KR20120138095A - Roll motion control apparatus for electric vehicles with in-wheel motor - Google Patents

Roll motion control apparatus for electric vehicles with in-wheel motor Download PDF

Info

Publication number
KR20120138095A
KR20120138095A KR1020110057399A KR20110057399A KR20120138095A KR 20120138095 A KR20120138095 A KR 20120138095A KR 1020110057399 A KR1020110057399 A KR 1020110057399A KR 20110057399 A KR20110057399 A KR 20110057399A KR 20120138095 A KR20120138095 A KR 20120138095A
Authority
KR
South Korea
Prior art keywords
wheel
vehicle
torque
roll
force
Prior art date
Application number
KR1020110057399A
Other languages
Korean (ko)
Inventor
왕지남
김영렬
Original Assignee
주식회사 유디엠텍
김영렬
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 유디엠텍, 김영렬 filed Critical 주식회사 유디엠텍
Priority to KR1020110057399A priority Critical patent/KR20120138095A/en
Priority to PCT/KR2012/004473 priority patent/WO2012173354A2/en
Publication of KR20120138095A publication Critical patent/KR20120138095A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/016Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
    • B60G17/0162Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input mainly during a motion involving steering operation, e.g. cornering, overtaking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/0152Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the action on a particular type of suspension unit
    • B60G17/0157Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the action on a particular type of suspension unit non-fluid unit, e.g. electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K7/0007Disposition of motor in, or adjacent to, traction wheel the motor being electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/002Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of propulsion for monorail vehicles, suspension vehicles or rack railways; for control of magnetic suspension or levitation for vehicles for propulsion purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2036Electric differentials, e.g. for supporting steering vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/22Conjoint control of vehicle sub-units of different type or different function including control of suspension systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/02Control of vehicle driving stability
    • B60W30/04Control of vehicle driving stability related to roll-over prevention
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/112Roll movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/10Mounting of suspension elements
    • B60G2204/30In-wheel mountings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2300/00Indexing codes relating to the type of vehicle
    • B60G2300/50Electric vehicles; Hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/44Wheel Hub motors, i.e. integrated in the wheel hub
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/14Acceleration
    • B60L2240/20Acceleration angular
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/22Yaw angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/24Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/64Road conditions
    • B60L2240/647Surface situation of road, e.g. type of paving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0002Automatic control, details of type of controller or control system architecture
    • B60W2050/0008Feedback, closed loop systems or details of feedback error signal
    • B60W2050/001Proportional integral [PI] controller
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/16Pitch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/18Roll
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/16Pitch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/18Roll
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Abstract

PURPOSE: A roll motion control device of in-wheel motor driving electric vehicles is provided to reduce rolling which is generated by vehicle turning. CONSTITUTION: A roll motion control device of in-wheel motor driving electric vehicles comprises a suspension system. The suspension system includes a spring(2). The driving force or braking power of wheels(4) is generated by friction between the wheel and road. The driving force or braking power is acted on the vehicle body as vertical component of force as much as interval angle between virtual link and road. The spring of the suspension system is compacted or extended.

Description

인휠 모터 구동 전기자동차의 롤 운동 제어장치{ROLL MOTION CONTROL APPARATUS FOR ELECTRIC VEHICLES WITH IN-WHEEL MOTOR}ROLL MOTION CONTROL APPARATUS FOR ELECTRIC VEHICLES WITH IN-WHEEL MOTOR}

본 발명은 인휠 모터 구동 전기자동차의 롤 운동 제어장치에 관한 것으로, 더욱 자세하게는 인휠 모터의 토크 제어를 통하여 차량 선회시 발생하는 롤링을 저감하는 기술에 관한 것이다. The present invention relates to a roll motion control apparatus for an in-wheel motor-driven electric vehicle, and more particularly, to a technology for reducing rolling generated when turning a vehicle through torque control of an in-wheel motor.

전기자동차에 있어서 전기구동모터는 본래의 기능으로 기존의 내연기관차량의 엔진을 대체하여 차륜을 회전시키는 구동력을 발생시키는 장치이다. 전기구동 모터는 내연기관의 엔진과 비교할 때 명령받은 토크를 매우 빠르고 정확히 만들어내는 장점이 있으며, 특히 전기구동모터를 차륜 내에 설치하는 인휠 모터의 경우는 전후좌우 각 차륜을 독립적으로 구동할 수 있다. 따라서 인휠 모터 구동 전기자동차는 인휠 모터의 우수한 제어성과 독립적인 구동력을 가지게 된다. 이로 인해서 최근 인휠 모터 구동 전기 자동차 분야에서는 전기구동모터의 우수한 제어성과 독립적인 구동력을 이용하여 차륜 슬립 제어 및 차량 선회시 요(yaw) 운동제어에 대한 기술이 개발 및 연구가 활발히 이루어지고 있다. In the electric vehicle, the electric drive motor is a device that generates a driving force to rotate the wheel by replacing the engine of the existing internal combustion engine vehicle with its original function. The electric drive motor has the advantage of producing the commanded torque very quickly and accurately as compared to the engine of the internal combustion engine, and in the case of the in-wheel motor in which the electric drive motor is installed in the wheels, each wheel can be independently driven. Thus, the in-wheel motor-driven electric vehicle has excellent controllability and independent driving force of the in-wheel motor. For this reason, in the field of in-wheel motor-driven electric vehicles, technologies for wheel slip control and yaw movement control during vehicle turning have been actively developed using the excellent controllability and independent driving force of an electric drive motor.

그러나, 인휠 모터 구동 전기 자동차 분야에서 차량 선회시 발생하는 롤링을 저감시켜 탑승자가 차량의 선회시 좌우 방향으로 쏠리는 현상을 방지하는 것에 대한 기술개발 및 연구가 이루어지지 않고 있다. However, in the field of in-wheel motor-driven electric vehicles, technology development and research have not been conducted to reduce the rolling occurring when the vehicle is turning, thereby preventing the occupant from being tilted in the left and right directions when the vehicle is turning.

인휠 모터의 각 차륜의 독립적인 제동력 또는 구동력 제어 특성을 이용하여 차량의 선회시 발생하는 차체가 좌우로 쏠리는 현상을 저감 하는, 인휠 모터 구동 전기자동차의 롤 운동 제어장치가 제안된다. A roll motion control apparatus for an in-wheel motor-driven electric vehicle is proposed, which reduces the phenomenon in which the vehicle body is turned left and right when turning the vehicle by using independent braking force or driving force control characteristics of each wheel of the in-wheel motor.

본 발명의 일 양상에 따른 인휠 모터 구동 전기자동차의 롤 운동 제어장치는, 차륜마다, 인휠(In-Wheel) 모터의 토크에 따라 회전하는 차륜과 노면과의 마찰에 의해 발생하는 차륜의 구동력 또는 제동력이 현가장치의 가상링크와 노면이 이루는 사잇각 만큼, 차량 선회시 롤 운동으로 인한 차체의 상하방향 운동을 방해하는 분력으로 차체에 작용함에 따라 신장 또는 압축되는 스프링이 구비된 현가장치를 포함한다.The roll motion control apparatus for an in-wheel motor-driven electric vehicle according to an aspect of the present invention includes a driving force or a braking force of a wheel generated by friction between a wheel that rotates according to the torque of an in-wheel motor and a road surface for each wheel. As the angle between the virtual link of the suspension system and the road surface, the suspension device is provided with a spring that extends or compresses as it acts on the vehicle body by a force that prevents the up and down movement of the vehicle body due to the roll movement when the vehicle turns.

상기 차체에 작용하는 분력을 만들기 위한 각 차륜의 인휠 모터의 토크 방향 및 상기 노면과의 마찰에 의해 발생하는 각 차륜의 제동력 또는 구동력의 방향은, 차량이 좌 선회를 하는 경우, 좌측전륜 및 우측후륜에 구동력이 작용하며 좌측후륜 및 우측전륜에 제동력이 작용하며, 차량이 우 선회를 하는 경우, 좌측전륜 및 우측후륜에 제동력이 작용하며 좌측후륜 및 우측전륜에 구동력이 작용할 수 있다.The direction of braking or driving force of each wheel caused by the torque direction of the in-wheel motor of each wheel and the friction with the road surface for producing the component force acting on the vehicle body, the left front wheel and the right rear wheel when the vehicle turns left The driving force acts on and the braking force acts on the left rear wheel and the right front wheel, and when the vehicle turns right, the braking force acts on the left front wheel and the right rear wheel, and the driving force may act on the left rear wheel and the right front wheel.

상기 노면과의 마찰에 의해 발생하는 각 차륜의 구동력 또는 제동력의 합이 "0"이 되며, 상기 노면과의 마찰에 의해 발생하는 각 차륜의 구동력 또는 제동력이 만드는 선회 모멘트 합이 "0"이 될 수 있다.The sum of driving force or braking force of each wheel generated by the friction with the road surface becomes "0", and the sum of turning moments generated by driving force or braking force of each wheel generated by friction with the road surface is "0". Can be.

