JP2014028558A - Suspension control device - Google Patents

Suspension control device Download PDF

Info

Publication number
JP2014028558A
JP2014028558A JP2012169619A JP2012169619A JP2014028558A JP 2014028558 A JP2014028558 A JP 2014028558A JP 2012169619 A JP2012169619 A JP 2012169619A JP 2012169619 A JP2012169619 A JP 2012169619A JP 2014028558 A JP2014028558 A JP 2014028558A
Authority
JP
Japan
Prior art keywords
damping force
speed
vehicle
gain
vehicle body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012169619A
Other languages
Japanese (ja)
Other versions
JP6004814B2 (en
Inventor
Takahide Kobayashi
隆英 小林
Osayuki Ichimaru
修之 一丸
Ryusuke Hirao
隆介 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2012169619A priority Critical patent/JP6004814B2/en
Publication of JP2014028558A publication Critical patent/JP2014028558A/en
Application granted granted Critical
Publication of JP6004814B2 publication Critical patent/JP6004814B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vehicle Body Suspensions (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce inflow of an air current to a lower surface of a vehicle body at high-speed travelling, and to reduce floating and pitching of the vehicle body.SOLUTION: Using an upper spring acceleration sensor 8 and integrator 12, an upper spring speed V1 is detected. Using the upper spring acceleration sensor 8, a lower spring acceleration sensor 9, a subtractor 14 and the integrator 13, a relative speed V2 between a vehicle body 1 and a wheel 2 is detected. A gain multiplication processing part 15 sets extension-side front wheel target damping force DFf to be high and contraction-side front wheel target damping force DFf to be low, when the vehicle speed is high, compared to a case when the vehicle speed is low, and sets extension-side rear wheel target damping force DFr to be low and contraction-side rear wheel target damping force DFr to be high. A damping force map 20 calculates a command current value I on the basis of the target damping force DFf and DFr and the relative speed V2. This configuration enables a vehicle to behave nose-down at high speed.

Description

本発明は、例えば4輪自動車等の車両に搭載され、車両の振動を緩衝するのに好適に用いられるサスペンション制御装置に関する。   The present invention relates to a suspension control device that is mounted on a vehicle such as a four-wheeled vehicle and is preferably used for buffering vibration of the vehicle.

一般に、自動車等の車両には、車体と各車軸との間に減衰力調整式緩衝器が設けられ、調整信号を用いて該緩衝器による減衰力特性を調整する構成としたサスペンション制御装置が搭載されている(例えば、特許文献1〜3参照)。この種の従来技術によるサスペンション制御装置では、例えば車体の上,下方向の振動をばね上速度またはばね上加速度として検出し、この検出した速度等に応じた減衰力を発生させるように緩衝器に対して調整信号を出力していた。また、従来技術によるサスペンション制御装置では、車体のふわつきや、ばね下のばたつきの低減を目的として、車速に応じてゲインの変更や減衰力の調整をしていた。   In general, a vehicle such as an automobile is provided with a damping force adjustment type shock absorber between a vehicle body and each axle, and a suspension control device configured to adjust a damping force characteristic by the shock absorber using an adjustment signal is mounted. (For example, see Patent Documents 1 to 3). In this type of suspension control device according to the prior art, for example, vibrations in the upward and downward directions of the vehicle body are detected as sprung speed or sprung acceleration, and a shock absorber is generated so as to generate a damping force corresponding to the detected speed. In contrast, an adjustment signal was output. Further, in the suspension control device according to the prior art, the gain is changed or the damping force is adjusted according to the vehicle speed for the purpose of reducing the flickering of the vehicle body and the fluttering under the spring.

特開平8−216645号公報JP-A-8-216645 特開平6−270632号公報JP-A-6-270632 特開平7−323714号公報JP-A-7-323714

ところで、従来技術によるサスペンション制御装置では、車両挙動の低減を目的に、車速、路面の影響等のような車両の走行状態に応じて減衰力のゲインを設定していた。このため、高車速時に車体が揺れた場合には、ピッチングを低減するように、即ち路面に並行な車体姿勢になるように緩衝器の減衰力を制御する。この結果、車体が上昇すると、車体の下面に気流が流入し、車体が浮き上がり、ピッチングが増長される懸念があった。   By the way, in the suspension control apparatus according to the prior art, the gain of the damping force is set according to the traveling state of the vehicle such as the vehicle speed and the influence of the road surface for the purpose of reducing the vehicle behavior. For this reason, when the vehicle body shakes at a high vehicle speed, the damping force of the shock absorber is controlled so as to reduce pitching, that is, to make the vehicle body posture parallel to the road surface. As a result, when the vehicle body rises, there is a concern that airflow flows into the lower surface of the vehicle body, the vehicle body is lifted, and pitching is increased.

本発明は、上述した従来技術の問題に鑑みなされたもので、本発明の目的は、高車速時に車体下面への気流の流入を減らし、車体の浮き上がりとピッチングを低減することができるサスペンション制御装置を提供することにある。   The present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to reduce the inflow of airflow to the lower surface of the vehicle body at a high vehicle speed, and to reduce the lifting and pitching of the vehicle body. Is to provide.

上述した課題を解決するために、請求項1に係る発明は、車両の車体と車輪との間に介装され調整信号を用いて減衰力特性が調整される減衰力調整式緩衝器を備えたサスペンション制御装置において、前記車体の上,下方向の速度を車体側上下速度として検出する車体側上下速度検出部と、該車体側上下速度検出部による車体側上下速度に基づいて前記減衰力調整式緩衝器に発生させる目標減衰力を算出する減衰力算出部と、前記車体と車輪との間の上,下方向の相対速度を検出する相対速度検出部と、前記減衰力算出部による目標減衰力および該相対速度検出部による相対速度に基づいて前記減衰力調整式緩衝器の減衰力特性を調整する調整信号を出力する調整信号出力部と、前記車両の走行速度を車速として検出する車速検出部とを備え、前記減衰力算出部は、前記車速検出部による車速が高速なときには低速なときに比べて、前輪の伸び側の目標減衰力を高く、縮み側の目標減衰力を低く設定し、および/または後輪の伸び側の目標減衰力を低く、縮み側の目標減衰力を高く設定する構成としたことを特徴としている。   In order to solve the above-described problem, the invention according to claim 1 includes a damping force adjustment type shock absorber that is interposed between a vehicle body and a wheel of a vehicle and that adjusts damping force characteristics using an adjustment signal. In the suspension control apparatus, a vehicle body side vertical speed detection unit that detects the vehicle body vertical speed as the vehicle body vertical speed, and the damping force adjustment formula based on the vehicle body vertical speed by the vehicle body vertical speed detection unit A damping force calculation unit that calculates a target damping force generated in the shock absorber, a relative speed detection unit that detects a relative speed between the vehicle body and the wheel in the upward and downward directions, and a target damping force by the damping force calculation unit And an adjustment signal output unit that outputs an adjustment signal for adjusting the damping force characteristic of the damping force adjustment type shock absorber based on the relative speed by the relative speed detection unit, and a vehicle speed detection unit that detects the traveling speed of the vehicle as a vehicle speed And with The damping force calculation unit sets the target damping force on the expansion side of the front wheels to be lower and the target damping force on the contraction side to be lower when the vehicle speed by the vehicle speed detection unit is high than when the vehicle speed is low, and / or It is characterized in that the target damping force on the expansion side of the wheel is set low and the target damping force on the contraction side is set high.

