JP2014029265A - Speed measurement device - Google Patents

Speed measurement device Download PDF

Info

Publication number
JP2014029265A
JP2014029265A JP2012169066A JP2012169066A JP2014029265A JP 2014029265 A JP2014029265 A JP 2014029265A JP 2012169066 A JP2012169066 A JP 2012169066A JP 2012169066 A JP2012169066 A JP 2012169066A JP 2014029265 A JP2014029265 A JP 2014029265A
Authority
JP
Japan
Prior art keywords
speed
measuring device
transmission window
inclined surface
speed measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012169066A
Other languages
Japanese (ja)
Inventor
Takashi Matsumura
隆史 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2012169066A priority Critical patent/JP2014029265A/en
Publication of JP2014029265A publication Critical patent/JP2014029265A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a speed measurement device with improvement in measurement accuracy, the device that is incorporated in a transport machine such as railway and uses a Doppler effect of electromagnetic waves.SOLUTION: A speed measurement device includes: a speed detection part, incorporated in a transportation machine, for measuring a speed with a stationary article as reference by emitting an electromagnetic wave toward the stationary article, receiving the electromagnetic wave reflected thereby and measuring a difference in frequency between the emitted and reflected waves; a chassis for internally accommodating the speed detection part; and a transparent window, disposed in the chassis, for letting the electromagnetic wave emitted and received to transmit. Further, the chassis has an inclined surface that has an angle of between 90 degrees and 180 degrees, both ends exclusive, relative to the transparent window or an extended plane thereof and is in a direction positive to a speed to be measured by the speed measurement part.

Description

本発明は、輸送機器の対地速度を非接触的に計測する目的でミリ波帯あるいは準ミリ波帯などの電磁波を地面に向けて放射し反射波の周波数変化量を計測して速度を算出する速度計測装置に関するものである。   The present invention calculates a velocity by radiating an electromagnetic wave such as a millimeter wave band or a quasi-millimeter wave band toward the ground and measuring a frequency change amount of a reflected wave for the purpose of contactlessly measuring a ground speed of a transport device The present invention relates to a speed measuring device.

自動車や鉄道車両などの輸送機器における対地速度を検出する方法として、車輪の回転数を計測することで速度を求める方法が一般的に用いられている。しかしながら、本手法は車輪のスリップ時に対地速度を計測できないこと、タイヤの空気の抜けや車輪が削れることなどにより車輪の径が変化すると計測誤差が生じることが知られている。   As a method for detecting a ground speed in a transportation device such as an automobile or a railway vehicle, a method of obtaining a speed by measuring the number of rotations of a wheel is generally used. However, it is known that this method cannot measure the ground speed when the wheel slips, and a measurement error occurs when the wheel diameter changes due to tire air loss or wheel scraping.

一方で、ミリ波の連続波を地面に放射してその反射波を受信し、反射波の周波数変化量を計測して対地速度を算出する速度計測装置も知られている。例えば、特許文献1のような技術が知られている。本手法は非接触式であるため、スリップ時も対地速度が計測可能であり、車輪の径の変化の影響も受けない。   On the other hand, there is also known a speed measuring device that radiates a continuous wave of millimeter waves to the ground, receives a reflected wave thereof, measures a frequency change amount of the reflected wave, and calculates a ground speed. For example, a technique such as Patent Document 1 is known. Since this method is a non-contact type, the ground speed can be measured even when slipping, and it is not affected by changes in the wheel diameter.

特開2006−184144号公報JP 2006-184144 A

しかしながら、特許文献1に記載の技術では、電磁波の放射面や受信面に汚損物質や水などが付着すると付着面において電磁波が散乱、吸収されるために反射波の受信強度が低下し、速度の計測性能を低下させてしまう可能性がある。特に、鉄道においては車輪やレールが削れることにより鉄粉が発生する可能性があるが、鉄粉は電磁波を大きく散乱させるため、付着すると速度の計測性能を低下させてしまう可能性が高い。   However, in the technique described in Patent Document 1, when a pollutant or water adheres to the radiation surface or reception surface of the electromagnetic wave, the electromagnetic wave is scattered and absorbed on the attachment surface. Measurement performance may be degraded. In particular, in railways, iron powder may be generated by scraping wheels or rails. However, iron powder scatters electromagnetic waves greatly, and thus, there is a high possibility that speed measurement performance will be deteriorated if it adheres.