본 발명의 다른 양상에 따른 인휠 모터 구동 전기자동차의 롤 운동 제어장치는, 운전자의 목표 롤각과 차량에서 출력된 차량의 롤각의 편차를 출력하는 제1감산기; 운전자의 목표 종방향 속도와 차량에서 출력되는 차량의 종방향 속도의 편차를 출력하는 제2감산기; 상기 제1감산기에서 출력된 값을 비례 적분 제어하여, 차체의 상하방향 운동을 방해하는 분력을 출력하는 제 1 PI 제어기; 차체의 상하방향 운동을 방해하는 분력에 동일한 크기의 좌측 전후륜 및 우측 전후륜의 반경을 곱하여, 롤 운동 제어를 위하여 좌측 전후륜 및 우측 전후륜에 적용될 롤 운동 제어 토크를 출력하는, 토크 변환부; 상기 제2감산기에서 출력된 값을 비례 적분 제어하여 운전자의 목표 종방향 속도를 추종하기 위한 구동 토크를 출력하는, 제 2 PI 제어기; 상기 롤 운동 제어 토크과 제 2 PI 제어기에서 출력된 구동 토크 및 차량에서 출력된 차량의 롤각을 이용하여, 각 차륜의 토크를 구하는, 토크 형성부; 및 차륜마다, 인휠(In-Wheel) 모터의 토크에 따라 회전하는 차륜과 노면과의 마찰에 의해 발생하는 차륜의 구동력 또는 제동력이 현가장치의 가상링크와 노면이 이루는 사잇각 만큼, 차량 선회시 롤 운동으로 인한 차체의 상하방향 운동을 방해하는 분력으로 차체에 작용함에 따라 신장 또는 압축되는 스프링이 구비된 현가장치를 포함하며, 상기 각 차륜의 토크에 따라 각 차륜의 회전에 의한 주행 중, 차량의 선회시 차체의 원심력에 의한 차량의 롤각 및 차체의 종방향 속도를 각각 차체 롤각 감지센서 및 자동차 속도 감지센서를 이용하여 측정해서 출력하는 차량을 포함한다.According to another aspect of the present invention, there is provided a roll motion control apparatus for an in-wheel motor driven electric vehicle, including: a first subtractor configured to output a deviation between a target roll angle of a driver and a roll angle of a vehicle output from a vehicle; A second subtractor configured to output a deviation between a target longitudinal speed of the driver and a longitudinal speed of the vehicle output from the vehicle; A first PI controller configured to proportionally integrate and control a value output from the first subtractor, thereby outputting a component force that hinders vertical movement of the vehicle body; A torque converter that outputs a roll motion control torque to be applied to the left front wheel and the right front wheel for the roll motion control by multiplying the component force that hinders the up and down motion of the vehicle body by the radius of the front left and right front wheels of the same magnitude. ; A second PI controller configured to proportionally integrate a value output from the second subtractor to output a driving torque for following a target longitudinal speed of the driver; A torque forming unit for obtaining torque of each wheel by using the roll movement control torque, the drive torque output from the second PI controller, and the roll angle of the vehicle output from the vehicle; And rolling motion of the wheel by the angle between the virtual link of the suspension and the road surface generated by the friction between the wheel and the road surface rotating according to the torque of the in-wheel motor. Suspension device is provided with a spring is elongated or compressed by acting on the vehicle body by the component force that interferes with the up and down movement of the vehicle body due to the rotation of the vehicle, while the vehicle is driven by the rotation of each wheel in accordance with the torque of each wheel And a vehicle for measuring and outputting the roll angle of the vehicle and the longitudinal velocity of the vehicle by the centrifugal force of the vehicle body using the vehicle roll angle sensor and the vehicle speed sensor, respectively.

상기 운전자의 목표 롤각은, 0도로 설정될 수 있다. The target roll angle of the driver may be set to 0 degrees.

상기 각 차륜의 토크는 각 차륜의 토크 방향 및 롤각에 따라 아래의 수학식을 이용하여 구해질 수 있다.The torque of each wheel may be obtained using the following equation according to the torque direction and roll angle of each wheel.

[[ 수학식Equation ]]

Figure pat00001
Figure pat00001

이때,

Figure pat00002
는 롤 운동 제어 토크,
Figure pat00003
는 운전자의 목표 종방향 속도를 추종하기 위한 구동 토크,
Figure pat00004
은 좌측전륜 토크,
Figure pat00005
는 우측전륜 토크,
Figure pat00006
는 좌측후륜 토크,
Figure pat00007
는 우측후륜 토크를 나타내며,
Figure pat00008
은 롤각을 나타낸다. At this time,
Figure pat00002
Roll movement control torque,
Figure pat00003
Is the driving torque for following the driver's target longitudinal speed,
Figure pat00004
Left front wheel torque,
Figure pat00005
Is the right front wheel torque,
Figure pat00006
Is the left rear wheel torque,
Figure pat00007
Represents the right rear wheel torque,
Figure pat00008
Represents a roll angle.

상기 롤각이 0도보다 큰 경우는 차량이 좌 선회하는 경우이며, 상기 롤각이 0도보다 작은 경우는 차량이 우 선회하는 경우일 수 있다.When the roll angle is greater than 0 degrees, the vehicle may turn left. When the roll angle is smaller than 0 degrees, the vehicle may turn right.

상기 차체에 작용하는 분력을 만들기 위한 각 차륜의 인휠 모터의 토크 방향 및 상기 노면과의 마찰에 의해 발생하는 각 차륜의 제동력 또는 구동력의 방향은, 차량이 좌 선회를 하는 경우, 좌측전륜 및 우측후륜에 구동력이 작용하며 좌측후륜 및 우측전륜에 제동력이 작용하며, 차량이 우 선회를 하는 경우, 좌측전륜 및 우측후륜에 제동력이 작용하며 좌측후륜 및 우측전륜에 구동력이 작용할 수 있다.The direction of braking or driving force of each wheel caused by the torque direction of the in-wheel motor of each wheel and the friction with the road surface for producing the component force acting on the vehicle body, the left front wheel and the right rear wheel when the vehicle turns left The driving force acts on and the braking force acts on the left rear wheel and the right front wheel, and when the vehicle turns right, the braking force acts on the left front wheel and the right rear wheel, and the driving force may act on the left rear wheel and the right front wheel.

상기 노면과의 마찰에 의해 발생하는 각 차륜의 구동력 또는 제동력의 합이 "0"이 되며, 상기 노면과의 마찰에 의해 발생하는 각 차륜의 구동력 또는 제동력이 만드는 선회 모멘트 합이 "0"이 될 수 있다.The sum of driving force or braking force of each wheel generated by the friction with the road surface becomes "0", and the sum of turning moments generated by driving force or braking force of each wheel generated by friction with the road surface is "0". Can be.

본 발명의 실시예에 따른 인휠 모터 구동 전기자동차의 롤 운동 제어장치에 따르면, 인휠 모터의 독립적인 제동력 또는 구동력 제어 특성을 이용하여 차량의 선회시 발생하는 차체의 롤 운동으로 수반되는 롤각을 저감 함으로써, 차량 선회시 차체가 좌우로 쏠리는 롤링 현상을 감소시킬 수 있다.According to the roll motion control apparatus of an in-wheel motor driven electric vehicle according to an embodiment of the present invention, by using the independent braking force or driving force control characteristics of the in-wheel motor by reducing the roll angle accompanying the roll motion of the vehicle body generated when the vehicle is turning As a result, the rolling phenomenon in which the vehicle body is turned left and right when turning the vehicle can be reduced.

도 1은 후륜 타이어 노면 접지점의 상하운동과 현가장치의 가상링크의 관계도.
도 2는 차량 제동시에 관성력의 방향과 피칭각을 나타낸 도면.
도 3은 차량 선회시의 롤링운동을 예시한 도면.
도 4는 이상적인 현가장치 모델과 실제적인 현가장치 모델을 나타낸 도면.
도 5는 본 발명의 실시예에 따른 현가장치 모델을 나타낸 도면.
도 6은 본 발명의 실시예에 따른 인휠 모터 구동 전기자동차의 롤 운동 제어장치의 구성을 나타낸 도면.
도 7은 차량 선회시의 롤링 운동에 대한 시뮬레이션 결과를 나타낸 도면.
1 is a relationship between the vertical movement of the rear tire road surface ground point and the virtual link of the suspension system.
2 is a view showing the direction and pitching angle of the inertia force during vehicle braking.
3 is a diagram illustrating a rolling motion during vehicle turning.
4 shows an ideal suspension model and an actual suspension model.
5 is a view showing a suspension model according to an embodiment of the present invention.
6 is a view showing the configuration of a roll motion control apparatus for an in-wheel motor-driven electric vehicle according to an embodiment of the present invention.
FIG. 7 is a view showing simulation results for a rolling motion during vehicle turning. FIG.

