JP2014025905A - Method for increasing dissolved amount and dissolving power of metal ion such as radioactive cesium into water - Google Patents

Method for increasing dissolved amount and dissolving power of metal ion such as radioactive cesium into water Download PDF

Info

Publication number
JP2014025905A
JP2014025905A JP2012177552A JP2012177552A JP2014025905A JP 2014025905 A JP2014025905 A JP 2014025905A JP 2012177552 A JP2012177552 A JP 2012177552A JP 2012177552 A JP2012177552 A JP 2012177552A JP 2014025905 A JP2014025905 A JP 2014025905A
Authority
JP
Japan
Prior art keywords
water
ceramic particles
hydroxide ions
cesium
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012177552A
Other languages
Japanese (ja)
Inventor
Tatsuhisa Mitoma
達久 三苫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2012177552A priority Critical patent/JP2014025905A/en
Publication of JP2014025905A publication Critical patent/JP2014025905A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method capable of dissolving more radioactive cesium into water, strongly holding it therein and enhancing decontamination efficiency.SOLUTION: The method comprises: contacting water with a vessel charged with dielectrics 2 (ceramic particles, etc.); maintaining an electrical phenomenon generated by an interfacial electrokinetic phenomenon or a thermoelectric conversion effect (pyroelectricity and piezoelectricity, etc.) caused by allowing dielectrics 2 to flow, rub together and collide by a passing flow, etc., of a liquid, as positive charges and hydroxide ions in the water to structure the water; dissolving metal ions such as cesium more in the water rather than in normal water by increasing an amount and dissolving power of carbon dioxide dissolved in the water and hydroxide ions by structuring the water to enhance dissolving power; and increasing a function of the water as a transport medium of the metal ions such as cesium in order to stably fix, especially, radioactive cesium to FESs (flayed edge site) of a soil mineral, etc., to enhance decontamination efficiency.

Description

本発明は、水の構造化による、放射性セシウム等金属イオンの水への溶解量・溶解力を増やす方法に関する。  The present invention relates to a method for increasing the amount and power of dissolution of metal ions such as radioactive cesium in water by structuring water.

放射性セシウム(Cs−134、Cs−137)の除去方法として、水に溶存しやすい物性を利用して、水による除染が福島県では、行われている。  As a method for removing radioactive cesium (Cs-134, Cs-137), decontamination with water is performed in Fukushima Prefecture using physical properties that are easily dissolved in water.

通常の水による金属イオンの溶解は、主に炭酸水素塩として溶解する。例えば、放射性セシウムと動態が似るカリウム(K)イオンは、炭酸水素カリウム(KHCO)として溶解する。放射性セシウムも炭酸水素セシウム(CsHCO)として溶解する。その為に金属イオンの水への溶解量は、水の溶存二酸化炭素量によって溶解量が変化する。金属イオンの水への溶解には二酸化炭素の溶存量が関わる。水中に溶存している二酸化炭素を遊離炭酸と言い、従属性遊離炭酸と侵食性遊離炭酸とに分けて考える事ができる。水中の炭酸水素塩を溶存させて置くのに必要な量の遊離炭酸を従属性遊離炭酸という。侵食性遊離炭酸とは、従属性遊離炭酸以上に水に溶けている遊離炭酸であり、侵食性がある。 遊離炭酸=従属性遊離炭酸+侵食性遊離炭酸 の関係である。
水中に二酸化炭素が取り込まれ侵食性遊離炭酸が増えれば金属イオンは炭酸水素塩として溶解する。気曝や水温上昇等により、二酸化炭素が放出され従属性遊離炭酸が少なくなれば金属イオンは析出する。
Normal dissolution of metal ions with water mainly dissolves as bicarbonate. For example, potassium (K) ions that have similar kinetics to radioactive cesium are dissolved as potassium hydrogen carbonate (KHCO 3 ). Radioactive cesium also dissolves as cesium bicarbonate (CsHCO 3 ). Therefore, the amount of metal ions dissolved in water varies depending on the amount of dissolved carbon dioxide in the water. Dissolution of metal ions in water involves the dissolved amount of carbon dioxide. Carbon dioxide dissolved in water is called free carbonic acid and can be divided into subordinate free carbonic acid and erosive free carbonic acid. The amount of free carbonic acid required to dissolve and put bicarbonate in water is called dependent free carbonic acid. Erosive free carbonic acid is free carbonic acid that is more soluble in water than dependent free carbonic acid and is erodible. Free carbonic acid = dependent free carbonic acid + erodible free carbonic acid.
When carbon dioxide is taken into water and erosive free carbonic acid increases, metal ions dissolve as bicarbonate. If carbon dioxide is released due to air exposure or water temperature rise, and dependent free carbon dioxide decreases, metal ions will precipitate.