本発明の目的は、主として鉄道などの輸送機器に搭載される電磁波のドップラ効果を利用した速度計測装置において、計測精度のよい速度計測装置を提供することである。   An object of the present invention is to provide a speed measuring device with high measurement accuracy in a speed measuring device that mainly uses the Doppler effect of electromagnetic waves mounted on transportation equipment such as railways.

上記目的を達成するために、本発明の速度計測装置は、輸送機器に搭載され、電磁波を固定物の方向に向けて放射し前記固定物から反射される電磁波を受信して前記放射波と前記反射波の周波数差を計測することにより前記固定物を基準とする速度を計測する速度検出部と、前記速度検出部を内部に収容する筐体と、前記筐体に設けられ前記速度検出部から放射し受信される前記電磁波を透過する透過窓と、を有する速度計測装置において、前記筐体は、前記透過窓あるいは前記透過窓の延長面となす角度が90度より大きく180度未満である傾斜面を前記速度検出部で計測する速度の正方向に有する。   In order to achieve the above object, a speed measuring device of the present invention is mounted on a transportation device, radiates an electromagnetic wave toward a fixed object, receives an electromagnetic wave reflected from the fixed object, receives the radiated wave and the A speed detection unit that measures a speed based on the fixed object by measuring a frequency difference of reflected waves, a housing that houses the speed detection unit, and a speed detection unit that is provided in the housing And a transmission window that transmits the electromagnetic wave that is radiated and received, wherein the casing is inclined at an angle that is greater than 90 degrees and less than 180 degrees with the transmission window or an extended surface of the transmission window. The surface is in the positive direction of the speed measured by the speed detector.

本発明によれば、計測精度のよい速度計測装置を提供することが可能となる。   According to the present invention, it is possible to provide a speed measuring device with high measurement accuracy.

本発明に係る速度計測装置の一例An example of a speed measuring device according to the present invention 速度計測装置を鉄道車両に搭載した例Example of installing a speed measurement device on a railway vehicle 速度計測部の構成の一例Example of configuration of speed measurement unit 本発明に係る速度計測装置の別の一例Another example of the speed measuring device according to the present invention 本発明に係る速度計測装置の別の一例Another example of the speed measuring device according to the present invention 本発明に係る速度計測装置の別の一例Another example of the speed measuring device according to the present invention 本発明に係る速度計測装置の別の一例Another example of the speed measuring device according to the present invention

以下、図1から図3を用いて、速度計測装置の構成について説明する。なお、本実施例では77GHz帯の電磁波を用いた速度計測装置を例に取り上げるが、光学式を含む他の周波数を用いた電磁波式の速度計測装置についても同様の構成で実施が可能である。   Hereinafter, the configuration of the speed measuring device will be described with reference to FIGS. 1 to 3. In this embodiment, a speed measuring device using an electromagnetic wave of 77 GHz band is taken as an example, but an electromagnetic wave type speed measuring device using other frequencies including an optical type can be implemented with the same configuration.

図1は、速度計測装置300の構成の一例を示す図である。速度計測装置300は主として速度計測部1、速度計測部1を速度計測装置300の筐体に固定する固定台2、空気の流れる方向を偏向させるための傾斜面303と傾斜面303A、速度計測部1から放射され、かつ電磁波の反射面から反射して戻る電磁波を透過させる透過窓304からなる。   FIG. 1 is a diagram illustrating an example of the configuration of the speed measurement device 300. The speed measuring device 300 is mainly composed of a speed measuring unit 1, a fixed base 2 for fixing the speed measuring unit 1 to the casing of the speed measuring device 300, an inclined surface 303 and an inclined surface 303A for deflecting the air flow direction, and a speed measuring unit. 1 is formed of a transmission window 304 that transmits an electromagnetic wave radiated from 1 and reflected and returned from an electromagnetic wave reflection surface.