이하에서는 첨부한 도면을 참조하여 본 발명의 실시예를 상세히 설명한다. 본 발명의 실시예를 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 또한, 후술 되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the following description of the present invention, detailed description of known functions and configurations incorporated herein will be omitted when it may make the subject matter of the present invention rather unclear. In addition, terms to be described below are terms defined in consideration of functions in the present invention, which may vary according to intention or custom of a user or an operator. Therefore, the definition should be based on the contents throughout this specification.

본 발명의 실시예에 따른 인휠 모터 구동 전기자동차의 롤 운동 제어장치는, 좌우전륜 및 좌우후륜 각 차륜별로 상하운동을 가능하게 하는 현가장치를 구비한다. 이 현가장치에 의해 차륜 타이어의 노면접지 중심점은, 차륜을 옆에서 보았을 때, 도 1에 도시된 바와 같은 접지점의 상하 이동궤적을 가질 수 있다. 이 접지점의 상하 이동궤적은 차량의 운동에 있어서 안티다이브(anti-dive)/안티리프트(anti-lift) 특성과 관계되며, 도 1에 도시된 바와 같이 가상링크의 회전에 의해 움직이며, 가상링크와 노면은 소정의 각도(

Figure pat00009
)를 이루고 있다.The roll motion control apparatus for an in-wheel motor-driven electric vehicle according to an embodiment of the present invention includes a suspension device that enables vertical movement for each wheel of the left and right front wheels and the left and right rear wheels. By this suspension, the road-grounding center point of the wheel tire can have a vertical movement trajectory of the ground point as shown in FIG. 1 when the wheel is viewed from the side. The up-and-down movement trajectory of this ground point is related to the anti-dive / anti-lift characteristics in the movement of the vehicle, and is moved by the rotation of the virtual link as shown in FIG. And the road surface has a predetermined angle (
Figure pat00009
)

이 안티다이브/안티리프트 특성에 대해서 살펴보기로 한다. Let's take a look at this anti-dive / anti-lift feature.

차량이 가속하거나 감속하게 되면 차량의 무게중심에 작용하는 관성력으로 인하여 차체는 피칭운동을 하게 된다. When the vehicle accelerates or decelerates, the body is pitched due to the inertia force acting on the center of gravity of the vehicle.

예를 들어 도 2에 도시된 바와 같이, 차량이 제동력에 의해 감속을 하게 되면 감속도에 의한 차량의 관성력이 차량의 전진방향으로 작용하여 차체가 앞으로 기울어지는 방향의 모멘트가 되어, 전륜의 경우 하중이 증가하고 후륜의 경우 하중이 작아져서, 결국 차량은 다이브(dive, 차체가 진행방향으로 기울어지게 되는 현상) 된다.For example, as shown in FIG. 2, when the vehicle decelerates by the braking force, the moment of inertia of the vehicle due to the deceleration acts in the forward direction of the vehicle, resulting in a moment in the direction in which the vehicle body is inclined forward. This increases and the load decreases in the case of the rear wheels, so that the vehicle eventually dives.

이때, 노면에 작용하는 제동력으로 인하여 이 제동력을 받는 전륜 현가장치의 가상링크 및 후륜 현가장치의 가상링크는, 각각 노면과 이루는 소정의 제1각도(

Figure pat00010
) 및 제2각도(
Figure pat00011
)를 이루고, 제1각도만큼 차체의 윗 방향으로 분력이 발생하며 이 윗 방향으로 발생된 분력에 의해서 전륜 현가장치 스프링이 신장되고(늘어나고) 제2각도만큼 차체의 아래 방향으로 분력이 발생하며 이 아래 방향으로 발생된 분력에 의해 후륜 현가장치 스프링이 압축되어서, 결국 차량의 다이브 현상이 저감 된다.At this time, the virtual link of the front wheel suspension and the virtual wheel of the rear wheel suspension receiving the braking force due to the braking force acting on the road surface, respectively, the predetermined first angle formed with the road surface (
Figure pat00010
) And second angle (
Figure pat00011
), The component force is generated in the upward direction of the vehicle body by the first angle, and the front wheel suspension spring is extended (stretched) by the component force generated in this upward direction, and the component force is generated downward in the vehicle body by the second angle. The rear wheel suspension spring is compressed by the force generated in the downward direction, thereby reducing the dive phenomenon of the vehicle.

도 2에 도시된 바와 같이, 전륜 현가장치의 가상링크의 순간 회전중심(

Figure pat00012
)의 위치가 전륜의 후방에 있도록, 후륜 현가장치의 가상링크의 순간 회전중심(
Figure pat00013
)의 위치가 후륜의 전방에 있도록 설계된 경우, 차량의 제동으로 인해 발생하는 차체의 피칭 운동을 방해하는 분력을 만들어 낼 수 있다. 이러한 분력으로 인해서 차체의 상하운동이 저감 되는데, 이것이 바로 안티다이브/안티리프트 특성이다.As shown in Figure 2, the instantaneous rotation center of the virtual link of the front wheel suspension (
Figure pat00012
Instantaneous rotation center of the virtual link of the rear suspension, so that the position of
Figure pat00013
If the position of) is designed to be in front of the rear wheels, it can produce a force that interferes with the pitching motion of the body caused by the braking of the vehicle. This component reduces the vertical movement of the body, which is the anti-dive / anti-lift characteristics.

즉, 현가장치가 만들어 내는 안티다이브/안티리프트 특성을 이용하면, 인휠 모터의 토크에 의해 회전하는 차륜이 노면과의 마찰에 의해서 발생하는 제동력 또는 구동력이, 현가장치의 가상링크와 노면이 이루는 사잇각 만큼, 차체의 상하 방향의 분력으로 차체에 작용하여, 현가장치의 스프링이 늘어나거나 압축될 수 있다.  In other words, using the anti-dive / anti-lift characteristics created by the suspension system, the braking force or driving force generated by friction with the road surface of the wheel rotated by the torque of the in-wheel motor is the angle between the virtual link of the suspension device and the road surface. As a result, the spring of the suspension device can be stretched or compressed by acting on the vehicle body by the component force in the vertical direction of the vehicle body.

한편, 차량이 선회할 때 원심력에 의하여 차체가 차량 선회 외측 방향으로 기울어진 각도, 즉 롤각 만큼 차체가 기울어지는 롤링 운동이 발생한다. 이로 인해서 차체가 기울어진 방향의 현가장치 스프링은 압축되고 반대편 방향의 현가장치 스프링은 신장 된다. 이 롤링 운동은 차량 탑승자의 승차감에 나쁜 영향을 줄 수 있고 심한 경우 차량 전복의 원인으로 작용할 수 있다. On the other hand, a rolling motion in which the vehicle body is inclined by the centrifugal force in the vehicle turning outward direction, ie, the roll angle, is caused by the centrifugal force when the vehicle turns. As a result, the suspension spring in the tilted direction of the vehicle body is compressed and the suspension spring in the opposite direction is extended. This rolling exercise can adversely affect the ride quality of the vehicle occupant and, in severe cases, can cause the vehicle to roll over.

예를 들어, 도 3에 도시된 바와 같이 차량(50)이 진행방향의 좌측으로 선회하는 경우 진행방향의 우측 방향으로 발생하는 원심력에 의한 롤각

Figure pat00014
만큼 차체가 우측방향으로 기울어지는 롤링 운동이 발생한다. 이로 인해서 차량의 좌측 전후륜 현가장치 스프링은 신장되고 우측 전후륜 현가장치의 스프링은 압축된다. For example, as shown in FIG. 3, when the vehicle 50 turns to the left side in the travel direction, the roll angle due to the centrifugal force generated in the right direction in the travel direction
Figure pat00014
The rolling motion in which the body is inclined in the right direction occurs. As a result, the left front and rear wheel suspension springs of the vehicle are extended and the spring of the right front and rear wheel suspensions is compressed.

이에 따라, 본 발명의 실시예에 따른 인휠 모터 구동 전기자동차의 롤 운동제어장치는, 차량 선회시 발생하는 차체의 롤 운동을 억제하기 위하여 현가장치 스프링에 의해 지지 되는 차체의 상하운동을 제한하려는 것이다. Accordingly, the roll motion control apparatus of the in-wheel motor-driven electric vehicle according to the embodiment of the present invention is intended to limit the vertical motion of the vehicle body supported by the suspension spring to suppress the roll movement of the vehicle body generated when the vehicle turns. .