本発明によれば、高車速時に車体下面への気流の流入を減らし、車体の浮き上がりとピッチングを低減することができる。   According to the present invention, it is possible to reduce the inflow of airflow to the lower surface of the vehicle body at high vehicle speeds, and to reduce the lifting and pitching of the vehicle body.

本発明の実施の形態によるサスペンション制御装置を模式的に示す図である。It is a figure showing typically a suspension control device by an embodiment of the invention. 図1中のコントローラを示すブロック図である。It is a block diagram which shows the controller in FIG. 図2中のゲイン乗算処理部を示すブロック図である。It is a block diagram which shows the gain multiplication process part in FIG. 図3中の前輪用ゲインマップを示す説明図である。It is explanatory drawing which shows the gain map for front wheels in FIG. 図3中の後輪用ゲインマップを示す説明図である。FIG. 4 is an explanatory diagram showing a rear wheel gain map in FIG. 3. 図3中の前輪目標減衰力演算器を示す説明図である。It is explanatory drawing which shows the front-wheel target damping force calculator in FIG. 図3中の後輪目標減衰力演算器を示す説明図である。It is explanatory drawing which shows the rear-wheel target damping force calculator in FIG. 図2中の減衰力マップを示す説明図である。It is explanatory drawing which shows the damping force map in FIG. 高車速時と低車速時の車両挙動を示す説明図である。It is explanatory drawing which shows the vehicle behavior at the time of the high vehicle speed and the low vehicle speed. 図1中のコントローラによる制御内容を示す流れ図である。It is a flowchart which shows the control content by the controller in FIG.

以下、本発明の実施の形態によるサスペンション装置を、例えば4輪自動車に適用した場合を例に挙げ、添付図面に従って詳細に説明する。   Hereinafter, a suspension device according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings, taking as an example a case where the suspension device is applied to a four-wheeled vehicle.

ここで、図1ないし図10は本発明の実施の形態を示している。車体1は、車両のボディを構成する。車体1の下側には、例えば左,右の前輪と左,右の後輪(以下、総称して車輪2という)が設けられ、この車輪2はタイヤ3を含んで構成される。このとき、タイヤ3は、路面の細かい凹凸を吸収するばねとして作用する。   Here, FIG. 1 to FIG. 10 show an embodiment of the present invention. The vehicle body 1 constitutes a vehicle body. Below the vehicle body 1, for example, left and right front wheels and left and right rear wheels (hereinafter collectively referred to as wheels 2) are provided. The wheels 2 include tires 3. At this time, the tire 3 acts as a spring that absorbs fine irregularities on the road surface.

サスペンション装置4は、車体1と車輪2との間に介装して設けられる。このサスペンション装置4は、懸架ばね5(以下、ばね5という)と、ばね5と並列になって車体1と車輪2との間に設けられた減衰力調整式緩衝器(以下、緩衝器6という)とにより構成される。なお、図1中では1組のサスペンション装置4を、車体1と車輪2との間に設けた場合を例示している。しかし、サスペンション装置4は、例えば4輪の車輪2と車体1との間に個別に独立して合計4組設けられるもので、このうちの1組のみを図1では模式的に図示している。   The suspension device 4 is provided between the vehicle body 1 and the wheel 2. The suspension device 4 includes a suspension spring 5 (hereinafter referred to as a spring 5) and a damping force adjustment type shock absorber (hereinafter referred to as a shock absorber 6) provided between the vehicle body 1 and the wheel 2 in parallel with the spring 5. ). FIG. 1 illustrates a case where a set of suspension devices 4 is provided between the vehicle body 1 and the wheels 2. However, for example, a total of four suspension devices 4 are individually provided between the four wheels 2 and the vehicle body 1, and only one of these is schematically illustrated in FIG. 1. .

ここで、サスペンション装置4の緩衝器6は、減衰力調整式の油圧緩衝器を用いて構成される。そして、この緩衝器6には、発生減衰力の特性(減衰力特性)をハードな特性(硬特性)からソフトな特性(軟特性)に連続的に調整するため、減衰力調整バルブ等からなるアクチュエータ7が付設される。なお、減衰力調整バルブは、減衰力特性を連続的でなくとも、2段階または複数段階に調整可能なものであってもよい。   Here, the shock absorber 6 of the suspension device 4 is configured using a damping force adjusting hydraulic shock absorber. The shock absorber 6 includes a damping force adjusting valve or the like for continuously adjusting the generated damping force characteristic (damping force characteristic) from a hard characteristic (hard characteristic) to a soft characteristic (soft characteristic). An actuator 7 is attached. Note that the damping force adjusting valve may be capable of adjusting the damping force characteristics in two or more stages without being continuous.

ばね上加速度センサ8は、車体1に設けられる。具体的には、ばね上加速度センサ8は、例えば緩衝器6の近傍となる位置で車体1に取付けられる。そして、ばね上加速度センサ8は、所謂ばね上側となる車体1側で上,下方向の振動加速度を検出し、その検出信号を後述のコントローラ11に出力する。   The sprung acceleration sensor 8 is provided on the vehicle body 1. Specifically, the sprung acceleration sensor 8 is attached to the vehicle body 1 at a position near the shock absorber 6, for example. The sprung acceleration sensor 8 detects the vibration acceleration in the upward and downward directions on the side of the vehicle body 1 that is a so-called spring upper side, and outputs a detection signal to the controller 11 described later.

ばね下加速度センサ9は、車両の車輪2側に設けられる。このばね下加速度センサ9は、所謂ばね下側となる車輪2側で上,下方向の振動加速度を検出し、その検出信号を後述のコントローラ11に出力する。   The unsprung acceleration sensor 9 is provided on the vehicle wheel 2 side. The unsprung acceleration sensor 9 detects vibration acceleration in the upward and downward directions on the side of the wheel 2 that is a so-called unsprung side, and outputs a detection signal to the controller 11 described later.

車速センサ10は、例えば車両の車輪2側に設けられ、車両の走行速度を車速V3として検出する車速検出部を構成する。この車速センサ10は、例えば車両の走行速度に応じて変化する車輪2の回転数を検出し、その検出信号を後述のコントローラ11に出力する。これにより、コントローラ11は、車速センサ10からの検出信号に基づいて、車速V3を得ることができる。   The vehicle speed sensor 10 is provided, for example, on the vehicle wheel 2 side, and constitutes a vehicle speed detection unit that detects the traveling speed of the vehicle as the vehicle speed V3. The vehicle speed sensor 10 detects, for example, the number of rotations of the wheel 2 that changes according to the traveling speed of the vehicle, and outputs a detection signal to the controller 11 described later. Thus, the controller 11 can obtain the vehicle speed V3 based on the detection signal from the vehicle speed sensor 10.

コントローラ11は、例えばマイクロコンピュータ等からなり、加速度センサ8,9、車速センサ10等からの検出信号に基づいて緩衝器6を制御する制御手段を構成している。このコントローラ11は、その入力側が加速度センサ8,9、車速センサ10等に接続され、出力側が緩衝器6のアクチュエータ7等に接続されている。また、コントローラ11は、ROM、RAM等からなる記憶部11Aを有している。   The controller 11 is composed of, for example, a microcomputer and constitutes control means for controlling the shock absorber 6 based on detection signals from the acceleration sensors 8 and 9 and the vehicle speed sensor 10. The input side of the controller 11 is connected to the acceleration sensors 8 and 9, the vehicle speed sensor 10 and the like, and the output side is connected to the actuator 7 and the like of the shock absorber 6. The controller 11 has a storage unit 11A composed of a ROM, a RAM, and the like.

