JP2014027639A - Temperature ultrahigh stability thin film structure pseudo surface acoustic wave substrate and surface acoustic wave function element employing the substrate - Google Patents

Temperature ultrahigh stability thin film structure pseudo surface acoustic wave substrate and surface acoustic wave function element employing the substrate Download PDF

Info

Publication number
JP2014027639A
JP2014027639A JP2012178935A JP2012178935A JP2014027639A JP 2014027639 A JP2014027639 A JP 2014027639A JP 2012178935 A JP2012178935 A JP 2012178935A JP 2012178935 A JP2012178935 A JP 2012178935A JP 2014027639 A JP2014027639 A JP 2014027639A
Authority
JP
Japan
Prior art keywords
substrate
degrees
range
acoustic wave
surface acoustic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012178935A
Other languages
Japanese (ja)
Inventor
Kazuhiko Yamanouchi
和彦 山之内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2012178935A priority Critical patent/JP2014027639A/en
Publication of JP2014027639A publication Critical patent/JP2014027639A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a surface acoustic wave substrate which is a thin film structure surface, improves stability over a wide temperature range and reduces propagation attenuation, since a piezoelectric substrate having a large electro-mechanical coupling coefficient (k) is used for a surface acoustic wave filter and a surface acoustic wave function element employing a surface acoustic wave converter including an interdigital electrode on a surface of the piezoelectric substrate but temperature characteristics of the substrate with the large kare adverse generally and temperature stability is lacked.SOLUTION: In the substrate, an interdigital electrode 2 is deposited as an electrode thin film on a piezoelectric single crystal substrate 1 with a large electro-mechanical coupling coefficient, and a dielectric thin film 3 having frequency/temperature characteristics inverse to those of the piezoelectric substrate 1 is deposited thereon. In the piezoelectric substrate, the dielectric thin film 3 having inverse temperature characteristics is deposited on a surface of LiTaOpiezoelectric substrate 1 of rotational Y-X propagation improved in temperature characteristics, thereby obtaining a filter, a wide-band voltage controlled oscillator, a delay line or the like of high stability over a wide temperature range and a low insertion loss in wide bands.

Description

本発明は周波数温度特性が零或いは零に近い値を持つ温度安定性に優れたSiO/圧電体基板を用いた高周波帯の弾性表面波フィルタ及び弾性表面波機能素子に関するものである。The present invention relates to a high-frequency surface acoustic wave filter and a surface acoustic wave functional element using a SiO 2 / piezoelectric substrate having a frequency temperature characteristic of zero or a value close to zero and excellent in temperature stability.

圧電性基板表面にすだれ状電極を設けた弾性表面波変換器を用いた弾性表面波フィルタ及び弾性表面波機能素子は、テレビの中間周波数帯のフィルタ、移動体通信用のフィルタとして広く応用されている。これらのフィルタでは、比較的帯域幅が広い特性が要求される。また、温度の変化に対する周波数特性の変化の小さいフィルタ、発振器、及び変換器が要求されている。  Surface acoustic wave filters and surface acoustic wave functional elements using surface acoustic wave transducers provided with interdigital electrodes on the surface of a piezoelectric substrate are widely applied as filters for intermediate frequency bands of TVs and filters for mobile communications. Yes. These filters are required to have a relatively wide bandwidth. In addition, a filter, an oscillator, and a converter having a small change in frequency characteristics with respect to a change in temperature are required.

しかし、従来のフィルタは電気機械結合係数(k)の大きな圧電体基板が用いられているが、kの大きな基板は一般に温度特性が悪く、温度安定性に欠ける。However, the conventional filter uses a piezoelectric substrate having a large electromechanical coupling coefficient (k 2 ), but a substrate having a large k 2 generally has poor temperature characteristics and lacks temperature stability.

一方、温度安定性に優れた弾性表面波基板として、ST−カット水晶、LST−カット水晶などが提案されている。しかし、これらの単結晶基板は、高安定の発振器として有用であるが、電気機械結合係数が小さいので、広い帯域幅を持ち、挿入損失の小さいフィルタ、広帯域の発振器には向かない。  On the other hand, ST-cut quartz and LST-cut quartz have been proposed as surface acoustic wave substrates with excellent temperature stability. However, although these single crystal substrates are useful as highly stable oscillators, they have a small electromechanical coupling coefficient, so they are not suitable for filters and broadband oscillators having a wide bandwidth and low insertion loss.