다시 도 3에서, 차량이 좌 선회하면 우측방향으로 롤 각이 발생하게 된다. 즉, 좌측 전후륜 현가장치의 스프링은 신장되며 우측 전후륜 현가장치의 스프링은 압축된다. 이러한 롤 운동을 저감 시키기 위해서는 도 3에 도시된 바와 같이 인휠모터의 토크의 방향 즉 각 차륜이 노면으로부터 받는 제동력 또는 구동력의 방향은 좌측 전륜의 경우 구동력, 좌측 후륜의 경우 제동력, 우측 전륜의 경우 제동력, 우측 후륜의 경우 구동력이 발생 되도록 하여야 한다. 3 again, when the vehicle turns left, a roll angle occurs in the right direction. That is, the spring of the left front and rear wheel suspension is extended and the spring of the right front and rear wheel suspension is compressed. In order to reduce the roll motion, as shown in FIG. 3, the direction of torque of the in-wheel motor, that is, the direction of braking force or driving force that each wheel receives from the road surface is a driving force for the left front wheel, a braking force for the left rear wheel, and a braking force for the right front wheel. In the case of the right rear wheel, the driving force is to be generated.

이러한 롤 운동을 제어하기 위해 발생시킨 각 차륜의 제동력 또는 구동력은 차량의 본래의 선회속도와 선회모멘트를 발생시키지 않은 것이 된다. 왜냐하면 롤 운동을 제어하기 위해 발생시킨 각 차륜의 제동력 또는 구동력의 합은 "0(Zero)"가 되며 또한 각 차륜의 제동력 또는 구동력에 의한 선회모멘트 역시 "0(Zero)"가 되기 때문이다. 이것이 바로 차량 본래의 운동 방향을 저해하지 않고 차량의 롤 운동을 제어할 수 있는 원리가 되는 것이다.
The braking force or driving force of each wheel generated for controlling such a roll motion does not generate the original turning speed and turning moment of the vehicle. This is because the sum of the braking force or driving force of each wheel generated to control the roll motion becomes "zero" and the turning moment by the braking force or driving force of each wheel also becomes "zero". This is the principle that can control the roll motion of the vehicle without disturbing the original direction of movement of the vehicle.

기존 내연기관 차량에 있어서 차체의 상하운동을 제한하기 위한 수단은, 차체에 작용하는 상하방향의 힘을 직접 제어하는 것으로서, 이를 위해 현가장치 요소인 댐퍼의 댐핑력을 이루는 댐핑계수를 가변할 수 있는 가변댐퍼를 두고 댐핑계수를 결정하는 알고리즘으로 스카이훅 제어 기법이 사용되고 있다. 이에 대해서 살펴보기로 한다.Means for limiting the vertical movement of the vehicle body in the existing internal combustion engine vehicle is to directly control the force in the vertical direction acting on the vehicle body, for this purpose it is possible to vary the damping coefficient of the damping force of the damper as a suspension element Skyhook control technique is used to determine damping coefficient with variable damper. Let's look at this.

스카이훅 제어는 도 4의 (a)에 도시된 바와 같이 가상의 관성기준(Inertia Reference)과 차량의 스프링 상중량(Sprung mass)(차체) M에 가상의 스카이훅 수동 댐퍼를 설치하여 차체 M의 속도에 직접 비례하는 감쇄력을 발생시키는 방법이다. Skyhook control is performed by installing a virtual Skyhook manual damper on the virtual Inertia Reference and the spring mass M of the vehicle, as shown in FIG. This is a method of generating damping force directly proportional to speed.

그러나 실제로는 이것이 가능하지 않기 때문에, 도 4의 (b)에 도시된 바와 같이 현가장치의 가변 댐퍼를 이용하여 이와 등가 적인 감쇄력을 발생시킨다. However, since this is not possible in practice, the equivalent damping force is generated by using the variable damper of the suspension as shown in Fig. 4B.

실제 현가장치 모델에서의 등가 댐핑 계수는 아래의 수학식 1을 통해서 구해질 수 있다.  The equivalent damping coefficient in the actual suspension model can be obtained through Equation 1 below.

Figure pat00015
Figure pat00015

이때,

Figure pat00016
는 실제 현가장치 모델에서의 등가 댐핑 계수,
Figure pat00017
는 이상적인 현가장치 모델에서의 등가 댐핑 계수,
Figure pat00018
는 차체(스프링 상중량)의 상하방향 속도,
Figure pat00019
는 차륜(스프링 하중량)의 상하방향 속도를 나타낸다.
At this time,
Figure pat00016
Is the equivalent damping factor in the actual suspension model,
Figure pat00017
Is the equivalent damping factor in the ideal suspension model,
Figure pat00018
Is the vertical velocity of the body (spring weight),
Figure pat00019
Represents the up-down speed of the wheel (spring lower weight).

또한, 도 4의 (b)에서 등가적인 감쇄력은 아래의 수학식 2와 같은 조건에서만 구해질 수 있다.  In addition, the equivalent damping force in Figure 4 (b) can be obtained only under the conditions shown in Equation 2 below.

Figure pat00020
Figure pat00020

이때, 등가적인 감쇄력은

Figure pat00021
이고
Figure pat00022
인 경우를 모두 만족하는 경우에 발생하거나,
Figure pat00023
이고
Figure pat00024
인 경우를 모두 만족하는 경우에 발생할 수 있다. 즉, 차체의 상하방향 속도의 방향과, 차체의 상하방향 속도와 차륜 상하방향 속도 간 차의 방향이 모두 일치한 경우에 등가적인 감쇄력이 발생할 수 있다.
At this time, the equivalent damping force
Figure pat00021
ego
Figure pat00022
Occurs when all the cases are satisfied, or
Figure pat00023
ego
Figure pat00024
This may occur when all of the following conditions are satisfied. That is, an equivalent damping force may occur when the direction of the vehicle's up-down speed and the direction of the vehicle between the vehicle's up-down speed and the wheel's up-and-down speed coincide with each other.

이에 본 발명의 실시예에 따른 인휠 모터 구동 전기자동차의 롤 운동 제어장치는, 스카이 훅 제어기법을 이용하여 차량 선회시 차체가 좌우로 기울어짐에 따라 각 차륜 현가장치 스프링의 신장 및 압축에 의한 전기자동차 차체의 상하방향의 운동을 감소시키는 방향으로 힘을 발생하여 차체에 인가함으로써, 각 현가장치 스프링의 상하방향 운동을 감소시켜 차량 선회로 인한 차체의 롤각을 저감할 수 있게 된다.
Accordingly, the roll motion control apparatus of the in-wheel motor-driven electric vehicle according to the embodiment of the present invention uses the sky hook control method, and according to the vehicle body tilting from side to side when turning the vehicle, By generating a force in the direction of reducing the vertical motion of the vehicle body to apply to the vehicle body, it is possible to reduce the vertical angle of each suspension spring to reduce the roll angle of the vehicle body due to the vehicle turn.

본 발명의 실시예에 적용되는 현가장치의 모델이 도 5에 도시되어 있다.A model of the suspension applied to an embodiment of the present invention is shown in FIG.

도 5에 도시된 바와 같이, 본 발명의 실시예에 따른 현가장치 모델은, 인휠(In-Wheel) 모터를 구비한 전기자동차의 차륜(4), 전기자동차 차체(1)를 지지하는 스프링(spring)(2) 및 전기자동차 차체(1)의 상하방향의 진동을 흡수하는 댐퍼(damper)(3)를 구비할 수 있다. 이때, 차륜(4)은 전기자동차의 좌측 전후륜 및 우측 전후륜을 쿼터(quarter) 모델화하여 좌측 전후륜 및 우측 전후륜 중 하나의 차륜으로만 표시한 경우이다. 이는 예시에 해당하며 다른 실시예도 가능함은 당연하다.As shown in FIG. 5, the suspension model according to the embodiment of the present invention includes a spring for supporting the wheel 4 and the electric vehicle body 1 of the electric vehicle having an in-wheel motor. (2) and a damper (3) for absorbing the up and down vibration of the electric vehicle body (1). In this case, the wheel 4 is a case where the left front and rear wheels and the right front and rear wheels of the electric vehicle are formed as a quarter model to display only one of the left front and rear wheels and the right front and rear wheels. This is an example, and it is obvious that other embodiments are possible.

인휠 모터의 토크에 의해 회전하는 차륜과 노면 사이의 마찰에 의해 발생하는 구동력 또는 제동력이, 현가장치의 가상링크가 노면과 이루는 사잇각 만큼, 차체의 상하방향 운동을 방해하는 분력으로 차체에 작용하여, 현가장치의 스프링이 신장되거나 압축될 수 있다. The driving force or braking force generated by the friction between the wheel and the road surface rotated by the torque of the in-wheel motor acts on the vehicle body by the component force that hinders the up and down movement of the vehicle body by the angle between the virtual link of the suspension device and the road surface. The spring of the suspension can be stretched or compressed.