そして、コントローラ11の記憶部11Aには、図3に示す車速V3およびばね上速度V1に基づいて目標減衰力DFf,DFrを出力する車速感応のゲイン乗算処理部15と、図8に示す目標減衰力DFf,DFr、相対速度V2と指令電流値Iとの関係を示す減衰力マップ20とが格納されている。   The storage unit 11A of the controller 11 includes a vehicle speed sensitive gain multiplication processing unit 15 that outputs target damping forces DFf and DFr based on the vehicle speed V3 and the sprung speed V1 shown in FIG. 3, and a target damping shown in FIG. A damping force map 20 indicating the relationship between the forces DFf and DFr, the relative speed V2 and the command current value I is stored.

ここで、コントローラ11は、図2に示すように、積分器12,13、減算器14、ゲイン乗算処理部15、減衰力マップ20を備えている。そして、コントローラ11の積分器12は、ばね上加速度センサ8からの検出信号を積分することによって、車体1の上,下方向に対する速度となるばね上速度V1を演算する。このため、ばね上加速度センサ8と積分器12によって車体側上下速度検出部が構成されると共に、積分器12は、車体側上下速度となるばね上速度V1を出力する。   Here, as shown in FIG. 2, the controller 11 includes integrators 12 and 13, a subtracter 14, a gain multiplication processing unit 15, and a damping force map 20. Then, the integrator 12 of the controller 11 calculates a sprung speed V1 that is a speed in the upward and downward directions of the vehicle body 1 by integrating the detection signal from the sprung acceleration sensor 8. Therefore, the sprung acceleration sensor 8 and the integrator 12 constitute a vehicle body side vertical speed detection unit, and the integrator 12 outputs a sprung speed V1 that is the vehicle body side vertical speed.

一方、減算器14は、ばね上加速度センサ8からの検出信号からばね下加速度センサ9からの検出信号を減算し、ばね上加速度とばね下加速度との差分を演算する。このとき、この差分値は、車体1と車輪2との間の相対加速度に対応する。そして、積分器13は、減算器14から出力された相対加速度を積分し、車体1と車輪2との間の上,下方向の相対速度V2を演算する。このため、ばね上加速度センサ8、ばね下加速度センサ9、減算器14および積分器13によって相対速度検出部が構成されると共に、積分器13は、相対速度V2を出力する。   On the other hand, the subtracter 14 subtracts the detection signal from the unsprung acceleration sensor 9 from the detection signal from the sprung acceleration sensor 8, and calculates the difference between the sprung acceleration and the unsprung acceleration. At this time, this difference value corresponds to the relative acceleration between the vehicle body 1 and the wheel 2. Then, the integrator 13 integrates the relative acceleration output from the subtractor 14 and calculates an upward and downward relative speed V2 between the vehicle body 1 and the wheel 2. For this reason, the sprung acceleration sensor 8, the unsprung acceleration sensor 9, the subtractor 14 and the integrator 13 constitute a relative speed detector, and the integrator 13 outputs a relative speed V2.

ゲイン乗算処理部15は、減衰力算出部を構成し、車速V3およびばね上速度V1に基づいて緩衝器6に発生させる目標減衰力DFf,DFrを出力する。この目標減衰力DFf,DFrは、例えばスカイフック制御理論より求められる。図3に示すように、ゲイン乗算処理部15は、ゲイン設定部15Aと、前輪/後輪目標減衰力演算器15Bとを備える。   The gain multiplication processing unit 15 constitutes a damping force calculation unit, and outputs target damping forces DFf and DFr to be generated in the shock absorber 6 based on the vehicle speed V3 and the sprung speed V1. The target damping forces DFf and DFr are obtained from, for example, skyhook control theory. As shown in FIG. 3, the gain multiplication processing unit 15 includes a gain setting unit 15A and a front wheel / rear wheel target damping force calculator 15B.

ゲイン設定部15Aは、後述の前輪用ゲインマップ16および後輪用ゲインマップ17を備える。このゲイン設定部15Aは、車速センサ10による車速V3に基づいて前輪用ゲインGfと後輪用ゲインGrとを設定する。   The gain setting unit 15A includes a front wheel gain map 16 and a rear wheel gain map 17 which will be described later. The gain setting unit 15A sets a front wheel gain Gf and a rear wheel gain Gr based on the vehicle speed V3 of the vehicle speed sensor 10.

前輪/後輪目標減衰力演算器15Bは、後述の前輪目標減衰力演算器18および後輪目標減衰力演算器19を備える。この前輪/後輪目標減衰力演算器15Bは、ゲイン設定部15Aによる前輪用ゲインGfと前輪側のばね上速度V1とを乗算して前輪目標減衰力DFfを算出し、ゲイン設定部15Aによる後輪用ゲインGrと後輪側のばね上速度V1とを乗算して後輪目標減衰力DFrを算出する。   The front wheel / rear wheel target damping force calculator 15B includes a front wheel target damping force calculator 18 and a rear wheel target damping force calculator 19 which will be described later. The front wheel / rear wheel target damping force calculator 15B multiplies the front wheel gain Gf by the gain setting unit 15A by the sprung speed V1 on the front wheel side to calculate the front wheel target damping force DFf, and the rear by the gain setting unit 15A. The rear wheel target damping force DFr is calculated by multiplying the wheel gain Gr and the rear wheel sprung speed V1.

前輪用ゲインマップ16は、車速V3と前輪側のばね上速度V1の信号の方向に基づいて前輪用ゲインGfを設定する。具体的には、前輪用ゲインマップ16は、車速V3が例えば100km/h程度の予め決められた所定のしきい値Vtよりも低速な場合(低車速時)には、前輪側のばね上速度V1の信号に拘らず、前輪用ゲインGfを一定値に設定する。一方、車速V3がしきい値Vtよりも高速な場合(高車速時)には、車体1が上方向に振動しているとき(図4中の特性線16A)に、車体1が下方向に振動しているとき(図4中の特性線16B)に比べて、車速V3が大きくなるほど前輪用ゲインGfを大きな値に設定する。なお、しきい値Vtは、実験的に得られるものであり、例示した値に限らず、車体1の形状等に応じて適宜設定される。   The front wheel gain map 16 sets the front wheel gain Gf based on the signal directions of the vehicle speed V3 and the sprung speed V1 on the front wheel side. Specifically, the front wheel gain map 16 indicates that when the vehicle speed V3 is lower than a predetermined threshold value Vt of, for example, about 100 km / h (at low vehicle speed), the sprung speed on the front wheel side. Regardless of the signal of V1, the front wheel gain Gf is set to a constant value. On the other hand, when the vehicle speed V3 is higher than the threshold value Vt (at the time of high vehicle speed), the vehicle body 1 moves downward when the vehicle body 1 vibrates upward (characteristic line 16A in FIG. 4). The front wheel gain Gf is set to a larger value as the vehicle speed V3 becomes higher than when the vehicle vibrates (characteristic line 16B in FIG. 4). The threshold value Vt is obtained experimentally, and is not limited to the exemplified values, but is set as appropriate according to the shape of the vehicle body 1 and the like.

