場合には、伝熱管3の交換作業を行うことが困難となるからである。より詳しく説明すると、伝熱管3の交換作業を行う際には、プラグ6をプラグ孔5から取り外し、カッター等の切削工具等により溶接金属を除去する必要がある。このとき、プラグ孔5の径が小さ過ぎる場合には、管端溶接部を充分に目視できず、溶接金属を完全に除去できない場合が生じ、そのため、伝熱管3の端部を側板2aから剥がすことが困難になるという事態が生じるからである。   On the other hand, when the diameter of the plug hole 5 is too small, it is difficult to perform the exchange operation of the heat transfer tube 3. More specifically, when the heat transfer tube 3 is exchanged, it is necessary to remove the plug 6 from the plug hole 5 and remove the weld metal with a cutting tool such as a cutter. At this time, if the diameter of the plug hole 5 is too small, the welded portion of the pipe end cannot be sufficiently observed, and the weld metal cannot be completely removed. Therefore, the end of the heat transfer tube 3 is peeled off from the side plate 2a. This is because it becomes difficult.

そこで、プラグ孔5の径及び管孔4の径に対するプラグ孔5の径の比は、ヘッダー2の強度と材料費、さらには伝熱管3の交換時の作業性等を総合的に勘案して、最適な範囲に設定されている。
なお、管孔4の穴効率は、45%〜70%の範囲であり、好ましくは52%〜64%の範囲である。プラグ孔5の開口率は、40%〜65%の範囲であり、好ましくは45%〜60%の範囲である。ここで、穴効率とは、図5に示すように、穴のピッチがpで、穴の直径がdとすると、穴効率(%)={(p−d)/p}×100で示される。
Therefore, the ratio of the diameter of the plug hole 5 and the diameter of the plug hole 5 with respect to the diameter of the tube hole 4 comprehensively takes into consideration the strength and material cost of the header 2 and the workability when replacing the heat transfer tube 3. Is set to the optimal range.
The hole efficiency of the tube hole 4 is in the range of 45% to 70%, preferably in the range of 52% to 64%. The opening ratio of the plug hole 5 is in the range of 40% to 65%, preferably in the range of 45% to 60%. Here, the hole efficiency is represented by hole efficiency (%) = {(pd) / p} × 100, where the hole pitch is p and the hole diameter is d, as shown in FIG. .

図6は管端自動溶接機がヘッダーに挿入された状態を示す横断面図、図7は管端自動溶接機がヘッダーに挿入された状態を示す縦断面図である。図6及び図7を参照して、本実施の形態において使用される管端自動溶接機の構成を説明する。管端自動溶接機10は、自動管端溶接機本体11と、本体11に連結された細長い支持筒12とを有する。支持筒12内には回転シャフト(図示せず)が挿通しており、この回転シャフトの先端にタングステン電極を含む溶接トーチ(図示せず)が備えられている。上記タングステン電極は、先端側に向かうに連れて回転シャフトの軸線から離間する方向に傾斜して配置されている。従って、回転シャフトの回転により、溶接トーチが回転シャフトの軸線(支持筒12の軸線でもある)回りに回転し、これにより、タングステン電極からのアークを管孔4の円周上に沿って移動させ、管端溶接することができるようになっている。なお、溶加材としての溶接ワイヤを自動供給する構成を含んでいてもよい。   FIG. 6 is a transverse cross-sectional view showing a state where the pipe end automatic welder is inserted into the header, and FIG. 7 is a longitudinal cross-sectional view showing a state where the pipe end automatic welder is inserted into the header. With reference to FIG.6 and FIG.7, the structure of the pipe end automatic welder used in this Embodiment is demonstrated. The automatic pipe end welder 10 includes an automatic pipe end welder main body 11 and an elongated support cylinder 12 connected to the main body 11. A rotating shaft (not shown) is inserted into the support cylinder 12, and a welding torch (not shown) including a tungsten electrode is provided at the tip of the rotating shaft. The tungsten electrode is disposed so as to be inclined in a direction away from the axis of the rotating shaft as it goes toward the tip side. Accordingly, the rotation of the rotating shaft causes the welding torch to rotate about the axis of the rotating shaft (which is also the axis of the support cylinder 12), thereby moving the arc from the tungsten electrode along the circumference of the tube hole 4. The tube end can be welded. In addition, the structure which automatically supplies the welding wire as a filler material may be included.