従来の水における溶存二酸化炭素量は、水温や気圧によって変化する。水温や気圧の調整は多くのエネルギーや機材が必要となる。本発明が解決しようとしている課題は、簡易な装置によって、水の構造化を行い、水の溶存二酸化炭素量を増やし、金属イオンの溶解量を増やす。また、その炭酸水素塩が強く水に保持(溶解力)されるものである。また、水の構造化の過程で、水酸化物イオン(OH)が発生し、水酸化物塩としても溶解する。The amount of dissolved carbon dioxide in conventional water varies depending on the water temperature and atmospheric pressure. Adjustment of water temperature and pressure requires a lot of energy and equipment. The problem to be solved by the present invention is to structure water with a simple device, increase the amount of dissolved carbon dioxide, and increase the amount of dissolved metal ions. In addition, the bicarbonate is strongly retained (solving power) in water. In addition, hydroxide ions (OH ) are generated in the process of structuring water and are dissolved as hydroxide salts.

問題を解決する為の手段Means to solve the problem

上述の課題を解決する為、本発明は、誘電体(セラミック粒子等)を充填した容器に、水を接触させる。また、誘電体(セラミック粒子等)を水の通過流速などにより流動、相互摩擦、衝突させることによる界面動電現象や熱電変換的効果(焦電性、圧電性等)により発生する電気現象を、正電荷、水酸化物イオンとして持続させ、水の構造化を図る。水の構造化により、大気中の二酸化炭素は通常の水より多く、水に取り込まれ、強く保持される。その結果、炭酸水素塩として金属イオンの溶解量を増やす。また、その炭酸水素塩が強く水に保持(溶解力が大きい)されるものであるまた、水酸化物イオンとの水酸化塩としても金属イオンは水への溶解量がふえる。水の構造化は、一定時間(40時間前後)持続される。  In order to solve the above-mentioned problems, the present invention brings water into contact with a container filled with a dielectric (ceramic particles or the like). In addition, electric phenomena generated by electrokinetic phenomena and thermoelectric conversion effects (pyroelectricity, piezoelectricity, etc.) caused by causing dielectrics (ceramic particles, etc.) to flow, reciprocate, collide with each other due to the flow velocity of water, Sustain as positive charge, hydroxide ions to structure water. Due to the structuring of water, the amount of carbon dioxide in the atmosphere is greater than normal water, and is taken up into water and strongly retained. As a result, the amount of metal ions dissolved as bicarbonate is increased. In addition, the hydrogen carbonate is strongly retained in water (the dissolving power is large). Also, as a hydroxide salt with hydroxide ions, the amount of metal ions dissolved in water increases. The water structuring lasts for a certain time (around 40 hours).

水の構造化とは、誘電体(セラミック粒子等)側と水媒体側の界面でおこる電気現象。誘電体(セラミック粒子等)表面は界面流動電位により負に帯電しているが、水流側は正に帯電する。また、誘電体(セラミック粒子等)の相互摩擦、衝突によって生じる熱電変換的効果(焦電性、圧電性等)により、誘電体(セラミック粒子等)表面側と中心側の温度差による熱移動(電子の移動)によって、高温側は正電荷を帯び、低温側は充電され、電位差を生じた電子は、誘電体(セラミック粒子等)表面の溶存酸素(O)と結びつき水酸化物イオン(OH)となる。水媒体中の正電荷は極性を持つ水分子の酸素に取り囲まれる割合が増え、水は構造化する。発生した水酸化物イオンは、水分子に取り囲まれる割合の増える正電荷に接近し難い為、中和される割合が減る。正電荷は水の構造化として、水中に維持される。水酸化物イオンも維持される。

