JP2014026913A - Temperature estimation method and temperature estimation device - Google Patents

Temperature estimation method and temperature estimation device Download PDF

Info

Publication number
JP2014026913A
JP2014026913A JP2012168346A JP2012168346A JP2014026913A JP 2014026913 A JP2014026913 A JP 2014026913A JP 2012168346 A JP2012168346 A JP 2012168346A JP 2012168346 A JP2012168346 A JP 2012168346A JP 2014026913 A JP2014026913 A JP 2014026913A
Authority
JP
Japan
Prior art keywords
temperature
internal resistance
storage battery
lead storage
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012168346A
Other languages
Japanese (ja)
Other versions
JP5842759B2 (en
Inventor
Hidekuni Kajiyama
英訓 梶山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2012168346A priority Critical patent/JP5842759B2/en
Publication of JP2014026913A publication Critical patent/JP2014026913A/en
Application granted granted Critical
Publication of JP5842759B2 publication Critical patent/JP5842759B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a temperature estimation method and a temperature estimation device capable of estimating the temperature of a lead acid battery accurately while charging.SOLUTION: In the temperature estimation method, calorific value Qis determined based on the internal resistance value and the charging current of a lead acid battery, by using a first internal resistance from the start of charging until the charging voltage reaches a predetermined value, and using a second internal resistance larger than the first internal resistance when the charging voltage reaches a predetermined value. The temperature of a lead acid battery, while charging, is determined according to a formula T=(1-α)×t+α×T+[(1-α)/β]×Q, where Tis the estimated temperature of a lead acid battery, Tis the temperature of a lead acid battery immediately before estimating the T, Qis the calorific value of a lead acid battery, tis the atmospheric temperature of a lead acid battery, and α and β are the coefficients representing thermal radiation and independent from the calorific value.

Description

本発明は、鉛蓄電池の充電時の温度推定方法及び温度推定装置に関する。   The present invention relates to a temperature estimation method and a temperature estimation device during charging of a lead storage battery.

鉛蓄電池の充電の際には、良好な充電を実現するために、鉛蓄電池の充電時の温度を把握する必要がある。鉛蓄電池の充電時の温度を推定する方法としては、例えば特許文献1に記載されているものが知られている。特許文献1に記載の温度推定装置では、バッテリの内部抵抗での発熱量を求め、この発熱量に基づいて推定したバッテリの液温を補正している。   When charging a lead-acid battery, it is necessary to know the temperature at the time of charging the lead-acid battery in order to realize good charge. As a method of estimating the temperature at the time of charge of a lead acid battery, what is described in patent document 1, for example is known. In the temperature estimation device described in Patent Document 1, the amount of heat generated by the internal resistance of the battery is obtained, and the battery liquid temperature estimated based on this amount of heat generated is corrected.

特開2010−123517号公報JP 2010-123517 A

ところで、鉛蓄電池を満充電する場合には過充電を行う必要がある。このとき、鉛蓄電池の充電末期では、鉛蓄電池内の電解液からガスの発生が生じ、鉛蓄電池の状態が大きく変化する。そのため、鉛蓄電池の充電における鉛蓄電池の温度を精度良く推定するために、充電末期の鉛蓄電池の状態を考慮した鉛蓄電池の温度の推定方法が求められている。   By the way, when a lead storage battery is fully charged, it is necessary to overcharge. At this time, at the end of charging of the lead storage battery, gas is generated from the electrolyte in the lead storage battery, and the state of the lead storage battery changes greatly. Therefore, in order to accurately estimate the temperature of the lead storage battery in charging the lead storage battery, a method for estimating the temperature of the lead storage battery in consideration of the state of the lead storage battery at the end of charging is required.

本発明は、鉛蓄電池の充電時の温度を精度良く推定できる温度推定方法及び温度推定装置を提供することを目的とする。   An object of this invention is to provide the temperature estimation method and temperature estimation apparatus which can estimate the temperature at the time of charge of lead acid battery accurately.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、充電末期の鉛蓄電池の状態の変化において、内部抵抗の変化による発熱量の変動に着目し、発熱量の算出に用いる内部抵抗値を所定のポイントにおいて変えることにより、鉛蓄電池の充電時の温度を精度良く推定できるという知見を得た。本発明はこれらの知見に基づいて完成に至ったものであり、本発明によれば、以下の発明が提供される。   As a result of intensive research to achieve the above object, the present inventors focused on fluctuations in the amount of heat generated due to changes in internal resistance in the change in the state of the lead-acid battery at the end of charging, and used it for calculating the amount of heat generated. The knowledge that the temperature at the time of charge of a lead storage battery can be estimated accurately by changing resistance value in a predetermined point was acquired. The present invention has been completed based on these findings, and according to the present invention, the following inventions are provided.

