JP2014025854A - Calibration method of chemical analyzing apparatus and chemical analyzing apparatus - Google Patents

Calibration method of chemical analyzing apparatus and chemical analyzing apparatus Download PDF

Info

Publication number
JP2014025854A
JP2014025854A JP2012167558A JP2012167558A JP2014025854A JP 2014025854 A JP2014025854 A JP 2014025854A JP 2012167558 A JP2012167558 A JP 2012167558A JP 2012167558 A JP2012167558 A JP 2012167558A JP 2014025854 A JP2014025854 A JP 2014025854A
Authority
JP
Japan
Prior art keywords
detector
chemical analyzer
concentration
correction coefficient
target substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012167558A
Other languages
Japanese (ja)
Other versions
JP6128772B2 (en
Inventor
Yusuke Naruse
裕介 成瀬
Yoshikazu Higaki
賀千 桧垣
Kiyokazu Soda
清和 左右田
Mitsuru Goto
満 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
APURIKUSU KK
Original Assignee
APURIKUSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by APURIKUSU KK filed Critical APURIKUSU KK
Priority to JP2012167558A priority Critical patent/JP6128772B2/en
Publication of JP2014025854A publication Critical patent/JP2014025854A/en
Application granted granted Critical
Publication of JP6128772B2 publication Critical patent/JP6128772B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and an apparatus that can perform easy calibration even if there is no reference substance for a measuring object at a measurement site when the apparatus is to be used.SOLUTION: A calibration method of a chemical analyzing apparatus includes steps of: connecting a reference apparatus 10 to a detector 20 replaceable with a chemical analyzing apparatus 30 for measuring the concentration of a measurement target substance in gas or liquid; bringing the detector in contact with reference object substances in gas or liquid, in which a plurality of concentrations are determined in advance; obtaining a reference analytical curve from detection values of the reference object substances and concentration values of the reference object substances, and acquiring reference gradient coefficient of the reference analytical curve per unit concentration; calculating correction coefficient for correcting the reference gradient coefficient to be equal to theoretical gradient coefficient of a theoretical analytical curve per unit concentration previously stored in a reference apparatus 10; and recording the correction coefficient thus calculated to the detector 20.

Description

この発明は、気体又は液体の測定対象物質の濃度を検出する化学分析装置の校正方法及び化学分析装置に関する。   The present invention relates to a calibration method for a chemical analyzer and a chemical analyzer for detecting the concentration of a gas or liquid measurement target substance.

従来、化学分析装置において、検出部によって測定対象物質の濃度の測定が行われているが、濃度を測定する検出部は取り付けた化学分析装置毎に測定精度にばらつきがあるために、装置の校正を行う必要がある。   Conventionally, in chemical analyzers, the concentration of the substance to be measured has been measured by the detector, but the detector that measures the concentration varies in the measurement accuracy of each attached chemical analyzer, so calibration of the device Need to do.

このような化学分析装置において装置の校正を行う場合には、実際に濃度の判明している測定対象物質を使用して濃度を測定して校正するか、または別の分析方法で測定対象物質の濃度を確認し装置の表示をその値に合わせるというのが一般的である。また、例えば、模擬電流を印加し等価入力で校正する残留塩素計が知られている(特許文献1)。   When calibrating the apparatus in such a chemical analyzer, the concentration of the substance to be measured is calibrated by measuring the concentration using the substance to be measured whose concentration is actually known, or by another analytical method. It is common to check the density and adjust the display on the device to that value. Further, for example, a residual chlorine meter that applies a simulated current and calibrates with an equivalent input is known (Patent Document 1).

特開平9−288083号公報Japanese Patent Laid-Open No. 9-288083

しかしながら、実際に濃度を測定して校正する方法では、測定対象物質の種類によっては不安定で、高圧容器詰めのガスが無かったり、また別の分析方法で濃度確認をするにしても、測定機材を現場に搬入するのは困難な場合が多い。また、模擬電流を印加し等価入力で校正するものでは、回路構成が複雑である。   However, the method of actually measuring and calibrating the concentration is unstable depending on the type of the substance to be measured, there is no gas in the high-pressure container, and even if the concentration is confirmed by another analysis method, the measurement equipment Often it is difficult to bring the material into the field. In addition, the circuit configuration is complicated in the case of calibrating with an equivalent input by applying a simulated current.