Figure 2014025905
Water structuring is an electrical phenomenon that occurs at the interface between the dielectric (ceramic particles, etc.) side and the aqueous medium side. The surface of the dielectric (ceramic particles or the like) is negatively charged by the interfacial flow potential, but the water flow side is positively charged. In addition, due to the mutual friction of dielectrics (ceramic particles, etc.) and thermoelectric conversion effects (pyroelectricity, piezoelectricity, etc.) caused by collisions, heat transfer due to the temperature difference between the surface side of the dielectric (ceramic particles, etc.) and the center side ( Due to the movement of electrons, the high temperature side is positively charged, the low temperature side is charged, and the electrons that generate a potential difference are combined with dissolved oxygen (O 2 ) on the surface of the dielectric (ceramic particles, etc.), and hydroxide ions (OH ). The proportion of the positive charge in the aqueous medium surrounded by polar water molecules oxygen increases, and water is structured. The generated hydroxide ions are less likely to approach the positive charge that increases in the ratio of being surrounded by water molecules, so the ratio of neutralization decreases. The positive charge is maintained in water as water structuring. Hydroxide ions are also maintained.
Figure 2014025905

正電荷を水分子の酸素が正電荷の方向を取り囲むように向く割合が増え、構造化する為、水分子間の水素結合が少なくなる。その為、非共有結合を持つ二酸化炭素の酸素と水分子の水素が向き合い、接近する機会が多くなる。その結果、二酸化炭素は多く取り込まれ、その保持(溶解)力を増し、金属イオンは、より多く溶解し、溶解力も増す。また、水酸化物イオンの発生により、水酸化物塩としても金属イオンは水に溶解する。  Since the proportion of the positive charge toward the oxygen molecules in the water molecules so as to surround the direction of the positive charge is increased and structured, hydrogen bonds between the water molecules are reduced. For this reason, the oxygen of carbon dioxide having non-covalent bonds and the hydrogen of water molecules face each other, and there are many opportunities to approach them. As a result, a large amount of carbon dioxide is taken in and the retention (dissolution) power thereof is increased, and the metal ions are more dissolved and the dissolution power is also increased. Further, due to the generation of hydroxide ions, metal ions are dissolved in water as hydroxide salts.

発明の効果Effect of the invention

本発明は、水の構造化により、二酸化炭素を多く取り込み、遊離炭酸を増加させ、炭酸水素塩として金属イオンを多く溶解させ、溶解力(水への保持力)も増える。セシウム(Cs)も従来の水より多く溶解し、強く水に保持する事が出来る。また、水酸化物イオンの発生により、水酸化物塩としても金属イオンは水に溶解する。  In the present invention, by structuring water, a large amount of carbon dioxide is taken in, free carbonic acid is increased, a large amount of metal ions are dissolved as a hydrogen carbonate, and solubility (holding power in water) is also increased. Cesium (Cs) is also more soluble than conventional water and can be strongly retained in water. Further, due to the generation of hydroxide ions, metal ions are dissolved in water as hydroxide salts.

放射性セシウムの動態として、溶解したセシウムイオン(Cs)は、土壌中の粘土鉱物、特に風化して外縁部が膨潤化した雲母類等のFES(フレイド・エッジ・サイト)に吸着されると交換性が少なく長期間固定される。FESに固定された放射性セシウムは流失する事がなく、安定に土壌中に留まり続ける。As the kinetics of radioactive cesium, dissolved cesium ions (Cs + ) are exchanged when they are adsorbed by clay minerals in the soil, especially by FES (flaid edge sites) such as mica whose outer edge is swollen by weathering. There is little property and it is fixed for a long time. The radioactive cesium fixed to the FES will not be washed away and will remain stable in the soil.

福島県等の水田のCsは、森林からの流入水が運ぶ腐植物等の有機物微粒子に付着して、新たに水田に付加され、しかも有機物の弱い負電荷(カルボキシル基等)に吸着されているCsは交換され易い為、稲に吸収され易い。また、常に森林からの流入により、Csが供給され、従来の除去方法(表土の剥ぎ取り、耕転等)の効果が薄いと考えられる。森林のCs除去(土壌鉱物への固定化)が、重要となってくる。 森林には特有の物質循環があり、地表面を覆う腐植物やリターフォール(落葉・落枝)に吸着されたCsは、腐植層に留まり、腐植層に多い樹木の吸収根により、土壌鉱物に固定されるより、多く樹木の根から樹体に取り込まれ再びリターフォールとなって循環する。Csの土壌への固定化速度を遅くしている。Cs + in paddy fields in Fukushima Prefecture, etc. is attached to organic particulates such as humus carried by the inflow water from the forest, and is newly added to the paddy fields and adsorbed by weak negative charges (carboxyl groups, etc.) of organic matter. Since Cs + is easily exchanged, it is easily absorbed by rice. Moreover, Cs is always supplied by the inflow from the forest, and it is considered that the conventional removal methods (peeling off the topsoil, plowing, etc.) are less effective. Forest Cs removal (immobilization to soil minerals) becomes important. Forests have a specific material cycle, and Cs adsorbed on humus and litterfall (deciduous leaves / deciduous branches) covering the ground surface stays in the humus layer and is fixed to soil minerals by absorbing roots of trees that are common in the humus layer. Rather than being done, it is taken into the tree body from the roots of the tree and circulates again as litterfall. The immobilization rate of Cs to the soil is slowed.