後輪用ゲインマップ17は、車速V3と後輪側のばね上速度V1の信号の方向に基づいて後輪用ゲインGrを設定する。具体的には、後輪用ゲインマップ17は、車速V3がしきい値Vtよりも低速な場合には、後輪側のばね上速度V1の信号に拘らず、後輪用ゲインGrを一定値に設定する。一方、後輪用ゲインマップ17は、車速V3がしきい値Vtよりも高速な場合には、車体1が下方向に振動しているとき(図5中の特性線17A)に、車体1が上方向に振動しているとき(図5中の特性線17B)に比べて、車速V3が大きくなるほど後輪用ゲインGrを大きな値に設定する。   The rear wheel gain map 17 sets the rear wheel gain Gr based on the signal directions of the vehicle speed V3 and the rear wheel sprung speed V1. Specifically, when the vehicle speed V3 is lower than the threshold value Vt, the rear wheel gain map 17 sets the rear wheel gain Gr to a constant value regardless of the signal of the sprung speed V1 on the rear wheel side. Set to. On the other hand, the rear wheel gain map 17 shows that when the vehicle speed V3 is higher than the threshold value Vt, when the vehicle body 1 vibrates downward (characteristic line 17A in FIG. 5), Compared to when the vehicle vibrates upward (characteristic line 17B in FIG. 5), the rear wheel gain Gr is set to a larger value as the vehicle speed V3 increases.

前輪目標減衰力演算器18は、前輪用ゲインGfと前輪側のばね上速度V1とに基づいて前輪の目標減衰力DFfを算出する。具体的には、前輪目標減衰力演算器18は、前輪用ゲインマップ16によって設定された前輪用ゲインGfを前輪側のばね上速度V1に乗算し、前輪目標減衰力DFfを算出する。ここで、車速V3が高速な場合には、ばね上速度V1が正側(車体1が上向きに振動)となるときの方が、ばね上速度V1が負側(車体1が下向きに振動)となるときに比べて、前輪用ゲインGfは大きな値になる。このため、図6に示すように、車速V3が高速なときには低速なときに比べて、伸び側(ばね上速度V1が正側)の前輪目標減衰力DFfは高くなり、縮み側(ばね上速度V1が負側)の前輪目標減衰力DFfは低くなる。言い換えると、前輪目標減衰力DFfの絶対値は、縮み側(ばね上速度V1が負側)より伸び側(ばね上速度V1が正側)の方が大きくなる。   The front wheel target damping force calculator 18 calculates a front wheel target damping force DFf based on the front wheel gain Gf and the front wheel sprung speed V1. Specifically, the front wheel target damping force calculator 18 calculates the front wheel target damping force DFf by multiplying the front wheel side sprung speed V1 by the front wheel gain Gf set by the front wheel gain map 16. Here, when the vehicle speed V3 is high, the sprung speed V1 is negative (the vehicle body 1 vibrates downward) when the sprung speed V1 is positive (the vehicle body 1 vibrates upward). The front wheel gain Gf becomes a large value as compared with the above case. Therefore, as shown in FIG. 6, when the vehicle speed V3 is high, the front wheel target damping force DFf on the expansion side (the sprung speed V1 is the positive side) becomes higher and the contraction side (the sprung speed). The front wheel target damping force DFf with V1 on the negative side is low. In other words, the absolute value of the front wheel target damping force DFf is larger on the expansion side (the sprung speed V1 is the positive side) than on the contraction side (the sprung speed V1 is the negative side).

後輪目標減衰力演算器19は、後輪用ゲインGrと後輪側のばね上速度V1とに基づいて後輪の目標減衰力DFrを算出する。具体的には、後輪目標減衰力演算器19は、後輪用ゲインマップ17によって設定された後輪用ゲインGrを後輪側のばね上速度V1に乗算し、後輪目標減衰力DFrを算出する。ここで、車速V3が高速な場合には、ばね上速度V1が負側(車体1が下向きに振動)となるときの方が、ばね上速度V1が正側(車体1が上向きに振動)となるときに比べて、後輪用ゲインGrは大きな値になる。このため、図7に示すように、車速V3が高速なときには低速なときに比べて、縮み側(ばね上速度V1が負側)の後輪目標減衰力DFrは高くなり、伸び側(ばね上速度V1が正側)の後輪目標減衰力DFrは低くなる。言い換えると、後輪目標減衰力DFrの絶対値は、伸び側(ばね上速度V1が正側)より縮み側(ばね上速度V1が負側)の方が大きくなる。   The rear wheel target damping force calculator 19 calculates a rear wheel target damping force DFr based on the rear wheel gain Gr and the rear wheel sprung speed V1. More specifically, the rear wheel target damping force calculator 19 multiplies the rear wheel side sprung speed V1 by the rear wheel gain Gr set by the rear wheel gain map 17 to obtain the rear wheel target damping force DFr. calculate. Here, when the vehicle speed V3 is high, the sprung speed V1 is positive (the vehicle body 1 vibrates upward) when the sprung speed V1 is negative (the vehicle body 1 vibrates downward). The rear wheel gain Gr becomes a large value as compared with the above case. For this reason, as shown in FIG. 7, when the vehicle speed V3 is high, the rear wheel target damping force DFr is higher on the contraction side (the sprung speed V1 is negative) than when the vehicle speed is low, and on the expansion side (sprung) The rear wheel target damping force DFr becomes lower (the speed V1 is the positive side). In other words, the absolute value of the rear wheel target damping force DFr is larger on the contraction side (the sprung speed V1 is negative) than on the expansion side (the sprung speed V1 is positive).

減衰力マップ20は、調整信号出力部を構成し、目標減衰力DFf,DFrおよび相対速度V2に基づいて緩衝器6の減衰力特性を調整する調整信号としての指令電流値Iを出力する。この減衰力マップ20は、図8に示すように、目標減衰力DFf,DFrと指令電流値Iとの関係を相対速度V2に従って可変に設定するもので、発明者等による試験データに基づいて作成されたものである。そして、減衰力マップ20は、ゲイン乗算処理部15からの前輪目標減衰力DFfと積分器13からの前輪側の相対速度V2とに基づいて、前輪側の緩衝器6のアクチュエータ7に出力すべき指令電流値Iを出力する。また、減衰力マップ20は、ゲイン乗算処理部15からの後輪目標減衰力DFrと積分器13からの後輪側の相対速度V2とに基づいて、後輪側の緩衝器6のアクチュエータ7に出力すべき指令電流値Iを出力する。   The damping force map 20 constitutes an adjustment signal output unit, and outputs a command current value I as an adjustment signal for adjusting the damping force characteristics of the shock absorber 6 based on the target damping forces DFf and DFr and the relative speed V2. As shown in FIG. 8, this damping force map 20 is set based on the test data by the inventors etc. in which the relationship between the target damping force DFf, DFr and the command current value I is variably set according to the relative speed V2. It has been done. The damping force map 20 should be output to the actuator 7 of the front wheel side shock absorber 6 based on the front wheel target damping force DFf from the gain multiplication processing unit 15 and the front wheel side relative speed V2 from the integrator 13. Command current value I is output. The damping force map 20 is applied to the actuator 7 of the shock absorber 6 on the rear wheel side based on the rear wheel target damping force DFr from the gain multiplication processing unit 15 and the rear wheel side relative speed V2 from the integrator 13. The command current value I to be output is output.