すなわち、本発明に係る温度推定方法は、鉛蓄電池の充電時の温度を推定する温度推定方法であって、推定する鉛蓄電池の推定温度をT(n)、当該T(n)を推定する直前の鉛蓄電池の温度をT(n−1)、鉛蓄電池の発熱量をQ(n)、鉛蓄電池の雰囲気温度をt(n)、発熱量に依存しない係数をα及びβとし、発熱量Q(n)を鉛蓄電池の内部抵抗値及び充電電流に基づいて求め、内部抵抗値として、充電開始から充電電圧が所定の値に到達するまでは第1内部抵抗値を用い、充電電圧が所定の値に到達した場合には第1の内部抵抗値よりも大きい第2内部抵抗値を用い、
(n)=(1―α)×t(n)+α×T(n−1)+[(1−α)/β]×Q(n)
により鉛蓄電池の充電時の温度を求めることを特徴とする。
That is, the temperature estimation method according to the present invention is a temperature estimation method for estimating the temperature at the time of charging the lead storage battery, and the estimated temperature of the lead storage battery to be estimated is T (n) immediately before estimating the T (n). The lead storage battery temperature is T (n-1) , the lead storage battery calorific value is Q (n) , the lead acid battery ambient temperature is t (n) , the calorific value independent coefficients are α and β, and the calorific value Q (N) is obtained based on the internal resistance value and the charging current of the lead storage battery, and the first internal resistance value is used as the internal resistance value until the charging voltage reaches a predetermined value from the start of charging. When the value is reached, a second internal resistance value larger than the first internal resistance value is used,
T (n) = (1- [alpha]) * t (n) + [alpha] * T (n-1) + [(1- [alpha]) / [beta]] * Q (n)
Thus, the temperature at the time of charging the lead storage battery is obtained.

この温度推定方法では、発熱量Q(n)の算出に用いる内部抵抗値として、充電開始から充電電圧が所定の値に到達するまでは第1内部抵抗値を用い、充電電圧が所定の値に到達した場合には第1の内部抵抗値よりも大きい第2内部抵抗値を用いている。このように、充電電圧の所定の値を境に内部抵抗値を第1の内部抵抗値と第2の内部抵抗値とで変えることにより、充電末期の内部抵抗値の変動に応じた発熱量Q(n)を求めることができる。したがって、鉛蓄電池の充電時の温度を精度良く推定できる。 In this temperature estimation method, the first internal resistance value is used from the start of charging until the charging voltage reaches a predetermined value as the internal resistance value used for calculating the calorific value Q (n) , and the charging voltage is set to the predetermined value. When it reaches, the second internal resistance value larger than the first internal resistance value is used. In this way, by changing the internal resistance value between the first internal resistance value and the second internal resistance value with the predetermined value of the charging voltage as a boundary, the calorific value Q corresponding to the fluctuation of the internal resistance value at the end of charging is obtained. (N) can be obtained. Therefore, the temperature at the time of charge of a lead acid battery can be estimated accurately.

充電電圧の所定の値は、充電電圧の傾きが所定の傾きよりも大きくなる値である。このように、充電電圧の傾きを用いることにより、充電電圧の状態の変化、すなわち内部抵抗値が変化する値(時)を確実に捉えることができる。   The predetermined value of the charging voltage is a value that makes the slope of the charging voltage larger than the predetermined slope. Thus, by using the slope of the charging voltage, it is possible to reliably capture the change in the state of the charging voltage, that is, the value (hour) at which the internal resistance value changes.

係数α及びβのそれぞれは、鉛蓄電池のセルの配置に依存する熱放散を表現した係数である。これらの係数α及びβを用いることにより、鉛蓄電池の充電時の温度をより精度良く推定することができる。   Each of the coefficients α and β is a coefficient expressing heat dissipation depending on the arrangement of the cells of the lead storage battery. By using these coefficients α and β, the temperature at the time of charging the lead storage battery can be estimated more accurately.

また、本実施形態に係る温度推定装置は、鉛蓄電池の充電時の温度を推定する温度推定装置であって、推定する鉛蓄電池の推定温度をT(n)、当該T(n)を推定する直前の鉛蓄電池の温度をT(n−1)、鉛蓄電池の発熱量をQ(n)、鉛蓄電池の雰囲気温度をt(n)、発熱量に依存しない係数をα及びβとした場合、
(n)=(1―α)×t(n)+α×T(n−1)+[(1−α)/β]×Q(n)
により鉛蓄電池の充電時の温度を推定する温度推定手段を備え、発熱量Q(n)は、鉛蓄電池の内部抵抗値及び充電電流に基づいて求められており、温度推定手段は、内部抵抗値として、充電開始から充電電圧が所定の値に到達するまでは第1内部抵抗値を用い、充電電圧が所定の値に到達した場合には第1の内部抵抗値よりも大きい第2内部抵抗値を用いることを特徴とする。
Moreover, the temperature estimation apparatus which concerns on this embodiment is a temperature estimation apparatus which estimates the temperature at the time of charge of a lead storage battery, Comprising: Estimated temperature of the lead storage battery to estimate T (n) and the said T (n) When the temperature of the immediately preceding lead storage battery is T (n-1) , the calorific value of the lead storage battery is Q (n) , the ambient temperature of the lead storage battery is t (n) , and the coefficients independent of the calorific value are α and β,
T (n) = (1- [alpha]) * t (n) + [alpha] * T (n-1) + [(1- [alpha]) / [beta]] * Q (n)
Is provided with temperature estimation means for estimating the temperature at the time of charging the lead storage battery, and the calorific value Q (n) is obtained based on the internal resistance value and the charging current of the lead storage battery. The first internal resistance value is used from the start of charging until the charging voltage reaches a predetermined value, and when the charging voltage reaches the predetermined value, the second internal resistance value that is greater than the first internal resistance value It is characterized by using.