本発明の構造化され、金属イオンの溶解量・溶解力の増した水をCsの運搬媒体として利用し、有機物に付着したCsの土壌への移行を容易にし、土壌への固定速度を上げる事ができる。土壌へCsの安定的な固定が出来れば、森林からの供給が減少し、水田等への除去効果が上がる。その他、様々な除去方法のCs運搬媒体として利用の可能性がある。The structured water of the present invention, which has increased dissolution amount and solubility of metal ions, is used as a Cs transport medium to facilitate the transfer of Cs + adhering to organic matter to the soil and increase the fixing speed to the soil. I can do things. If Cs can be stably fixed to the soil, the supply from the forest will decrease, and the removal effect to paddy fields will increase. In addition, it may be used as a Cs + transport medium for various removal methods.

水の構造化を行うためのセラミックス粒子充填容器の構造模式図である。  It is a structure schematic diagram of the ceramic particle filling container for structuring water. セラミックス粒子の熱移動(電子の移動)と溶存酸素の電子受取の模式図である。  It is a schematic diagram of the heat transfer (electron transfer) of ceramic particles and the electron reception of dissolved oxygen. 水の構造化と二酸化炭素取り込みの模式図。  Schematic diagram of water structuring and carbon dioxide uptake.

以下本発明の実施の形態を図を使って説明する。  Embodiments of the present invention will be described below with reference to the drawings.

図1は、誘電体(セラミック粒子等)を充填した容器に、水を通過させ、水によりセラミックス粒子を流動、相互摩擦、衝突させることが出来る筒状等の容器の構造模式図。  FIG. 1 is a structural schematic diagram of a cylindrical container or the like that allows water to pass through a container filled with a dielectric (ceramic particles or the like), and allows the ceramic particles to flow, mutually friction, or collide with water.

本発明の実施の形態を構造模式図を使って説明したが、本発明はこの形態に限るものではない。誘電体と水や誘電体(セラミック粒子等)と誘電体(セラミック粒子等)の接触、流動、相互摩擦、衝突によって引き起こされるものであり、様々な形態が考えられる。  Although the embodiment of the present invention has been described using the structural schematic diagram, the present invention is not limited to this embodiment. It is caused by contact, flow, mutual friction, and collision between a dielectric and water or a dielectric (such as ceramic particles) and a dielectric (such as ceramic particles), and various forms are possible.

図2は、実施の形態による、誘電体(セラミック粒子等)の流動、相互摩擦、衝突による熱電変換的効果(焦電性、圧電性等)により、誘電体(セラミック粒子等)表面側と中心側の温度差による熱移動(電子の移動)及び、誘電体(セラミック粒子等)表面での溶存酸素の電子受取の模式図。  FIG. 2 shows the surface side and center of the dielectric (ceramic particles, etc.) due to the thermoelectric conversion effects (pyroelectricity, piezoelectricity, etc.) due to the flow, mutual friction, and collision of the dielectric (ceramic particles, etc.) according to the embodiment. Schematic diagram of heat transfer (electron transfer) due to temperature difference on the side and electron reception of dissolved oxygen on the surface of a dielectric (ceramic particles or the like).

図3は、実施の形態により、正電荷を取り囲むように、水が構造化し二酸化炭素を取り込む模式図。水酸化物イオンが正電荷と中和しにくい模式図。  FIG. 3 is a schematic diagram illustrating that water is structured and captures carbon dioxide so as to surround positive charges according to the embodiment. Schematic diagram in which hydroxide ions are difficult to neutralize with positive charge.

