JP2014027775A - Anomaly detection device - Google Patents

Anomaly detection device Download PDF

Info

Publication number
JP2014027775A
JP2014027775A JP2012165837A JP2012165837A JP2014027775A JP 2014027775 A JP2014027775 A JP 2014027775A JP 2012165837 A JP2012165837 A JP 2012165837A JP 2012165837 A JP2012165837 A JP 2012165837A JP 2014027775 A JP2014027775 A JP 2014027775A
Authority
JP
Japan
Prior art keywords
voltage
battery cell
terminals
short
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012165837A
Other languages
Japanese (ja)
Other versions
JP5884670B2 (en
Inventor
Yasuhiro Kamiya
靖弘 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2012165837A priority Critical patent/JP5884670B2/en
Publication of JP2014027775A publication Critical patent/JP2014027775A/en
Application granted granted Critical
Publication of JP5884670B2 publication Critical patent/JP5884670B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an anomaly detection device that can detect a disconnection between each battery cell constituting an assembled battery and a circuit for monitoring each battery cell even if a breakdown voltage of a Zener diode is set low.SOLUTION: The anomaly detection device includes: a plurality of detection terminals C connected to connection parts of adjacent battery cells 10; Zener diodes 21 connected in parallel between opposite terminals of the battery cells 10, respectively; a plurality of short-circuiting circuits 22 having short-circuiting switches 222 for short-circuiting the detection terminals C connected to the opposite terminals of the battery cells 10, respectively; a monitoring circuit 23 for controlling each short-circuiting circuit and detecting a terminal voltage between every adjacent detection terminal C; and a control section 24b for determining whether or not there is a disconnection between the connection part of every adjacent battery cell 10 and the detection terminal C on the basis of a corrected voltage value obtained by removing a variation component variable in accordance with a cell voltage Vc of the battery cell 10 and a protection voltage Vz of the Zener diode 21 from a terminal voltage Vp available when the short-circuiting switch 222 is turned on.

Description

本発明は、複数の電池セルを直列に接続して構成される組電池の異常を検出する異常検出装置に関する。   The present invention relates to an abnormality detection device that detects an abnormality of a battery pack configured by connecting a plurality of battery cells in series.

従来、複数の電池セルを直列に接続して構成される組電池には、各電池セルの両端子に接続された各検出端子間の電圧に基づいて、各電池セルの過充放電等の異常を検出する監視回路を備える異常検出装置が接続されている。   Conventionally, in an assembled battery configured by connecting a plurality of battery cells in series, abnormalities such as overcharge / discharge of each battery cell based on the voltage between each detection terminal connected to both terminals of each battery cell An anomaly detection device having a monitoring circuit for detecting is connected.

この種の異常検出装置には、組電池を構成する各電池セルの電圧のバラツキを抑制するために、電池セル毎に各電池セルの両端子を短絡させる短絡スイッチを有する短絡回路が設けられており、当該短絡回路を作動させること(短絡スイッチをオン)により、電圧の高い電池セルを放電させるようになっている。   This type of abnormality detection device is provided with a short circuit having a short-circuit switch for short-circuiting both terminals of each battery cell for each battery cell in order to suppress variations in voltage of each battery cell constituting the assembled battery. Then, the battery cell having a high voltage is discharged by operating the short circuit (turning on the short circuit switch).

また、異常検出装置において、各電池セルの過充放電等の異常以外にも各電池セルの両端子と当該両端子に接続された検出端子との間の接続不良(断線)を検出するものが知られている(例えば、特許文献1参照)。   In addition, in the abnormality detection device, in addition to an abnormality such as overcharge / discharge of each battery cell, a device that detects a connection failure (disconnection) between both terminals of each battery cell and a detection terminal connected to the both terminals. It is known (see, for example, Patent Document 1).

なお、従来までの断線検出方法は、電池セルの検出端子間に設けられた短絡回路の短絡スイッチをオンにした際に、対応する電池セルの電圧が、正常時における電池セルの使用電圧範囲よりも低い値に設定された異常判定閾値以下となる場合に、各電池セルの両端子と検出端子との間に断線が生じていると判断する方法が採用されている。   In addition, the conventional disconnection detection method is such that when the short circuit switch of the short circuit provided between the detection terminals of the battery cell is turned on, the voltage of the corresponding battery cell is higher than the normal operating voltage range of the battery cell. When the value is equal to or lower than the abnormality determination threshold value set to a low value, a method is employed in which it is determined that a disconnection has occurred between both terminals of each battery cell and the detection terminal.

特許第3603901号Japanese Patent No. 3606031

ところで、本発明者らは、組電池に発生する過電圧等から異常検出装置を構成する回路を保護するために、各電池セルの両端子間にツェナダイオードを併設することを検討している。この場合、ツェナダイオードの降伏電圧(ツェナ電圧)が高い設定であると、監視回路の耐電圧を越える電圧が監視回路に印加される虞があることから、降伏電圧を低く設定することが望ましい。   By the way, the present inventors are considering to install a Zener diode between both terminals of each battery cell in order to protect a circuit constituting the abnormality detection device from an overvoltage generated in the assembled battery. In this case, if the breakdown voltage (zener voltage) of the Zener diode is set high, a voltage exceeding the withstand voltage of the monitoring circuit may be applied to the monitoring circuit. Therefore, it is desirable to set the breakdown voltage low.

図7は、本発明者らが検討している異常検出装置の一例を示す回路図である。図7に示すように、組電池における隣接する一対の電池セルAi、Ai+1の両端子に接続された各検出端子Ci〜Ci+2、各検出端子Ci〜Ci+2に接続された監視回路、短絡回路として機能する短絡スイッチSWi、SWi+1等を備える異常検出装置において、各電池セルAi、Ai+1の両端子間にツェナダイオードZDi、ZDi+1を並列に接続する構成としている。   FIG. 7 is a circuit diagram showing an example of the abnormality detection apparatus that the present inventors are examining. As shown in FIG. 7, each detection terminal Ci to Ci + 2 connected to both terminals of a pair of adjacent battery cells Ai and Ai + 1 in the assembled battery, functions as a monitoring circuit and a short circuit connected to each detection terminal Ci to Ci + 2 In the abnormality detection device including the short-circuit switches SWi, SWi + 1, etc., Zener diodes ZDi, ZDi + 1 are connected in parallel between both terminals of the battery cells Ai, Ai + 1.

ところが、このような構成とすると、従来技術の断線検出方法によって、各電池セルの両端子と検出端子との間の断線を適切に検出することができなくなってしまうといった問題がある。   However, with such a configuration, there is a problem that the disconnection between both terminals of each battery cell and the detection terminal cannot be properly detected by the disconnection detection method of the prior art.

この点について説明すると、例えば、図7における各電池セルAi、Ai+1の接続部と検出端子Ci+1との間に断線が生じた場合に、電池セルAi+1に対応する短絡スイッチSWi+1がオンされると、各電池セルAi、Ai+1分の電圧がツェナダイオードZDiに印加され、ツェナダイオードZDiがブレークダウンする。これにより、電池セルAiの正極端子から、ツェナダイオードZDi→短絡スイッチSWi+1→電池セルAi+1の負極端子へと放電電流が流れる(図7の太線矢印参照)。   Explaining this point, for example, when a disconnection occurs between the connection part of each battery cell Ai, Ai + 1 in FIG. 7 and the detection terminal Ci + 1, the short-circuit switch SWi + 1 corresponding to the battery cell Ai + 1 is turned on. The voltage for each battery cell Ai, Ai + 1 is applied to the Zener diode ZDi, and the Zener diode ZDi breaks down. As a result, a discharge current flows from the positive terminal of the battery cell Ai to the negative terminal of the Zener diode ZDi → the short-circuit switch SWi + 1 → the battery cell Ai + 1 (see the thick arrow in FIG. 7).

この際、ツェナダイオードZDiの降伏電圧を低く設定すると、検出端子Ci+1における電圧が、正常時における電池セルの使用電圧範囲に近い値となり、異常判定閾値を上回ってしまう。   At this time, if the breakdown voltage of the Zener diode ZDi is set low, the voltage at the detection terminal Ci + 1 becomes a value close to the operating voltage range of the battery cell at the normal time, and exceeds the abnormality determination threshold value.

例えば、各電池セルAi、Ai+1それぞれの電圧値が4V(使用電圧範囲:3〜5V)であり、各ツェナダイオードZDi、ZDi+1の降伏電圧が5.1V、断線判定閾値Vthが0.1に設定されているものとする。この場合、各電池セルAi、Ai+1の接続部と検出端子Ci+1との間に断線が生じた場合に、電池セルAi+1に対応する短絡スイッチSWi+1がオンされると、検出端子Ci+1における電圧は、電池セルAi+1の使用電圧範囲に近い値(例えば、2.9V)となり、異常判定閾値(例えば、0.1V)を上回ってしまう。   For example, the voltage value of each battery cell Ai, Ai + 1 is 4V (operating voltage range: 3-5V), the breakdown voltage of each zener diode ZDi, ZDi + 1 is set to 5.1V, and the disconnection determination threshold Vth is set to 0.1 It is assumed that In this case, when a disconnection occurs between the connection portion of each battery cell Ai, Ai + 1 and the detection terminal Ci + 1, when the short-circuit switch SWi + 1 corresponding to the battery cell Ai + 1 is turned on, the voltage at the detection terminal Ci + 1 is The value is close to the use voltage range of the cell Ai + 1 (for example, 2.9 V), and exceeds the abnormality determination threshold value (for example, 0.1 V).