本発明によれば、鉛蓄電池の充電時の温度を精度良く推定できる。   ADVANTAGE OF THE INVENTION According to this invention, the temperature at the time of charge of a lead storage battery can be estimated accurately.

一実施形態に係る温度推定装置の構成を示す図である。It is a figure which shows the structure of the temperature estimation apparatus which concerns on one Embodiment. 温度推定部における温度推定方法を説明するための図である。It is a figure for demonstrating the temperature estimation method in a temperature estimation part.

以下、添付図面を参照して、本発明の好適な実施形態について詳細に説明する。なお、図面の説明において同一又は相当要素には同一符号を付し、重複する説明は省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same or equivalent elements will be denoted by the same reference numerals, and redundant description will be omitted.

図1は、一実施形態に係る温度推定装置の構成を示す図である。図1に示す温度推定装置1は、例えば鉛蓄電池を充電する充電装置(図示しない)に設けられている。温度推定装置1は、温度推定部(温度推定手段)10を備えている。温度推定装置1には、温度センサ5が接続されている。温度センサ5は、鉛蓄電池が設けられている鉛蓄電池の周囲の雰囲気温度(外気温度)を測定する。温度センサ5は、測定した温度を示す温度情報を温度推定装置1に出力する。   FIG. 1 is a diagram illustrating a configuration of a temperature estimation device according to an embodiment. A temperature estimation device 1 shown in FIG. 1 is provided in a charging device (not shown) that charges a lead storage battery, for example. The temperature estimation device 1 includes a temperature estimation unit (temperature estimation means) 10. A temperature sensor 5 is connected to the temperature estimation device 1. The temperature sensor 5 measures the ambient temperature (outside air temperature) around the lead storage battery in which the lead storage battery is provided. The temperature sensor 5 outputs temperature information indicating the measured temperature to the temperature estimation device 1.

温度推定部10は、鉛蓄電池の充電時の温度を推定する部分である。温度推定部10は、下記式(1)により、鉛蓄電池の充電時の温度を推定する。
(n)=(1―α)×t(n)+α×T(n−1)+[(1−α)/β]×Q(n) …(1)
上記式(1)において、T(n):推定する鉛蓄電池の温度[℃]、t(n):鉛蓄電池の雰囲気温度[℃]、T(n−1):温度を推定する直前の鉛蓄電池の温度[℃]、Q(n):鉛蓄電池の発熱量[W]、α,β:熱放散を表現した係数である。
The temperature estimation part 10 is a part which estimates the temperature at the time of charge of a lead storage battery. The temperature estimation part 10 estimates the temperature at the time of charge of a lead acid battery by following formula (1).
T (n) = (1- [alpha]) * t (n) + [alpha] * T (n-1) + [(1- [alpha]) / [beta]] * Q (n) (1)
In the above formula (1), T (n) : Estimated lead-acid battery temperature [° C.], t (n) : Lead-acid battery ambient temperature [° C.], T (n−1) : Lead immediately before estimating the temperature Storage battery temperature [° C.], Q (n) : calorific value [W] of lead storage battery, α, β: coefficients expressing heat dissipation.

ここで、係数α及びβのそれぞれは、鉛蓄電池のセルの配置に依存する熱放散(熱伝達)を表現した係数であり、上記式(1)の発熱量Q(n)には依存しない係数である。より具体的には、係数α及びβは、熱放散係数(熱伝達係数)と鉛蓄電池の表面積、温度推定周期、電池熱容量とし、
α=exp(−1×熱放散係数×電池表面積×温度推定周期÷電池熱容量) …(2)
β=熱放散係数×電池表面積 …(3)
により求められる。
Here, each of the coefficients α and β is a coefficient expressing heat dissipation (heat transfer) depending on the arrangement of the cells of the lead storage battery, and is not dependent on the calorific value Q (n) of the above formula (1). It is. More specifically, the coefficients α and β are the heat dissipation coefficient (heat transfer coefficient), the surface area of the lead storage battery, the temperature estimation period, and the battery heat capacity,
α = exp (−1 × heat dissipation coefficient × battery surface area × temperature estimation period / battery heat capacity) (2)
β = heat dissipation coefficient × battery surface area (3)
Is required.