本体11の左右両側部には取付部14がそれぞれ設けられている。この取付部14には、長手状のガイド部材15が着脱自在に装着されている。ガイド部材15は、プラグ孔5を挿通可能な本体部15aと、本体部15aよりも径が小さく、管孔4に挿入されている伝熱管3内に挿入可能な先端部15bとを有する。このガイド部材15は、取付部14に装着された状態では、支持筒12に対して平行に延びており、且つ、支持筒12がプラグ孔5に挿入された場合にそのプラグ孔5の横隣のプラグ孔5に挿入可能なように支持筒12との間隔が予め設定されている。なお、管端溶接を行うに際して、当該溶接する部分の管孔4の隣の管孔4に伝熱管3が溶接されている場合に、当該伝熱管3内にガイド部材15の先端を挿入して支持筒12の支持状態を安定化するようにしてもよく、また、当該溶接する部分の管孔4の隣の管孔4に伝熱管3が溶接されていない場合に、当該隣の管孔4内にガイド部材15の先端を挿入して支持筒12の支持状態を安定化するようにしてもよい。そして、後者の場合には、必ずしも先端部15bは本体部15aよりも径が小さいとは限らず、逆に先端部15bの方が本体部15aよりも径が大きい場合もあり得る。要は、当該溶接する部分の管孔4の隣の管孔4内(隣の管孔4に伝熱管3が先に溶接されている場合には伝熱管3内)にガイド部材15の先端部15bを挿入可能に構成して、管端溶接を行う支持筒12の支持状態の安定化を図ることができれば十分である。   Attachment portions 14 are provided on the left and right sides of the main body 11, respectively. A longitudinal guide member 15 is detachably attached to the attachment portion 14. The guide member 15 has a main body portion 15 a that can be inserted through the plug hole 5, and a tip portion 15 b that is smaller in diameter than the main body portion 15 a and can be inserted into the heat transfer tube 3 inserted into the tube hole 4. The guide member 15 extends in parallel to the support cylinder 12 when mounted on the mounting portion 14, and is adjacent to the plug hole 5 when the support cylinder 12 is inserted into the plug hole 5. The distance from the support cylinder 12 is set in advance so that it can be inserted into the plug hole 5. When performing pipe end welding, when the heat transfer tube 3 is welded to the tube hole 4 adjacent to the tube hole 4 of the welded portion, the tip of the guide member 15 is inserted into the heat transfer tube 3. The support state of the support cylinder 12 may be stabilized, and when the heat transfer tube 3 is not welded to the tube hole 4 adjacent to the tube hole 4 of the welded portion, the adjacent tube hole 4. The support member 12 may be stabilized by inserting the tip of the guide member 15 therein. In the latter case, the tip portion 15b is not necessarily smaller in diameter than the main body portion 15a, and conversely, the tip portion 15b may be larger in diameter than the main body portion 15a. In short, the distal end portion of the guide member 15 in the tube hole 4 adjacent to the tube hole 4 of the portion to be welded (in the heat transfer tube 3 when the heat transfer tube 3 is first welded to the adjacent tube hole 4). It is sufficient if 15b can be inserted to stabilize the support state of the support tube 12 for pipe end welding.

次いで、上記構成の空冷式熱交換器の製造工程において行われる管端溶接方法について説明する。なお、以下の管端溶接方法では、当該溶接する部分の管孔4の隣の管孔4内にガイド部材15の先端部15bを挿入して、管端溶接を行う支持筒12の支持状態の安定化を図る場合の例を示す。
先ず、支持筒12をプラグ孔5から挿入するに先立って、ガイド部材15を管端自動溶接機本体11の左右両側方の何れかに装着する。例えば、側板2aの内側面2a1の左端から右端に向けて順次管端溶接を行う場合は、ガイド部材15は管端自動溶接機本体11の右側の取付部14に装着する。
Next, a pipe end welding method performed in the manufacturing process of the air-cooled heat exchanger having the above configuration will be described. In the following pipe end welding method, the tip end portion 15b of the guide member 15 is inserted into the pipe hole 4 adjacent to the pipe hole 4 of the part to be welded, and the support cylinder 12 is in a support state for pipe end welding. An example of stabilization is shown.
First, prior to inserting the support cylinder 12 from the plug hole 5, the guide member 15 is mounted on either the left or right side of the pipe end automatic welder main body 11. For example, when pipe end welding is sequentially performed from the left end to the right end of the inner surface 2a1 of the side plate 2a, the guide member 15 is attached to the right mounting portion 14 of the pipe end automatic welder main body 11.