このように、異常監視装置に対して、各電池セルの両端子間にツェナダイオードを付加すると、各電池セルのセル電圧、およびツェナダイオードの降伏電圧に応じて、短絡スイッチをオンした際の検出端子間の端子間電圧が変動することから、従来の断線検出方法では、各電池セルの両端子と検出端子との間の断線を適切に検出することができない。   In this way, when a Zener diode is added between both terminals of each battery cell for the abnormality monitoring device, detection when the short-circuit switch is turned on according to the cell voltage of each battery cell and the breakdown voltage of the Zener diode. Since the inter-terminal voltage varies between the terminals, the conventional disconnection detection method cannot appropriately detect the disconnection between both terminals of each battery cell and the detection terminal.

なお、各ツェナダイオードの降伏電圧を高く設定とすることで、検出端子における電圧を、正常時における電池セルの使用電圧範囲に対して低下させることも考えられるが、監視回路等の保護が不充分となってしまう虞があることから採用できない。   Note that setting the breakdown voltage of each Zener diode to a high value may reduce the voltage at the detection terminal relative to the operating voltage range of the battery cell during normal operation, but the protection of the monitoring circuit, etc. is insufficient. It can not be adopted because there is a risk of becoming.

本発明は上記点に鑑みて、ツェナダイオードの降伏電圧を低く設定したとしても、組電池を構成する各電池セルと各電池セルを監視する回路との間の断線を検出可能な異常検出装置を提供することを目的とする。   In view of the above points, the present invention provides an abnormality detection device capable of detecting a disconnection between each battery cell constituting a battery pack and a circuit monitoring each battery cell even if the breakdown voltage of the Zener diode is set low. The purpose is to provide.

本発明は、複数の電池セル(10)を直列に接続して構成される組電池(1)の異常を検出する異常検出装置を対象としている。   The present invention is directed to an abnormality detection device that detects an abnormality of an assembled battery (1) configured by connecting a plurality of battery cells (10) in series.

上記目的を達成するため、請求項1に記載の発明では、複数の電池セルのうち、隣接する電池セルの接続部に接続される複数の検出端子(C)と、複数の電池セルそれぞれの両端子間に並列に接続され、電池セルの両端子間の電圧を予め定めた保護電圧以下に保持するツェナダイオード(21)と、複数の検出端子のうち、電池セルの両端子に接続される検出端子同士を短絡させる短絡スイッチ(222)を有する複数の短絡回路(22)と、複数の短絡回路における短絡スイッチのオンオフを制御するスイッチ制御手段(23a)と、電池セルの両端子に接続される検出端子間の端子間電圧を検出する端子間電圧検出手段(23b)と、スイッチ制御手段にて短絡スイッチをオンに制御した際の端子間電圧から、電池セルのセル電圧、およびツェナダイオードの保護電圧に応じて変動する変動分を除去する電圧補正手段(24a)と、電圧補正手段にて補正した補正電圧値に基づいて、隣接する電池セルの接続部と検出端子との間に断線が生じているか否かを判定する断線判定手段(24b)と、を備える。そして、ツェナダイオードは、保護電圧が電池セルの正常時に取り得る最大値より高く、隣接する電池セルの正常時に取り得る最大値の合算値よりも低い素子で構成され、電圧補正手段は、隣接する電池セルそれぞれのセル電圧、および保護電圧の電圧値から変動分に相当する補正係数を算出し、補正係数をスイッチ制御手段にて短絡スイッチをオンに制御した際の端子間電圧から除去することを特徴としている。   In order to achieve the above object, according to the first aspect of the present invention, among the plurality of battery cells, the plurality of detection terminals (C) connected to the connection portions of the adjacent battery cells and both ends of each of the plurality of battery cells. A zener diode (21) connected in parallel between the terminals and holding the voltage between both terminals of the battery cell below a predetermined protection voltage, and a detection connected to both terminals of the battery cell among the plurality of detection terminals A plurality of short-circuit circuits (22) having a short-circuit switch (222) for short-circuiting the terminals, switch control means (23a) for controlling on / off of the short-circuit switches in the plurality of short-circuits, and both terminals of the battery cell From the inter-terminal voltage detection means (23b) for detecting the inter-terminal voltage between the detection terminals and the inter-terminal voltage when the short-circuit switch is turned on by the switch control means, the cell voltage of the battery cell, and Based on the voltage correction means (24a) that removes fluctuations that vary according to the protection voltage of the Zener diode, and the correction voltage value corrected by the voltage correction means, between the connection portion of the adjacent battery cell and the detection terminal Disconnection determination means (24b) for determining whether or not a disconnection has occurred. The Zener diode is composed of elements whose protection voltage is higher than the maximum value that can be taken when the battery cell is normal and lower than the sum of the maximum values that can be taken when the adjacent battery cell is normal, and the voltage correction means is adjacent The correction coefficient corresponding to the fluctuation is calculated from the cell voltage of each battery cell and the voltage value of the protection voltage, and the correction coefficient is removed from the voltage between the terminals when the short-circuit switch is turned on by the switch control means. It is a feature.

これによれば、短絡スイッチをオンした際の検出端子間の端子間電圧から、隣接する電池セルのセル電圧、およびツェナダイオードによる保護電圧(ツェナダイオードの降伏電圧)による変動分を除去し、当該除去した値に基づいて、各電池セルの接続部と検出端子との間に断線が生じているか否かを判定するようにしているので、ツェナダイオードの降伏電圧を低く設定したとしても、組電池を構成する各電池セルと各電池セルを監視する回路との間の断線を検出することが可能となる。   According to this, the fluctuation due to the cell voltage of the adjacent battery cell and the protection voltage by the Zener diode (the breakdown voltage of the Zener diode) is removed from the voltage between the detection terminals when the short-circuit switch is turned on. Based on the removed value, it is determined whether or not there is a disconnection between the connection portion of each battery cell and the detection terminal. Therefore, even if the breakdown voltage of the Zener diode is set low, the assembled battery It is possible to detect a disconnection between each battery cell that constitutes and a circuit that monitors each battery cell.

また、請求項3に記載の発明では、複数の電池セルのうち、隣接する電池セルの接続部に接続される複数の検出端子(C)と、複数の電池セルそれぞれの両端子間に並列に接続され、電池セルの両端子間の電圧を予め定めた保護電圧以下に保持するツェナダイオード(21)と、複数の検出端子のうち、電池セルの両端子に接続される検出端子同士を短絡させる短絡スイッチ(222)を有する複数の短絡回路(22)と、複数の短絡回路における短絡スイッチのオンオフを制御するスイッチ制御手段(23a)と、電池セルの両端子に接続される検出端子間の端子間電圧を検出する端子間電圧検出手段(23b)と、スイッチ制御手段にて短絡スイッチをオンに制御した際の端子間電圧、および所定の断線判定閾値に基づいて、隣接する電池セルの接続部と検出端子との間に断線が生じているか否かを判定する断線判定手段(24b)と、電池セルのセル電圧、およびツェナダイオードの保護電圧に応じて変動する端子間電圧の変動分に基づいて、断線判定閾値を設定する閾値設定手段(24c)と、を備える。そして、ツェナダイオードは、保護電圧が電池セルの正常時に取り得る最大値より高く、隣接する電池セルの正常時に取り得る最大値の合算値よりも低い素子で構成され、閾値設定手段は、隣接する電池セルそれぞれのセル電圧、および保護電圧の電圧値から変動分に相当する補正係数を算出し、予め定めた基準閾値を補正係数で補正した補正値を断線判定閾値に設定することを特徴としている。   Moreover, in invention of Claim 3, among several battery cells, in parallel between the some detection terminal (C) connected to the connection part of an adjacent battery cell, and both terminals of several battery cell The zener diode (21) that is connected and holds the voltage between both terminals of the battery cell below a predetermined protection voltage and the detection terminals connected to both terminals of the battery cell among the plurality of detection terminals are short-circuited. A plurality of short-circuits (22) having a short-circuit switch (222), switch control means (23a) for controlling on / off of the short-circuit switches in the plurality of short-circuits, and a terminal between detection terminals connected to both terminals of the battery cell Based on the inter-terminal voltage detecting means (23b) for detecting the inter-voltage, the inter-terminal voltage when the short-circuit switch is turned on by the switch control means, and a predetermined disconnection judgment threshold, A disconnection determining means (24b) for determining whether or not a disconnection has occurred between the connection portion of the cell and the detection terminal, and a voltage between the terminals that varies depending on the cell voltage of the battery cell and the protection voltage of the Zener diode. Threshold setting means (24c) for setting a disconnection determination threshold based on the variation. The Zener diode is composed of elements whose protection voltage is higher than the maximum value that can be taken when the battery cell is normal and lower than the sum of the maximum values that can be taken when the adjacent battery cell is normal, and the threshold setting means is adjacent A correction coefficient corresponding to the variation is calculated from the cell voltage of each battery cell and the voltage value of the protection voltage, and a correction value obtained by correcting a predetermined reference threshold value with the correction coefficient is set as a disconnection determination threshold value. .