この改善策として、高結合で温度特性の優れた圧電単結晶、KNbOが検討されているが、実用化に重要な大型の単結晶の育成に難点がある。As an improvement measure, a piezoelectric single crystal having high bonding and excellent temperature characteristics, KNbO 3, has been studied. However, there is a difficulty in growing a large single crystal that is important for practical use.

(1) 山之内、岩橋、柴山:Wave Electronics,3,(1979−12),(2)山之内,端山、IEEE,Trans.on Sonics and Ultra−− son.,Vol−SU,No.−1,Jan.1984(1) Yamanouchi, Iwahashi, Shibayama: Wave Electronics, 3, (1979-12), (2) Yamanouchi, Hayama, IEEE, Trans. on Sonics and Ultra--son. , Vol-SU, No. -1, Jan. 1984

発明が解決しようとする課題Problems to be solved by the invention

温度安定性に優れ、かつ大きな電気機械結合係数をもつ基板として、LiNbO,LiTaO基板表面に、逆の温度特性をもつSiO膜を付着させたSiO/LiNbO、SiO/LiTaO基板が考案され、(文献:山之内、岩橋、柴山:Wave Electronics,3,(1979−12)及び、文献:山之内、端山:IEEE,Trans,on Sonics and Ultrason.,Vol−SU,No.−1,Jan.1984)、実験により好結果が得られている。この基板は、高安定の発振器及びすだれ状電極を用いたフィルタとしての応用が提案されている。しかし、これらの基板より大きなkを持ち、かつ薄い膜厚の薄膜構造基板でかつ広い温度範囲で安定性に優れ、かつ伝搬減衰の小さな弾性表面波基板を要求されている。Excellent temperature stability, and a substrate having a large electromechanical coupling coefficient, LiNbO 3, LiTaO 3 substrate surface, SiO 2 / LiNbO 3 having deposited an SiO 2 film having opposite temperature characteristics, SiO 2 / LiTaO 3 Substrates have been devised (literature: Yamanouchi, Iwahashi, Shibayama: Wave Electronics, 3, (1979-12) and literature: Yamanouchi, Hayama: IEEE, Trans, on Sonics and Ultrason., Vol-SU, No.-. 1, Jan. 1984), and good results have been obtained by experiments. This substrate has been proposed for application as a filter using a highly stable oscillator and a comb-like electrode. However, there is a demand for a surface acoustic wave substrate having a larger k 2 than these substrates, a thin film structure substrate having a thin film thickness, excellent stability in a wide temperature range, and small propagation attenuation.

課題を解決するための手段Means for solving the problem

本発明は、高結合で温度特性に優れた回転Y−X伝搬のLiTaO圧電性基板表面に逆の温度特性を持つ薄膜を付着させることにより広い温度範囲で高安定、かつ広帯域の低挿入損失のフィルタ、広帯域電圧制御発振器、遅延線などを得ることを目的としている。The present invention provides a highly stable and broadband low insertion loss in a wide temperature range by attaching a thin film having reverse temperature characteristics to the surface of a LiTaO 3 piezoelectric substrate with high coupling and excellent temperature characteristics and rotating Y-X propagation. The purpose is to obtain a filter, a broadband voltage controlled oscillator, a delay line, and the like.

発明の効果Effect of the invention

本発明のフィルタ及び機能素子を用いることにより、広い帯域幅、低挿入損失、かつ温度安定性に優れた弾性表面波フィルタ、高性能の弾性表面波共振器及びVCOなどの弾性波機能素子、高性能の半導体素子と組み合わせた素子が得られる  By using the filter and functional element of the present invention, a surface acoustic wave filter having a wide bandwidth, low insertion loss, and excellent temperature stability, a high-performance surface acoustic wave resonator, a surface acoustic wave functional element such as a VCO, An element combined with a high performance semiconductor element is obtained.