이때, 차체의 상하방향 운동을 방해하는 분력

Figure pat00025
는, 차량 선회시 발생하는 차체가 기울어짐으로 인한 차체의 상하방향의 운동을 감소시키기 위해 차체에 인가되는 힘이 된다. 이에 따라, 차체의 상하방향 운동을 방해하는 분력
Figure pat00026
가 차체에 작용하여, 현가장치의 스프링이 차체의 롤링 운동을 방해하는 방향으로 신장되거나 압축된다. 이에 따라 차량 선회시 발생하는 차체의 롤각이 감소됨으로써 차량의 롤링 운동이 저감될 수 있게 된다. At this time, the component force hindering the vertical movement of the body
Figure pat00025
Is a force applied to the vehicle body in order to reduce the vertical movement of the vehicle body due to the tilting of the vehicle body generated during the vehicle turning. Accordingly, the component force which hinders the up and down movement of the body
Figure pat00026
Acts on the vehicle body, the spring of the suspension is stretched or compressed in a direction that hinders the rolling motion of the vehicle body. As a result, the rolling angle of the vehicle body generated when the vehicle is turned is reduced, thereby reducing the rolling motion of the vehicle.

그리고 차체의 상하방향 운동을 방해하는 분력

Figure pat00027
는 차량의 선회로 인해서, 차량의 좌측 전후륜 각각에 의해 발생하는 차체의 상하방향 운동을 방해하는 분력과, 차량의 우측 전후륜 각각에 의해 발생하는 차체의 상하방향 운동을 방해하는 분력으로 나뉠 수 있다. And components that interfere with the up and down movement of the body
Figure pat00027
Is divided by the component force which hinders the vertical movement of the vehicle body generated by each of the vehicle's left front and rear wheels, and the component force which hinders the vertical movement of the vehicle body generated by the vehicle's right front and rear wheels, respectively. have.

좌측 전후륜 각각에 의해 발생하는 차체의 상하방향 운동을 방해하는 분력은, 인휠 모터의 토크에 의해 회전하는 좌측 전후륜 각각과 노면 간 마찰에 의해 발생하는 좌측 전후륜 각각의 구동력 또는 제동력이, 좌측 전후륜 현가장치 각각의 가상링크와 노면이 이루는 사잇각 만큼, 차체의 상하운동을 방해하는 분력으로 차체에 작용하여, 좌측 전후륜 현가장치 각각의 스프링을 신장하거나 압축하는 힘을 나타낸다. The component force hindering the vertical movement of the vehicle body generated by each of the left front and rear wheels is the driving force or braking force of each of the left front and rear wheels generated by friction between the left and right front wheels rotated by the torque of the in-wheel motor and the road surface. As the angle between the virtual links and the road surface of each of the front and rear wheel suspensions acts on the vehicle body by the component force that hinders the vertical movement of the vehicle body, the springs of the left front and rear wheel suspensions are extended or compressed.

우측 전후륜 각각에 의해 발생하는 차체의 상하방향 운동을 방해하는 분력은, 인휠 모터의 토크에 의해 회전하는 우측 전후륜 각각과 노면 간 마찰에 의해 발생하는 우측 전후륜 각각의 구동력 또는 제동력이, 우측 전후륜 현가장치 각각의 가상링크와 노면이 이루는 사잇각 만큼, 차체의 상하운동을 방해하는 분력으로 차체에 작용하여, 우측 전후륜 현가장치 각각의 스프링을 신장하거나 압축하는 힘을 나타낸다. The component force hindering the vertical movement of the vehicle body generated by each of the right front and rear wheels is that the driving force or braking force of each of the right front and rear wheels generated by the friction between the road surface and each of the right front and rear wheels rotated by the torque of the in-wheel motor is right. As the angle between the virtual links and the road surface of each of the front and rear wheel suspensions acts on the vehicle body with a force that interferes with the vertical movement of the vehicle body, the springs of the right front and rear wheel suspensions are extended or compressed.

롤 운동을 제어하기 위해 차체에 작용하는 분력을 만들기 위한 각 차륜의 인휠모터 토크의 방향 및 노면과의 마찰에 의해 발생하는 각 차륜의 제동력 또는 구동력의 방향은, 차량이 좌 선회를 하는 경우, 좌측 전후륜 각각에 의해 발생하는 차체의 상하 방향 운동을 방해하는 분력이 차체를 하방향으로 내리려는 힘으로 작용하여야 하며 우측 전후륜 각각에 의해 발생하는 차체의 상하 방향 운동을 방해하려는 분력이 차체를 상방향으로 올리려는 힘으로 작용하여야 하므로, 좌측전륜 및 우측후륜에 구동력이 작용하며 좌측후륜 및 우측전륜에 제동력이 작용하여야 한다. 차량이 우 선회를 하는 경우, 차량이 좌 선회를 하는 경우와 반대로, 좌측전륜 및 우측후륜에 제동력이 작용하며 좌측후륜 및 우측전륜에 구동력이 작용하여야 한다.The direction of braking force or driving force of each wheel caused by friction with the road surface and the direction of the in-wheel motor torque of each wheel to produce the component force acting on the vehicle body to control the roll movement is left when the vehicle turns left. The component force that hinders the up and down movement of the body generated by each of the front and rear wheels should act as a force to lower the vehicle body, and the component force that hinders the up and down movement of the body generated by each of the right front and rear wheels raises the body. Since it should act as a force to raise in the direction, the driving force acts on the left front wheel and the right rear wheel, and the braking force should act on the left rear wheel and the right front wheel. When the vehicle makes a right turn, as opposed to the vehicle making a left turn, braking force is applied to the left front wheel and the right rear wheel, and driving force must be applied to the left rear wheel and the right front wheel.

차량의 좌 선회 또는 우 선회시에 롤 운동을 제어하기 위한 각 차륜의 제동력 또는 구동력의 방향을 적용하고 이들의 크기가 같도록 적용하여 이들이 만드는 차량의 제동력 또는 구동력의 합, 즉 노면과의 마찰에 의해 발생하는 각 차륜의 구동력 또는 제동력의 합이 "0"이 되며, 또한 노면과의 마찰에 의해 발생하는 각 차륜의 구동력 또는 제동력이 만드는 선회 모멘트 합이 "0"이 됨으로써, 차량의 본래의 진행 속도 및 선회 방향을 방해하지 않고 차량의 롤 운동을 저감시킬 수 있게 된다.
Apply the direction of braking force or driving force of each wheel to control roll movement during left turn or right turn of the vehicle and apply them equal in size to the sum of braking or driving force of the vehicle they make, ie friction with road surface The sum of the driving force or the braking force of each wheel generated by the vehicle becomes "0", and the sum of the turning moments generated by the driving force or the braking force of each wheel generated by the friction with the road surface becomes "0", thereby intrinsic progression of the vehicle It is possible to reduce the roll motion of the vehicle without disturbing the speed and the turning direction.

도 6은 본 발명의 실시예에 따른 인휠 모터 구동 전기자동차의 롤 운동 제어장치의 구성을 나타낸 도면이다. 6 is a view showing the configuration of the roll motion control apparatus for an in-wheel motor-driven electric vehicle according to an embodiment of the present invention.

도 6에 도시된 바와 같이, 본 발명의 실시예에 따른 인휠 모터 구동 전기자동차의 롤 운동 제어장치는, 제1감산기(10), 제2감산기(11), 제 1 PI제어기(12), 제 2 PI제어기(13), 토크 변환부(14), 토크 형성부(15) 및 차량(16)을 포함한다.As shown in FIG. 6, a roll motion control apparatus for an in-wheel motor-driven electric vehicle according to an exemplary embodiment of the present invention includes a first subtractor 10, a second subtractor 11, a first PI controller 12, and a first motion controller. 2 PI controller 13, torque converter 14, torque forming unit 15 and the vehicle 16.

제1감산기(10)는 운전자의 목표 롤각

Figure pat00028
과 차량(16)에서 출력된 차량의 롤각
Figure pat00029
의 편차를 출력한다. 이때, 운전자의 목표 롤각은 "O(Zero)도"일 수 있다. 이는 차량 탑승자가 롤 운동의 영향을 받지 않도록 하여 안락한 승차감을 갖도록 하기 위해서이다. The first subtractor 10 is the target roll angle of the driver
Figure pat00028
And roll angle of the vehicle output from the vehicle 16
Figure pat00029
Output the deviation of. At this time, the target roll angle of the driver may be "0 (zero) degree". This is to ensure that the vehicle occupant is not affected by the roll motion and has a comfortable ride.