これによれば、隣接する電池セルのセル電圧、およびツェナダイオードによる保護電圧(ツェナダイオードの降伏電圧)による変動分に応じて設定した断線判定閾値に基づいて、各電池セルの接続部と検出端子との間に断線が生じているか否かを判定するようにしているので、ツェナダイオードの降伏電圧を低く設定したとしても、組電池を構成する各電池セルと各電池セルを監視する回路との間の断線を検出することが可能となる。   According to this, on the basis of the disconnection determination threshold set according to the cell voltage of the adjacent battery cell and the variation due to the protection voltage by the Zener diode (the breakdown voltage of the Zener diode), the connection portion and the detection terminal of each battery cell Therefore, even if the breakdown voltage of the Zener diode is set low, each battery cell constituting the assembled battery and a circuit for monitoring each battery cell are determined. It becomes possible to detect disconnection between the two.

なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係の一例を示すものである。   In addition, the code | symbol in the parenthesis of each means described in this column and the claim shows an example of a correspondence relationship with the specific means described in the embodiment described later.

第1実施形態に係る電源システムの全体構成図である。1 is an overall configuration diagram of a power supply system according to a first embodiment. 第1実施形態に係る異常監視装置の要部を示す構成図である。It is a block diagram which shows the principal part of the abnormality monitoring apparatus which concerns on 1st Embodiment. 第1実施形態に係る異常監視装置の作動を説明するための異常検出装置の要部を示す回路図である。It is a circuit diagram which shows the principal part of the abnormality detection apparatus for demonstrating the action | operation of the abnormality monitoring apparatus which concerns on 1st Embodiment. 第1実施形態に係る制御部が実行する制御処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the control processing which the control part which concerns on 1st Embodiment performs. 第2実施形態に係る電源システムの全体構成図である。It is a whole block diagram of the power supply system which concerns on 2nd Embodiment. 第2実施形態に係る制御部が実行する制御処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the control processing which the control part which concerns on 2nd Embodiment performs. 本発明者らが検討している異常検出装置の一例を示す回路図である。It is a circuit diagram which shows an example of the abnormality detection apparatus which the present inventors are examining.

以下、本発明の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following embodiments, the same or equivalent parts are denoted by the same reference numerals in the drawings.

(第1実施形態)
まず、第1実施形態について図面を用いて説明する。本実施形態では、ハイブリッド自動車や電気自動車に搭載される電源システムに、本発明の異常検出装置を適用している。図1の全体構成図に示すように、本実施形態の電源システムは、主たる構成要素として、組電池1、および異常検出装置2を備えている。
(First embodiment)
First, a first embodiment will be described with reference to the drawings. In this embodiment, the abnormality detection device of the present invention is applied to a power supply system mounted on a hybrid vehicle or an electric vehicle. As shown in the overall configuration diagram of FIG. 1, the power supply system of this embodiment includes an assembled battery 1 and an abnormality detection device 2 as main components.

組電池1は、図示しない走行用電動モータを主として、車載された各種電気負荷に給電する電源である。本実施形態の組電池1は、リチウムイオン電池等の二次電池からなる電池セル10を複数直列に接続したもので、互いに隣接する所定数の電池セル10毎にグループ化した複数の電池ブロックB1〜Bnの直列接続体として構成されている。   The assembled battery 1 is a power source that mainly supplies a traveling electric motor (not shown) to power various electric loads mounted on the vehicle. The assembled battery 1 according to the present embodiment includes a plurality of battery cells 10 formed of secondary batteries such as lithium ion batteries connected in series, and a plurality of battery blocks B1 grouped for each predetermined number of battery cells 10 adjacent to each other. It is comprised as a serial connection body of -Bn.

異常検出装置2は、組電池1の電圧等の各種状態を検出して、組電池1の異常を検出する装置であり、電圧検出用の検出ラインL等を介して組電池1の各電池セル10の両端子に接続されている。   The abnormality detection device 2 is a device that detects various states such as a voltage of the assembled battery 1 to detect an abnormality of the assembled battery 1, and each battery cell of the assembled battery 1 via a detection line L for voltage detection or the like. 10 are connected to both terminals.

本実施形態の異常検出装置2は、複数の検出端子C、複数のツェナダイオード21、複数の短絡回路22、複数の監視回路23、制御部24、絶縁部25を備えている。   The abnormality detection device 2 according to the present embodiment includes a plurality of detection terminals C, a plurality of Zener diodes 21, a plurality of short circuits 22, a plurality of monitoring circuits 23, a control unit 24, and an insulating unit 25.

検出端子Cは、各検出ラインLそれぞれに設けられており、各電池セル10の両端子(正極端子および負極端子)の少なくとも一方に接続されている。例えば、検出端子Cは、組電池1において最も高電位となる電池セル10の正極端子、および組電池1において最も低電位となる電池セル10の負極端子を除いて、各電池セル10の正極端子および負極端子それぞれに接続されている。   The detection terminal C is provided in each detection line L, and is connected to at least one of both terminals (positive electrode terminal and negative electrode terminal) of each battery cell 10. For example, the detection terminal C is the positive terminal of each battery cell 10 except for the positive terminal of the battery cell 10 having the highest potential in the assembled battery 1 and the negative terminal of the battery cell 10 having the lowest potential in the assembled battery 1. And connected to the negative terminal respectively.

ツェナダイオード21は、各電池セル10それぞれの両端子間に並列に接続され、電池セル10の両端子間の電圧を予め定めた保護電圧(降伏電圧)以下に保持する素子であり、組電池1に生ずる過電圧から監視回路23を保護する過電圧保護素子として機能する。各ツェナダイオード21は、電池セル10の両端子に接続された一対の検出ラインのうち、電池セル10の高電位側の端子に接続された検出ラインにカソードが接続され、低電位側の端子に接続された検出ラインにアノードが接続されている。   The Zener diode 21 is an element that is connected in parallel between both terminals of each battery cell 10 and holds the voltage between both terminals of the battery cell 10 below a predetermined protection voltage (breakdown voltage). It functions as an overvoltage protection element that protects the monitoring circuit 23 from an overvoltage that occurs in the circuit. Each zener diode 21 has a cathode connected to a detection line connected to a high potential side terminal of the battery cell 10 among a pair of detection lines connected to both terminals of the battery cell 10, and a low potential side terminal. The anode is connected to the connected detection line.

また、各ツェナダイオード21は、電池セル10の電圧、および監視回路23の耐電圧を考慮して降伏電圧が設定されている。具体的には、監視回路23の保護を図るべく、ツェナダイオード21として、その降伏電圧が各電池セル10の正常時に取り得る最大値(例えば、5V)より高く、隣接する電池セル10の正常時に取り得る最大値の合算値(例えば、10V)よりも低い素子を選択している。なお、ツェナダイオード21の降伏電圧は、予め保護電圧の電圧値Vzとして制御部24の記憶手段に記憶されている。   Each Zener diode 21 is set to a breakdown voltage in consideration of the voltage of the battery cell 10 and the withstand voltage of the monitoring circuit 23. Specifically, in order to protect the monitoring circuit 23, the Zener diode 21 has a breakdown voltage higher than the maximum value (for example, 5 V) that can be taken when each battery cell 10 is normal, and when the adjacent battery cell 10 is normal. An element lower than the maximum value (for example, 10 V) that can be taken is selected. Note that the breakdown voltage of the Zener diode 21 is stored in advance in the storage unit of the control unit 24 as the voltage value Vz of the protection voltage.

短絡回路22は、複数の電池セル10のうち、他の電池セル10に比べて高電圧となる電池セル10から放電電流を流すことで、各電池セル10の電圧ばらつきを均等化する回路であり、本実施形態では、各電池セル10それぞれに対応して複数設けられている。   The short circuit 22 is a circuit that equalizes the voltage variation of each battery cell 10 by flowing a discharge current from the battery cell 10 having a higher voltage than the other battery cells 10 among the plurality of battery cells 10. In the present embodiment, a plurality of battery cells 10 are provided correspondingly.

ここで、図2は、複数の電池ブロックB1〜Bnのうち、1つの電池ブロックBi、および当該電池ブロックBiに対応する監視回路23を示す図である。この図2に示すように、短絡回路22は、抵抗体221、および短絡スイッチ222を直列に接続した直列接続体で構成されている。   Here, FIG. 2 is a diagram showing one battery block Bi among the plurality of battery blocks B1 to Bn and the monitoring circuit 23 corresponding to the battery block Bi. As shown in FIG. 2, the short circuit 22 includes a series connection body in which a resistor 221 and a short circuit switch 222 are connected in series.

短絡回路22は、直列接続体における抵抗体221側の一端が、対応する電池セル10の正極側の検出端子Cに接続され、直列接続体における短絡スイッチ222側の他端が、対応する電池セル10の負極側の検出端子Cに接続されている。例えば、組電池1の電池ブロックBi(i=1、2…)における最も高電位側に対応する短絡回路22は、抵抗体221側の一端が検出端子C1に接続され、短絡スイッチ222側の他端が検出端子Cに2接続される。   In the short circuit 22, one end of the series connection body on the resistor 221 side is connected to the detection terminal C on the positive side of the corresponding battery cell 10, and the other end of the series connection body on the short circuit switch 222 side is the corresponding battery cell. 10 is connected to the detection terminal C on the negative electrode side. For example, the short circuit 22 corresponding to the highest potential side in the battery block Bi (i = 1, 2,...) Of the assembled battery 1 has one end on the resistor 221 side connected to the detection terminal C1, and the other side on the short circuit switch 222 side. Two ends are connected to the detection terminal C.