次いで、管端自動溶接機の支持筒12を、溶接する部分の管孔4に対応したプラグ孔5から挿入し、支持筒12の先端が当該管孔4の手前側近傍位置に達するまで押し込む。この支持筒12の押し込み動作により、ガイド部材15が支持筒12の挿通したプラグ孔5の右横隣りのプラグ孔5から挿入され、その先端15bが当該溶接する部分の管孔4の右横隣りの管孔4内に到達するまで押し込まれる。これにより、支持筒12はプラグ孔5で支持固定され、加えて、ガイド部材15による管孔4及びプラグ孔5で支持固定される。そのため、支持筒12の支持状態は安定しており、支持筒12の先端がぶれることはなく、安定した支持状態が維持される。   Next, the support tube 12 of the pipe end automatic welder is inserted from the plug hole 5 corresponding to the tube hole 4 to be welded, and is pushed in until the tip of the support tube 12 reaches a position near the front side of the tube hole 4. By the pushing operation of the support cylinder 12, the guide member 15 is inserted from the plug hole 5 on the right side of the plug hole 5 through which the support cylinder 12 is inserted, and the tip 15 b is adjacent to the right side of the pipe hole 4 of the portion to be welded. Until it reaches the inside of the tube hole 4. As a result, the support cylinder 12 is supported and fixed by the plug hole 5 and, in addition, is supported and fixed by the tube hole 4 and the plug hole 5 by the guide member 15. Therefore, the support state of the support cylinder 12 is stable, the tip of the support cylinder 12 is not shaken, and the stable support state is maintained.

次いで、支持筒12の先端に備えられた溶接トーチからのアークにより側板2aの内側面2a1での管端溶接を行う。このとき、上記のように、支持筒12の先端がぶれることはなく安定した支持状態であるため、円周に沿った溶接を正確に行うことができる。
こうして、1つの管に関する管端溶接が終了すると、支持筒12及びガイド部材15を引き抜き、管端自動溶接機を横隣りに移動し、次いで、上記同様な処理を行う。
Next, pipe end welding is performed on the inner side surface 2a1 of the side plate 2a by an arc from a welding torch provided at the tip of the support cylinder 12. At this time, as described above, the tip of the support cylinder 12 does not shake and is in a stable support state, so that welding along the circumference can be performed accurately.
Thus, when the pipe end welding for one pipe is completed, the support cylinder 12 and the guide member 15 are pulled out, the pipe end automatic welder is moved side by side, and then the same processing as described above is performed.

なお、右端の伝熱管3の管端溶接を行う場合には、ガイド部材15は管端自動溶接機本体11の左側の取付部14に装着する。これにより、ガイド部材15は右端のプラグ孔5の左横隣りのプラグ孔5から挿入され、その先端15bが当該溶接する部分の管孔4の左横隣りの管孔4に装着されている伝熱管3内に押し込まれる。また、上記横方向の一列の管端溶接作業終了後は、上段又は下段に移行して同様の作業を行う。こうして、多数の伝熱管3の一端が側板2aに支持固定され、多数の伝熱管3の他端が側板2bに支持固定される。
なお、プラグ孔5にはプラグ6が装着され、漏れのない程度の締め付けトルクで締め付けられ、プラグ孔5が密閉され、空冷式熱交換器1が得られることになる。
When pipe end welding of the rightmost heat transfer tube 3 is performed, the guide member 15 is attached to the left mounting portion 14 of the pipe end automatic welder main body 11. As a result, the guide member 15 is inserted from the plug hole 5 adjacent to the left side of the plug hole 5 at the right end, and the tip 15b of the guide member 15 is mounted in the tube hole 4 adjacent to the left side of the pipe hole 4 of the welded portion. It is pushed into the heat pipe 3. Moreover, after completion | finish of the said row of pipe end welding work of the said horizontal direction, it transfers to an upper stage or a lower stage, and the same operation | work is performed. Thus, one end of many heat transfer tubes 3 is supported and fixed to the side plate 2a, and the other end of many heat transfer tubes 3 is supported and fixed to the side plate 2b.
In addition, the plug 6 is attached to the plug hole 5 and is tightened with a tightening torque that does not leak, the plug hole 5 is sealed, and the air-cooled heat exchanger 1 is obtained.