제2감산기(11)는 운전자의 목표 종방향 속도

Figure pat00030
와 차량(16)에서 출력되는 차량의 종방향 속도
Figure pat00031
의 편차를 출력한다. 이때, 운전자의 목표 종방향 속도
Figure pat00032
는 차량 주행 중에 운전자가 원하는 차량 속도를 의미한다. 운전자는 운전중인 차량의 현재 차속, 즉 차량의 종방향 속도
Figure pat00033
를 인지하여 차량의 속도를 유지하거나 가속 또는 감속을 하게 된다. 차량의 속도를 유지하기 위해서는 현재의 가속 페달의 상태를 유지하며, 가속을 위해서는 가속페달을 더욱 밟으며, 감속을 위해서는 주로 감속페달을 조작하게 된다. 이러한 운전자의 가감속 페달의 조작은, 인휠 모터의 토크를 증대시키거나 감소시키는 것 또는 회생 제동 토크의 명령과 동일하므로, 도 6의 제 2 PI 제어기의 역할과 동일하다. 왜냐하면 PI 제어기는 운전자의 목표 종방향 속도와 현재 차량의 종방향 속도의 편차로부터 인휠 모터에 인가되는 토크, 즉 운전자의 목표 종방향 속도를 추종하기 위한 구동 토크
Figure pat00034
를 출력하기 때문이다.The second subtractor 11 is the target longitudinal speed of the driver
Figure pat00030
And longitudinal speed of the vehicle output from the vehicle 16
Figure pat00031
Output the deviation of. At this time, the target longitudinal speed of the driver
Figure pat00032
Means the vehicle speed desired by the driver while driving the vehicle. The driver is the current vehicle speed of the vehicle being driven, i.e. the longitudinal speed of the vehicle
Figure pat00033
It will keep the vehicle speed or accelerate or decelerate. In order to maintain the speed of the vehicle, the state of the current accelerator pedal is maintained, the accelerator pedal is further pressed for acceleration, and the deceleration pedal is mainly operated for deceleration. The operation of the driver's acceleration / deceleration pedal is the same as that of increasing or decreasing the torque of the in-wheel motor or the command of the regenerative braking torque, and thus is equivalent to the role of the second PI controller of FIG. 6. Because the PI controller applies the torque applied to the in-wheel motor from the driver's target longitudinal speed and the current vehicle's longitudinal speed deviation, that is, drive torque for following the driver's target longitudinal speed.
Figure pat00034
This is because

제 1 PI 제어기(12)는 제1감산기(10)에서 출력된 값을 비례 적분 제어하여, 차체의 상하방향 운동을 방해하는 분력을 출력한다.The first PI controller 12 proportionally integrates the value output from the first subtractor 10 and outputs a component force that prevents the up and down movement of the vehicle body.

토크 변환부(14)는 차체의 상하방향 운동을 방해하는 분력에 동일한 크기의 좌측 전후륜 및 우측 전후륜의 반경을 곱하여, 롤 운동 제어를 위하여 좌측 전후륜 및 우측 전후륜에 적용될 롤 운동 제어 토크

Figure pat00035
를 출력한다.The torque converting unit 14 multiplies the components of the front and rear wheels of the same size and the front and rear wheels of the same magnitude by the component force that hinders the up and down movement of the vehicle body.
Figure pat00035
.

제 2 PI 제어기(13)는 제2감산기(11)에서 출력된 값을 비례 적분 제어하여 운전자의 목표 종방향 속도를 추종하기 위한 구동 토크

Figure pat00036
를 출력한다.The second PI controller 13 proportionally integrates the value output from the second subtractor 11 to drive the target torque to follow the target longitudinal speed of the driver.
Figure pat00036
.

토크 형성부(15)는 토크 변환부(14)에서 출력된 롤 운동 제어 토크

Figure pat00037
과 PI 제어기(13)에서 출력된 구동 토크
Figure pat00038
및 차량(16)에서 출력된 차량의 롤각
Figure pat00039
를 이용하여, 좌측전륜의 토크
Figure pat00040
, 우측전륜의 토크
Figure pat00041
, 좌측후륜의 토크
Figure pat00042
및 우측후륜의 토크
Figure pat00043
을 구한다.The torque forming unit 15 is a roll motion control torque output from the torque converting unit 14.
Figure pat00037
And torque output from the PI controller 13
Figure pat00038
And the roll angle of the vehicle output from the vehicle 16
Figure pat00039
Torque of left front wheel
Figure pat00040
Torque on right front wheel
Figure pat00041
, Left rear wheel torque
Figure pat00042
And right rear wheel torque
Figure pat00043
.

이때, 좌측전륜의 토크, 우측전륜의 토크, 좌측후륜의 토크 및 우측후륜의 토크는 전후좌우 각 차륜의 토크 방향 및 롤각에 따라 아래의 수학식 3을 이용하여 구할 수 있다.At this time, the torque of the left front wheel, the torque of the right front wheel, the torque of the left rear wheel and the torque of the right rear wheel can be obtained using the following equation (3) according to the torque direction and roll angle of each of the front and rear wheels.

Figure pat00044
Figure pat00044

이때,

Figure pat00045
는 롤 운동 제어 토크,
Figure pat00046
는 운전자의 목표 종방향 속도를 추종하기 위한 구동 토크,
Figure pat00047
은 좌측전륜 토크,
Figure pat00048
는 우측전륜 토크,
Figure pat00049
는 좌측후륜 토크,
Figure pat00050
는 우측후륜 토크를 나타내며,
Figure pat00051
은 롤각을 나타낸다. At this time,
Figure pat00045
Roll movement control torque,
Figure pat00046
Is the driving torque for following the driver's target longitudinal speed,
Figure pat00047
Left front wheel torque,
Figure pat00048
Is the right front wheel torque,
Figure pat00049
Is the left rear wheel torque,
Figure pat00050
Represents the right rear wheel torque,
Figure pat00051
Represents a roll angle.

차량의 롤각이 양의 값을 갖는 경우, 도 3에 도시된 바와 차량의 좌선회를 의미하므로, 좌측전륜의 토크 및 우측후륜의 토크는, 음의 값을 갖는 롤 운동제어 토크

Figure pat00052
에, 운전자의 목표종방향 속도를 추종하기 위한 구동 토크
Figure pat00053
를 각 4개의 차륜에 4등분하여 이를 합한 값으로 결정하고, 우측전륜의 토크 및 좌측후륜의 토크는, 양의 값을 갖는 롤 운동 제어 토크
Figure pat00054
에, 운전자의 목표 종방향 속도를 추종하기 위한 구동 토크
Figure pat00055
를 각 4개의 차륜에 4등분하여 이를 합한 값으로 결정할 수 있다.When the roll angle of the vehicle has a positive value, it means the left turn of the vehicle as shown in FIG. 3, and therefore, the torque of the left front wheel and the torque of the right rear wheel are roll motion control torques having a negative value.
Figure pat00052
Drive torque to follow the target longitudinal speed of the driver
Figure pat00053
Is divided into four equal parts and determined as the sum of them, and the torque of the right front wheel and the torque of the left rear wheel are the roll motion control torque having a positive value.
Figure pat00054
Drive torque to follow the driver's target longitudinal speed
Figure pat00055
It can be determined as the sum of four parts of each of the four wheels.

차량의 롤각이 음의 값을 갖는 경우, 도 3에 도시된 경우와 반대로 차량이 우선회를 하는 경우이므로, 좌측전륜의 토크 및 우측후륜의 토크는, 양의 값을 갖는 롤 운동제어 토크

Figure pat00056
에, 운전자의 목표종방향 속도를 추종하기 위한 구동 토크
Figure pat00057
를 각 4개의 차륜에 4등분하여 이를 합한 값으로 결정하고, 우측전륜의 토크 및 좌측후륜의 토크는, 양의 값을 갖는 롤 운동제어 토크
Figure pat00058
에, 운전자의 목표 종방향 속도를 추종하기 위한 구동 토크
Figure pat00059
를 각 4개의 차륜에 4등분하여 이를 합한 값으로 결정할 수 있다.
When the roll angle of the vehicle has a negative value, since the vehicle makes a priority turn as opposed to the case shown in FIG. 3, the torque of the left front wheel and the torque of the right rear wheel have a positive roll motion control torque.
Figure pat00056
Drive torque to follow the target longitudinal speed of the driver
Figure pat00057
Is divided into four equal parts and determined as the sum of these values, and the torque of the right front wheel and the torque of the left rear wheel are the positive roll motion control torque.
Figure pat00058
Drive torque to follow the driver's target longitudinal speed
Figure pat00059
It can be determined as the sum of four parts of each of the four wheels.

차량(16)은, 차륜마다, 인휠(In-Wheel) 모터의 토크에 따라 회전하는 차륜과 노면과의 마찰에 의해 발생하는 차륜의 구동력 또는 제동력이 현가장치의 가상링크와 노면이 이루는 사잇각 만큼, 차량 선회시 롤 운동으로 인한 차체의 상하방향 운동을 방해하는 분력으로 차체에 작용함에 따라 신장 또는 압축되는 스프링이 구비된 현가장치를 포함한다. The vehicle 16 has, for each wheel, the driving force or braking force of the wheel generated by friction between the wheel that rotates according to the torque of the in-wheel motor and the road surface by the angle between the virtual link of the suspension device and the road surface, It includes a suspension provided with a spring that extends or compresses as it acts on the vehicle body by the component force that prevents the vertical movement of the vehicle body due to the roll movement during the vehicle turning.