また、減衰力マップ20は、減衰力調整式緩衝器をスカイフック理論に適合させるように緩衝器6を制御するための調整信号(指令電流値I)を出力する。具体的に説明すると、相対速度V2が正側(伸び側)となる場合、まず、図8中に実線で示される複数の特性線から、相対速度V2の大きさに応じて1本が選択される。図8では、相対速度V2が大きいほど右側の特性線となる。次に、選択された特性線における目標減衰力DFf,DFrの値に対応する指令電流値Iが求められる。幾何学的には、目標減衰力DFf,DFrの値から垂直に線を引き、選択された特性線との交点を求め、そこから水平に引いた線と縦軸との交点が指令電流値Iとなる。   The damping force map 20 outputs an adjustment signal (command current value I) for controlling the shock absorber 6 so that the damping force adjusting shock absorber is adapted to the Skyhook theory. More specifically, when the relative speed V2 is on the positive side (extension side), first, one is selected from a plurality of characteristic lines indicated by solid lines in FIG. 8 according to the magnitude of the relative speed V2. The In FIG. 8, the larger the relative speed V2, the more characteristic line on the right side. Next, the command current value I corresponding to the values of the target damping forces DFf and DFr in the selected characteristic line is obtained. Geometrically, a line is drawn vertically from the values of the target damping forces DFf and DFr to obtain an intersection with the selected characteristic line, and the intersection between the line drawn horizontally and the vertical axis is the command current value I It becomes.

このようにして、相対速度V2が正側(伸び側)でばね上速度V1が正側(上向き側)となるときには、目標減衰力DFf,DFrが大きくなるに従って指令電流値Iを小さくして減衰力特性をハードな特性(硬特性)に設定する。相対速度V2が正側(伸び側)でばね上速度V1が負側(下向き側)となるときには、目標減衰力DFf,DFrの大きさに拘らず指令電流値Iは大きい値で一定となり減衰力特性をソフトな特性に設定する。   In this way, when the relative speed V2 is on the positive side (extension side) and the sprung speed V1 is on the positive side (upward side), the command current value I is decreased and attenuated as the target damping forces DFf and DFr increase. Set the force characteristics to hard characteristics (hard characteristics). When the relative speed V2 is on the positive side (extension side) and the sprung speed V1 is on the negative side (downward side), the command current value I remains constant at a large value regardless of the magnitude of the target damping forces DFf and DFr. Set the characteristic to a soft characteristic.

一方、相対速度V2が負側(縮み側)となる場合は、図8中に破線で示される複数の特性線から、相対速度V2の大きさに応じて1本が選択される。図8では、相対速度V2が大きいほど左側の特性線となる。次に、選択された特性線における目標減衰力DFf,DFrの値に対応する指令電流値Iが求められる。   On the other hand, when the relative speed V2 is on the negative side (contraction side), one is selected from a plurality of characteristic lines indicated by broken lines in FIG. 8 according to the magnitude of the relative speed V2. In FIG. 8, the characteristic line on the left side becomes larger as the relative speed V2 increases. Next, the command current value I corresponding to the values of the target damping forces DFf and DFr in the selected characteristic line is obtained.

このようにして、相対速度V2が負側(縮み側)でばね上速度V1が正側(上向き側)となるときには、目標減衰力DFf,DFrの大きさに拘らず指令電流値Iは大きい値で一定となり減衰力特性をソフトな特性に設定する。相対速度V2が負側(縮み側)でばね上速度V1が負側(下向き側)となるときには、目標減衰力DFf,DFrが小さく(マイナス方向に大きく)なるに従って指令電流値Iを小さくして減衰力特性をハードな特性に設定する。   In this way, when the relative speed V2 is on the negative side (contraction side) and the sprung speed V1 is on the positive side (upward side), the command current value I is a large value regardless of the magnitudes of the target damping forces DFf and DFr. The damping force characteristic is set to a soft characteristic. When the relative speed V2 is negative (contraction side) and the sprung speed V1 is negative (downward), the command current value I is decreased as the target damping forces DFf and DFr decrease (increase in the negative direction). Set the damping force characteristics to hard characteristics.

以上により、緩衝器6の発生減衰力は、アクチュエータ7に供給された指令電流値Iに従ってハードとソフトとの間で連続的、または複数段で可変に調整される。   As described above, the generated damping force of the shock absorber 6 is variably adjusted between hardware and software according to the command current value I supplied to the actuator 7 or variably in a plurality of stages.

本実施の形態による車両用サスペンション制御装置は、上述の如き構成を有するもので、次に、コントローラ11を用いて緩衝器6の減衰力特性を可変に制御する処理について説明する。   The vehicle suspension control apparatus according to the present embodiment has the above-described configuration. Next, a process for variably controlling the damping force characteristic of the shock absorber 6 using the controller 11 will be described.

まず、図10に示す制御処理が車両のエンジン始動に伴う電力供給を受けて開始されると、ステップ1でコントローラ11の初期設定を行う。そして、ステップ2では、例えば5〜10ms程度の制御周期に達したか否かを判定し、「NO」と判定する間は制御周期に達するまで待機する。一方、ステップ2で「YES」と判定し、制御周期に達したときには、次なるステップ3に移って前回の制御周期で演算された制御指令値(指令電流値I)をアクチュエータ7に出力し、緩衝器6のアクチュエータ7を駆動する。   First, when the control process shown in FIG. 10 is started upon receiving power supply accompanying the engine start of the vehicle, the controller 11 is initially set in step 1. Then, in step 2, it is determined whether or not a control cycle of, for example, about 5 to 10 ms has been reached, and the process waits until the control cycle is reached while determining “NO”. On the other hand, when “YES” is determined in Step 2 and the control period is reached, the process proceeds to the next Step 3 to output the control command value (command current value I) calculated in the previous control period to the actuator 7. The actuator 7 of the shock absorber 6 is driven.

次に、ステップ4では、センサ値を入力するために、ばね上加速度センサ8からばね上(車体1)側の上,下方向の振動加速度を読込み、ばね下加速度センサ9からばね下(車輪2)側の上,下方向の振動加速度を読込み、車速センサ10から車速V3を読込む。   Next, in step 4, in order to input the sensor value, the vibration acceleration in the upward and downward directions on the sprung (vehicle body 1) side is read from the sprung acceleration sensor 8, and the unsprung (wheel 2) is read from the unsprung acceleration sensor 9. The vibration acceleration in the upward and downward directions is read, and the vehicle speed V3 is read from the vehicle speed sensor 10.

そして、次のステップ5では、得られた情報から乗り心地制御処理を行い、目標減衰力DFf,DFrと相対速度V2を算出する。具体的には、コントローラ11の積分器12によって、ばね上加速度センサ8による振動加速度の検出信号を積分し、前輪側と後輪側のばね上速度V1をそれぞれ算出する。そして、ゲイン乗算処理部15によって、車速V3および前輪側と後輪側のばね上速度V1に基づいて、前輪目標減衰力DFfと後輪目標減衰力DFrを算出する。   In the next step 5, the ride comfort control process is performed from the obtained information, and the target damping forces DFf and DFr and the relative speed V2 are calculated. Specifically, the integrator 12 of the controller 11 integrates the vibration acceleration detection signal from the sprung acceleration sensor 8 and calculates the sprung speed V1 on the front wheel side and the rear wheel side. Then, the gain multiplication processor 15 calculates the front wheel target damping force DFf and the rear wheel target damping force DFr based on the vehicle speed V3 and the sprung speeds V1 on the front and rear wheels.