上記の例では、右端の伝熱管3の管端溶接を行う場合には、ガイド部材15は管端自動溶接機本体11の左側の取付部14に装着したけれども、ガイド部材15を管端自動溶接機本体11の右側の取付部14に装着した状態で、管端自動溶接機本体11を180度回転させてガイド部材15を左側に位置させるようにしてもよい。   In the above example, when pipe end welding of the right end heat transfer tube 3 is performed, the guide member 15 is mounted on the left side mounting portion 14 of the pipe end automatic welder main body 11, but the guide member 15 is automatically welded to the pipe end. The pipe end automatic welder main body 11 may be rotated 180 degrees and the guide member 15 may be positioned on the left side in a state in which the pipe end automatic welder main body 11 is attached to the right mounting portion 14 of the machine main body 11.

また、右端又は左端を除く中央位置にある伝熱管3を管端溶接する場合には、ガイド部材15を2個準備し、それらのガイド部材15を管端自動溶接機本体11の左右両側の取付部14にそれぞれ装着し、支持筒12の挿通したプラグ孔5の左右両横隣りのプラグ孔5に挿入するようにしてもよい。このようにすれば、さらに支持点が多くなり、支持筒12の支持状態をさらに安定化させることができる。   When the heat transfer tube 3 at the center position excluding the right end or the left end is welded to the tube end, two guide members 15 are prepared, and these guide members 15 are attached to the left and right sides of the tube end automatic welder main body 11. They may be respectively attached to the portions 14 and inserted into the plug holes 5 adjacent to the left and right sides of the plug hole 5 through which the support cylinder 12 is inserted. In this way, the number of support points is further increased, and the support state of the support cylinder 12 can be further stabilized.

(その他の事項)
上記実施の形態ではフィン付伝熱管3を使用したが、フィンのない伝熱管3を使用してもよい。
また、上記実施の形態では、ガイド部材15は支持筒12の左右両側に着脱自在に装着できる構成とされていたが、支持筒12の斜め上側及び斜め下側に着脱自在に装着できる構成であってもよい。この場合には、ガイド部材15は支持筒12が挿入されるプラグ孔の斜め隣のプラグ孔5に挿入されることになる。
さらに、上記実施の形態では、ガイド部材15は支持筒12が挿入されるプラグ孔の1つ横隣のプラグ孔5に挿入されるように構成されていたが、2つ若しくはそれ以上離れたプラグ孔5に挿入されるように構成されていてもよい。
(Other matters)
In the said embodiment, although the heat exchanger tube 3 with a fin was used, you may use the heat exchanger tube 3 without a fin.
In the above embodiment, the guide member 15 is configured to be detachably mounted on both the left and right sides of the support cylinder 12. However, the guide member 15 is configured to be detachably mounted on the upper and lower sides of the support cylinder 12. May be. In this case, the guide member 15 is inserted into the plug hole 5 diagonally adjacent to the plug hole into which the support cylinder 12 is inserted.
Further, in the above embodiment, the guide member 15 is configured to be inserted into the plug hole 5 adjacent to one of the plug holes into which the support cylinder 12 is inserted. It may be configured to be inserted into the hole 5.

本発明は、空冷式熱交換器の管端溶接方法に適用することが可能である。   The present invention can be applied to a pipe end welding method for an air-cooled heat exchanger.