短絡回路22を構成する抵抗体221は、所定の抵抗値を有する抵抗素子により構成されている。また、各短絡回路22における短絡スイッチ222は、電池セル10の両端子に接続される検出端子同士を短絡させるもので、それぞれ監視回路23からの信号に応じてオンオフが制御される半導体スイッチで構成され、短絡スイッチ222がオンに制御されると、電池セル10からの放電電流が流れるようになっている。   The resistor 221 constituting the short circuit 22 is configured by a resistance element having a predetermined resistance value. Moreover, the short circuit switch 222 in each short circuit 22 short-circuits the detection terminals connected to both terminals of the battery cell 10, and is composed of a semiconductor switch that is controlled to be turned on and off in response to a signal from the monitoring circuit 23. When the short-circuit switch 222 is controlled to be turned on, a discharge current from the battery cell 10 flows.

監視回路23は、各電池ブロックB1〜Bnに対応して複数設けられており、後述する制御部24からの制御信号に応じて、対応する電池ブロックB1〜Bnにおける電圧状態等の検出、短絡回路22の短絡スイッチ222の制御を実行する回路である。   A plurality of monitoring circuits 23 are provided corresponding to each of the battery blocks B1 to Bn, and according to a control signal from the control unit 24 described later, detection of a voltage state and the like in the corresponding battery blocks B1 to Bn, a short circuit 22 is a circuit that controls the 22 short-circuit switches 222.

本実施形態の監視回路23は、短絡スイッチ222のオンオフを制御するスイッチ制御部23a、および電池セル10の両端子に接続された検出端子C間の電圧を検出する電圧検出部23bを備えている。   The monitoring circuit 23 according to the present embodiment includes a switch control unit 23 a that controls on / off of the short-circuit switch 222 and a voltage detection unit 23 b that detects a voltage between the detection terminals C connected to both terminals of the battery cell 10. .

スイッチ制御部23aは、制御部24からの制御信号に応じて、短絡スイッチ222のオンオフを制御するスイッチ制御手段である。本実施形態のスイッチ制御部23aは、予め定められた順序で各短絡回路22の短絡スイッチ222のオンオフを切替可能に構成されている。   The switch control unit 23 a is a switch control unit that controls on / off of the short-circuit switch 222 in accordance with a control signal from the control unit 24. The switch control unit 23a of the present embodiment is configured to be able to switch on and off the short-circuit switch 222 of each short circuit 22 in a predetermined order.

電圧検出部23bは、電池セル10の両端子に接続された検出端子C間の電圧を検出する端子間電圧検出手段であり、絶縁部25を介して電圧の検出結果を示す信号を制御部24に対して出力するように構成されている。   The voltage detection unit 23 b is an inter-terminal voltage detection unit that detects a voltage between the detection terminals C connected to both terminals of the battery cell 10, and a signal indicating a voltage detection result via the insulating unit 25 is transmitted to the control unit 24. Is configured to output.

この電圧検出部23bは、短絡スイッチ222がオンに制御された際、各電池セル10の両端子に接続された一対の検出端子C間の端子間電圧を断線判定用の端子間電圧Vpとして検出するように構成されている。   When the short-circuit switch 222 is turned on, the voltage detection unit 23b detects the inter-terminal voltage between the pair of detection terminals C connected to both terminals of each battery cell 10 as the inter-terminal voltage Vp for disconnection determination. Is configured to do.

また、本実施形態の電圧検出部23bは、短絡スイッチ222がオフに制御された際、各電池セル10の両端子に接続された一対の検出端子C間の端子間電圧をセル電圧Vcとして検出するように構成されている。   In addition, when the short-circuit switch 222 is controlled to be off, the voltage detection unit 23b according to the present embodiment detects the inter-terminal voltage between the pair of detection terminals C connected to both terminals of each battery cell 10 as the cell voltage Vc. Is configured to do.

例えば、組電池1の電池ブロックBiにおける最も高電位となる電池セル10のセル電圧を検出する場合、一対の検出端子C1、C2に接続された短絡スイッチ222がオフに制御された際の各検出端子C1、C2間の電圧をセル電圧として検出することとなる。   For example, when detecting the cell voltage of the battery cell 10 having the highest potential in the battery block Bi of the assembled battery 1, each detection when the short-circuit switch 222 connected to the pair of detection terminals C1 and C2 is controlled to be turned off. The voltage between the terminals C1 and C2 is detected as a cell voltage.

図1に戻り、制御部24は、CPU、ROM、RAM、EEPROM等からなるマイクロコンピュータ、およびその周辺機器で構成され、ROM等の記憶手段に記憶された制御プログラムに従って各種処理を実行するように構成されている。   Returning to FIG. 1, the control unit 24 includes a microcomputer including a CPU, a ROM, a RAM, an EEPROM, and the like and peripheral devices thereof, and executes various processes according to a control program stored in a storage unit such as a ROM. It is configured.

本実施形態の制御部24は、絶縁部25を介して各監視回路23に接続されている。この絶縁部25は、制御部24と各監視回路23との間を絶縁した状態で、制御部24および各監視回路23間で信号伝達する回路であり、制御部24は、絶縁部25を介して各監視回路23への各種制御信号の出力や、各監視回路23からの信号の取得が可能となっている。   The control unit 24 of the present embodiment is connected to each monitoring circuit 23 via the insulating unit 25. The insulating unit 25 is a circuit that transmits a signal between the control unit 24 and each monitoring circuit 23 in a state in which the control unit 24 and each monitoring circuit 23 are insulated from each other. Thus, it is possible to output various control signals to each monitoring circuit 23 and obtain signals from each monitoring circuit 23.

また、本実施形態の制御部24は、各監視回路23から取得した各電池セル10のセル電圧に基づいて、各電池セル10のセル電圧のばらつきを均等化する均等化処理を実行するように構成されている。   Further, the control unit 24 according to the present embodiment executes an equalization process for equalizing the cell voltage variation of each battery cell 10 based on the cell voltage of each battery cell 10 acquired from each monitoring circuit 23. It is configured.

例えば、均等化処理では、各監視回路23から取得した各電池セル10のセル電圧のばらつきが拡大した際に、各電池セル10のうち高電圧となる電池セル10を放電対象に決定し、当該電池セル10の放電時間を算出する。そして、制御部24が、監視回路23に対して、放電対象となる電池セル10の放電指示、および放電時間を示す制御信号を出力する。これにより、監視回路23が放電対象となる電池セル10に対応する短絡回路22の短絡スイッチ222を放電時間オンすることで、各電池セル10の均等化が実現される。   For example, in the equalization process, when the variation in the cell voltage of each battery cell 10 acquired from each monitoring circuit 23 increases, the battery cell 10 that becomes a high voltage among the battery cells 10 is determined as a discharge target, The discharge time of the battery cell 10 is calculated. And the control part 24 outputs the control signal which shows the discharge instruction | indication of the battery cell 10 used as discharge object, and discharge time with respect to the monitoring circuit 23. FIG. Thereby, equalization of each battery cell 10 is implement | achieved because the monitoring circuit 23 turns ON the short circuit switch 222 of the short circuit 22 corresponding to the battery cell 10 used as discharge object for discharge time.

加えて、本実施形態の制御部24は、監視回路23のスイッチ制御部23aにて短絡スイッチ222をオンに制御した場合の各電池セル10の両端子に接続された検出端子C間の端子間電圧(断線判定用の端子間電圧Vp)を補正する電圧補正処理、および電圧補正処理にて補正した電圧補正値に基づいて、隣接する電池セル10の接続部と検出端子Cとの間に断線が生じているか否かを判定する断線判定処理を実行するように構成されている。   In addition, the control unit 24 of the present embodiment is configured such that between the detection terminals C connected to both terminals of each battery cell 10 when the switch control unit 23a of the monitoring circuit 23 controls the short circuit switch 222 to be on. Disconnection between the connection part of the adjacent battery cell 10 and the detection terminal C based on the voltage correction process for correcting the voltage (inter-terminal voltage Vp for disconnection determination) and the voltage correction value corrected by the voltage correction process. It is configured to execute a disconnection determination process for determining whether or not an error has occurred.

電圧補正処理では、スイッチ制御部23aにて短絡スイッチ222のオンオフを制御した際の各電池セル10の両端子に接続された検出端子C間の端子間電圧(断線判定用の端子間電圧Vp、およびセル電圧Vc)を監視回路23から取得する。   In the voltage correction process, the voltage between the detection terminals C connected to both terminals of each battery cell 10 when the switch control unit 23a controls on / off of the short-circuit switch 222 (inter-terminal voltage Vp for disconnection determination, And the cell voltage Vc) are obtained from the monitoring circuit 23.

そして、断線判定用の端子間電圧Vpから、隣接する電池セル10のセル電圧Vcおよびツェナダイオード21の保護電圧に応じて変動する変動分を除去した値を電圧補正値として算出する。   And the value which remove | eliminated the fluctuation part which fluctuates according to the cell voltage Vc of the adjacent battery cell 10 and the protection voltage of the Zener diode 21 from the voltage Vp between terminals for disconnection determination is calculated as a voltage correction value.

より詳しくは、隣接する電池セル10それぞれのセル電圧Vc、およびツェナダイオード21の保護電圧の電圧値Vzから変動分に相当する補正係数αを算出し、補正係数αを断線判定用の端子間電圧Vpから除去した値を電圧補正値(=Vp−α)として算出する。   More specifically, a correction coefficient α corresponding to the variation is calculated from the cell voltage Vc of each adjacent battery cell 10 and the voltage value Vz of the protection voltage of the Zener diode 21, and the correction coefficient α is the inter-terminal voltage for disconnection determination. The value removed from Vp is calculated as a voltage correction value (= Vp−α).