また、コントローラ11の減算器14によって、ばね上加速度センサ8からの検出信号からばね下加速度センサ9からの検出信号を減算する。そして、積分器13によって、減算器14から出力された相対加速度を積分し、車体1と車輪2との間の上,下方向の相対速度V2を算出する。   Further, the detection signal from the unsprung acceleration sensor 9 is subtracted from the detection signal from the unsprung acceleration sensor 8 by the subtractor 14 of the controller 11. Then, the integrator 13 integrates the relative acceleration output from the subtractor 14 to calculate the upward and downward relative speed V2 between the vehicle body 1 and the wheel 2.

次にステップ6では、コントローラ11の減衰力マップ20を用いて、ステップ5で算出された目標減衰力DFf,DFrと相対速度V2とに応じた指令電流値Iを算出する。   Next, at step 6, using the damping force map 20 of the controller 11, a command current value I corresponding to the target damping forces DFf and DFr calculated at step 5 and the relative speed V2 is calculated.

そして、ステップ6で算出された指令電流値Iは、ステップ2で「YES」と判定される制御周期に達する度毎に、次なるステップ3の処理で、緩衝器6のアクチュエータ7を駆動制御するために用いられる。これにより、緩衝器6の減衰力特性は、ハードな特性(硬特性)とソフトな特性(軟特性)との間で可変となって連続的に制御されるものである。   The command current value I calculated in step 6 drives and controls the actuator 7 of the shock absorber 6 in the next step 3 every time the control period determined as “YES” in step 2 is reached. Used for. Thereby, the damping force characteristic of the shock absorber 6 is continuously controlled by being variable between a hard characteristic (hard characteristic) and a soft characteristic (soft characteristic).

かくして、本実施の形態によれば、ゲイン乗算処理部15は、車速センサ10による車速V3が高速なときには低速なときに比べて、伸び側の前輪目標減衰力DFfを高く、縮み側の前輪目標減衰力DFfを低く設定する。また、ゲイン乗算処理部15は、車速センサ10による車速V3が高速なときには低速なときに比べて、縮み側の後輪目標減衰力DFrを高く、伸び側の後輪目標減衰力DFrを低く設定する。   Thus, according to the present embodiment, the gain multiplication processing unit 15 increases the front wheel target damping force DFf on the expansion side and increases the front wheel target on the contraction side when the vehicle speed V3 by the vehicle speed sensor 10 is high compared to when the vehicle speed V3 is low. Set the damping force DFf low. Further, the gain multiplication processing unit 15 sets the contraction-side rear wheel target damping force DFr higher and the expansion-side rear wheel target damping force DFr lower when the vehicle speed V3 by the vehicle speed sensor 10 is higher than when the vehicle speed V3 is low. To do.

このため、高車速時には、車体1の前側が低く、後側が高くなるように緩衝器6の減衰力を制御するから、図9に示すように、車両姿勢が前下がりの傾向になる。この結果、気流によって揚力が発生し易い高車速時には、前下がりの車両挙動になるから、車体1の下面への気流の流入を減らして、車体1の浮き上がりとピッチングを低減することができる。   For this reason, when the vehicle speed is high, the damping force of the shock absorber 6 is controlled so that the front side of the vehicle body 1 is low and the rear side is high. Therefore, as shown in FIG. As a result, at high vehicle speeds where lift is likely to be generated by the airflow, the vehicle behavior is lowered forward, so that the inflow of the airflow to the lower surface of the vehicle body 1 can be reduced and the lifting and pitching of the vehicle body 1 can be reduced.

また、ゲイン設定部15Aは、車速センサ10による車速V3が高速なときには低速なときに比べて、伸び側の前輪用ゲインGfを高く、縮み側の前輪用ゲインGfを低く設定し、前輪/後輪目標減衰力演算器15Bは、ゲイン設定部15Aによる前輪用ゲインGfと前輪側のばね上速度V1とを乗算して前輪目標減衰力DFfを算出する。このため、車速センサ10による車速V3が高速なときには低速なときに比べて、伸び側の前輪目標減衰力DFfを高く、縮み側の前輪目標減衰力DFfを低く設定することができる。言い換えると、前輪目標減衰力DFfの絶対値は、縮み側(ばね上速度V1が負側)より伸び側(ばね上速度V1が正側)の方が大きくなる。   Further, the gain setting unit 15A sets the expansion-side front wheel gain Gf higher and the contraction-side front wheel gain Gf lower when the vehicle speed V3 measured by the vehicle speed sensor 10 is higher than when the vehicle speed V3 is low. The wheel target damping force calculator 15B calculates the front wheel target damping force DFf by multiplying the front wheel gain Gf by the gain setting unit 15A and the sprung speed V1 on the front wheel side. For this reason, when the vehicle speed V3 by the vehicle speed sensor 10 is high, the front wheel target damping force DFf on the expansion side can be set higher and the target front wheel damping force DFf on the contraction side can be set lower than when the vehicle speed V3 is low. In other words, the absolute value of the front wheel target damping force DFf is larger on the expansion side (the sprung speed V1 is the positive side) than on the contraction side (the sprung speed V1 is the negative side).

さらに、ゲイン設定部15Aは、車速センサ10による車速V3が高速なときには低速なときに比べて、伸び側の後輪用ゲインGrを低く、縮み側の後輪用ゲインGrを高く設定し、前輪/後輪目標減衰力演算器15Bは、ゲイン設定部15Aによる後輪用ゲインGrと後輪側のばね上速度V1とを乗算して後輪目標減衰力DFrを算出する。このため、車速センサ10による車速V3が高速なときには低速なときに比べて、縮み側の後輪目標減衰力DFrを高く、伸び側の後輪目標減衰力DFrを低く設定することができる。言い換えると、後輪目標減衰力DFrの絶対値は、伸び側(ばね上速度V1が正側)より縮み側(ばね上速度V1が負側)の方が大きくなる。   Further, the gain setting unit 15A sets the rear wheel gain Gr on the expansion side lower and the rear wheel gain Gr on the contraction side higher when the vehicle speed V3 by the vehicle speed sensor 10 is higher than when the vehicle speed V3 is low. The rear wheel target damping force calculator 15B calculates the rear wheel target damping force DFr by multiplying the rear wheel gain Gr by the gain setting unit 15A and the rear wheel sprung speed V1. For this reason, when the vehicle speed V3 by the vehicle speed sensor 10 is high, the rear wheel target damping force DFr on the contraction side can be set higher and the target rear wheel target damping force DFr on the extension side can be set lower than when the vehicle speed V3 is low. In other words, the absolute value of the rear wheel target damping force DFr is larger on the contraction side (the sprung speed V1 is negative) than on the expansion side (the sprung speed V1 is positive).

なお、前記実施の形態では、ばね上加速度センサ8および積分器12を用いて車体側上下速度検出部を構成したが、車体1側の上,下方向の速度(ばね上速度V1)を直接的に検出するばね上速度センサを用いて車体側上下速度検出部を構成としてもよい。   In the above-described embodiment, the vehicle body side vertical speed detection unit is configured using the sprung acceleration sensor 8 and the integrator 12. However, the vehicle body 1 side upward and downward speeds (sprung speed V1) are directly measured. The vehicle body side vertical speed detection unit may be configured by using a sprung speed sensor that detects the speed of the vehicle.