すなわち、係数α及びβのそれぞれは、熱放散係数や電池表面積、電池の熱容量から求められるものであり、鉛蓄電池のセルの配置によって変化する鉛蓄電池の熱放散の程度を表現した係数である。この係数α及びβを用いることにより、鉛蓄電池の充電時の温度をより精度良く推定することができる。この係数α及びβのそれぞれは、温度を推定する鉛蓄電池のセルの配置(例えば、6×4)に基づいて予め実験によって求められ、予め温度推定装置に記憶されている。   That is, each of the coefficients α and β is obtained from the heat dissipation coefficient, the battery surface area, and the heat capacity of the battery, and is a coefficient expressing the degree of heat dissipation of the lead storage battery that varies depending on the arrangement of the lead storage battery cells. By using these coefficients α and β, the temperature at the time of charging the lead storage battery can be estimated with higher accuracy. Each of the coefficients α and β is obtained in advance by an experiment based on the cell arrangement (for example, 6 × 4) of the lead storage battery for estimating the temperature, and is stored in advance in the temperature estimation device.

発熱量Q(n)は、充電によって鉛蓄電池内部で発生する熱量であり、下記(4)により求められる。
(n)=(I×R) …(4)
上記式(4)において、I:充電電流[A]、R:内部抵抗[Ω]である。内部抵抗には充電の状態に応じて、第1の内部抵抗R1又は第2の内部抵抗R2が用いられる。したがって、発熱量Q(n)は充電電流と鉛蓄電池の内部抵抗値とに基づいて求められる。
The calorific value Q (n) is the amount of heat generated inside the lead-acid battery by charging, and is obtained by the following (4).
Q (n) = (I 2 × R) (4)
In the above formula (4), I: charging current [A], R: internal resistance [Ω]. As the internal resistance, the first internal resistance R1 or the second internal resistance R2 is used depending on the state of charge. Therefore, the calorific value Q (n) is obtained based on the charging current and the internal resistance value of the lead storage battery.

ここで、内部抵抗値は、第1の内部抵抗値R1と第2の内部抵抗値R2(図2参照)とを用いる。第1の内部抵抗値R1は、充電開始から充電末期前まで適用され、第2の内部抵抗値R2は、充電末期に適用される内部抵抗値である。第1の内部抵抗値R1及び第2の内部抵抗値R2は、電解液からのガスの発生など、鉛蓄電池の充電における充電状態の変化(反応変化、電気分解)によって、内部抵抗値が変化するものである。   Here, as the internal resistance value, a first internal resistance value R1 and a second internal resistance value R2 (see FIG. 2) are used. The first internal resistance value R1 is applied from the start of charging to the end of charging, and the second internal resistance value R2 is an internal resistance value applied at the end of charging. The internal resistance value of the first internal resistance value R1 and the second internal resistance value R2 changes due to a change in charge state (reaction change, electrolysis) in charging of the lead storage battery, such as generation of gas from the electrolyte. Is.

なお、第1の内部抵抗値R1及び第2の内部抵抗値R2は、鉛蓄電池の構造や特性によって決まるものであり、第1の内部抵抗値R1、第2の内部抵抗値R2それぞれ実験等により予め測定し設定され、温度推定部10に記憶されている。第2の内部抵抗値R2は、第1の内部抵抗値R1よりも大きく設定されている。   The first internal resistance value R1 and the second internal resistance value R2 are determined by the structure and characteristics of the lead storage battery, and the first internal resistance value R1 and the second internal resistance value R2 are determined by experiments, etc. It is measured and set in advance and stored in the temperature estimation unit 10. The second internal resistance value R2 is set to be larger than the first internal resistance value R1.

また、温度を推定する直前の鉛蓄電池の温度T(n−1)は、温度T(n)が求められる以前の鉛蓄電池の温度であり、センサにより測定された実測温度であってもよいし、推定された推定温度であってもよい。温度T(n−1)が推定された温度である場合、温度推定部10において例えば10[sec]周期で温度を推定している場合には、温度T(n)を求める直前(10[sec]前)に推定された温度を用いる。 Further, the temperature T (n-1) of the lead storage battery immediately before the temperature is estimated is the temperature of the lead storage battery before the temperature T (n) is obtained, and may be the actual temperature measured by the sensor. The estimated temperature may be estimated. When the temperature T (n-1) is an estimated temperature, when the temperature estimation unit 10 estimates the temperature with a period of 10 [sec], for example, immediately before obtaining the temperature T (n) (10 [sec] ] Use the temperature estimated in the previous step.

温度推定部10は、温度センサ5から出力された温度情報または、推定された温度情報(T(n−1))を取得すると共に、鉛蓄電池の充電電圧及び充電電流を取得し、鉛蓄電池の温度を推定する。 The temperature estimation unit 10 acquires the temperature information output from the temperature sensor 5 or the estimated temperature information (T (n-1) ), acquires the charging voltage and charging current of the lead storage battery, and Estimate temperature.