ここで、本実施形態では、隣接する電池セル10それぞれのセル電圧Vcの合算値からツェナダイオード21の保護電圧の電圧値Vzを減算した減算値を補正係数αとして算出する。例えば、隣接する電池セル10それぞれのセル電圧Vcの合算値が8V、ツェナダイオード21の保護電圧の電圧値Vzが5.1Vである場合、補正係数αは、2.9となる。なお、補正係数αおよび電圧補正値は、端子間電圧Vpを検出する検出端子毎に異なることから、検出端子毎に算出することとなる。   Here, in the present embodiment, a subtraction value obtained by subtracting the voltage value Vz of the protection voltage of the Zener diode 21 from the total value of the cell voltages Vc of the adjacent battery cells 10 is calculated as the correction coefficient α. For example, when the total value of the cell voltages Vc of the adjacent battery cells 10 is 8 V and the voltage value Vz of the protection voltage of the Zener diode 21 is 5.1 V, the correction coefficient α is 2.9. The correction coefficient α and the voltage correction value are different for each detection terminal that detects the inter-terminal voltage Vp, and thus are calculated for each detection terminal.

また、断線検出処理では、電圧補正処理にて補正した補正電圧値が、予め電池セル10の正常時における使用電圧範囲よりも低い値に設定された断線判定閾値Vth以下となった場合に、隣接する電池セル10の接続部と検出端子Cとの間に断線が生じていると判定する。   In the disconnection detection process, when the correction voltage value corrected in the voltage correction process is equal to or lower than the disconnection determination threshold value Vth set in advance to a value lower than the operating voltage range when the battery cell 10 is normal, It is determined that a disconnection has occurred between the connection portion of the battery cell 10 to be detected and the detection terminal C.

なお、断線判定閾値Vthは、ツェナダイオード21の保護電圧の電圧値Vzから電池セル10の正常時における使用電圧範囲の最大値Vcmaxを減算した値に設定されている。例えば、電池セル10の正常時における使用電圧範囲の最大値が5V、ツェナダイオード21の保護電圧の電圧値Vzが5.1Vである場合、断線判定閾値Vthは、0.1に設定される。   The disconnection determination threshold value Vth is set to a value obtained by subtracting the maximum value Vcmax of the operating voltage range when the battery cell 10 is normal from the voltage value Vz of the protection voltage of the Zener diode 21. For example, when the maximum value of the working voltage range when the battery cell 10 is normal is 5 V and the voltage value Vz of the protection voltage of the Zener diode 21 is 5.1 V, the disconnection determination threshold Vth is set to 0.1.

ここで、図3に示す回路において、各電池セルAi、Ai+1の接続部と検出端子Ci+1との間に断線が生じた場合ついて説明する。なお、図3に示す隣接する電池セルAi、Ai+1、Ai+2それぞれの電圧値が4V(使用電圧範囲:3〜5V)であり、各ツェナダイオードZDi、ZDi+1、ZDi+2の降伏電圧が5.1V、断線判定閾値Vthが0.1に設定されているものとする。   Here, in the circuit shown in FIG. 3, a case where a disconnection occurs between the connection portion of each battery cell Ai, Ai + 1 and the detection terminal Ci + 1 will be described. Note that the voltage values of the adjacent battery cells Ai, Ai + 1, Ai + 2 shown in FIG. It is assumed that the determination threshold Vth is set to 0.1.

この場合、まず、電池セルAi+2に対応する短絡スイッチSWi+2がオンされると、検出端子Ci+2における端子間電圧Vpは、電池セルAi+2の両端電圧と同様の電圧値(4.0V程度)となる。そして、補正係数αは、隣接する電池セルAi+1、Ai+2のセル電圧の合算値が8V、ツェナダイオードZDiの降伏電圧が5.1Vであることから、2.9となる。   In this case, first, when the short-circuit switch SWi + 2 corresponding to the battery cell Ai + 2 is turned on, the inter-terminal voltage Vp at the detection terminal Ci + 2 becomes the same voltage value (about 4.0 V) as the voltage across the battery cell Ai + 2. The correction coefficient α is 2.9 because the sum of the cell voltages of the adjacent battery cells Ai + 1 and Ai + 2 is 8V and the breakdown voltage of the Zener diode ZDi is 5.1V.

このため、端子間電圧Vpから補正係数αを除去した電圧補正値は、約1.1となり、断線判定閾値Vth(0.1)以上の値となる。従って、各電池セルAi+1、Ai+2の接続部と検出端子Ci+2との間に断線が生じていないことを検出することができる。   For this reason, the voltage correction value obtained by removing the correction coefficient α from the inter-terminal voltage Vp is approximately 1.1, which is a value equal to or higher than the disconnection determination threshold value Vth (0.1). Therefore, it can be detected that no disconnection occurs between the connection portion of each battery cell Ai + 1, Ai + 2 and the detection terminal Ci + 2.

続いて、電池セルAi+1に対応する短絡スイッチSWi+1がオンされると、検出端子Ci+1における端子間電圧Vpは、電池セルAi+1の使用電圧範囲に近い値(2.9V程度)となる。そして、補正係数αは、隣接する電池セルAi、Ai+1のセル電圧の合算値が8V、ツェナダイオードZDiの降伏電圧が5.1Vであることから、2.9となる。   Subsequently, when the short-circuit switch SWi + 1 corresponding to the battery cell Ai + 1 is turned on, the inter-terminal voltage Vp at the detection terminal Ci + 1 becomes a value close to the use voltage range of the battery cell Ai + 1 (about 2.9 V). The correction coefficient α is 2.9 because the sum of the cell voltages of the adjacent battery cells Ai and Ai + 1 is 8V and the breakdown voltage of the Zener diode ZDi is 5.1V.

このため、端子間電圧Vpから補正係数αを除去した電圧補正値は、略ゼロとなり、断線判定閾値Vthである0.1を下回る。従って、各電池セルAi、Ai+1の接続部と検出端子Ci+1との間に断線が生じていることを検出することができる。   For this reason, the voltage correction value obtained by removing the correction coefficient α from the inter-terminal voltage Vp is substantially zero, and is lower than 0.1 which is the disconnection determination threshold value Vth. Therefore, it is possible to detect that a disconnection has occurred between the connection portion of each battery cell Ai, Ai + 1 and the detection terminal Ci + 1.

なお、本実施形態の制御部24における電圧補正処理を実行する構成(ソフトウェアおよびハードウェア)が電圧補正手段24aを構成し、断線検出処理を実行する構成(ソフトウェアおよびハードウェア)が断線判定手段24bを構成している。   The configuration (software and hardware) for executing the voltage correction processing in the control unit 24 of the present embodiment constitutes the voltage correction means 24a, and the configuration (software and hardware) for executing the disconnection detection processing is disconnection determination means 24b. Is configured.

次に、本実施形態に係る制御部24が実行する電圧補正処理、断線検出処理等における一連の制御処理の流れについて図4のフローチャートを用いて説明する。なお、図4に示す制御ルーチンは、車両の駐停車中において上位システムからの制御信号等に応じて制御部24が実行する。   Next, a flow of a series of control processes in the voltage correction process, the disconnection detection process, and the like executed by the control unit 24 according to the present embodiment will be described with reference to the flowchart of FIG. Note that the control routine shown in FIG. 4 is executed by the control unit 24 in accordance with a control signal from the host system while the vehicle is parked or stopped.

まず、各電池セル10に対応する短絡回路22の短絡スイッチ222のオンを指示する制御信号を各監視回路23へ出力する(S100)。これにより、各監視回路23が短絡回路22の短絡スイッチ222を所定の順序でオンして、短絡スイッチ222をオンした際の端子間電圧Vpを検出する。   First, a control signal instructing to turn on the short circuit switch 222 of the short circuit 22 corresponding to each battery cell 10 is output to each monitoring circuit 23 (S100). Thereby, each monitoring circuit 23 turns on the short-circuit switch 222 of the short-circuit 22 in a predetermined order, and detects the inter-terminal voltage Vp when the short-circuit switch 222 is turned on.

そして、短絡スイッチ222がオンに制御された際の各端子間電圧Vpを各監視回路23から取得し(S110)、取得した各端子間電圧VpをRAM等の記憶手段に記憶する。   Then, each terminal voltage Vp when the short-circuit switch 222 is controlled to be on is acquired from each monitoring circuit 23 (S110), and the acquired each terminal voltage Vp is stored in a storage means such as a RAM.

続いて、各電池セル10に対応する短絡回路22の短絡スイッチ222のオフを指示する制御信号を各監視回路23へ出力する(S120)。これにより、各監視回路23が短絡回路22の短絡スイッチ222を所定の順序でオフして、短絡スイッチ222をオフした際の端子間電圧を各電池セル10のセル電圧Vcとして検出する。   Subsequently, a control signal instructing to turn off the short circuit switch 222 of the short circuit 22 corresponding to each battery cell 10 is output to each monitoring circuit 23 (S120). Thereby, each monitoring circuit 23 turns off the short circuit switch 222 of the short circuit 22 in a predetermined order, and detects the voltage between the terminals when the short circuit switch 222 is turned off as the cell voltage Vc of each battery cell 10.

そして、短絡スイッチ222がオフに制御された際の各電池セルのセル電圧Vcを各監視回路23から取得し(S130)、取得したセル電圧VcそれぞれをRAM等の記憶手段に記憶する。   Then, the cell voltage Vc of each battery cell when the short-circuit switch 222 is controlled to be off is acquired from each monitoring circuit 23 (S130), and each acquired cell voltage Vc is stored in a storage unit such as a RAM.