前記実施の形態では、ばね上加速度センサ8、ばね下加速度センサ9、減算器14および積分器13を用いて相対速度検出部を構成したが、ばね上速度センサ、ばね下速度センサおよび減算器を用いて相対速度検出部を構成してもよく、車体1と車輪2との間の相対速度V2を直接的に検出する速度センサを用いて相対速度検出部を構成してもよく、車体1と車輪2との間の相対変位を検出する変位センサと微分器にて相対速度検出部を構成してもよい。   In the above-described embodiment, the relative speed detection unit is configured using the sprung acceleration sensor 8, the unsprung acceleration sensor 9, the subtractor 14, and the integrator 13. However, the sprung speed sensor, the unsprung speed sensor, and the subtractor are used. The relative speed detection unit may be configured by using a speed sensor that directly detects the relative speed V2 between the vehicle body 1 and the wheel 2. You may comprise a relative speed detection part with the displacement sensor and differentiator which detect the relative displacement between the wheels 2. FIG.

前記実施の形態では、コントローラ11に車速センサ10からの信号を直接入力する構成を例示したが、コントローラ11はCAN(Controller Area Network)等を介して車速V3を取得する構成としてもよい。   In the above-described embodiment, the configuration in which the signal from the vehicle speed sensor 10 is directly input to the controller 11 is exemplified. However, the controller 11 may acquire the vehicle speed V3 via a CAN (Controller Area Network) or the like.

前記実施の形態では、ゲイン設定部15A(前輪用ゲインマップ16、後輪用ゲインマップ17)は、車速V3が一定のしきい値Vtよりも高速か否かに応じて高車速時か否かを判定する構成とした。しかし、本発明はこれに限らず、例えば車両に作用する揚力に応じてしきい値を変化させると共に、この可変のしきい値よりも高速か否かに応じて高車速時か否かを判定してもよい。   In the above embodiment, the gain setting unit 15A (the front wheel gain map 16, the rear wheel gain map 17) determines whether or not the vehicle speed is at a high vehicle speed depending on whether or not the vehicle speed V3 is higher than a certain threshold value Vt. Is determined. However, the present invention is not limited to this. For example, the threshold value is changed according to the lift acting on the vehicle, and it is determined whether the vehicle speed is high or not according to whether the speed is higher than the variable threshold value. May be.

前記実施の形態では、ゲイン乗算処理部15は、前輪用ゲインGf、後輪用ゲインGrをばね上速度V1に乗算して目標減衰力DFf,DFrを算出する構成としたが、必ずしもゲインGf,Grをばね上速度V1に乗算する必要はなく、例えばゲインGf,Grおよびばね上速度V1に基づいてばね上速度V1に対して非線形な特性となった目標減衰力DFf,DFrを算出する構成としてもよい。   In the above embodiment, the gain multiplication processing unit 15 is configured to calculate the target damping forces DFf and DFr by multiplying the sprung speed V1 by the front wheel gain Gf and the rear wheel gain Gr, but the gain Gf, It is not necessary to multiply the sprung speed V1 by Gr. For example, the target damping forces DFf and DFr that have nonlinear characteristics with respect to the sprung speed V1 are calculated based on the gains Gf and Gr and the sprung speed V1, for example. Also good.

前記実施の形態では、高車速時には、車速V3に比例して前輪用ゲインGf、後輪用ゲインGrを変化させるものとした。しかし、本発明はこれに限らず、例えば高車速時と低車速時とで2段階で前輪用ゲインGf、後輪用ゲインGrを変化させてもよく、3段階以上で変化させてもよく、段階的に限らず任意の非線形な特性をもって変化させる構成としてもよい。   In the above embodiment, the front wheel gain Gf and the rear wheel gain Gr are changed in proportion to the vehicle speed V3 at high vehicle speeds. However, the present invention is not limited to this. For example, the front wheel gain Gf and the rear wheel gain Gr may be changed in two stages at high vehicle speed and low vehicle speed, or may be changed in three or more stages. It is good also as a structure changed not only in steps but with arbitrary nonlinear characteristics.

前記実施の形態では、ゲイン乗算処理部15は、車速V3が高速なときには低速なときに比べて、伸び側の前輪目標減衰力DFfを高く、縮み側の前輪目標減衰力DFfを低く設定するのに加え、伸び側の後輪目標減衰力DFrを低く、縮み側の後輪目標減衰力DFrを高く設定する構成とした。しかし、本発明はこれに限らず、例えば車速V3が高速なときには低速なときに比べて、伸び側の前輪目標減衰力DFfを高く、縮み側の前輪目標減衰力DFfを低く設定し、後輪目標減衰力DFrは低速なときと同じ設定としてもよい。また、車速V3が高速なときには低速なときに比べて、伸び側の後輪目標減衰力DFrを低く、縮み側の後輪目標減衰力DFrを高く設定し、前輪目標減衰力DFfは低速なときと同じ設定としてもよい。   In the above-described embodiment, the gain multiplication processing unit 15 sets the expansion-side front wheel target damping force DFf higher and the contraction-side front wheel target damping force DFf lower when the vehicle speed V3 is higher than when the vehicle speed V3 is low. In addition, the rear-wheel target damping force DFr on the expansion side is set low and the rear-wheel target damping force DFr on the contraction side is set high. However, the present invention is not limited to this. For example, when the vehicle speed V3 is high, the front wheel target damping force DFf on the expansion side is set higher and the front wheel target damping force DFf on the contraction side is set lower than when the vehicle speed V3 is low. The target damping force DFr may be set the same as when the speed is low. Further, when the vehicle speed V3 is high, the expansion-side rear wheel target damping force DFr is set lower and the contraction-side rear wheel target damping force DFr is set higher than when the vehicle speed V3 is low, and the front wheel target damping force DFf is low. The same setting may be used.

このため、ゲイン設定部15Aも、車速V3に応じて前輪用ゲインGfと後輪用ゲインGrの両方を調整するものに限らず、前輪用ゲインGfだけを調整してもよく、後輪用ゲインGrだけを調整する構成としてもよい。   Therefore, the gain setting unit 15A is not limited to adjusting both the front wheel gain Gf and the rear wheel gain Gr according to the vehicle speed V3, and may adjust only the front wheel gain Gf. It is good also as a structure which adjusts only Gr.

さらに、前記実施の形態では、スカイフック理論に基づいてサスペンション装置4の緩衝器6を制御するコントローラ11に適用した場合を例に挙げて説明したが、ロールフィードバック制御やピッチフィードバック制御を行うコントローラに適用する構成としてもよい。   Furthermore, in the above-described embodiment, the case where the present invention is applied to the controller 11 that controls the shock absorber 6 of the suspension device 4 based on the Skyhook theory has been described as an example, but the controller that performs roll feedback control and pitch feedback control is described. It is good also as composition to apply.