1、熱電変換的効果、界面動電処理部(誘電体の流動、相互摩擦、衝突)
2、誘電体(セラミック粒子等)
3、水入口
4、水出口
5、局所発熱
6、温度高
7、セラミック粒子内部への電子の移動
8、温度低
9、正電荷
10、誘電体(セラミック粒子等)断面
11、電子の蓄積による電位差
12、セラミック粒子表面への電子の移動
13、溶存酸素
14、水酸化物イオンの発生(1/2O+HO+2e−→2OH
15、水分子
16、二酸化炭素分子
17、水酸化物イオンの発生(水酸化物イオンは正電荷に接近し難い)
18、二酸化炭素の取り込み(水素と酸素が接近)
19、酸素原子
20、水素原子
21、炭素原子
22、水素どうしの反発
1. Thermoelectric conversion effect, electrokinetic processing part (dielectric flow, mutual friction, collision)
2. Dielectric (ceramic particles, etc.)
3. Water inlet 4, water outlet 5, local heat generation 6, temperature high 7, electron movement 8 inside ceramic particle, temperature low 9, positive charge 10, dielectric (ceramic particle etc.) cross section 11, due to accumulation of electrons Potential difference 12, electron transfer 13 to ceramic particle surface, dissolved oxygen 14, generation of hydroxide ions (1 / 2O 2 + H 2 O + 2e− → 2OH )
15. Water molecule 16, carbon dioxide molecule 17, generation of hydroxide ions (hydroxide ions are difficult to approach positive charges)
18. Carbon dioxide uptake (close to hydrogen and oxygen)
19. Repulsion between oxygen atom 20, hydrogen atom 21, carbon atom 22, and hydrogen

Claims (1)

本発明は、誘電体(セラミック粒子等)を充填した容器に、水を接触させる。また、誘電体(セラミック粒子等)を水の通過流速などにより流動、相互摩擦、衝突させることによる界面動電現象や熱電変換的効果(焦電性、圧電性等)により発生する電気現象を、正電荷、水酸化物イオンとして持続させ、水の構造化を図るものである。誘電体(セラミック粒子等)表面は界面流動電位により負に帯電しているが、水流側は正に帯電する。また、誘電体(セラミック粒子等)の相互摩擦、衝突によって生じる熱電変換的効果(焦電性、圧電性等)により、誘電体(セラミック粒子等)表面側と中心側の温度差による熱移動(電子の移動)によって、高温側は正電荷を帯び、低温側は充電される。電位差を生じた電子は、誘電体(セラミック粒子等)表面へ移動し、溶存酸素(O)と結びつき水酸化物イオン(OH)となる。水媒体中の正電荷は極性を持つ水分子の酸素に取り囲まれる割合が増え、水は構造化する。発生した水酸化物イオンは、水分子に取り囲まれる割合の増える正電荷に接近し難い為、中和される割合が減り水酸化物イオンが増える。正電荷は水の構造化として、水中に維持される。水酸化物イオンも維持される。水の構造化により、大気中の二酸化炭素は通常の水より多く、水に取り込まれ、強く保持される。その結果、炭酸水素塩としてセシウム等の金属イオンの溶解量を増やす。また、その炭酸水素塩が強く水に保持(溶解力が大きい)されるものである。また、水酸化物イオンとの水酸化塩としてもセシウム等の金属イオンは水への溶解量がふえる。水の構造化は、一定時間(40時間前後)持続される。これ等の事を特徴とする放射性セシウム等金属イオンの水への溶解量・溶解力を増やす方法。In the present invention, water is brought into contact with a container filled with a dielectric (ceramic particles or the like). In addition, electric phenomena generated by electrokinetic phenomena and thermoelectric conversion effects (pyroelectricity, piezoelectricity, etc.) caused by causing dielectrics (ceramic particles, etc.) to flow, reciprocate, collide with each other due to the flow velocity of water, It is maintained as positive charges and hydroxide ions, and the water is structured. The surface of the dielectric (ceramic particles or the like) is negatively charged by the interfacial flow potential, but the water flow side is positively charged. In addition, due to the mutual friction of dielectrics (ceramic particles, etc.) and thermoelectric conversion effects (pyroelectricity, piezoelectricity, etc.) caused by collisions, heat transfer due to the temperature difference between the surface side of the dielectric (ceramic particles, etc.) and the center side ( Due to the movement of electrons), the high temperature side is positively charged and the low temperature side is charged. Electrons that generate a potential difference move to the surface of the dielectric (ceramic particles or the like), and are combined with dissolved oxygen (O 2 ) to become hydroxide ions (OH ). The proportion of the positive charge in the aqueous medium surrounded by polar water molecules oxygen increases, and water is structured. Since the generated hydroxide ions are unlikely to approach the positive charge that increases in the ratio of being surrounded by water molecules, the ratio of neutralization decreases and the hydroxide ions increase. The positive charge is maintained in water as water structuring. Hydroxide ions are also maintained. Due to the structuring of water, the amount of carbon dioxide in the atmosphere is greater than normal water, and is taken up into water and strongly retained. As a result, the amount of dissolved metal ions such as cesium as the bicarbonate is increased. In addition, the bicarbonate is strongly retained in water (having a large dissolving power). Moreover, the amount of metal ions such as cesium dissolved in water increases as a hydroxide salt with hydroxide ions. The water structuring lasts for a certain time (around 40 hours). A method for increasing the amount and power of dissolution of metal ions such as radioactive cesium in water characterized by these features.
JP2012177552A 2012-07-24 2012-07-24 Method for increasing dissolved amount and dissolving power of metal ion such as radioactive cesium into water Pending JP2014025905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012177552A JP2014025905A (en) 2012-07-24 2012-07-24 Method for increasing dissolved amount and dissolving power of metal ion such as radioactive cesium into water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012177552A JP2014025905A (en) 2012-07-24 2012-07-24 Method for increasing dissolved amount and dissolving power of metal ion such as radioactive cesium into water