この発明は、かかる点に鑑みてなされたもので、使用開始にあたって、測定現場に測定対象の標準物質が無くても、簡単に校正が可能な化学分析装置の校正方法及び化学分析装置を提供することを目的とする。   The present invention has been made in view of the above points, and provides a chemical analyzer calibration method and chemical analyzer that can be easily calibrated even when there is no standard substance to be measured at the measurement site at the start of use. For the purpose.

前記課題を解決し、かつ目的を達成するために、この発明は、以下のように構成した。   In order to solve the above-described problems and achieve the object, the present invention is configured as follows.

請求項1に記載の発明は、気体又は液体の測定対象物質の濃度を側定する化学分析装置に交換可能な検出器を基準装置に接続し、予め気体又は液体の複数の濃度が判明している基準対象物質に接触させ、基準対象物質の検出値と基準対象物質の濃度値から基準検量線を得て、この基準検量線の単位濃度当たりの基準勾配係数を求め、
予め前記基準装置に記憶させてある理論検量線の単位濃度当たりの理論勾配係数と等しくなるように補正する補正係数を算出し、
この算出した補正係数を前記検出器に記録することを特徴とする化学分析装置の校正方法である。
According to the first aspect of the present invention, a replaceable detector is connected to a reference device for a chemical analyzer that determines the concentration of a measurement target substance in gas or liquid, and a plurality of concentrations of gas or liquid are found in advance. A reference calibration curve is obtained from the detected value of the reference target substance and the concentration value of the reference target substance, and the reference gradient coefficient per unit concentration of the reference calibration curve is obtained
Calculating a correction coefficient to be corrected to be equal to the theoretical gradient coefficient per unit concentration of the theoretical calibration curve stored in advance in the reference device;
The calculated correction coefficient is recorded in the detector, and is a calibration method for a chemical analyzer.

請求項2に記載の発明は、前記補正係数が記録された前記検出器を化学分析装置に接続し、
前記化学分析装置に前記検出器に記録された補正係数を入力することを特徴とする請求項1に記載の化学分析装置の校正方法である。
The invention according to claim 2 connects the detector in which the correction coefficient is recorded to a chemical analyzer,
2. The chemical analyzer calibration method according to claim 1, wherein a correction coefficient recorded in the detector is input to the chemical analyzer.

請求項3に記載の発明は、前記化学分析装置は、気体又は液体の測定対象物質を含まない大気中にてゼロ点校正を行った後、
前記化学分析装置に前記検出器に記録されている補正係数を入力することを特徴とする請求項2に記載の化学分析装置の校正方法である。
The invention according to claim 3 is characterized in that the chemical analyzer performs zero point calibration in the atmosphere not containing a gas or liquid measurement target substance,
3. The chemical analyzer calibration method according to claim 2, wherein a correction coefficient recorded in the detector is input to the chemical analyzer.

請求項4に記載の発明は、前記測定対象物質が、少なくとも酸素、水素、オゾン、硫化水素、アルシン、ホスフィンのいずれかであることを特徴とする請求項1乃至請求項3のいずれか1項に記載の化学分析装置の校正方法である。   The invention according to claim 4 is characterized in that the substance to be measured is at least one of oxygen, hydrogen, ozone, hydrogen sulfide, arsine, and phosphine. The chemical analyzer calibration method described in 1.

請求項5に記載の発明は、気体又は液体の測定対象物質の濃度に比例して検出値が変化する検出器と、 前記検出器からの検出値に基づき前記測定対象物質の濃度値を得る演算部と、
請求項1乃至請求項4のいずれか1項に記載の化学分析装置の校正方法により得られる補正係数を入力する補正係数入力部と、を有し、
前記検出器からの検出値を前記補正係数により校正して前記測定対象物質の濃度値を得ることを特徴とする化学分析装置である。
The invention according to claim 5 is a detector in which a detection value changes in proportion to a concentration of a measurement target substance in gas or liquid, and an operation for obtaining a concentration value of the measurement target substance based on the detection value from the detector And
A correction coefficient input unit for inputting a correction coefficient obtained by the chemical analyzer calibration method according to any one of claims 1 to 4,
A chemical analysis apparatus characterized in that a concentration value of the substance to be measured is obtained by calibrating a detection value from the detector with the correction coefficient.