は、SiO/電極/圧電基板の断面図である。FIG. 3 is a cross-sectional view of SiO 2 / electrode / piezoelectric substrate. は、Al電極を用いた場合のSiO膜厚に対する周波数温度特性の図である。Is a diagram of the frequency-temperature characteristic with respect to SiO 2 film thickness in the case of using the Al electrodes. は、Cu電極を用いた場合のSiO膜厚に対する周波数温度特性の図である。Is a diagram of the frequency-temperature characteristic with respect to SiO 2 film thickness in the case of using the Cu electrodes. は、Al,Cu電極上にSiO膜厚を付着させた場合の2次温度特性を考慮した周波数温度特性の図である。Is a diagram of the frequency-temperature characteristic in consideration of the secondary temperature characteristics when Al, on the Cu electrodes to adhere the SiO 2 film thickness. は、振動子上に電極/薄膜を付着させた構造の振動子の図である。FIG. 4 is a diagram of a vibrator having a structure in which an electrode / thin film is attached on the vibrator. は、振動子上に薄膜/電極を付着させた構造の振動子の図である。FIG. 4 is a diagram of a vibrator having a structure in which a thin film / electrode is attached on the vibrator.

1…圧電単結晶基板、2…電極薄膜、3…誘電体薄膜、4…自由空間
5…振動子、6…電極、7…誘電体薄膜、
DESCRIPTION OF SYMBOLS 1 ... Piezoelectric single crystal substrate, 2 ... Electrode thin film, 3 ... Dielectric thin film, 4 ... Free space 5 ... Vibrator, 6 ... Electrode, 7 ... Dielectric thin film,

圧電単結晶表面にすだれ状電極を作成し、その表面に基板と逆の周波数温度特性をもつ薄膜、例えばSiO薄膜を作製することにより、周波数温度特性を零、或いはその絶対値を小さくした構造の弾性波基板を実現した。A structure in which interdigital electrodes are formed on the surface of a piezoelectric single crystal and a thin film having frequency temperature characteristics opposite to that of the substrate, for example, a SiO 2 thin film, is formed on the surface, thereby making the frequency temperature characteristics zero or reducing the absolute value thereof. An acoustic wave substrate was realized.