この速度計測装置300は例えば図2に示すように鉄道の車両Cの底面Sに据付けられ、地面Gに対して斜め方向に電磁波Mを放射し、地面Gからの反射波の周波数変化量01.を計測して速さを算出する構成となっている。   For example, as shown in FIG. 2, the speed measuring device 300 is installed on the bottom surface S of a railway vehicle C, radiates an electromagnetic wave M in an oblique direction with respect to the ground G, and a frequency change amount 01. It is the structure which measures speed and calculates speed.

このうち速度計測装置300の速度計測部1の構成の一例を図3に示す。速度計測部1は主としてMMIC(Monolithic Microwave Integrated Circuit)11、アンテナ139、レンズ12、演算回路13から構成される。このうち、MMIC11は主として発信器134、送信用増幅器110、アイソレータ119、受信用増幅器113、混合器112で構成される。アイソレータ119にはアンテナ139が接続されている。   An example of the configuration of the speed measuring unit 1 of the speed measuring apparatus 300 is shown in FIG. The speed measurement unit 1 mainly includes a MMIC (Monolithic Microwave Integrated Circuit) 11, an antenna 139, a lens 12, and an arithmetic circuit 13. Among these, the MMIC 11 mainly includes a transmitter 134, a transmission amplifier 110, an isolator 119, a reception amplifier 113, and a mixer 112. An antenna 139 is connected to the isolator 119.

速度計測部1の動作について以下に説明する。発振器134で生成された77GHz帯の高周波信号は送信用増幅器110で増幅された後、アイソレータ119を介してアンテナ139に伝搬されて、アンテナ139より空間へ電磁波となって放射される。放射された電磁波はレンズ12により収束され地面に入射される。地面でミリ波は反射し、また対地との速度に比例してドップラ効果により反射波の周波数が変化する。地面で反射した電磁波はレンズ12を通じてアンテナ139に入射する。アンテナ139により受信された信号は、アイソレータ119により受信用増幅器113に伝搬される。この信号は受信用増幅器113により増幅され、混合器112で発信器134から出力される高周波信号と混合されIF(Intermediate Frequency)信号が生成され、演算回路13に入力される。このIF信号の周波数がドップラ効果による周波数変化の絶対値となる。演算回路13の動作は主にAD変換器でIF信号をデジタル信号に変換し、このデジタル信号をFFT(Fast Fourier Transform)処理によりIF信号の周波数を求め、速さvに換算する。なお、速さvはミリ波の入射方向と速度の逆方向とのなす角をθとすると、   The operation of the speed measuring unit 1 will be described below. The high frequency signal in the 77 GHz band generated by the oscillator 134 is amplified by the transmission amplifier 110, then propagated to the antenna 139 through the isolator 119, and is radiated as an electromagnetic wave from the antenna 139 to the space. The emitted electromagnetic wave is converged by the lens 12 and incident on the ground. The millimeter wave is reflected on the ground, and the frequency of the reflected wave is changed by the Doppler effect in proportion to the speed with the ground. The electromagnetic wave reflected from the ground enters the antenna 139 through the lens 12. A signal received by the antenna 139 is propagated to the receiving amplifier 113 by the isolator 119. This signal is amplified by the receiving amplifier 113 and mixed with the high frequency signal output from the transmitter 134 by the mixer 112 to generate an IF (Intermediate Frequency) signal, which is input to the arithmetic circuit 13. The frequency of this IF signal is the absolute value of the frequency change due to the Doppler effect. The operation of the arithmetic circuit 13 is to convert the IF signal into a digital signal mainly by an AD converter, obtain the frequency of the IF signal by FFT (Fast Fourier Transform) processing, and convert it to the speed v. The speed v is θ, where θ is the angle formed between the incident direction of the millimeter wave and the reverse direction of the speed.

の関係式で表される。ここで、cは光速、fは発振器から出力される信号の周波数、fはドップラ効果による周波数変化量である。 It is expressed by the relational expression. Here, c is the speed of light, f 0 is the frequency of the signal output from the oscillator, and f d is the amount of frequency change due to the Doppler effect.