1:空冷式熱交換器 2a,2b:側板
2a1:側板2aの内側表面 3:伝熱管
4:管孔 5:プラグ孔
6:プラグ 10:管端自動溶接機
12:支持筒 14:取付部
15:ガイド部材
1: Air-cooled heat exchanger 2a, 2b: Side plate 2a1: Inner surface of side plate 2a 3: Heat transfer tube 4: Tube hole 5: Plug hole 6: Plug 10: Pipe end automatic welder 12: Support tube 14: Mounting portion 15 : Guide member

Claims (5)

対向する一対の側板のうちの一方の側板には所定の配列で多数の管孔が形成され、他方の側板には前記管孔に対応して管孔と同様の配列で多数のプラグ孔が形成された箱型のヘッダーにおいて、前記各管孔に伝熱管の端部を挿入し、各伝熱管を順次的に管端溶接するに際して、溶接する部分の管孔に対応したプラグ孔から管端自動溶接機の支持筒を挿入し、その支持筒先端に備えられた溶接トーチにより管端溶接を行う方法であって、
前記管端自動溶接機として、前記支持筒と平行に延びるガイド部材を着脱自在に装着することができるように構成された管端自動溶接機を準備し、
伝熱管を管孔に挿入し、伝熱管の端部が前記一方の側板の内側表面に到達するまで押し込む第1ステップと、
前記管端自動溶接機の支持筒をプラグ孔から挿入するに先立って、前記ガイド部材を管端自動溶接機に装着する第2ステップと、
前記管端自動溶接機の支持筒を、溶接する部分の管孔に対応したプラグ孔から挿入し、支持筒の先端が当該管孔の手前側近傍位置に達するまで押し込む第3ステップと、
前記第3ステップにおける支持筒の押し込み動作に随伴して、前記ガイド部材が、溶接する部分の管孔に対応したプラグ孔以外のプラグ孔から挿入され、ガイド部材の先端が当該プラグ孔に対応する管孔内に到達するまで押し込まれる第4ステップと、
前記支持筒先端に備えられた溶接トーチからのアークにより前記一方の側板の内側表面位置で管端溶接を行う第5ステップと、
を含むことを特徴とする管端溶接方法。
One side plate of a pair of opposing side plates has a plurality of tube holes formed in a predetermined arrangement, and the other side plate has a plurality of plug holes formed in the same arrangement as the tube holes corresponding to the tube holes. When the end of the heat transfer tube is inserted into each tube hole and the respective heat transfer tubes are sequentially welded to the tube end, the tube end is automatically inserted from the plug hole corresponding to the welded portion of the tube header. A method of inserting a support cylinder of a welding machine and performing pipe end welding with a welding torch provided at the tip of the support cylinder,
As the pipe end automatic welder, a pipe end automatic welder configured to be detachably mounted with a guide member extending in parallel with the support cylinder,
A first step of inserting the heat transfer tube into the tube hole and pushing in until the end of the heat transfer tube reaches the inner surface of the one side plate;
A second step of attaching the guide member to the pipe end automatic welder prior to inserting the support tube of the pipe end automatic welder from the plug hole;
A third step of inserting the support tube of the pipe end automatic welder from a plug hole corresponding to a tube hole of a portion to be welded, and pushing in until the tip of the support tube reaches a position near the near side of the tube hole;
Along with the pushing operation of the support cylinder in the third step, the guide member is inserted from a plug hole other than the plug hole corresponding to the tube hole of the welded portion, and the tip of the guide member corresponds to the plug hole. A fourth step that is pushed into the bore,
A fifth step of performing pipe end welding at an inner surface position of the one side plate by an arc from a welding torch provided at the tip of the support cylinder;
A pipe end welding method comprising:
対向する一対の側板のうちの一方の側板には所定の配列で多数の管孔が形成され、他方の側板には前記管孔に対応して管孔と同様の配列で多数のプラグ孔が形成されている一対の箱型のヘッダーを備え、該一対の箱型のヘッダー間を連結する多数の伝熱管の両端部が、各箱型のヘッダーの前記管孔に挿入された構造の空冷式熱交換器であって、
前記各伝熱管の両端部が各ヘッダーの内側表面位置で自動管端溶接され、各伝熱管が各ヘッダーに支持固定されていることを特徴とする空冷式熱交換器。
One side plate of a pair of opposing side plates has a plurality of tube holes formed in a predetermined arrangement, and the other side plate has a plurality of plug holes formed in the same arrangement as the tube holes corresponding to the tube holes. A pair of box-type headers, and both ends of a number of heat transfer tubes connecting the pair of box-type headers are inserted into the tube holes of each box-type header. An exchanger,
An air-cooled heat exchanger, wherein both ends of each heat transfer tube are automatically welded at the inner surface position of each header, and each heat transfer tube is supported and fixed to each header.