実施例の1は、図1のように、電気機械結合係数の大きな圧電性或いは電歪性基板上にすだれ状電極を付着させ、その上に周波数温度特性が圧電基板と逆の周波数温度特性をもつ膜を付着させた基板であって、圧電性或いは電歪性基板として、回転Y板のカット角が20度から35.9度の範囲、及び36.1から45度の範囲、及び110度から125.9度の範囲、及び126.1度から135度の範囲のLiTaO基板であり、かつ弾性表面波の伝搬方向がX軸或いはX軸からプラス・マイナス5度の範囲であり、誘電体薄膜として、SiO、ガラス、誘電体などの薄膜を付着させた回転Y−X伝搬のLiTaO基板、及びこの基板を用いた電子装置が実施例の1である。
実施例の2は、図.1のように、電気機械結合係数の大きな圧電性或いは電歪性基板上にすだれ状電極を付着させ、その上に周波数温度特性が圧電基板と逆の周波数温度特性をもつ膜を付着させた基板であって、圧電性或いは電歪性基板として、回転Y板のカット角が20度から35.9度の範囲、及び36.1から45度の範囲、及び110度から125.9度の範囲、及び126.1度から135度の範囲のLiTaO基板であり、かつ弾性表面波の伝搬方向がX軸或いはX軸からプラス・マイナス5度の範囲であり、薄膜として溶解石英SiO膜、ガラス、誘電体膜の膜厚、H/λ(H:薄膜の膜厚、λ:波長)が、H/λ=0.05からH/λ=0.4の範囲にある、SiO、ガラス、誘電体などの薄膜/電極/回転Y−X伝搬のLiTaO基板、及びこの基板を用いた電子装置である。
実施例の3は、図.1のように、電気機械結合係数の大きな圧電性或いは電歪性基板上にすだれ状電極を付着させ、その上に周波数温度特性が圧電基板と逆の周波数温度特性をもつ膜を付着させた基板であって、圧電性或いは電歪性基板として、回転Y板のカット角が20度から35.9度の範囲、及び36.1から45度の範囲、及び110度から125.9度の範囲、及び126.1度から135度の範囲のLiTaO基板であり、かつ弾性表面波の伝搬方向がX軸或いはX軸からプラス・マイナス5度の範囲であり、かつすだれ状電極材料として、Al,Cu及びこれを主成分とする合金からなる構造の基板を用いた、SiO、ガラス、誘電体などの薄膜/電極/回転Y−X伝搬のLiTaO基板、及びこの基板を用いた電子装置が実施例の3である。
実施例の4は、実施例の1,2、3において、電気機械結合係数の大きな圧電性或いは電歪性基板上にすだれ状電極を付着させ,その上に周波数温度特性が圧電基板と逆の周波数温度特性をもつ膜を付着させた基板であって、圧電性或いは電歪性基板として、回転Y板のカット角が20度から35.9度の範囲、及び36.1から45度の範囲、及び110度から125.9度の範囲、及び126.1度から135度の範囲のLiTaO基板であり、かつ弾性表面波の伝搬方向がX軸或いはX軸からプラス・マイナス5度の範囲であり、かつすだれ状電極材料として、Al,Cu及びこれを主成分とする合金からなる構造の基板であって、すだれ状電極の膜厚、H/λ(H:薄膜の膜厚、λ:波長)が、H/λ=0.005からH/λ=0.2の範囲にある、SiO、ガラス、誘電体などの薄膜/電極/回転Y−X伝搬のLiTaO基板、及びこの基板を用いた電子装置が実施例の4である。
実施例の5は、実施例の1,2,3,4,において、すだれ状電極材料を基板表面に埋め込んだ構造の弾性表面波基板、及びこの基板を用いた電子装置が実施例の5である。
なお、周波数温度特性の計算結果を図.2、図.3に示す。図から、Al電極膜厚H/λ=0.05、SiO膜厚H/λ=0.23で零温度特性が得られている。
また、二次の温度特性を考慮した温度特性を図.4に示す。図からCu電極膜厚H/λ=0.05、SiO膜厚H/λ=0.20で広い温度範囲で5ppm/°Cと良好な温度特性が得られていることが判る。
実施例の6は、実施例の1、2、3、4、5において、弾性表面波として、遅い横波より遅いレーレー波より速い速度であり、かつ遅い横波より速い伝搬速度をもつ擬似弾性表面波を用いた弾性表面波基板、及びこの基板を用いた電子装置が実施例の6である。実施例の7は、図5、6のように、振動子と逆の温度特性をもつ薄膜を付着させることにより、周波数温度特性を零、或いはその絶対値を小さな値として振動子、及びこの振動子を用いた電子装置が、実施例の7である。また、図5,6の構造として、両面に薄膜を付着させた構造も本特許に含まれる。
In Example 1, as shown in FIG. 1, an interdigital electrode is attached on a piezoelectric or electrostrictive substrate having a large electromechanical coupling coefficient, and a frequency temperature characteristic opposite to that of the piezoelectric substrate is obtained. As a piezoelectric or electrostrictive substrate, the cut angle of the rotating Y plate is in the range of 20 degrees to 35.9 degrees, in the range of 36.1 to 45 degrees, and 110 degrees. To 125.9 degrees, and 126.1 degrees to 135 degrees in LiTaO 3 substrate, and the surface acoustic wave propagation direction is in the range of plus or minus 5 degrees from the X axis or X axis. A rotating Y—X propagation LiTaO 3 substrate to which a thin film such as SiO 2 , glass, or a dielectric material is attached as a thin body film, and an electronic device using this substrate are the first embodiment.
Example 2 is shown in FIG. 1. A substrate in which an interdigital electrode is attached on a piezoelectric or electrostrictive substrate having a large electromechanical coupling coefficient, and a film having a frequency temperature characteristic opposite to that of a piezoelectric substrate is attached thereon. As a piezoelectric or electrostrictive substrate, the cut angle of the rotating Y plate is in the range of 20 degrees to 35.9 degrees, in the range of 36.1 to 45 degrees, and in the range of 110 degrees to 125.9 degrees. and a LiTaO 3 substrate in the range of 126.1 degrees to 135 degrees, and a range propagation direction is plus or minus 5 degrees from the X-axis or the X axis of the surface acoustic wave, dissolved silica SiO 2 film as a thin film, Glass, dielectric film thickness, H 2 / λ (H 2 : thin film thickness, λ: wavelength) is in the range of H 2 /λ=0.05 to H 2 /λ=0.4, SiO 2, glass, a thin film / electrode / rotation Y-X propagation such as a dielectric ITaO 3 substrate, and an electronic device using the substrate.