ここで図1に戻り、車両Cが走行すると速度計測装置300の周囲に車両Cの進行方向Vとは逆向きに空気の流れW1が生じる。進行方向から速度計測装置300に流れ込む空気の流れW1は傾斜面303により方向がW2へ偏向し、水平部305でおおよそ水平方向W3に空気が流れるようになる。一方、空気の流れW1に乗り速度計測装置300に向かう汚損物質Pは空気の流れW2により方向が少しずつ地面G方向に変化するが、空気の流れW2の速さと汚損物質Pの重量によっては、汚損物質Pのもつ慣性により傾斜面303に衝突することがある。衝突する、しないにかかわらず、汚損物質Pは空気の流れW2に乗って傾斜面303前面を通過する。通過後、慣性の効果により汚損物質Pは水平部305に向かわず地面G方向へ向かう。   Here, returning to FIG. 1, when the vehicle C travels, an air flow W <b> 1 is generated around the speed measuring device 300 in the direction opposite to the traveling direction V of the vehicle C. The air flow W1 flowing into the speed measuring device 300 from the traveling direction is deflected in the direction W2 by the inclined surface 303, and the air flows in the horizontal portion 305 in the horizontal direction W3. On the other hand, the fouling substance P that rides on the air flow W1 and moves toward the speed measuring device 300 is gradually changed in the direction of the ground G by the air flow W2, but depending on the speed of the air flow W2 and the weight of the fouling substance P, It may collide with the inclined surface 303 due to the inertia of the fouling substance P. Regardless of whether or not they collide, the pollutant P passes through the front surface of the inclined surface 303 on the air flow W2. After passing, due to the inertia effect, the fouling substance P does not go to the horizontal part 305 but goes to the ground G direction.

この効果により電磁波の伝搬を妨げる汚損物質Pが透過窓304に到達しにくい構成をとることが可能となり、汚損物の付着による速度の計測性能の低下を防ぎ計測精度のよい速度計測装置を提供できる。さらに、これにより、透過窓304の汚損による汚損物質の除去等のメンテナンス回数を低減することも可能となる。   Due to this effect, it is possible to adopt a configuration in which the pollutant P that prevents the propagation of electromagnetic waves does not easily reach the transmission window 304, and it is possible to provide a speed measurement device with high measurement accuracy by preventing a decrease in speed measurement performance due to adhesion of the pollutant. . In addition, this makes it possible to reduce the number of maintenance operations such as removal of pollutants due to fouling of the transmission window 304.

なお、鉄道車両においては一般的には進行方向が上り下りの2方向あるため、水平部305の両方向に傾斜面303と傾斜面303Aを設けることで、図1の進行方向Vと逆向きに車両Cが進行しても同様な効果を得ることが可能となっている。   In general, railway vehicles have two traveling directions, ie, an ascending and descending direction. Therefore, by providing an inclined surface 303 and an inclined surface 303A in both directions of the horizontal portion 305, the vehicle is opposite to the traveling direction V in FIG. Even if C progresses, it is possible to obtain the same effect.

また、汚損物質以外にも雨水などの水でも同様な効果が得られる。なお、透過窓304には、電磁波の透過特性に影響のある雨水などを弾く目的ではっ水コーティング処理がなされていてもよい。   In addition to the pollutant, the same effect can be obtained with water such as rain water. The transmission window 304 may be subjected to a water-repellent coating process for the purpose of splashing rainwater or the like that affects the transmission characteristics of electromagnetic waves.