또한 차량(16)은, 토크 형성부(15)에서 구해진 각 토크 값에 따라 각 차륜의 회전에 의한 차량 주행 중, 차량의 선회시 차체의 원심력에 의한 차량의 롤각 및 차체의 종방향 속도를 각각 차체 롤각 감지센서 및 자동차 속도 감지센서를 이용하여 측정해서 출력한다.
In addition, the vehicle 16 measures the roll angle of the vehicle and the longitudinal speed of the vehicle body by the centrifugal force of the vehicle body when the vehicle is turning while the vehicle is driven by the rotation of each wheel according to each torque value obtained by the torque forming unit 15. It is measured and output by using the roll angle sensor and the car speed sensor.

도 7은 차량 선회시의 롤링 운동에 대한 시뮬레이션 결과를 나타낸 도면이다. 7 is a view showing a simulation result for the rolling motion during vehicle turning.

도시된 바와 같이, 도 7은 차량이 70kph의 Double Lane Change한 결과로서, 본 발명의 실시예에 따른 롤 운동제어가 이루어진 경우(with control), 제어가 이루어지지 않은 경우에 비해서 롤링 운동이 저감 됨을 알 수 있다.
As shown, Figure 7 is a result of the vehicle 70kph Double Lane Change, the rolling motion control (with control) according to the embodiment of the present invention (with control), the rolling motion is reduced compared to the case where the control is not made Able to know.

이제까지 본 발명에 대하여 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 따라서 본 발명의 범위는 전술한 실시예에 한정되지 않고 특허청구범위에 기재된 내용 및 그와 동등한 범위 내에 있는 다양한 실시 형태가 포함되도록 해석되어야 할 것이다. The present invention has been described above with reference to the embodiments. It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims. Therefore, the disclosed embodiments should be considered in an illustrative rather than a restrictive sense. Therefore, the scope of the present invention is not limited to the above-described embodiments, but should be construed to include various embodiments within the scope of the claims and equivalents thereof.

Claims (9)

차륜마다, 인휠(In-Wheel) 모터의 토크에 따라 회전하는 차륜과 노면과의 마찰에 의해 발생하는 차륜의 구동력 또는 제동력이 현가장치의 가상링크와 노면이 이루는 사잇각 만큼, 차량 선회시 롤 운동으로 인한 차체의 상하방향 운동을 방해하는 분력으로 차체에 작용함에 따라 신장 또는 압축되는 스프링이 구비된 현가장치를 포함하는, 인휠 모터 구동 전기자동차의 롤 운동 제어장치.For each wheel, the driving force or braking force of the wheel generated by friction between the wheel and the road surface that rotates according to the torque of the in-wheel motor is as much as the angle between the virtual link of the suspension system and the road surface. Roll movement control device for an in-wheel motor-driven electric vehicle comprising a suspension device having a spring that is stretched or compressed as it acts on the vehicle body by the component force that interferes with the vertical movement of the vehicle body. 제 1 항에 있어서,
상기 차체에 작용하는 분력을 만들기 위한 각 차륜의 인휠 모터의 토크 방향 및 상기 노면과의 마찰에 의해 발생하는 각 차륜의 제동력 또는 구동력의 방향은, 차량이 좌 선회를 하는 경우, 좌측전륜 및 우측후륜에 구동력이 작용하며 좌측후륜 및 우측전륜에 제동력이 작용하며, 차량이 우 선회를 하는 경우, 좌측전륜 및 우측후륜에 제동력이 작용하며 좌측후륜 및 우측전륜에 구동력이 작용하는 것을 특징으로 하는, 인휠 모터 구동 전기자동차의 롤 운동 제어장치.
The method of claim 1,
The direction of braking or driving force of each wheel caused by the torque direction of the in-wheel motor of each wheel and the friction with the road surface for producing the component force acting on the vehicle body, the left front wheel and the right rear wheel when the vehicle turns left The driving force acts on the braking force on the left rear wheel and the right front wheel, and when the vehicle makes a right turn, the braking force acts on the left front wheel and the right rear wheel, and the driving force acts on the left rear wheel and the right front wheel. Roll motion controller of motor-driven electric vehicle.
제 1 항 또는 제 2 항에 있어서,
상기 노면과의 마찰에 의해 발생하는 각 차륜의 구동력 또는 제동력의 합이 "0"이 되며, 상기 노면과의 마찰에 의해 발생하는 각 차륜의 구동력 또는 제동력이 만드는 선회 모멘트 합이 "0"이 되는 것을 특징으로 하는, 인휠 모터 구동 전기자동차의 롤 운동 제어장치.
The method according to claim 1 or 2,
The sum of driving force or braking force of each wheel generated by the friction with the road surface becomes "0", and the sum of turning moments generated by driving force or braking force of each wheel generated by friction with the road surface is "0". Roll motion control device of the in-wheel motor-driven electric vehicle, characterized in that.
운전자의 목표 롤각과 차량에서 출력된 차량의 롤각의 편차를 출력하는 제1감산기;
운전자의 목표 종방향 속도와 차량에서 출력되는 차량의 종방향 속도의 편차를 출력하는 제2감산기;
상기 제1감산기에서 출력된 값을 비례 적분 제어하여, 차체의 상하방향 운동을 방해하는 분력을 출력하는 제 1 PI 제어기;
차체의 상하방향 운동을 방해하는 분력에 동일한 크기의 좌측 전후륜 및 우측 전후륜의 반경을 곱하여, 롤 운동 제어를 위하여 좌측 전후륜 및 우측 전후륜에 적용될 롤 운동 제어 토크를 출력하는, 토크 변환부;
상기 제2감산기에서 출력된 값을 비례 적분 제어하여 운전자의 목표 종방향 속도를 추종하기 위한 구동 토크를 출력하는, 제 2 PI 제어기;
상기 롤 운동 제어 토크과 제 2 PI 제어기에서 출력된 구동 토크 및 차량에서 출력된 차량의 롤각을 이용하여, 각 차륜의 토크를 구하는, 토크 형성부; 및
차륜마다, 인휠(In-Wheel) 모터의 토크에 따라 회전하는 차륜과 노면과의 마찰에 의해 발생하는 차륜의 구동력 또는 제동력이 현가장치의 가상링크와 노면이 이루는 사잇각 만큼, 차량 선회시 롤 운동으로 인한 차체의 상하방향 운동을 방해하는 분력으로 차체에 작용함에 따라 신장 또는 압축되는 스프링이 구비된 현가장치를 포함하며, 상기 각 차륜의 토크에 따라 각 차륜의 회전에 의한 주행 중, 차량의 선회시 차체의 원심력에 의한 차량의 롤각 및 차체의 종방향 속도를 각각 차체 롤각 감지센서 및 자동차 속도 감지센서를 이용하여 측정해서 출력하는 차량을 포함하는, 인휠 모터 구동 전기자동차의 롤 운동 제어장치.
A first subtractor configured to output a deviation between the target roll angle of the driver and the roll angle of the vehicle output from the vehicle;
A second subtractor configured to output a deviation between a target longitudinal speed of the driver and a longitudinal speed of the vehicle output from the vehicle;
A first PI controller configured to proportionally integrate and control a value output from the first subtractor, thereby outputting a component force that hinders vertical movement of the vehicle body;
A torque converter that outputs a roll motion control torque to be applied to the left front wheel and the right front wheel for the roll motion control by multiplying the component force that hinders the up and down motion of the vehicle body by the radius of the front left and right front wheels of the same magnitude. ;
A second PI controller configured to proportionally integrate a value output from the second subtractor to output a driving torque for following a target longitudinal speed of the driver;
A torque forming unit for obtaining torque of each wheel by using the roll movement control torque, the drive torque output from the second PI controller, and the roll angle of the vehicle output from the vehicle; And
For each wheel, the driving force or braking force of the wheel generated by friction between the wheel and the road surface that rotates according to the torque of the in-wheel motor is as much as the angle between the virtual link of the suspension system and the road surface. Suspension device is provided with a spring is elongated or compressed by the force acting on the vehicle body by the component force that interferes with the up and down movement of the vehicle body, and when the vehicle is turned during driving by the rotation of each wheel according to the torque of each wheel A roll motion control apparatus for an in-wheel motor-driven electric vehicle, comprising: a vehicle configured to measure and output a roll angle of the vehicle and a longitudinal speed of the vehicle by a centrifugal force of the vehicle using a vehicle roll angle sensor and a vehicle speed sensor, respectively.
제 4 항에 있어서,
상기 운전자의 목표 롤각은, 0도로 설정되는 것을 특징으로 하는, 인휠 모터 구동 전기자동차의 롤 운동 제어장치.
The method of claim 4, wherein
The roll motion controller of the in-wheel motor-driven electric vehicle, wherein the target roll angle of the driver is set to 0 degrees.
제 4 항에 있어서,
상기 각 차륜의 토크는, 각 차륜의 토크 방향 및 롤각에 따라 아래의 수학식을 이용하여 구해지는 것을 특징으로 하는, 인휠 모터 구동 전기자동차의 롤 운동 제어장치.
[ 수학식 ]
Figure pat00060