1 車体
2 車輪
4 サスペンション装置
5 ばね
6 減衰力調整式緩衝器
7 アクチュエータ
8 ばね上加速度センサ
9 ばね下加速度センサ
11 コントローラ
12,13 積分器
14 減算器
15 ゲイン乗算処理部(減衰力算出部)
15A ゲイン設定部
15B 前輪/後輪目標減衰力演算器
20 減衰力マップ(調整信号出力部)
DESCRIPTION OF SYMBOLS 1 Car body 2 Wheel 4 Suspension device 5 Spring 6 Damping force adjustment type shock absorber 7 Actuator 8 Sprung acceleration sensor 9 Unsprung acceleration sensor 11 Controller 12, 13 Integrator 14 Subtractor 15 Gain multiplication processing unit (damping force calculation unit)
15A Gain setting unit 15B Front wheel / rear wheel target damping force calculator 20 Damping force map (adjustment signal output unit)

Claims (2)

車両の車体と車輪との間に介装され調整信号を用いて減衰力特性が調整される減衰力調整式緩衝器を備えたサスペンション制御装置において、
前記車体の上,下方向の速度を車体側上下速度として検出する車体側上下速度検出部と、該車体側上下速度検出部による車体側上下速度に基づいて前記減衰力調整式緩衝器に発生させる目標減衰力を算出する減衰力算出部と、前記車体と車輪との間の上,下方向の相対速度を検出する相対速度検出部と、前記減衰力算出部による目標減衰力および該相対速度検出部による相対速度に基づいて前記減衰力調整式緩衝器の減衰力特性を調整する調整信号を出力する調整信号出力部と、前記車両の走行速度を車速として検出する車速検出部とを備え、
前記減衰力算出部は、前記車速検出部による車速が高速なときには低速なときに比べて、前輪の伸び側の目標減衰力を高く、縮み側の目標減衰力を低く設定し、および/または後輪の伸び側の目標減衰力を低く、縮み側の目標減衰力を高く設定する構成としたことを特徴とするサスペンション制御装置。
In a suspension control device including a damping force adjustment type shock absorber that is interposed between a vehicle body and a wheel of a vehicle and that adjusts damping force characteristics using an adjustment signal,
A vehicle body side vertical speed detector that detects the vehicle body vertical speed as the vehicle body vertical speed, and the damping force adjustment type shock absorber is generated based on the vehicle body vertical speed by the vehicle body vertical speed detector. A damping force calculation unit that calculates a target damping force, a relative speed detection unit that detects an upper and lower relative speed between the vehicle body and the wheel, and a target damping force and the relative speed detection by the damping force calculation unit An adjustment signal output unit that outputs an adjustment signal for adjusting the damping force characteristic of the damping force adjusting shock absorber based on the relative speed by the unit, and a vehicle speed detection unit that detects the traveling speed of the vehicle as a vehicle speed,
The damping force calculation unit sets the target damping force on the expansion side of the front wheels to be lower and the target damping force on the contraction side to be lower when the vehicle speed by the vehicle speed detection unit is high than when the vehicle speed is low, and / or A suspension control device characterized in that the target damping force on the expansion side of the wheel is set low and the target damping force on the contraction side is set high.
前記減衰力算出部は、前記車速検出部による車速に基づいて前輪用ゲインと後輪用ゲインとを設定するゲイン設定部と、該ゲイン設定部による前記前輪用ゲインと前記車体側上下速度とを乗算して前輪側の前記目標減衰力を算出し、該ゲイン設定部による前記後輪用ゲインと前記車体側上下速度とを乗算して後輪側の前記目標減衰力を算出する前輪/後輪目標減衰力演算器とを備え、
前記ゲイン設定部は、前記車速検出部による車速が高速なときには低速なときに比べて、伸び側の前記前輪用ゲインを高く、縮み側の前記前輪用ゲインを低く設定し、伸び側の前記後輪用ゲインを低く、縮み側の前記後輪用ゲインを高く設定する構成としてなる請求項1に記載のサスペンション制御装置。
The damping force calculation unit includes a gain setting unit that sets a front wheel gain and a rear wheel gain based on a vehicle speed by the vehicle speed detection unit, and the front wheel gain and the vehicle body side vertical speed by the gain setting unit. Front wheel / rear wheel that calculates the target damping force on the front wheel side by multiplying and calculates the target damping force on the rear wheel side by multiplying the gain for the rear wheel by the gain setting unit and the vehicle body side vertical speed A target damping force calculator,
The gain setting unit sets the front wheel gain on the expansion side lower and the front wheel gain on the contraction side lower than the low speed when the vehicle speed detected by the vehicle speed detection unit is high. The suspension control device according to claim 1, wherein the suspension gain control device is configured such that the wheel gain is set low and the rear wheel gain on the contraction side is set high.
JP2012169619A 2012-07-31 2012-07-31 Suspension control device Active JP6004814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012169619A JP6004814B2 (en) 2012-07-31 2012-07-31 Suspension control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012169619A JP6004814B2 (en) 2012-07-31 2012-07-31 Suspension control device

Publications (2)

Publication Number Publication Date
JP2014028558A true JP2014028558A (en) 2014-02-13
JP6004814B2 JP6004814B2 (en) 2016-10-12

Family

ID=50201477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012169619A Active JP6004814B2 (en) 2012-07-31 2012-07-31 Suspension control device

Country Status (1)

Country Link
JP (1) JP6004814B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160066411A (en) * 2014-12-02 2016-06-10 현대모비스 주식회사 Apparatus and method for control of vehicle suspension damping force
CN111137091A (en) * 2018-11-06 2020-05-12 本田技研工业株式会社 Suspension control system for vehicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05185818A (en) * 1992-01-10 1993-07-27 Mitsubishi Motors Corp Active suspension system for vehicle
JPH07290925A (en) * 1994-04-26 1995-11-07 Oehlins Racing Ab Electronically controlled suspension device
JP2011152887A (en) * 2010-01-28 2011-08-11 Hitachi Automotive Systems Ltd Vehicular suspension control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05185818A (en) * 1992-01-10 1993-07-27 Mitsubishi Motors Corp Active suspension system for vehicle
JPH07290925A (en) * 1994-04-26 1995-11-07 Oehlins Racing Ab Electronically controlled suspension device
JP2011152887A (en) * 2010-01-28 2011-08-11 Hitachi Automotive Systems Ltd Vehicular suspension control device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160066411A (en) * 2014-12-02 2016-06-10 현대모비스 주식회사 Apparatus and method for control of vehicle suspension damping force
KR102253162B1 (en) * 2014-12-02 2021-05-18 현대모비스 주식회사 Apparatus and method for control of vehicle suspension damping force
CN111137091A (en) * 2018-11-06 2020-05-12 本田技研工业株式会社 Suspension control system for vehicle

Also Published As

Publication number Publication date
JP6004814B2 (en) 2016-10-12

Similar Documents

Publication Publication Date Title
US8296010B2 (en) Suspension control apparatus
JP5571519B2 (en) Body posture control device
WO2018155541A1 (en) Vehicle behavior control device
JP4471103B2 (en) Vehicle braking / driving force control device
US20150290995A1 (en) Suspension control system
CN103707734A (en) Suspension control apparatus
JP2005153875A (en) Electronic control suspension device and damping force control method
CN112776552B (en) Active control system for vehicle suspension
CN105722701B (en) Method for providing adjustable parameter
CN110834509A (en) Method and apparatus for adjusting vehicle suspension damping
JP2019011038A (en) Electronic variable suspension system
CN108146180B (en) Method and control device for adjusting the damping force of a shock absorber
JP2013107628A (en) Suspension control device
JP6004814B2 (en) Suspension control device
JP4192259B2 (en) Vehicle vibration control device
JP2003104024A (en) Suspension control device
KR20120138095A (en) Roll motion control apparatus for electric vehicles with in-wheel motor
JP2009208688A (en) Device and method for controlling damping force variable damper
JP6045211B2 (en) Suspension control device and vehicle
KR102643495B1 (en) Active suspension control method of vehicle
JP2006335218A (en) Spoiler control device
JP2011152887A (en) Vehicular suspension control device
CN104589949B (en) A kind of anti-rollover system for automobiles and control method
JP2008189268A (en) Suspension control unit
JP2008007078A (en) Suspension control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160906

R150 Certificate of patent or registration of utility model

Ref document number: 6004814

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250