さらに、図4に汚損物質や水が透過窓304に付着しにくい効果を高めた速度計測装置310の構成を示す。本構成は、図1に示した速度計測装置300に対し、風向制御板312を追加した構成となっている。なお、より好ましい構成として、図4に示すように空気の流れW1の速さを増すために速度計測装置310の開口部311の面積を水平部305の脇の開口部314の面積よりも大きくして、空気の流れW2の速さを増加させ、汚損物質Pが開口部314から飛び出す速さを大きくする構成としてもよい。なお、鉄道の場合は進行方向が上り下りの2方向あるため、図4に示す進行方向Vとは逆向きに走行した場合にも対応できるように風向制御板312Aも同様に設置する。   Further, FIG. 4 shows the configuration of the speed measuring device 310 that enhances the effect of preventing fouling substances and water from adhering to the transmission window 304. In this configuration, a wind direction control plate 312 is added to the speed measurement device 300 shown in FIG. As a more preferable configuration, the area of the opening 311 of the speed measuring device 310 is made larger than the area of the opening 314 beside the horizontal part 305 in order to increase the speed of the air flow W1 as shown in FIG. Thus, it is possible to increase the speed of the air flow W2 and increase the speed at which the pollutant P jumps out of the opening 314. In the case of a railroad, since there are two traveling directions, that is, ascending and descending, the wind direction control plate 312A is similarly installed so as to be able to cope with traveling in the direction opposite to the traveling direction V shown in FIG.

また、図5に汚損物質Pや水が透過窓304に付着しにくい効果を高めた速度計測装置330の構成を示す。本構成は、図4に示した速度計測装置310に対し、水平部305の両側に円弧形状335、335Aを有する構造としている。進行方向がVに示す矢印方向のとき、開口部311から空気が流れ込むことにより、進行方向Vとは逆向きの空気の流れW1が生じ、傾斜面303により方向がW2へ偏向する。仮に、開口部311から汚損物質Pが取り込まれると、汚損物質Pは空気の流れW2により開口部314より地面方向に飛ばされる。また、傾斜面303の先端部337では、空気の流れW2が円弧形状335の内側の空気を吸い出し、円弧形状335に沿って空気の流れWR3が生じる。空気の流れWR3が生じることにより透過窓304の表面には進行方向に向かって空気の流れWR2が生じ、この空気の流れWR2により円弧形状335Aの内側に空気の流れWR1が生じる。また、開口部314から流れ出た空気の流れW3の一部が円弧形状335A内側に流れ込む。結果として、透過窓304前面には空気の流れW3、WR1、WR2とWR3による渦が生じる。この空気の渦は汚損物質Pの少ない状態となるので、汚損物質Pが透過窓304に到達しにくい構成となる。   FIG. 5 shows the configuration of the speed measuring device 330 that enhances the effect that the pollutant P and water hardly adhere to the transmission window 304. This structure has a structure having arc shapes 335 and 335A on both sides of the horizontal portion 305 with respect to the speed measuring device 310 shown in FIG. When the traveling direction is an arrow direction indicated by V, air flows from the opening 311 to generate an air flow W1 opposite to the traveling direction V, and the inclined surface 303 deflects the direction to W2. If the fouling substance P is taken in from the opening 311, the fouling substance P is blown from the opening 314 toward the ground by the air flow W <b> 2. In addition, at the tip 337 of the inclined surface 303, the air flow W <b> 2 sucks out air inside the arc shape 335, and the air flow WR <b> 3 is generated along the arc shape 335. When the air flow WR3 is generated, an air flow WR2 is generated in the traveling direction on the surface of the transmission window 304, and the air flow WR1 is generated inside the arc shape 335A by the air flow WR2. Further, a part of the air flow W3 flowing out from the opening 314 flows into the arc shape 335A. As a result, vortices due to air flows W3, WR1, WR2, and WR3 are generated in front of the transmission window 304. Since the air vortex is in a state in which the pollutant P is small, the pollutant P is difficult to reach the transmission window 304.

さらに、図5に示した速度計測装置330の別例として図6に示す速度計測装置340の構成としてもよい。この構成は円弧形状345、345Aの中心角を90°以上として、弧と水平部305とがなす角を180°以下とした構成である。円弧形状345Aと水平部305とのなす先端部348Aが劣角であるために、仮に円弧形状345Aに汚損物資が入り込んでも、円弧形状345Aに生じる空気の流れWR1が汚損物質に遠心力を与えるので、汚損物質は先端部348Aから透過窓304に到達しにくい。   Furthermore, it is good also as a structure of the speed measurement apparatus 340 shown in FIG. 6 as another example of the speed measurement apparatus 330 shown in FIG. In this configuration, the central angle of the arc shapes 345 and 345A is 90 ° or more, and the angle formed between the arc and the horizontal portion 305 is 180 ° or less. Since the tip portion 348A formed by the arc shape 345A and the horizontal portion 305 is inferior, even if a fouling material enters the arc shape 345A, the air flow WR1 generated in the arc shape 345A gives centrifugal force to the pollutant. The fouling substance is unlikely to reach the transmission window 304 from the tip 348A.