続いて、ステップS130にて取得したセル電圧Vc(隣接する電池セル10それぞれのセル電圧Vc)、およびツェナダイオード21の保護電圧の電圧値Vzから補正係数αを算出する(S140)。具体的には、隣接する電池セル10それぞれのセル電圧Vcの合算値からツェナダイオード21の保護電圧の電圧値Vzを減算した減算値を補正係数αとして算出する。   Subsequently, the correction coefficient α is calculated from the cell voltage Vc acquired in step S130 (the cell voltage Vc of each adjacent battery cell 10) and the voltage value Vz of the protection voltage of the Zener diode 21 (S140). Specifically, a subtraction value obtained by subtracting the voltage value Vz of the protection voltage of the Zener diode 21 from the total value of the cell voltages Vc of the adjacent battery cells 10 is calculated as the correction coefficient α.

続いて、ステップS110にて取得した端子間電圧VpからステップS140にて算出した補正係数αを減算して電圧補正値を算出し、当該電圧補正値が、予め設定された断線判定閾値Vthを下回っているか否かを判定する(S150)。   Subsequently, a voltage correction value is calculated by subtracting the correction coefficient α calculated in step S140 from the inter-terminal voltage Vp acquired in step S110, and the voltage correction value falls below a preset disconnection determination threshold Vth. It is determined whether or not (S150).

この結果、電圧補正値(=Vp−α)が、断線判定閾値Vthを下回っていないと判定された場合(S150:NO)には、隣接する電池セル10の接続部と検出端子Cとの間に断線が生じていないことを検出し(S160)、制御処理を終了する。   As a result, when it is determined that the voltage correction value (= Vp−α) is not lower than the disconnection determination threshold value Vth (S150: NO), the connection between the connection portion of the adjacent battery cell 10 and the detection terminal C is determined. Is detected (S160), and the control process is terminated.

一方、電圧補正値(=Vp−α)が、断線判定閾値Vthを下回っていると判定された場合(S150:YES)には、隣接する電池セル10の接続部と検出端子Cとの間に断線が生じていることを検出し(S170)、制御処理を終了する。この場合、制御部24は、隣接する電池セル10の接続部と検出端子Cとの間に断線が生じている旨を上位システムに出力する。   On the other hand, when it is determined that the voltage correction value (= Vp−α) is lower than the disconnection determination threshold Vth (S150: YES), between the connection portion of the adjacent battery cell 10 and the detection terminal C. The disconnection is detected (S170), and the control process is terminated. In this case, the control unit 24 outputs to the host system that a disconnection has occurred between the connection part of the adjacent battery cell 10 and the detection terminal C.

以上説明した本実施形態では、短絡回路22の短絡スイッチ222をオンした場合の検出端子C間の端子間電圧Vpに含まれる各電池セル10のセル電圧、およびツェナダイオード21による保護電圧(ツェナダイオード21の降伏電圧)による変動分を除去した補正電圧値によって、各電池セル10の接続部と検出端子Cとの間に断線が生じているか否かを判定する構成としている。   In the present embodiment described above, the cell voltage of each battery cell 10 included in the inter-terminal voltage Vp between the detection terminals C when the short circuit switch 222 of the short circuit 22 is turned on, and the protection voltage (the Zener diode) by the Zener diode 21. It is configured to determine whether or not a disconnection has occurred between the connection portion of each battery cell 10 and the detection terminal C based on the corrected voltage value from which the fluctuation due to the breakdown voltage 21) is removed.

このため、ツェナダイオード21による保護電圧の電圧値Vzを低く設定したとしても、組電池1を構成する各電池セル10と各電池セルを監視する回路との間の断線を検出することが可能となる。   For this reason, even if the voltage value Vz of the protection voltage by the Zener diode 21 is set low, it is possible to detect a disconnection between each battery cell 10 constituting the assembled battery 1 and a circuit that monitors each battery cell. Become.

(第2実施形態)
次に、第2実施形態について説明する。本実施形態では、電池セル10のセル電圧、およびツェナダイオード21の保護電圧(降伏電圧)に応じて変動する端子間電圧Vpの変動分に基づいて断線判定閾値を設定する例について説明する。
(Second Embodiment)
Next, a second embodiment will be described. In the present embodiment, an example will be described in which the disconnection determination threshold is set based on the variation of the inter-terminal voltage Vp that varies according to the cell voltage of the battery cell 10 and the protection voltage (breakdown voltage) of the Zener diode 21.

本実施形態の制御部24は、断線判定閾値を設定する閾値設定処理、閾値設定処理にて設定した断線判定閾値を用いて、断線判定処理を実行するように構成されている。   The control unit 24 of the present embodiment is configured to execute the disconnection determination process using the threshold setting process for setting the disconnection determination threshold and the disconnection determination threshold set in the threshold setting process.

閾値設定処理では、スイッチ制御部23aにて短絡スイッチ222のオンオフを制御した際の各電池セル10の両端子に接続された検出端子C間の端子間電圧(断線判定用の端子間電圧Vp、およびセル電圧Vc)を監視回路23から取得する。   In the threshold setting process, the voltage between the detection terminals C connected to both terminals of each battery cell 10 when the switch control unit 23a controls on / off of the short-circuit switch 222 (inter-terminal voltage Vp for disconnection determination, And the cell voltage Vc) are obtained from the monitoring circuit 23.

そして、予め設定された基準閾値Vth(例えば、0〜0.5の範囲)に対して、隣接する電池セル10のセル電圧Vcおよびツェナダイオード21の保護電圧に応じて変動する端子間電圧Vpの変動分を加算した値を断線検出閾値として設定する。   Then, with respect to a preset reference threshold value Vth (for example, a range of 0 to 0.5), the inter-terminal voltage Vp that fluctuates according to the cell voltage Vc of the adjacent battery cell 10 and the protection voltage of the Zener diode 21. A value obtained by adding fluctuations is set as a disconnection detection threshold.

より詳しくは、隣接する電池セル10それぞれのセル電圧Vc、およびツェナダイオード21の保護電圧の電圧値Vzから変動分に相当する補正係数αを算出し、基準閾値Vthから除去した値を断線判定閾値(=Vth+α)として算出する。なお、本実施形態では、隣接する電池セル10それぞれのセル電圧Vcの合算値からツェナダイオード21の保護電圧の電圧値Vzを減算した減算値を補正係数αとして算出する。   More specifically, the correction coefficient α corresponding to the variation is calculated from the cell voltage Vc of each adjacent battery cell 10 and the voltage value Vz of the protection voltage of the Zener diode 21, and the value removed from the reference threshold Vth is the disconnection determination threshold. Calculate as (= Vth + α). In the present embodiment, a subtraction value obtained by subtracting the voltage value Vz of the protection voltage of the Zener diode 21 from the total value of the cell voltages Vc of the adjacent battery cells 10 is calculated as the correction coefficient α.

また、断線検出処理では、断線判定用の端子間電圧Vpが、閾値設定処理にて設定された断線判定閾値(=Vth+α)以下となった場合に、隣接する電池セル10の接続部と検出端子Cとの間に断線が生じていると判定する。   In the disconnection detection process, when the voltage Vp between terminals for disconnection determination is equal to or lower than the disconnection determination threshold (= Vth + α) set in the threshold setting process, the connection portion and the detection terminal of the adjacent battery cell 10 are detected. It is determined that a disconnection has occurred with C.

なお、図5に示すように、本実施形態の制御部24における閾値設定処理を実行する構成(ソフトウェアおよびハードウェア)が閾値設定手段24cを構成している。   As shown in FIG. 5, the configuration (software and hardware) for executing the threshold setting process in the control unit 24 of the present embodiment constitutes the threshold setting means 24c.

次に、本実施形態に係る制御部24が実行する閾値設定処理、断線検出処理等における一連の制御処理の流れについて図6のフローチャートを用いて説明する。なお、図6に示す制御ルーチンは、車両の駐停車中において上位システムからの制御信号等に応じて制御部24が実行する。   Next, a flow of a series of control processing in threshold setting processing, disconnection detection processing, and the like executed by the control unit 24 according to the present embodiment will be described with reference to the flowchart of FIG. Note that the control routine shown in FIG. 6 is executed by the control unit 24 in accordance with a control signal from the host system while the vehicle is parked or stopped.

まず、各電池セル10に対応する短絡回路22の短絡スイッチ222のオンを指示する制御信号を各監視回路23へ出力し(S100)、短絡スイッチ222がオンに制御された際の各端子間電圧Vpを各監視回路23から取得する(S110)。   First, a control signal instructing to turn on the short circuit switch 222 of the short circuit 22 corresponding to each battery cell 10 is output to each monitoring circuit 23 (S100), and each terminal voltage when the short circuit switch 222 is controlled to be on. Vp is acquired from each monitoring circuit 23 (S110).

続いて、各電池セル10に対応する短絡回路22の短絡スイッチ222のオフを指示する制御信号を各監視回路23へ出力し(S120)、短絡スイッチ222がオフに制御された際の各電池セルのセル電圧Vcを各監視回路23から取得する(S130)。   Subsequently, a control signal instructing to turn off the short circuit switch 222 of the short circuit 22 corresponding to each battery cell 10 is output to each monitoring circuit 23 (S120), and each battery cell when the short circuit switch 222 is controlled to be turned off. Cell voltage Vc is acquired from each monitoring circuit 23 (S130).