이때,
Figure pat00061
는 롤 운동 제어 토크,
Figure pat00062
는 운전자의 목표 종방향 속도를 추종하기 위한 구동 토크,
Figure pat00063
은 좌측전륜 토크,
Figure pat00064
는 우측전륜 토크,
Figure pat00065
는 좌측후륜 토크,
Figure pat00066
는 우측후륜 토크를 나타내며,
Figure pat00067
은 롤각을 나타낸다.
The method of claim 4, wherein
The torque of each wheel is calculated | required using the following formula according to the torque direction and roll angle of each wheel, The roll motion control apparatus of the in-wheel motor drive electric vehicle.
[ Mathematical Expression ]
Figure pat00060

At this time,
Figure pat00061
Roll movement control torque,
Figure pat00062
Is the driving torque for following the driver's target longitudinal speed,
Figure pat00063
Left front wheel torque,
Figure pat00064
Is the right front wheel torque,
Figure pat00065
Is the left rear wheel torque,
Figure pat00066
Represents the right rear wheel torque,
Figure pat00067
Represents a roll angle.
제 6 항에 있어서,
상기 롤각이 0도보다 큰 경우는 차량이 좌 선회하는 경우이며, 상기 롤각이 0도보다 작은 경우는 차량이 우 선회하는 경우인 것을 특징으로 하는, 인휠 모터 구동 전기자동차의 롤 운동 제어장치.
The method according to claim 6,
When the roll angle is greater than 0 degrees, the vehicle is turning left, and when the roll angle is smaller than 0 degrees, the vehicle is turning right. The roll motion control apparatus for an in-wheel motor driven electric vehicle.
제 7 항에 있어서,
상기 차체에 작용하는 분력을 만들기 위한 각 차륜의 인휠 모터의 토크 방향 및 상기 노면과의 마찰에 의해 발생하는 각 차륜의 제동력 또는 구동력의 방향은, 차량이 좌 선회를 하는 경우, 좌측전륜 및 우측후륜에 구동력이 작용하며 좌측후륜 및 우측전륜에 제동력이 작용하며, 차량이 우 선회를 하는 경우, 좌측전륜 및 우측후륜에 제동력이 작용하며 좌측후륜 및 우측전륜에 구동력이 작용하는 것을 특징으로 하는, 인휠 모터 구동 전기자동차의 롤 운동 제어장치.
The method of claim 7, wherein
The direction of braking or driving force of each wheel caused by the torque direction of the in-wheel motor of each wheel and the friction with the road surface for producing the component force acting on the vehicle body, the left front wheel and the right rear wheel when the vehicle turns left The driving force acts on the braking force on the left rear wheel and the right front wheel, and when the vehicle makes a right turn, the braking force acts on the left front wheel and the right rear wheel, and the driving force acts on the left rear wheel and the right front wheel. Roll motion controller of motor-driven electric vehicle.
제 4 항 내지 제 8 항 중 어느 한 항에 있어서,
상기 노면과의 마찰에 의해 발생하는 각 차륜의 구동력 또는 제동력의 합이 "0"이 되며, 상기 노면과의 마찰에 의해 발생하는 각 차륜의 구동력 또는 제동력이 만드는 선회 모멘트 합이 "0"이 되는 것을 특징으로 하는, 인휠 모터 구동 전기자동차의 롤 운동 제어장치.
9. The method according to any one of claims 4 to 8,
The sum of driving force or braking force of each wheel generated by the friction with the road surface becomes "0", and the sum of turning moments generated by driving force or braking force of each wheel generated by friction with the road surface is "0". Roll motion control device of the in-wheel motor-driven electric vehicle, characterized in that.
KR1020110057399A 2011-06-14 2011-06-14 Roll motion control apparatus for electric vehicles with in-wheel motor KR20120138095A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020110057399A KR20120138095A (en) 2011-06-14 2011-06-14 Roll motion control apparatus for electric vehicles with in-wheel motor
PCT/KR2012/004473 WO2012173354A2 (en) 2011-06-14 2012-06-07 Roll motion control device for an in-wheel motor-driven electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110057399A KR20120138095A (en) 2011-06-14 2011-06-14 Roll motion control apparatus for electric vehicles with in-wheel motor

Publications (1)

Publication Number Publication Date
KR20120138095A true KR20120138095A (en) 2012-12-24

Family

ID=47357574

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110057399A KR20120138095A (en) 2011-06-14 2011-06-14 Roll motion control apparatus for electric vehicles with in-wheel motor

Country Status (2)

Country Link
KR (1) KR20120138095A (en)
WO (1) WO2012173354A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112477982A (en) * 2019-09-12 2021-03-12 郑州宇通客车股份有限公司 Vehicle and differential steering torque distribution control method and system thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108773376B (en) * 2018-05-07 2019-12-24 南京航空航天大学 Automobile multi-target layered cooperative control and optimization method fusing driving intentions
CN110001417B (en) * 2019-04-24 2022-10-11 山西零度智控设备有限公司 Control system and method for preventing vehicle body from overturning through electronic differential of double direct current motor drivers
CN113978196B (en) * 2021-12-27 2022-05-10 北京理工大学深圳汽车研究院(电动车辆国家工程实验室深圳研究院) Suspension roll restraining method and system for unmanned vehicle

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4228864B2 (en) * 2003-09-30 2009-02-25 三菱ふそうトラック・バス株式会社 Rollover suppression control device for vehicle
JP4539564B2 (en) * 2006-01-13 2010-09-08 トヨタ自動車株式会社 Vehicle and vehicle control device
JP5007576B2 (en) * 2007-02-21 2012-08-22 株式会社アドヴィックス Vehicle behavior control device
JP5187479B2 (en) * 2007-02-22 2013-04-24 株式会社アドヴィックス Vehicle behavior control device
KR20110020968A (en) * 2009-08-25 2011-03-04 대동공업주식회사 Vehicle rollover preventin apparatus and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112477982A (en) * 2019-09-12 2021-03-12 郑州宇通客车股份有限公司 Vehicle and differential steering torque distribution control method and system thereof
CN112477982B (en) * 2019-09-12 2022-05-24 宇通客车股份有限公司 Vehicle and differential steering torque distribution control method and system thereof

Also Published As

Publication number Publication date
WO2012173354A3 (en) 2013-02-07
WO2012173354A2 (en) 2012-12-20

Similar Documents

Publication Publication Date Title
US7788011B2 (en) Braking and drive force control apparatus for a vehicle
US9233689B2 (en) Vehicle braking/driving force control apparatus
US9120469B2 (en) Vehicle behavior control apparatus
CN102958717B (en) Vehicle vibration control device
EP2615006B1 (en) Vehicle body vibration damping control device
JP4839778B2 (en) Vehicle control device
US9849748B2 (en) Sprung vibration suppression device for vehicle
JP2009273275A (en) Controller for vehicle
US20170106755A1 (en) Vehicle control apparatus
KR20150062779A (en) Enhancement of cornering stability of direct-drive electric vehicle
JP2009173089A (en) Control device for vehicle
KR20120138095A (en) Roll motion control apparatus for electric vehicles with in-wheel motor
US20170028983A1 (en) Electric vehicle
US8948951B2 (en) Vehicle behavior control apparatus
JP6299572B2 (en) Vehicle control device
KR101265053B1 (en) Apparatus of controlling pitch motion for electric vehicles with in-wheel motor
JP4797586B2 (en) Vehicle braking / driving force control device
KR101257048B1 (en) Apparatus of improving ride comfort for electric vehicles with in-wheel motor
WO2018212186A1 (en) Vehicle
JP5691892B2 (en) In-vehicle headlamp optical axis control device
JP4577149B2 (en) Vehicle control device
JP2013006577A (en) Camber controller
JP7095970B2 (en) Vehicle control unit
JP2020023273A (en) Driving force control device
KR100329857B1 (en) Electronic control decrease power variable suspension apparatus of vehicle

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
J501 Disposition of invalidation of trial
N231 Notification of change of applicant
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20140514

Effective date: 20150729

Free format text: TRIAL NUMBER: 2014101002863; TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20140514

Effective date: 20150729