温度推定部10は、充電電圧を監視し、充電開始から充電電圧が所定の値に到達するまでは第1の内部抵抗値R1を用いて発熱量Q(n)を求め、充電電圧が所定の値に到達した場合には第2の内部抵抗値R2を用いて発熱量Q(n)を求めて、鉛蓄電池の温度を推定する。発熱量Q(n)の算出について、図2を参照しながら説明する。 The temperature estimation unit 10 monitors the charging voltage, obtains the heat generation amount Q (n) using the first internal resistance value R1 from the start of charging until the charging voltage reaches a predetermined value, and the charging voltage is determined to be predetermined. When the value is reached, the calorific value Q (n) is obtained using the second internal resistance value R2, and the temperature of the lead storage battery is estimated. Calculation of the calorific value Q (n) will be described with reference to FIG.

図2は、温度推定部における温度推定方法を説明するための図である。図2に示す例では、定電流による充電結果を示している。図2では、横軸に時間[h]を示し、縦軸に鉛蓄電池温度[℃]、充電電圧[V]、充電電流[A]を示している。鉛蓄電池の温度は、本実施形態の温度推定装置1により推定された温度を実線で示し、実測値を破線で示している。   FIG. 2 is a diagram for explaining a temperature estimation method in the temperature estimation unit. In the example shown in FIG. 2, the charging result by a constant current is shown. In FIG. 2, the horizontal axis represents time [h], and the vertical axis represents lead-acid battery temperature [° C.], charging voltage [V], and charging current [A]. Regarding the temperature of the lead storage battery, the temperature estimated by the temperature estimation device 1 of the present embodiment is indicated by a solid line, and the actual measurement value is indicated by a broken line.

図2に示すように、温度推定部10は、充電電圧が上昇して所定の値に到達したときに、発熱量Q(n)の算出に用いる内部抵抗値を、第1の内部抵抗値R1から第2の内部抵抗値R2を変更する。本実施形態では、温度推定部10は、充電電圧の傾きがそれまでの充電電圧の傾きよりも大きくなり、所定の傾きよりも大きくなった時の充電電圧の値(所定の値)にて、発熱量Q(n)の算出に用いる内部抵抗値を第1の内部抵抗値R1から第2の内部抵抗値R2に切り替える。ここで、充電電圧の傾きは、充電時の充電電圧のセンシング時間当たりなど、単位時間当たりの電圧の変化量であり、所定の傾きは、充電電圧の大幅な変化(例えば、2倍)を検出するのに適した値に設定される。この充電電圧の傾きが所定の傾きより大きくなることは、充電中の鉛蓄電池の状態が大きく変化したことを示している。すなわち、鉛蓄電池の内部抵抗が大きくなったことを示している。なお、温度推定部10は、内部抵抗値の切り替えを1度の充電において1回のみ実施する。また、充電電圧の傾きを検出する場合において、所定の係数を乗じて求めてもよい。 As shown in FIG. 2, when the charging voltage rises and reaches a predetermined value, the temperature estimation unit 10 uses the internal resistance value used for calculating the calorific value Q (n) as the first internal resistance value R1. To the second internal resistance value R2. In the present embodiment, the temperature estimation unit 10 uses the value of the charging voltage (predetermined value) when the inclination of the charging voltage is larger than the inclination of the charging voltage so far and is larger than the predetermined inclination. The internal resistance value used for calculation of the calorific value Q (n) is switched from the first internal resistance value R1 to the second internal resistance value R2. Here, the slope of the charging voltage is the amount of change in voltage per unit time, such as per charging time sensing time during charging, and the predetermined slope detects a significant change (for example, twice) in the charging voltage. It is set to a value suitable for The fact that the slope of the charging voltage is larger than the predetermined slope indicates that the state of the lead-acid battery being charged has changed greatly. That is, it shows that the internal resistance of the lead storage battery has increased. The temperature estimation unit 10 switches the internal resistance value only once in one charge. Further, when detecting the slope of the charging voltage, it may be obtained by multiplying by a predetermined coefficient.

上記のように温度推定部10により推定された温度に係る情報は、鉛蓄電池の充電器に出力される。充電器では、温度に係る情報を用いて充電電流を制御し、鉛蓄電池の充電を実施する。   Information on the temperature estimated by the temperature estimation unit 10 as described above is output to the lead-acid battery charger. In the charger, the charging current is controlled using the temperature information, and the lead storage battery is charged.