続いて、ステップS130にて取得したセル電圧Vc(隣接する電池セル10それぞれのセル電圧Vc)、およびツェナダイオード21の保護電圧の電圧値Vzから補正係数αを算出する(S140)。具体的には、隣接する電池セル10それぞれのセル電圧Vcの合算値からツェナダイオード21の保護電圧の電圧値Vzを減算した減算値を補正係数αとして算出する。   Subsequently, the correction coefficient α is calculated from the cell voltage Vc acquired in step S130 (the cell voltage Vc of each adjacent battery cell 10) and the voltage value Vz of the protection voltage of the Zener diode 21 (S140). Specifically, a subtraction value obtained by subtracting the voltage value Vz of the protection voltage of the Zener diode 21 from the total value of the cell voltages Vc of the adjacent battery cells 10 is calculated as the correction coefficient α.

続いて、予め定めた基準閾値VthにステップS140にて算出した補正係数αを加算した値を断線判定閾値(=Vth+α)に設定し、ステップS110にて取得した各端子間電圧Vpが、断線判定閾値を下回っているか否かを判定する(S180)。   Subsequently, a value obtained by adding the correction coefficient α calculated in step S140 to a predetermined reference threshold value Vth is set as a disconnection determination threshold value (= Vth + α), and each inter-terminal voltage Vp acquired in step S110 is determined as a disconnection determination. It is determined whether it is below the threshold value (S180).

この結果、各端子間電圧Vpが、断線判定閾値を下回っていないと判定された場合(S180:NO)には、隣接する電池セル10の接続部と検出端子Cとの間に断線が生じていないことを検出し(S160)、制御処理を終了する。   As a result, when it is determined that the voltage Vp between the terminals does not fall below the disconnection determination threshold (S180: NO), a disconnection has occurred between the connection portion of the adjacent battery cell 10 and the detection terminal C. It is detected that there is not (S160), and the control process is terminated.

一方、各端子間電圧Vpが、断線判定閾値を下回っていると判定された場合(S180:YES)には、隣接する電池セル10の接続部と検出端子Cとの間に断線が生じていることを検出し(S170)、制御処理を終了する。この場合、制御部24は、隣接する電池セル10の接続部と検出端子Cとの間に断線が生じている旨を上位システムに出力する。   On the other hand, when it is determined that the voltage Vp between the terminals is lower than the disconnection determination threshold (S180: YES), a disconnection occurs between the connection portion of the adjacent battery cell 10 and the detection terminal C. Is detected (S170), and the control process is terminated. In this case, the control unit 24 outputs to the host system that a disconnection has occurred between the connection part of the adjacent battery cell 10 and the detection terminal C.

以上説明した本実施形態によれば、第1実施形態と同様に、ツェナダイオード21による保護電圧の電圧値Vzを低く設定したとしても、組電池1を構成する各電池セル10と各電池セルを監視する回路との間の断線を検出することができる。   According to the present embodiment described above, each battery cell 10 and each battery cell constituting the assembled battery 1 are connected to each other even when the voltage value Vz of the protection voltage by the Zener diode 21 is set low as in the first embodiment. It is possible to detect a disconnection with a circuit to be monitored.

(他の実施形態)
以上、本発明の実施形態について説明したが、本発明はこれに限定されるものではなく、各請求項に記載した範囲を逸脱しない限り、適宜変更することができる。例えば、以下のように種々変形可能である。
(Other embodiments)
The embodiment of the present invention has been described above, but the present invention is not limited to this, and can be appropriately changed without departing from the scope described in each claim. For example, various modifications are possible as follows.

(1)上述の各実施形態では、短絡スイッチ222をオフに制御した際の端子間電圧を電池セル10のセル電圧Vcとして検出する例を説明したが、これに限らず、例えば、短絡スイッチ222をオフに制御した際の各電池セル10における両端子間の電圧を検出する回路を追加し、当該回路により、セル電圧Vcを検出するようにしてもよい。   (1) In each of the above-described embodiments, the example in which the voltage between the terminals when the short-circuit switch 222 is controlled to be turned off is detected as the cell voltage Vc of the battery cell 10 is described. A circuit for detecting the voltage between both terminals in each battery cell 10 when the power is controlled to be turned off may be added, and the cell voltage Vc may be detected by the circuit.

(2)上述の各実施形態では、隣接する電池セル10それぞれのセル電圧Vcの合算値からツェナダイオード21の降伏電圧(保護電圧の電圧値)を減算した減算値を補正係数αとして算出する例を説明したが、これに限定されない。例えば、隣接する電池セル10それぞれのセル電圧Vcの合算値、ツェナダイオード21の降伏電圧(保護電圧の電圧値)Vz、および補正係数αとの相関関係を規定した制御マップを記憶手段に記憶しておき、当該制御マップを参照して、隣接する電池セル10それぞれのセル電圧Vcの合算値、ツェナダイオード21による保護電圧の電圧値Vzから補正係数αを算出するようにしてもよい。   (2) In each of the above-described embodiments, an example in which the subtraction value obtained by subtracting the breakdown voltage (voltage value of the protection voltage) of the Zener diode 21 from the sum of the cell voltages Vc of the adjacent battery cells 10 is calculated as the correction coefficient α. However, the present invention is not limited to this. For example, a control map that defines the correlation between the sum of cell voltages Vc of adjacent battery cells 10, the breakdown voltage (voltage value of the protection voltage) Vz of the Zener diode 21, and the correction coefficient α is stored in the storage unit. By referring to the control map, the correction coefficient α may be calculated from the sum of the cell voltages Vc of the adjacent battery cells 10 and the voltage value Vz of the protection voltage by the Zener diode 21.

(3)上述の各実施形態では、車両に搭載された組電池1に、本発明の異常検出装置を適用する例を説明したが、車両以外に用いられる組電池1に適用してもよい。   (3) In each of the above-described embodiments, the example in which the abnormality detection device of the present invention is applied to the assembled battery 1 mounted on the vehicle has been described. However, the embodiment may be applied to the assembled battery 1 used other than the vehicle.

1 組電池
10 電池セル
21 ツェナダイオード
22 短絡回路
222 短絡スイッチ
23a スイッチ制御部(スイッチ制御手段)
23b 電圧検出部(端子間電圧検出手段)
24a 電圧補正手段
24b 断線判定手段
DESCRIPTION OF SYMBOLS 1 Battery assembly 10 Battery cell 21 Zener diode 22 Short circuit 222 Short circuit switch 23a Switch control part (switch control means)
23b Voltage detection unit (terminal voltage detection means)
24a Voltage correction means 24b Disconnection determination means

Claims (5)