請求項6に記載の発明は、前記測定対象物質を含まない大気中にて前記検出器のゼロ点校正を行うゼロ点校正部を有することを特徴とする請求項5に記載の化学分析装置である。   A sixth aspect of the present invention is the chemical analyzer according to the fifth aspect, further comprising a zero point calibration unit that performs a zero point calibration of the detector in the atmosphere not including the measurement target substance. is there.

請求項7に記載の発明は、前記測定対象物質が、少なくとも酸素、水素、オゾン、硫化水素、アルシン、ホスフィンのいずれかであることを特徴とする請求項5または請求項6に記載の化学分析装置である。   The invention according to claim 7 is the chemical analysis according to claim 5 or 6, wherein the substance to be measured is at least one of oxygen, hydrogen, ozone, hydrogen sulfide, arsine, and phosphine. Device.

前記構成により、この発明は、以下のような効果を有する。   With the above configuration, the present invention has the following effects.

請求項1乃至請求項7に記載の発明では、気体又は液体の測定対象物質の濃度を側定する化学分析装置に交換可能な検出器を基準装置に接続し、予め気体又は液体の複数の濃度が判明している基準対象物質の基準検量線の単位濃度当たりの基準勾配係数を求め、予め基準装置に記憶させてある理論検量線の単位濃度当たりの理論勾配係数と等しくなるように補正する補正係数を算出し、この算出した補正係数を検出器に記録することで、補正係数が記録された検出器を測定する化学分析装置に接続し、化学分析装置に検出器に記録された補正係数を入力することができ、測定対象物質の種類に関係なく安定で、測定機材を測定現場に搬入することなく、簡単に校正が可能である。   In the first to seventh aspects of the present invention, a replaceable detector is connected to the reference device for a chemical analyzer that determines the concentration of the gas or liquid measurement target substance, and a plurality of concentrations of the gas or liquid are previously stored. The standard gradient coefficient per unit concentration of the standard calibration curve of the reference target substance for which the reference is known is obtained, and the correction is performed so as to be equal to the theoretical gradient coefficient per unit concentration of the theoretical calibration curve stored in the standard device in advance. By calculating the coefficient and recording the calculated correction coefficient in the detector, the detector having the correction coefficient recorded is connected to the chemical analyzer for measuring, and the correction coefficient recorded in the detector is stored in the chemical analyzer. It can be input, is stable regardless of the type of substance to be measured, and can be easily calibrated without bringing measurement equipment into the measurement site.

化学分析装置の校正方法を説明する概略図である。It is the schematic explaining the calibration method of a chemical analyzer. 基準装置の概略構成図である。It is a schematic block diagram of a reference | standard apparatus. 化学分析装置の校正方法を説明する工程図である。It is process drawing explaining the calibration method of a chemical analyzer. 基準勾配係数を求める方法を示す図である。It is a figure which shows the method of calculating | requiring a reference | standard gradient coefficient. 補正係数を算出する方法を示す図である。It is a figure which shows the method of calculating a correction coefficient. 測定対象物質の検量線を示す図である。It is a figure which shows the calibration curve of a measuring object substance. 化学分析装置の正面図である。It is a front view of a chemical analyzer. 化学分析装置の側面図である。It is a side view of a chemical analyzer. 化学分析装置の構成ブロック図である。It is a block diagram of the chemical analyzer.

以下、この発明の化学分析装置の校正方法及び化学分析装置の実施の形態について説明する。この発明の実施の形態は、発明の最も好ましい形態を示すものであり、この発明はこれに限定されない。   Embodiments of a chemical analyzer calibration method and a chemical analyzer according to the present invention will be described below. The embodiment of the present invention shows the most preferable mode of the present invention, and the present invention is not limited to this.