また、図7に示す速度計測装置350の構成のように垂直壁353と水平部305とで形成される角部に凸構造355を設ける構成としてもよい。進行方向がVに示す矢印方向のとき、進行方向Vとは逆向きの空気の流れW1により、垂直壁353に衝突した汚損物質Pが垂直壁353に付着しなかった場合は空気の流れW2に乗って地面方向に向かう。汚損物質が垂直壁353に付着した場合は、垂直壁353伝いに地面方向に落ち、凸構造355先端部で空気の流れにより汚損物質Pが飛ばされる構成となっている。この効果をより高めるために風向制御板352を追加する構成としてもよい。透過窓304を含む水平部305は内側に入り込んでいる構造のため汚損物質Pが透過窓304に到達しにくい構成となっている。なお、進行方向Vが逆向きの場合にも対応するために、垂直壁353A、凸構造355A、風向制御板352Aを追加する。なお、図7の構成において、垂直壁353、353Aは水平部305と必ずしも垂直である必要は無い。   Moreover, it is good also as a structure which provides the convex structure 355 in the corner | angular part formed with the vertical wall 353 and the horizontal part 305 like the structure of the speed measurement apparatus 350 shown in FIG. When the traveling direction is the arrow direction indicated by V, if the pollutant P that collides with the vertical wall 353 does not adhere to the vertical wall 353 due to the air flow W1 opposite to the traveling direction V, the air flow W2 Get on the ground. When the fouling substance adheres to the vertical wall 353, the fouling substance P falls along the vertical wall 353 in the ground direction, and the fouling substance P is blown off by the air flow at the tip of the convex structure 355. A wind direction control plate 352 may be added to enhance this effect. The horizontal portion 305 including the transmission window 304 is structured so as to enter the inside, so that the pollutant P is difficult to reach the transmission window 304. In order to cope with the case where the traveling direction V is reverse, a vertical wall 353A, a convex structure 355A, and a wind direction control plate 352A are added. In the configuration of FIG. 7, the vertical walls 353 and 353 </ b> A are not necessarily perpendicular to the horizontal portion 305.

なお、上記に示した実施例は鉄道分野のみならず、エレベータや建設機械、農機具などもふくむさまざまな輸送機器分野でも利用が可能である。   The embodiment described above can be used not only in the railway field but also in various transportation equipment fields including elevators, construction machines, and agricultural equipment.

1 速度計測部
300、310、330、340、350 速度計測装置
303、303A 傾斜面
304 透過窓
305 水平部
312、312A、322、322A、352 風向制御板
DESCRIPTION OF SYMBOLS 1 Speed measuring part 300,310,330,340,350 Speed measuring device 303,303A Inclined surface 304 Transmission window 305 Horizontal part 312,312A, 322,322A, 352 Wind direction control board

Claims (10)