Example 3 is shown in FIG. 1. A substrate in which an interdigital electrode is attached on a piezoelectric or electrostrictive substrate having a large electromechanical coupling coefficient, and a film having a frequency temperature characteristic opposite to that of a piezoelectric substrate is attached thereon. As a piezoelectric or electrostrictive substrate, the cut angle of the rotating Y plate is in the range of 20 degrees to 35.9 degrees, in the range of 36.1 to 45 degrees, and in the range of 110 degrees to 125.9 degrees. , And a LiTaO 3 substrate in the range of 126.1 degrees to 135 degrees, the propagation direction of the surface acoustic wave is in the range of plus or minus 5 degrees from the X axis or the X axis, and the interdigital electrode material is Al. , Cu and LiTaO 3 substrate of thin film / electrode / rotational YX propagation such as SiO 2 , glass, dielectric, etc., and electronic device using this substrate Is Example 3 is there.
In Example 4, the interdigital electrode is attached on a piezoelectric or electrostrictive substrate having a large electromechanical coupling coefficient in Examples 1, 2, and 3, and the frequency-temperature characteristic is opposite to that of the piezoelectric substrate. A substrate to which a film having frequency temperature characteristics is attached, and as a piezoelectric or electrostrictive substrate, the cut angle of the rotating Y plate is in the range of 20 to 35.9 degrees, and in the range of 36.1 to 45 degrees. , And 110 to 125.9 degrees and 126.1 to 135 degrees of LiTaO 3 substrate, and the surface acoustic wave propagation direction is in the range of plus or minus 5 degrees from the X axis or X axis. And a substrate having a structure made of Al, Cu and an alloy mainly composed of Al, Cu as the interdigital electrode material, and the interdigital electrode thickness, H 1 / λ (H 1 : thin film thickness, λ: wavelength) is H 1 /λ=0.005 to H Example 4 is a LiTaO 3 substrate of SiO 2 , glass, dielectric or other thin film / electrode / rotating YX propagation LiTaO 3 substrate in the range of 1 / λ = 0.2, and an electronic device using this substrate. .
Example 5 is a surface acoustic wave substrate having a structure in which the interdigital electrode material is embedded in the substrate surface in Examples 1, 2, 3, 4, and an electronic device using this substrate is Example 5. is there.
The calculation results of frequency temperature characteristics are shown in Fig. 2, Figure. 3 shows. From the figure, zero temperature characteristics are obtained with the Al electrode film thickness H / λ = 0.05 and the SiO 2 film thickness H / λ = 0.23.
Also, the temperature characteristics considering the secondary temperature characteristics are shown in the figure. 4 shows. From the figure, it can be seen that the Cu electrode film thickness H / λ = 0.05, the SiO 2 film thickness H / λ = 0.20, and a favorable temperature characteristic of 5 ppm / ° C. is obtained in a wide temperature range.
Example 6 is a pseudo-surface acoustic wave having a faster propagation speed than a slow Rayleigh wave and a faster propagation speed than a slow transverse wave as a surface acoustic wave in Examples 1, 2, 3, 4, and 5. Example 6 is a surface acoustic wave substrate using, and an electronic device using the substrate. In the seventh embodiment, as shown in FIGS. 5 and 6, by attaching a thin film having a temperature characteristic opposite to that of the vibrator, the frequency temperature characteristic is set to zero or the absolute value thereof is set to a small value, and this vibration An electronic device using a child is the seventh embodiment. 5 and 6 also includes a structure in which thin films are attached to both sides.