以上説明したように、本実施形態では、発熱量Q(n)の算出に用いる内部抵抗値として、充電開始から充電電圧が所定の値に到達するまでは第1内部抵抗値R1を用い、充電電圧が所定の値に到達した場合には第1の内部抵抗値R1よりも大きい第2内部抵抗値R2を用いている。このように、充電電圧の所定の値を境に内部抵抗値を第1の内部抵抗値R1と第2の内部抵抗値R2とで変えることにより、充電末期の内部抵抗値の変動に応じた発熱量Q(n)を求めることができる。したがって、図2に示すように、温度推定装置1では、推定した温度と実測温度との差異を低減することが可能となる。以上のように、本実施形態の温度推定装置1では、鉛蓄電池の充電時の温度を精度良く推定できる。 As described above, in the present embodiment, the first internal resistance value R1 is used from the start of charging until the charging voltage reaches a predetermined value as the internal resistance value used for calculating the calorific value Q (n). When the voltage reaches a predetermined value, the second internal resistance value R2 larger than the first internal resistance value R1 is used. In this way, by changing the internal resistance value between the first internal resistance value R1 and the second internal resistance value R2 with the predetermined value of the charging voltage as a boundary, the heat generation according to the fluctuation of the internal resistance value at the end of charging. The quantity Q (n) can be determined. Therefore, as shown in FIG. 2, the temperature estimation device 1 can reduce the difference between the estimated temperature and the actually measured temperature. As described above, the temperature estimation device 1 of the present embodiment can accurately estimate the temperature at the time of charging the lead storage battery.

また、鉛蓄電池の温度を精度良く推定できるため、例えば鉛蓄電池の温度を測定するセンサが故障した場合であっても、温度センサを修理するまでの間、温度推定装置1により推定した温度により鉛蓄電池の充電を実施することができ、鉛蓄電池の充電を継続できる。したがって、センサが故障した場合でも鉛蓄電池保護のための入出力の制限を実施する必要がなく、利便性が改善される。   In addition, since the temperature of the lead storage battery can be accurately estimated, for example, even if the sensor for measuring the temperature of the lead storage battery fails, the lead estimated by the temperature estimated by the temperature estimation device 1 until the temperature sensor is repaired. The storage battery can be charged, and the lead storage battery can be continuously charged. Therefore, even when the sensor fails, it is not necessary to perform input / output restrictions for protecting the lead storage battery, and convenience is improved.

また、本実施形態では、充電電圧の傾きが大きくなった場合に、発熱量Q(n)の算出に用いる内部抵抗値を第1の内部抵抗値R1から第2の内部抵抗値R2に切り替えている。このように、充電電圧の傾きを用いることにより、充電電圧が急激に上昇するポイント(所定の値)を確実に捉えることができる。そして、充電電圧が急激に上昇するポイントは、鉛蓄電池の状態が変化したポイントであるため、鉛蓄電池の状態の変化、すなわち内部抵抗の変化を確実に捉えることができる。 In the present embodiment, when the slope of the charging voltage increases, the internal resistance value used for calculating the heat generation amount Q (n) is switched from the first internal resistance value R1 to the second internal resistance value R2. Yes. As described above, by using the slope of the charging voltage, it is possible to reliably capture the point (predetermined value) at which the charging voltage rapidly increases. And since the point where a charging voltage rises rapidly is a point where the state of a lead storage battery changed, the change of the state of a lead storage battery, ie, the change of internal resistance, can be caught reliably.

本発明は、上記実施形態に限定されるものではない。例えば、上記実施形態では、充電電圧の傾きにより、充電電圧が所定の値に到達したと判断しているが、充電電圧の所定の値は、転極点電圧となる電圧値であってもよい。また、充電電圧がそれまでの値に対して所定の倍数の値となった場合に、充電電圧が所定の値に到達したと判断してもよい。   The present invention is not limited to the above embodiment. For example, in the above-described embodiment, it is determined that the charging voltage has reached a predetermined value based on the slope of the charging voltage, but the predetermined value of the charging voltage may be a voltage value that is a reversal point voltage. Further, it may be determined that the charging voltage has reached a predetermined value when the charging voltage is a predetermined multiple of the previous value.

1…温度推定装置、10…温度推定部。   DESCRIPTION OF SYMBOLS 1 ... Temperature estimation apparatus, 10 ... Temperature estimation part.

Claims (4)