輸送機器に搭載され、電磁波を固定物の方向に向けて放射し前記固定物から反射される電磁波を受信して前記放射波と前記反射波の周波数差を計測することにより前記固定物を基準とする速度を計測する速度検出部と、前記速度検出部を内部に収容する筐体と、前記筐体に設けられ前記速度検出部から放射し受信される前記電磁波を透過する透過窓と、を有する速度計測装置において、
前記筐体は、前記透過窓あるいは前記透過窓の延長面となす角度が90度より大きく180度未満である傾斜面を前記速度検出部で計測する速度の正方向に有することを特徴とする速度計測装置。
Mounted on a transport device, radiates an electromagnetic wave in the direction of a fixed object, receives an electromagnetic wave reflected from the fixed object, and measures the frequency difference between the radiated wave and the reflected wave as a reference. A speed detector that measures the speed to be transmitted; a housing that houses the speed detector; and a transmission window that is provided in the housing and transmits the electromagnetic waves that are radiated and received from the speed detector. In the speed measurement device,
The casing has an inclined surface whose angle formed by the transmission window or an extended surface of the transmission window is greater than 90 degrees and less than 180 degrees in a positive direction of a speed measured by the speed detection unit. Measuring device.
請求項1に記載の速度計測装置において、
前記筐体は、前記速度検出部で計測する速度の正方向および逆方向の両方向に前記傾斜面を有することを特徴とする速度計測装置。
The speed measuring device according to claim 1,
The speed measurement device according to claim 1, wherein the casing has the inclined surface in both a forward direction and a reverse direction of a speed measured by the speed detection unit.
請求項1に記載の速度計測装置において、
前記傾斜面に対向する位置に板を配置し、
前記傾斜面と前記板とで空間を形成したことを特徴とする速度計測装置。
The speed measuring device according to claim 1,
A plate is arranged at a position facing the inclined surface,
A speed measuring device, wherein a space is formed by the inclined surface and the plate.
請求項3に記載の速度計測装置において、
前記空間の前記筐体先端側の開口部は、前記筐体の前記透過窓側の開口部よりも大きいことを特徴とする速度計測装置。
The speed measuring device according to claim 3,
The speed measurement device according to claim 1, wherein an opening on the front end side of the casing of the space is larger than an opening on the transmission window side of the casing.
請求項1から請求項4のいずれか1項に記載の速度計測装置において、
前記透過窓または前記透過窓の延長面と前記傾斜面との間に円弧形状を有することを特徴とする速度計測装置。
In the speed measuring device according to any one of claims 1 to 4,
A speed measuring device having an arc shape between the transmission window or an extended surface of the transmission window and the inclined surface.
請求項5に記載の速度計測装置において、
前記透過窓または前記透過窓の延長面と前記円弧形状とのなす角が180度以下であることを特徴とする速度計測装置
The speed measuring device according to claim 5,
An angle formed by the transmissive window or an extended surface of the transmissive window and the circular arc shape is 180 degrees or less.
請求項1に記載の速度計測装置において、
前記透過窓または前記透過窓の延長面と前記傾斜面とでなす辺に前記透過窓の延長面に垂直に壁構造を設けたことを特徴とする速度計測装置。
The speed measuring device according to claim 1,
A speed measurement device, wherein a wall structure is provided perpendicularly to an extension surface of the transmission window on a side formed by the transmission window or an extension surface of the transmission window and the inclined surface.
請求項7に記載の速度計測装置において、
前記筐体は、前記速度検出部で計測する速度の正方向と逆方向の両方向に前記傾斜面と前記壁構造を設けたことを特徴とする速度計測装置。
The speed measuring device according to claim 7,
The speed measurement device according to claim 1, wherein the casing is provided with the inclined surface and the wall structure in both a forward direction and a reverse direction of a speed measured by the speed detection unit.
請求項7に記載の速度計測装置において、
前記傾斜面に対向する位置に板を配置し、
前記傾斜面と前記板とで空間を形成したことを特徴とする速度計測装置。
The speed measuring device according to claim 7,
A plate is arranged at a position facing the inclined surface,
A speed measuring device, wherein a space is formed by the inclined surface and the plate.
請求項9に記載の速度計測装置において、
前記空間の前記筐体先端側の開口部は、前記筐体の前記透過窓寄り側の開口部よりも大きいことを特徴とする速度計測装置。
The speed measurement device according to claim 9, wherein
The speed measurement device according to claim 1, wherein an opening of the space on the front end side of the housing is larger than an opening of the housing on the side closer to the transmission window.
JP2012169066A 2012-07-31 2012-07-31 Speed measurement device Pending JP2014029265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012169066A JP2014029265A (en) 2012-07-31 2012-07-31 Speed measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012169066A JP2014029265A (en) 2012-07-31 2012-07-31 Speed measurement device

Publications (1)

Publication Number Publication Date
JP2014029265A true JP2014029265A (en) 2014-02-13

Family

ID=50201941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012169066A Pending JP2014029265A (en) 2012-07-31 2012-07-31 Speed measurement device