前記管孔の径と前記プラグ孔の径の比が、1.00:1.01〜1.00:1.50の範囲内にある請求項2記載の空冷式熱交換器。   The air-cooled heat exchanger according to claim 2, wherein a ratio between the diameter of the tube hole and the diameter of the plug hole is in a range of 1.00: 1.01 to 1.00: 1.50. 一対の箱型のヘッダーと、一対の箱型のヘッダー間を連結する多数の伝熱管とを備える空冷式熱交換器を製造する方法であって、
対向する一対の側板のうちの一方の側板には所定の配列で多数の管孔が形成され、他方の側板には前記管孔に対応して管孔と同様の配列で多数のプラグ孔が形成された箱型のヘッダーを作製するヘッダー作製工程と、
多数の伝熱管の端部を、前記ヘッダー作製工程により作製された箱型のヘッダーの内側表面位置で自動管端溶接する工程と、
を含むことを特徴とする空冷式熱交換器の製造方法。
A method for producing an air-cooled heat exchanger comprising a pair of box-shaped headers and a large number of heat transfer tubes connecting between the pair of box-shaped headers,
One side plate of a pair of opposing side plates has a plurality of tube holes formed in a predetermined arrangement, and the other side plate has a plurality of plug holes formed in the same arrangement as the tube holes corresponding to the tube holes. A header production process for producing a box-shaped header,
A process of automatically welding the ends of a large number of heat transfer tubes at the inner surface position of the box-shaped header produced by the header production process;
The manufacturing method of the air-cooling type heat exchanger characterized by including this.
前記自動管端溶接工程は、
先端に溶接トーチを備えた支持筒と、該支持筒と平行に延びる着脱自在なガイド部材とを有する管端自動溶接機を準備し、
伝熱管を管孔に挿入し、伝熱管の端部が前記一方の側板の内側表面に到達するまで押し込む第1ステップと、
前記管端自動溶接機の支持筒をプラグ孔から挿入するに先立って、前記ガイド部材を管端自動溶接機に装着する第2ステップと、
前記管端自動溶接機の支持筒を、溶接する部分の管孔に対応したプラグ孔から挿入し、支持筒の先端が当該管孔の手前側近傍位置に達するまで押し込む第3ステップと、
前記第3ステップにおける支持筒の押し込み動作に随伴して、前記ガイド部材が、溶接する部分の管孔に対応したプラグ孔以外のプラグ孔から挿入され、ガイド部材の先端が当該プラグ孔に対応する管孔内に到達するまで押し込まれる第4ステップと、
前記支持筒先端に備えられた溶接トーチからのアークにより前記一方の側板の内側表面位置で管端溶接を行う第5ステップと、
を含む請求項4記載の空冷式熱交換器の製造方法。
The automatic pipe end welding process includes:
Preparing a tube end automatic welder having a support tube having a welding torch at the tip and a detachable guide member extending in parallel with the support tube;
A first step of inserting the heat transfer tube into the tube hole and pushing in until the end of the heat transfer tube reaches the inner surface of the one side plate;
A second step of attaching the guide member to the pipe end automatic welder prior to inserting the support tube of the pipe end automatic welder from the plug hole;
A third step of inserting the support tube of the pipe end automatic welder from a plug hole corresponding to a tube hole of a portion to be welded, and pushing in until the tip of the support tube reaches a position near the near side of the tube hole;
Along with the pushing operation of the support cylinder in the third step, the guide member is inserted from a plug hole other than the plug hole corresponding to the tube hole of the welded portion, and the tip of the guide member corresponds to the plug hole. A fourth step that is pushed into the bore,
A fifth step of performing pipe end welding at an inner surface position of the one side plate by an arc from a welding torch provided at the tip of the support cylinder;
The manufacturing method of the air-cooling type heat exchanger of Claim 4 containing this.
JP2012173911A 2012-08-06 2012-08-06 Pipe end welding method, air-cooling type heat exchanger and manufacturing method of air-cooling type heat exchanger Pending JP2014030843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012173911A JP2014030843A (en) 2012-08-06 2012-08-06 Pipe end welding method, air-cooling type heat exchanger and manufacturing method of air-cooling type heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012173911A JP2014030843A (en) 2012-08-06 2012-08-06 Pipe end welding method, air-cooling type heat exchanger and manufacturing method of air-cooling type heat exchanger