Publications (1)

Publication Number Publication Date
JP2014025905A true JP2014025905A (en) 2014-02-06

Family

ID=50199670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012177552A Pending JP2014025905A (en) 2012-07-24 2012-07-24 Method for increasing dissolved amount and dissolving power of metal ion such as radioactive cesium into water

Country Status (1)

Country Link
JP (1) JP2014025905A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022132413A (en) * 2016-09-12 2022-09-08 ペプシコ インコーポレーテッド Method and apparatus for instantaneous on-line carbonation of water through electrostatic charging

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022132413A (en) * 2016-09-12 2022-09-08 ペプシコ インコーポレーテッド Method and apparatus for instantaneous on-line carbonation of water through electrostatic charging

Similar Documents

Publication Publication Date Title
Tereshatov et al. First evidence of metal transfer into hydrophobic deep eutectic and low-transition-temperature mixtures: indium extraction from hydrochloric and oxalic acids
CN102408109B (en) Reduced graphene oxide and preparation method thereof
CN104016361A (en) Preparation method for amphiphilic nanometer particle and application of amphiphilic nanometer particle to prepare Pickering emulsion
EA201890832A1 (en) SYSTEMS AND METHODS FOR COLLECTION OF PARTICLES
Luo et al. Solar-powered “pump” for uranium recovery from seawater
CN105645392A (en) Preparation method and application of aminated graphene
CN103752259A (en) Silicon-based titanate composite adsorbent for removing radioactive strontium, and preparation method thereof
JP2014025905A (en) Method for increasing dissolved amount and dissolving power of metal ion such as radioactive cesium into water
JP5904757B2 (en) Soil purification system
CN104045129A (en) Preparation method of nitrate nitrogen-removed nano-iron-carbon micro-electrolysis material
CN107545940A (en) The Absorptive complex wave processing method of radioactive wastewater
Mroczek et al. From waste to wealth: mineral extraction from geothermal brines
Hashemzadeh et al. Evaluation of the removal of heavy metals (cadmium lead, and zinc) from aqueous solutions using multi-walled carbon nanotubes modified with chitosan
JP2014006111A (en) Decontamination method for improving classification and cleaning effect in soil contaminated with radioactive cesium
CN103769061B (en) The synthetic method of a kind of collagen load hyper-branched polyester/metal ion fluoride adsorbent
Hanafiah et al. Monosodium glutamate functionalized chitosan beads for adsorption of precious cerium ion
JP2014178157A (en) Decontamination method for radioactive material contaminated soil
JP2013178131A (en) Method of removing radioactive material in soil
CN105327679A (en) Clay adsorption material applied to organic-heavy metal combined pollution in environment and preparation method and application thereof
Lu et al. Adsorption and recovery of amidoxime modified nano-Fe3O4-Aspergillus niger for U (VI) from low concentration uranium solution
JP2017094315A (en) Ac electrolysis solution manufacturing method and method for removing metal particles and metal ions
Abramenkovs et al. Investigations of the sorption of radionuclides by raised bog peat
Ueda et al. Removal of radioactive Cs using aqueous sodium metasilicate with reduced volumes of waste solution
JP2023015317A (en) Method for reducing amount of radioactivity in liquid
Hwang et al. Degradation of veterinary antibiotic oxytetracycline using electron ionizing energy