Claims (7)

電気機械結合係数の大きな圧電性或いは電歪性基板上にすだれ状電極を付着させ、その上に周波数温度特性が圧電基板と逆の周波数温度特性をもつ膜を付着させた基板であって、圧電性或いは電歪性基板として、回転Y板のカット角が20度から35.9度の範囲、及び36.1から45度の範囲、及び110度から125.9度の範囲、及び126.1度から135度の範囲のLiTaO基板であり、かつ弾性表面波の伝搬方向がX軸或いはX軸からプラス・マイナス5度の範囲である、SiO、ガラス、誘電体などの薄膜/電極/回転Y−X伝搬のLiTaO基板、及びこの基板を用いた電子装置。A substrate in which an interdigital electrode is attached on a piezoelectric or electrostrictive substrate having a large electromechanical coupling coefficient, and a film having a frequency temperature characteristic opposite to that of the piezoelectric substrate is attached on the substrate. As an electrostrictive or electrostrictive substrate, the cut angle of the rotating Y plate is in the range of 20 degrees to 35.9 degrees, in the range of 36.1 to 45 degrees, in the range of 110 degrees to 125.9 degrees, and 126.1. Thin film / electrode / such as SiO 2 , glass, dielectric, and the like, which is a LiTaO 3 substrate in the range of 1 to 135 degrees, and the propagation direction of the surface acoustic wave is in the range of plus or minus 5 degrees from the X axis or X axis Rotating YX propagation LiTaO 3 substrate and electronic device using this substrate. 請求項1において、電気機械結合係数の大きな圧電性或いは電歪性基板上にすだれ状電極を付着させ,その上に周波数温度特性が圧電基板と逆の周波数温度特性をもつ膜を付着させた基板であって、圧電性或いは電歪性基板として、回転Y板のカット角が20度から35.9度の範囲、及び36.1から45度の範囲、及び110度から125.9度の範囲、及び126.1度から135度の範囲のLiTaO基板であり、かつ弾性表面波の伝搬方向がX軸或いはX軸からプラス・マイナス5度の範囲であり、かつ溶解石英SiO膜、ガラス、誘電体膜の膜厚、H/λ(H:薄膜の膜厚、λ:波長)が、H/λ=0.05からH/λ=0.4の範囲にある、SiO、ガラス、誘電体などの薄膜/電極/回転Y−X伝搬のLiTaO基板、及びこの基板を用いた電子装置。2. The substrate according to claim 1, wherein an interdigital electrode is attached on a piezoelectric or electrostrictive substrate having a large electromechanical coupling coefficient, and a film having a frequency temperature characteristic opposite to that of the piezoelectric substrate is attached thereon. As a piezoelectric or electrostrictive substrate, the cut angle of the rotating Y plate is in the range of 20 degrees to 35.9 degrees, in the range of 36.1 to 45 degrees, and in the range of 110 degrees to 125.9 degrees. , And a LiTaO 3 substrate in the range of 126.1 degrees to 135 degrees, the propagation direction of the surface acoustic wave is in the range of plus or minus 5 degrees from the X axis or the X axis, and a fused silica SiO 2 film, glass The dielectric film thickness, H 1 / λ (H 1 : thin film thickness, λ: wavelength) is in the range of H 1 /λ=0.05 to H 1 /λ=0.4. 2, glass, a thin film / electrode / rotation Y-X propagation such as a dielectric ITaO 3 substrate, and an electronic device using the substrate. 請求項1,2、において、電気機械結合係数の大きな圧電性或いは電歪性基板上に、すだれ状電極を付着させ,その上に周波数温度特性が圧電基板と逆の周波数温度特性をもつ膜を付着させた基板であって、圧電性或いは電歪性基板として、回転Y板のカット角が20度から35.9度の範囲、及び36.1から45度の範囲、及び110度から125.9度の範囲、及び126.1度から135度の範囲のLiTaO基板であり、かつ弾性表面波の伝搬方向がX軸或いはX軸からプラス・マイナス5度の範囲であり、かつすだれ状電極材料として、Al,Cu及びこれを主成分とする合金からなる構造の基板であって、SiO、ガラス、誘電体などの薄膜/電極/回転Y−X伝搬のLiTaO基板、及びこの基板を用いた電子装置。5. A film according to claim 1, wherein a comb electrode is attached on a piezoelectric or electrostrictive substrate having a large electromechanical coupling coefficient, and a film having a frequency temperature characteristic opposite to that of the piezoelectric substrate is formed on the interdigital electrode. As an attached substrate, as a piezoelectric or electrostrictive substrate, the cut angle of the rotating Y plate is in the range of 20 degrees to 35.9 degrees, in the range of 36.1 to 45 degrees, and in the range of 110 degrees to 125. LiTaO 3 substrate in the range of 9 degrees and in the range of 126.1 degrees to 135 degrees, and the propagation direction of the surface acoustic wave is in the range of plus or minus 5 degrees from the X axis or the X axis, and the interdigital electrode As a material, a substrate composed of Al, Cu and an alloy containing the same as a main component, and a thin film / electrode / rotary YX propagation LiTaO 3 substrate such as SiO 2 , glass, and dielectric, and this substrate Used electronic equipment . 