鉛蓄電池の充電時の温度を推定する温度推定方法であって、
推定する前記鉛蓄電池の推定温度をT(n)、当該T(n)を推定する直前の前記鉛蓄電池の温度をT(n−1)、前記鉛蓄電池の発熱量をQ(n)、前記鉛蓄電池の雰囲気温度をt(n)、前記発熱量に依存しない係数をα及びβとし、
前記発熱量Q(n)を前記鉛蓄電池の内部抵抗値及び充電電流に基づいて求め、
前記内部抵抗値として、充電開始から充電電圧が所定の値に到達するまでは第1内部抵抗値を用い、前記充電電圧が所定の値に到達した場合には前記第1の内部抵抗値よりも大きい第2内部抵抗値を用い、
(n)=(1―α)×t(n)+α×T(n−1)+[(1−α)/β]×Q(n)
により前記鉛蓄電池の充電時の温度を求めることを特徴とする温度推定方法。
A temperature estimation method for estimating a temperature at the time of charge of a lead storage battery,
The estimated temperature of the lead storage battery to be estimated is T (n) , the temperature of the lead storage battery immediately before estimating the T (n) is T (n-1) , the calorific value of the lead storage battery is Q (n) , T (n) is the ambient temperature of the lead acid battery, and α and β are coefficients that do not depend on the calorific value,
The calorific value Q (n) is determined based on the internal resistance value and charging current of the lead storage battery,
As the internal resistance value, the first internal resistance value is used from the start of charging until the charging voltage reaches a predetermined value, and when the charging voltage reaches a predetermined value, the first internal resistance value is higher than the first internal resistance value. Using a large second internal resistance value,
T (n) = (1- [alpha]) * t (n) + [alpha] * T (n-1) + [(1- [alpha]) / [beta]] * Q (n)
The temperature estimation method characterized by calculating | requiring the temperature at the time of charge of the said lead acid battery.
前記充電電圧の所定の値は、前記充電電圧の傾きが所定の傾きよりも大きくなる値であることを特徴とする請求項1記載の温度推定方法。   The temperature estimation method according to claim 1, wherein the predetermined value of the charging voltage is a value at which an inclination of the charging voltage is larger than a predetermined inclination. 前記係数α及びβのそれぞれは、前記鉛蓄電池のセルの配置に依存する熱放散を表現した係数であることを特徴とする請求項1又は2記載の温度推定方法。   The temperature estimation method according to claim 1 or 2, wherein each of the coefficients α and β is a coefficient expressing heat dissipation depending on an arrangement of cells of the lead storage battery. 鉛蓄電池の充電時の温度を推定する温度推定装置であって、
推定する前記鉛蓄電池の推定温度をT(n)、当該T(n)を推定する直前の前記鉛蓄電池の温度をT(n−1)、前記鉛蓄電池の発熱量をQ(n)、前記鉛蓄電池の雰囲気温度をt(n)、前記発熱量に依存しない係数をα及びβとした場合、
(n)=(1―α)×t(n)+α×T(n−1)+[(1−α)/β]×Q(n)
により前記鉛蓄電池の充電時の温度を推定する温度推定手段を備え、
前記発熱量Q(n)は、前記鉛蓄電池の内部抵抗値及び充電電流に基づいて求められており、
前記温度推定手段は、前記内部抵抗値として、充電開始から充電電圧が所定の値に到達するまでは第1内部抵抗値を用い、前記充電電圧が所定の値に到達した場合には前記第1の内部抵抗値よりも大きい第2内部抵抗値を用いることを特徴とする温度推定装置。
A temperature estimation device for estimating the temperature at the time of charging a lead storage battery,
The estimated temperature of the lead storage battery to be estimated is T (n) , the temperature of the lead storage battery immediately before estimating the T (n) is T (n-1) , the calorific value of the lead storage battery is Q (n) , When the atmosphere temperature of the lead storage battery is t (n) and the coefficients not dependent on the heat generation amount are α and β,
T (n) = (1- [alpha]) * t (n) + [alpha] * T (n-1) + [(1- [alpha]) / [beta]] * Q (n)
The temperature estimation means for estimating the temperature at the time of charging the lead storage battery according to,
The calorific value Q (n) is determined based on the internal resistance value and charging current of the lead acid battery,
The temperature estimation means uses the first internal resistance value as the internal resistance value from the start of charging until the charging voltage reaches a predetermined value, and when the charging voltage reaches the predetermined value, A temperature estimation device using a second internal resistance value that is larger than the internal resistance value.
JP2012168346A 2012-07-30 2012-07-30 Temperature estimation method and temperature estimation device Active JP5842759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012168346A JP5842759B2 (en) 2012-07-30 2012-07-30 Temperature estimation method and temperature estimation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012168346A JP5842759B2 (en) 2012-07-30 2012-07-30 Temperature estimation method and temperature estimation device

Publications (2)

Publication Number Publication Date
JP2014026913A true JP2014026913A (en) 2014-02-06
JP5842759B2 JP5842759B2 (en) 2016-01-13

Family

ID=50200362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012168346A Active JP5842759B2 (en) 2012-07-30 2012-07-30 Temperature estimation method and temperature estimation device

Country Status (1)