Publications (1)

Publication Number Publication Date
JP2014030843A true JP2014030843A (en) 2014-02-20

Family

ID=50281085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012173911A Pending JP2014030843A (en) 2012-08-06 2012-08-06 Pipe end welding method, air-cooling type heat exchanger and manufacturing method of air-cooling type heat exchanger

Country Status (1)

Country Link
JP (1) JP2014030843A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015160288A (en) * 2014-02-28 2015-09-07 三菱重工環境・化学エンジニアリング株式会社 Rotating tool system, heat transfer tube detachment method, and heat transfer tube replacement method
CN111185694A (en) * 2020-02-14 2020-05-22 荆门宏图特种飞行器制造有限公司 Tube plate surfacing welding machine, anti-deformation device thereof and surfacing welding method
KR20220056694A (en) * 2020-10-28 2022-05-06 (주)우남기공 Plug type header box processing system for heat exchanger

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015160288A (en) * 2014-02-28 2015-09-07 三菱重工環境・化学エンジニアリング株式会社 Rotating tool system, heat transfer tube detachment method, and heat transfer tube replacement method
CN111185694A (en) * 2020-02-14 2020-05-22 荆门宏图特种飞行器制造有限公司 Tube plate surfacing welding machine, anti-deformation device thereof and surfacing welding method
KR20220056694A (en) * 2020-10-28 2022-05-06 (주)우남기공 Plug type header box processing system for heat exchanger
KR102471218B1 (en) * 2020-10-28 2022-11-25 (주)우남기공 Plug type header box processing system for heat exchanger

Similar Documents

Publication Publication Date Title
CA2798489C (en) Steam generator heating tube repair means and repair method
US7476824B2 (en) Welding apparatus for resistance welding heat exchanger tube to tubesheet
US6984801B2 (en) Method of closing a hole in a gas turbine blade top by laser welding
JP2007105870A (en) Method for repairing hole, and member therefor
US9962797B2 (en) Repair method for cast steel member
JP2014030843A (en) Pipe end welding method, air-cooling type heat exchanger and manufacturing method of air-cooling type heat exchanger
US4943001A (en) Tube-type vessel having crevice-free joints and method for manufacturing the same
JP6581498B2 (en) Turbine rotor disk repair method
JP2008164108A (en) Piping connection mechanism
JP5968264B2 (en) Drawing device
BR112016011310B1 (en) MANUFACTURING METHOD OF A STEEL YANKEE CYLINDER
US20100329849A1 (en) Turbine rotor
US8776369B2 (en) Through-hole manufacturing method for cylindrical body wall and cylindrical body structure
US7253372B2 (en) Method for welding heat exchanger tube to tubesheet
US10751844B2 (en) Method for connecting tubes of a shell and tube heat exchanger to a tube bottom of the shell and tube heat exchanger
JP6075999B2 (en) Pipe end welding machine and pipe end welding method
JP4508919B2 (en) Torch mounting jig for welding robot and tandem welding method
JP2014076471A (en) Jig for welding header and air cooling heat exchanger manufacturing method using the same
JP2010142828A (en) Tool for welding reinforcing bar
CN106238877B (en) A kind of welding method of structural member
CN111408894A (en) Method and device for repairing welding defects of inner hole welding in U-shaped tube type heat exchanger
JP2018062307A (en) Driving device of stud pin and manufacturing method of stud tire
JP2013164254A (en) Fuel nozzle end cover, fuel nozzle, and method of fabricating fuel nozzle end cover
JP2010115694A (en) Method of expanding steel tube for heat exchanger
US4264801A (en) Method of welding tube to header of heat exchanger