請求項1,2、3において、電気機械結合係数の大きな圧電性或いは電歪性基板上にすだれ状電極を付着させ、その上に周波数温度特性が圧電基板と逆の周波数温度特性をもつ膜を付着させた基板であって、圧電性或いは電歪性基板として、回転Y板のカット角が20度から35.9度の範囲、及び36.1から45度の範囲、及び110度から125.9度の範囲、及び126.1度から135度の範囲のLiTaO基板であり、かつ弾性表面波の伝搬方向がX軸或いはX軸からプラス・マイナス5度の範囲であり、かつすだれ状電極材料として、Al,Cu及びこれを主成分とする合金からなる構造の基板であって、すだれ状電極の膜厚、H/λ(H:薄膜の膜厚、λ:波長)が、H/λ=0.005からH/λ=0.2の範囲にある、SiO、ガラス、誘電体などの薄膜/電極/回転Y−X伝搬のLiTaO基板、及びこの基板を用いた電子装置。5. A film according to claim 1, wherein an interdigital electrode is attached to a piezoelectric or electrostrictive substrate having a large electromechanical coupling coefficient, and a film having a frequency temperature characteristic opposite to that of the piezoelectric substrate is formed thereon. As an attached substrate, as a piezoelectric or electrostrictive substrate, the cut angle of the rotating Y plate is in the range of 20 degrees to 35.9 degrees, in the range of 36.1 to 45 degrees, and in the range of 110 degrees to 125. LiTaO 3 substrate in the range of 9 degrees and in the range of 126.1 degrees to 135 degrees, and the propagation direction of the surface acoustic wave is in the range of plus or minus 5 degrees from the X axis or the X axis, and the interdigital electrode As a material, a substrate having a structure made of Al, Cu and an alloy containing the same as a main component, the film thickness of the interdigital electrode, H 2 / λ (H 2 : film thickness of the thin film, λ: wavelength) is H from 2 /λ=0.005 H 2 /λ=0.2 In the range, SiO 2, glass, thin film / electrode / rotation Y-X propagation LiTaO 3 substrate such as a dielectric, and an electronic device using the substrate. 請求項1、2、3、4において、すだれ状電極材料を基板表面に埋め込んだ構造の弾性表面波基板、及びこの基板を用いた電子装置。  5. A surface acoustic wave substrate having a structure in which an interdigital electrode material is embedded in a substrate surface according to claim 1, and an electronic device using the substrate. 請求項1、2、3、4、5において、弾性表面波として、遅い横波より遅いレーレー波より速い速度であり、かつ遅い横波より速い伝搬速度をもつ擬似弾性表面波を用いた弾性表面波基板、及びこの基板を用いた電子装置。  6. The surface acoustic wave substrate according to claim 1, wherein the surface acoustic wave is a quasi-surface acoustic wave having a faster speed than a slow Rayleigh wave and a faster propagation speed than a slow transverse wave. And an electronic device using the substrate. 振動子と逆の温度特性をもつ薄膜を付着させることにより、周波数温度特性を零、或いはその絶対値を小さな値とした振動子、及びこの振動子を用いた電子装置。  A vibrator having a frequency temperature characteristic of zero or a small absolute value by attaching a thin film having a temperature characteristic opposite to that of the vibrator, and an electronic device using the vibrator.
JP2012178935A 2012-07-24 2012-07-24 Temperature ultrahigh stability thin film structure pseudo surface acoustic wave substrate and surface acoustic wave function element employing the substrate Pending JP2014027639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012178935A JP2014027639A (en) 2012-07-24 2012-07-24 Temperature ultrahigh stability thin film structure pseudo surface acoustic wave substrate and surface acoustic wave function element employing the substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012178935A JP2014027639A (en) 2012-07-24 2012-07-24 Temperature ultrahigh stability thin film structure pseudo surface acoustic wave substrate and surface acoustic wave function element employing the substrate