Country Link
JP (1) JP5842759B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160121200A (en) * 2015-04-10 2016-10-19 엘지전자 주식회사 Battery temperature compensation method for mobile terminal and mobile terminal thereof
JP2016538683A (en) * 2013-10-11 2016-12-08 イーシー パワー,エルエルシー All-weather battery and its manufacture and use
JP2018181475A (en) * 2017-04-06 2018-11-15 株式会社デンソー Automatic operation control device
CN110176642A (en) * 2018-02-21 2019-08-27 丰田自动车株式会社 The determination method and battery system of smoke evacuation in battery
US10962598B2 (en) 2016-08-05 2021-03-30 Gs Yuasa International Ltd. Energy storage device state estimation device and energy storage device state estimation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09182311A (en) * 1995-12-22 1997-07-11 Honda Motor Co Ltd Battery charging controlling device
JP2006101674A (en) * 2004-09-30 2006-04-13 Toyota Motor Corp Charging/discharging controller of secondary battery
US20060202666A1 (en) * 2005-02-03 2006-09-14 Vb Autobatterie Gmbh & Co. Kgaa Device and method for ascertaining the temperature in an electrical battery
JP2011198549A (en) * 2010-03-18 2011-10-06 Kawasaki Heavy Ind Ltd Float charging system of nickel-hydrogen battery
US20110299564A1 (en) * 2010-05-26 2011-12-08 GM Global Technology Operations LLC Dynamic estimation of cell core temperature by simple external measurements

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09182311A (en) * 1995-12-22 1997-07-11 Honda Motor Co Ltd Battery charging controlling device
JP2006101674A (en) * 2004-09-30 2006-04-13 Toyota Motor Corp Charging/discharging controller of secondary battery
US20060202666A1 (en) * 2005-02-03 2006-09-14 Vb Autobatterie Gmbh & Co. Kgaa Device and method for ascertaining the temperature in an electrical battery
JP2011198549A (en) * 2010-03-18 2011-10-06 Kawasaki Heavy Ind Ltd Float charging system of nickel-hydrogen battery
US20110299564A1 (en) * 2010-05-26 2011-12-08 GM Global Technology Operations LLC Dynamic estimation of cell core temperature by simple external measurements

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016538683A (en) * 2013-10-11 2016-12-08 イーシー パワー,エルエルシー All-weather battery and its manufacture and use
KR20160121200A (en) * 2015-04-10 2016-10-19 엘지전자 주식회사 Battery temperature compensation method for mobile terminal and mobile terminal thereof
KR102221296B1 (en) * 2015-04-10 2021-03-02 엘지전자 주식회사 Battery temperature compensation method for mobile terminal and mobile terminal thereof
US10962598B2 (en) 2016-08-05 2021-03-30 Gs Yuasa International Ltd. Energy storage device state estimation device and energy storage device state estimation method
JP2018181475A (en) * 2017-04-06 2018-11-15 株式会社デンソー Automatic operation control device
CN110176642A (en) * 2018-02-21 2019-08-27 丰田自动车株式会社 The determination method and battery system of smoke evacuation in battery
CN110176642B (en) * 2018-02-21 2022-06-07 丰田自动车株式会社 Method for determining exhaust gas in battery and battery system

Also Published As

Publication number Publication date
JP5842759B2 (en) 2016-01-13

Similar Documents

Publication Publication Date Title
JP6119402B2 (en) Internal resistance estimation device and internal resistance estimation method
JP5842759B2 (en) Temperature estimation method and temperature estimation device
JP6138757B2 (en) Battery pack and battery pack energy calculation method
JP6200359B2 (en) Secondary battery internal temperature estimation device and secondary battery internal temperature estimation method
JP6044512B2 (en) Battery characteristics learning device
JPWO2017154112A1 (en) Battery monitoring apparatus and method
KR101146404B1 (en) Battery management system and battery pack comprising the same
JP2017103077A (en) Power storage system and control method thereof, and device and method for diagnosing sign of thermorunaway of lithium ion secondary battery
JP2009049005A (en) Device and method for battery internal short circuit detection, battery pack, and electronic device system
US11391782B2 (en) Energy storage device managing apparatus, energy storage apparatus, photovoltaic power generating system, degradation amount estimating method, and computer program
JP5942882B2 (en) Battery system
CN110618389A (en) Method and device for testing battery SOC-OCV curve
JP5978665B2 (en) Method for calculating relative remaining capacity of battery made of secondary battery, method for calculating relative remaining capacity of battery made of lithium ion battery, method for estimating temperature of battery made of secondary battery, and temperature of battery made of lithium ion battery Estimation method
JP2016161448A (en) Internal state estimation device
JP2013148452A (en) Soh estimation device
JP2014109535A (en) Internal resistance estimation device, charging apparatus, discharging apparatus, and internal resistance estimation method
JP2012192811A (en) Device and method for estimating secondary battery temperature
JP2013143308A (en) Battery temperature estimation device
JP7157766B2 (en) Rechargeable battery temperature estimation device and rechargeable battery temperature estimation method
JP6365820B2 (en) Secondary battery abnormality determination device
JP2010160026A (en) Electric power control apparatus for vehicle and method for estimating internal resistance of assembly battery
JP2018037332A (en) Method of estimating battery temperature
JP2009176506A (en) Fuel cell system
JP2004015876A (en) Charging voltage setting device for lithium ion battery
JP2020532936A (en) Charge control device, charge control method, program, control circuit and power storage system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151020

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151102

R151 Written notification of patent or utility model registration

Ref document number: 5842759

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151