Country Status (1)

Country Link
JP (1) JP2014029265A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017015473A (en) * 2015-06-30 2017-01-19 日立オートモティブシステムズ株式会社 Speed measurement device, its attachment method, and vehicle attached with the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52123845A (en) * 1976-04-12 1977-10-18 Hitachi Ltd Horn antenna
JPS56717A (en) * 1979-06-15 1981-01-07 Nissan Motor Co Ltd Radar unit with shield cover
JPH0888903A (en) * 1994-09-14 1996-04-02 Central Japan Railway Co Current collector for railway
JP2000301995A (en) * 1999-04-16 2000-10-31 Honda Motor Co Ltd Snow accretion preventing structure of front grille part
JP2000311280A (en) * 1999-04-27 2000-11-07 Hochiki Corp Fire detector and its arranging method
JP2003175767A (en) * 2001-12-12 2003-06-24 Mitsubishi Electric Corp Infrared camera and vehicle with infrared camera mounted thereon
JP2005037374A (en) * 2003-06-30 2005-02-10 Hitachi Ltd Ground speed measuring device
JP2006194639A (en) * 2005-01-11 2006-07-27 Denso Corp Radar system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52123845A (en) * 1976-04-12 1977-10-18 Hitachi Ltd Horn antenna
JPS56717A (en) * 1979-06-15 1981-01-07 Nissan Motor Co Ltd Radar unit with shield cover
JPH0888903A (en) * 1994-09-14 1996-04-02 Central Japan Railway Co Current collector for railway
JP2000301995A (en) * 1999-04-16 2000-10-31 Honda Motor Co Ltd Snow accretion preventing structure of front grille part
JP2000311280A (en) * 1999-04-27 2000-11-07 Hochiki Corp Fire detector and its arranging method
JP2003175767A (en) * 2001-12-12 2003-06-24 Mitsubishi Electric Corp Infrared camera and vehicle with infrared camera mounted thereon
JP2005037374A (en) * 2003-06-30 2005-02-10 Hitachi Ltd Ground speed measuring device
JP2006194639A (en) * 2005-01-11 2006-07-27 Denso Corp Radar system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017015473A (en) * 2015-06-30 2017-01-19 日立オートモティブシステムズ株式会社 Speed measurement device, its attachment method, and vehicle attached with the same

Similar Documents

Publication Publication Date Title
US7861600B2 (en) Apparatus for ascertaining and/or monitoring fill level and/or flow of a medium
JP6639782B2 (en) Doppler radar test system
JP5423891B2 (en) Object identification device and method
JP4506822B2 (en) Fog detection device and installation method thereof
WO2016104575A1 (en) Cover member having plurality of surfaces and radar device comprising said cover member
WO2016009945A1 (en) Vehicle-mounted radar device, notification system, and traveling vehicle detection method of vehicle-mounted radar device
WO2016009987A1 (en) Vehicle-mounted radar device and notification system
US8937571B2 (en) Method and apparatus for detecting vehicle wheels
Mayhan et al. A two-frequency radar for vehicle automatic lateral control
US9046607B2 (en) Radar system and detection method
JP2009031078A (en) Device and method for detection
WO2018163638A1 (en) Speed measurement device and speed measurement method
JP2014235140A (en) Speed measurement device
JP2014029265A (en) Speed measurement device
CN104345308A (en) Vehicle detector and method for measuring vehicle distance and vehicle speed
CN208399675U (en) Millimeter speed-measuring radar system in a kind of navigation of novel compositions
CN110531378A (en) A kind of Wind turbines continuous wave laser coherent wind radar system
JP6507048B2 (en) Rail vehicle control system
CN109343048A (en) The radar surveying method of the high low velocity of this vehicle short distance
US20230204737A1 (en) Methods and related systems for detecting miscalibration of extrinsic lidar parameters
JP6530260B2 (en) Speed measuring device, mounting method thereof, and automobile equipped with the same
JP2017015474A5 (en)
JP2014169949A (en) Speed measuring device
JP2015059748A (en) Obstacle detection device
JP6768150B2 (en) Travel distance measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150804