Publications (1)

Publication Number Publication Date
JP2014027639A true JP2014027639A (en) 2014-02-06

Family

ID=50200865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012178935A Pending JP2014027639A (en) 2012-07-24 2012-07-24 Temperature ultrahigh stability thin film structure pseudo surface acoustic wave substrate and surface acoustic wave function element employing the substrate

Country Status (1)

Country Link
JP (1) JP2014027639A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017523645A (en) * 2014-08-21 2017-08-17 スナップトラック・インコーポレーテッド Microacoustic device with improved temperature compensation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017523645A (en) * 2014-08-21 2017-08-17 スナップトラック・インコーポレーテッド Microacoustic device with improved temperature compensation
US10224897B2 (en) 2014-08-21 2019-03-05 Snaptrack, Inc. Micro-acoustic component having improved temperature compensation

Similar Documents

Publication Publication Date Title
Hashimoto et al. High-performance surface acoustic wave resonators in the 1 to 3 GHz range using a ScAlN/6H-SiC structure
JP4757860B2 (en) Surface acoustic wave functional element
JP2021177665A (en) Acoustic wave device
EP2892153B1 (en) Piezoelectric acoustic resonator with adjustable temperature compensation capability
JP2019507546A5 (en)
WO2017132184A1 (en) Guided surface acoustic wave device providing spurious mode rejection
WO2017073425A1 (en) Acoustic wave resonator, acoustic wave filter, duplexer, communication device, and method for designing acoustic wave resonator
JP4943514B2 (en) Elastic wave device, communication module, and communication apparatus
JP2015537492A (en) Electronic acoustic parts
JPWO2004070946A1 (en) Boundary acoustic wave device
JP4109877B2 (en) Surface acoustic wave functional element
JP2006270906A (en) Temperature high stability/high-coupling groove structure surface acoustic wave substrate and surface acoustic wave function element using the substrate
KR20150046062A (en) Acoustic wave element and antenna shared apparatus employing same
US20070182279A1 (en) Surface acoustic wave device and electronic apparatus
JP4158650B2 (en) Surface acoustic wave device and manufacturing method thereof
CN111149296B (en) Composite substrate and elastic wave element using same
CN113056873A (en) Elastic wave device, branching filter, and communication device
TW202044757A (en) High-order mode surface acoustic wave device
JPH0715274A (en) High frequency saw filter and surface acoustic wave function element using high-stability high coupling saw substrate
JP2000196410A (en) High-stability and high-coupling surface acoustic wave substrate, surface acoustic wave filter using the same and surface acoustic wave function element
JP2006203839A (en) Surface acoustic wave substrate having temperature highly stable diaphragm structure and surface acoustic wave function element using the substrate
Kando et al. Improvement in temperature characteristics of plate wave resonator using rotated Y-cut LiTaO 3/SiN structure
JP2014027639A (en) Temperature ultrahigh stability thin film structure pseudo surface acoustic wave substrate and surface acoustic wave function element employing the substrate
JP7210828B2 (en) surface acoustic wave device
JP2008092610A (en) Surface acoustic wave substrate and surface acoustic wave functional element