複数の電池セル(10)を直列接続して構成される組電池(1)の異常検出装置において、
前記複数の電池セルのうち、隣接する電池セルの接続部に接続される複数の検出端子(C)と、
前記複数の電池セルそれぞれの両端子間に並列に接続され、前記電池セルの両端子間の電圧を予め定めた保護電圧以下に保持するツェナダイオード(21)と、
前記複数の検出端子のうち、前記電池セルの両端子に接続される検出端子同士を短絡させる短絡スイッチ(222)を有する複数の短絡回路(22)と、
前記複数の短絡回路における前記短絡スイッチのオンオフを制御するスイッチ制御手段(23a)と、
前記電池セルの両端子に接続される前記検出端子間の端子間電圧を検出する端子間電圧検出手段(23b)と、
前記スイッチ制御手段にて前記短絡スイッチをオンに制御した際の前記端子間電圧から、前記電池セルのセル電圧、および前記ツェナダイオードの保護電圧に応じて変動する変動分を除去する電圧補正手段(24a)と、
前記電圧補正手段にて補正した補正電圧値に基づいて、前記隣接する電池セルの前記接続部と前記検出端子との間に断線が生じているか否かを判定する断線判定手段(24b)と、を備え、
前記ツェナダイオードは、前記保護電圧が前記電池セルの正常時に取り得る最大値より高く、前記隣接する電池セルの正常時に取り得る最大値の合算値よりも低い素子で構成され、
前記電圧補正手段は、前記隣接する電池セルそれぞれのセル電圧、および前記保護電圧の電圧値から前記変動分に相当する補正係数を算出し、前記補正係数を前記スイッチ制御手段にて前記短絡スイッチをオンに制御した際の前記端子間電圧から除去することを特徴とする異常検出装置。
In the abnormality detection device for the assembled battery (1) configured by connecting a plurality of battery cells (10) in series,
Among the plurality of battery cells, a plurality of detection terminals (C) connected to connecting portions of adjacent battery cells,
A Zener diode (21) connected in parallel between both terminals of each of the plurality of battery cells, and holding a voltage between both terminals of the battery cell below a predetermined protection voltage;
Among the plurality of detection terminals, a plurality of short circuits (22) having a short circuit switch (222) for short-circuiting the detection terminals connected to both terminals of the battery cell;
Switch control means (23a) for controlling on / off of the short-circuit switch in the plurality of short-circuits;
An inter-terminal voltage detection means (23b) for detecting an inter-terminal voltage between the detection terminals connected to both terminals of the battery cell;
Voltage correction means for removing fluctuations varying according to the cell voltage of the battery cell and the protection voltage of the Zener diode from the voltage between the terminals when the short-circuit switch is turned on by the switch control means ( 24a)
Disconnection determination means (24b) for determining whether or not a disconnection has occurred between the connection portion of the adjacent battery cell and the detection terminal, based on the correction voltage value corrected by the voltage correction means, With
The Zener diode is composed of an element whose protection voltage is higher than a maximum value that can be taken when the battery cell is normal, and lower than a maximum value that can be taken when the adjacent battery cell is normal,
The voltage correction means calculates a correction coefficient corresponding to the variation from the cell voltage of each of the adjacent battery cells and the voltage value of the protection voltage, and the correction coefficient is calculated by the switch control means. An abnormality detection device, wherein the abnormality detection device removes the voltage between the terminals when controlled to ON.
前記電圧補正手段は、前記隣接する電池セルそれぞれのセル電圧の合算値から前記保護電圧の電圧値を減算した減算値を前記補正係数として算出することを特徴とする請求項1に記載の異常検出装置。   2. The abnormality detection according to claim 1, wherein the voltage correction unit calculates a subtraction value obtained by subtracting a voltage value of the protection voltage from a sum value of cell voltages of the adjacent battery cells as the correction coefficient. apparatus. 複数の電池セル(10)を直列接続して構成される組電池(1)の異常検出装置において、
前記複数の電池セルのうち、隣接する電池セルの接続部に接続される複数の検出端子(C)と、
前記複数の電池セルそれぞれの両端子間に並列に接続され、前記電池セルの両端子間の電圧を予め定めた保護電圧以下に保持するツェナダイオード(21)と、
前記複数の検出端子のうち、前記電池セルの両端子に接続される検出端子同士を短絡させる短絡スイッチ(222)を有する複数の短絡回路(22)と、
前記複数の短絡回路における前記短絡スイッチのオンオフを制御するスイッチ制御手段(23a)と、
前記電池セルの両端子に接続される前記検出端子間の端子間電圧を検出する端子間電圧検出手段(23b)と、
前記スイッチ制御手段にて前記短絡スイッチをオンに制御した際の前記端子間電圧、および所定の断線判定閾値に基づいて、前記隣接する電池セルの前記接続部と前記検出端子との間に断線が生じているか否かを判定する断線判定手段(24b)と、
前記電池セルのセル電圧、および前記ツェナダイオードの保護電圧に応じて変動する前記端子間電圧の変動分に基づいて、前記断線判定閾値を設定する閾値設定手段(24c)と、を備え、
前記ツェナダイオードは、前記保護電圧が前記電池セルの正常時に取り得る最大値より高く、前記隣接する電池セルの正常時に取り得る最大値の合算値よりも低い素子で構成され、
前記閾値設定手段は、前記隣接する電池セルそれぞれのセル電圧、および前記保護電圧の電圧値から前記変動分に相当する補正係数を算出し、予め定めた基準閾値を前記補正係数で補正した補正値を前記断線判定閾値に設定することを特徴とする異常検出装置。
In the abnormality detection device for the assembled battery (1) configured by connecting a plurality of battery cells (10) in series,
Among the plurality of battery cells, a plurality of detection terminals (C) connected to connecting portions of adjacent battery cells,
A Zener diode (21) connected in parallel between both terminals of each of the plurality of battery cells, and holding a voltage between both terminals of the battery cell below a predetermined protection voltage;
Among the plurality of detection terminals, a plurality of short circuits (22) having a short circuit switch (222) for short-circuiting the detection terminals connected to both terminals of the battery cell;
Switch control means (23a) for controlling on / off of the short-circuit switch in the plurality of short-circuits;
An inter-terminal voltage detection means (23b) for detecting an inter-terminal voltage between the detection terminals connected to both terminals of the battery cell;
Based on the voltage between the terminals when the short-circuit switch is turned on by the switch control means, and a predetermined disconnection determination threshold, a disconnection is generated between the connection portion of the adjacent battery cell and the detection terminal. Disconnection determining means (24b) for determining whether or not it has occurred;
Threshold setting means (24c) for setting the disconnection determination threshold based on the variation of the inter-terminal voltage that varies according to the cell voltage of the battery cell and the protection voltage of the Zener diode,
The Zener diode is composed of an element whose protection voltage is higher than a maximum value that can be taken when the battery cell is normal, and lower than a maximum value that can be taken when the adjacent battery cell is normal,
The threshold value setting means calculates a correction coefficient corresponding to the variation from the cell voltage of each of the adjacent battery cells and the voltage value of the protection voltage, and a correction value obtained by correcting a predetermined reference threshold value with the correction coefficient Is set as the disconnection determination threshold value.
前記閾値設定手段は、前記隣接する電池セルそれぞれのセル電圧の合算値から前記保護電圧の電圧値を減算した減算値を前記補正係数として算出することを特徴とする請求項3に記載の異常検出装置。   4. The abnormality detection according to claim 3, wherein the threshold value setting unit calculates a subtraction value obtained by subtracting a voltage value of the protection voltage from a sum value of cell voltages of the adjacent battery cells as the correction coefficient. 5. apparatus. 前記端子間電圧検出手段は、前記スイッチ制御手段にて前記短絡スイッチをオフに制御した場合の前記端子間電圧を前記電池セルのセル電圧として検出することを特徴とする請求項1ないし4のいずれか1つに記載の異常検出装置。   5. The inter-terminal voltage detection means detects the inter-terminal voltage when the short-circuit switch is controlled to be turned off by the switch control means as a cell voltage of the battery cell. The abnormality detection apparatus as described in any one.
JP2012165837A 2012-07-26 2012-07-26 Anomaly detection device Active JP5884670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012165837A JP5884670B2 (en) 2012-07-26 2012-07-26 Anomaly detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012165837A JP5884670B2 (en) 2012-07-26 2012-07-26 Anomaly detection device

Publications (2)

Publication Number Publication Date
JP2014027775A true JP2014027775A (en) 2014-02-06
JP5884670B2 JP5884670B2 (en) 2016-03-15

Family

ID=50200933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012165837A Active JP5884670B2 (en) 2012-07-26 2012-07-26 Anomaly detection device

Country Status (1)

Country Link
JP (1) JP5884670B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020190009A1 (en) * 2019-03-19 2020-09-24 주식회사 엘지화학 Apparatus and method for testing safety of battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010580A (en) * 2005-07-01 2007-01-18 Nissan Motor Co Ltd Cell voltage measurement device and fuel cell
US20070188149A1 (en) * 2006-02-15 2007-08-16 Nec Electronic Corporations Battery voltage monitoring apparatus
JP2009257923A (en) * 2008-04-16 2009-11-05 Nissan Motor Co Ltd Device of detecting abnormality of battery pack
WO2012043590A1 (en) * 2010-09-30 2012-04-05 三洋電機株式会社 Power supply device
JP2013011596A (en) * 2011-06-03 2013-01-17 Gs Yuasa Corp Cell monitoring device, disconnection detecting program and disconnection detecting method for electricity storage modules

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007010580A (en) * 2005-07-01 2007-01-18 Nissan Motor Co Ltd Cell voltage measurement device and fuel cell
US20070188149A1 (en) * 2006-02-15 2007-08-16 Nec Electronic Corporations Battery voltage monitoring apparatus
JP2009257923A (en) * 2008-04-16 2009-11-05 Nissan Motor Co Ltd Device of detecting abnormality of battery pack
WO2012043590A1 (en) * 2010-09-30 2012-04-05 三洋電機株式会社 Power supply device
JP2013011596A (en) * 2011-06-03 2013-01-17 Gs Yuasa Corp Cell monitoring device, disconnection detecting program and disconnection detecting method for electricity storage modules

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020190009A1 (en) * 2019-03-19 2020-09-24 주식회사 엘지화학 Apparatus and method for testing safety of battery
US11909009B2 (en) 2019-03-19 2024-02-20 Lg Energy Solution, Ltd. Battery safety test device and method

Also Published As

Publication number Publication date
JP5884670B2 (en) 2016-03-15

Similar Documents

Publication Publication Date Title
US10871523B2 (en) Battery monitoring apparatus
JP6264231B2 (en) Battery monitoring device
US20140021961A1 (en) Electric leakage detecting apparatus
JP5326973B2 (en) Battery monitoring device
JP6626704B2 (en) Method and apparatus for checking contact points in a battery pack
CN107949793B (en) Voltage detection circuit, abnormality detection device, and battery system
US8723483B2 (en) Battery monitoring device
JP5974849B2 (en) Battery monitoring device
JP2014204571A (en) Electric-powered apparatus system and battery pack
CN105009401A (en) Cell pack and electrical device
US9472941B2 (en) Battery module
CN110462968B (en) Power storage device and control method for power storage element
JP6811019B2 (en) Rechargeable battery system
JPWO2016063760A1 (en) Power supply device, protection device, and protection method
JP2016207646A (en) Secondary battery device and control method in secondary battery device
JP5884670B2 (en) Anomaly detection device
JP5884683B2 (en) Battery monitoring device
JP2013235689A (en) Current sensor abnormality detecting device and method
JP5163624B2 (en) Battery monitoring device
JP6836411B2 (en) Ground fault detector, power supply system
JP6040916B2 (en) Disconnection detector
JP5962558B2 (en) Battery monitoring device
US10981451B2 (en) Electrical energy storage system comprising a cross-connection of a plurality of parallel energy storage strings that is electrically conductively connected to a current detection means via a diode, and method for detecting a conduction fault
JP5870899B2 (en) Battery monitoring device
JP2014027776A (en) Anomaly detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160125

R151 Written notification of patent or utility model registration

Ref document number: 5884670

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250