[化学分析装置の校正方法]
この実施の形態の化学分析装置の校正方法を、図1乃至図4に基づいて説明する。図1は化学分析装置の校正方法を説明する概略図、図2は基準装置の概略構成図、図3は化学分析装置の校正方法を説明する工程図、図4は基準勾配係数を求める方法を示す図、図5は補正係数を算出する方法を示す図、図6は測定対象物質の検量線を示す図である。
[Chemical analyzer calibration method]
A calibration method for the chemical analyzer of this embodiment will be described with reference to FIGS. 1 is a schematic diagram illustrating a calibration method for a chemical analyzer, FIG. 2 is a schematic configuration diagram of a reference device, FIG. 3 is a process diagram illustrating a calibration method for a chemical analyzer, and FIG. 4 is a method for obtaining a reference gradient coefficient. FIG. 5 is a diagram showing a method for calculating a correction coefficient, and FIG. 6 is a diagram showing a calibration curve of a substance to be measured.

この化学分析装置の校正方法の概略構成を、図1に基づき説明する。メーカー側にある基準装置10を用いる。この基準装置10は、基準オゾンガス発生装置11、検出器20を設置するチャンバー12、検出器20の検出出力を測定するデータロガー13、データロガー13からのデータに基づき補正係数を得る処理装置14を備える。この処理装置14は、データロガー13からのデータを直接得るようにしても、一旦記録して記録装置から得るようにしてもよい。   A schematic configuration of the chemical analyzer calibration method will be described with reference to FIG. The reference device 10 on the manufacturer side is used. The reference device 10 includes a reference ozone gas generator 11, a chamber 12 in which the detector 20 is installed, a data logger 13 that measures the detection output of the detector 20, and a processing device 14 that obtains a correction coefficient based on data from the data logger 13. Prepare. The processing device 14 may obtain the data from the data logger 13 directly or may record it once and obtain it from the recording device.

ユーザー側に出荷する交換可能な検出器20をチャンバー12に設置して、基準オゾンガス発生装置11から発生する基準ガスを検出器20に接触させて各濃度での検出器20の検出出力をデータロガー13により記録する。処理装置14では、データロガー13により記録した検出器20の固有の出力と濃度の検量線により、理論検量線の単位濃度当たりの理論勾配係数と等しくなるように補正する補正係数を算出する。   A replaceable detector 20 to be shipped to the user side is installed in the chamber 12, and the reference gas generated from the reference ozone gas generator 11 is brought into contact with the detector 20 to detect the detection output of the detector 20 at each concentration as a data logger. 13 to record. The processing device 14 calculates a correction coefficient to be corrected so as to be equal to the theoretical gradient coefficient per unit concentration of the theoretical calibration curve based on the inherent output of the detector 20 recorded by the data logger 13 and the calibration curve of the concentration.

この処理装置14で得られた補正係数をシール20aなどにより検出器20に記録し、この補正係数が記録された検出器20をユーザー側に備えた化学分析装置30に接続し、この化学分析装置30に検出器20に記録された補正係数を入力する。このようにして、測定対象物質の種類に関係なく安定で、測定機材を測定現場に搬入することなく、簡単に校正を可能にする。   The correction coefficient obtained by the processing device 14 is recorded on the detector 20 by a seal 20a or the like, and the detector 20 on which the correction coefficient is recorded is connected to a chemical analysis device 30 provided on the user side. The correction coefficient recorded in the detector 20 is input to 30. In this way, the calibration is stable regardless of the type of the substance to be measured, and can be easily calibrated without bringing the measurement equipment into the measurement site.

この処理装置14の構成を、図2に基づき説明する。この実施の形態の処理装置14は、検出情報入力手段A、基準検量線作成手段B、基準勾配係数算出手段C、理論勾配係数記憶手段D、補正係数算出手段Eを有し、マイクロコンピュータにより構成される。   The structure of this processing apparatus 14 is demonstrated based on FIG. The processing apparatus 14 of this embodiment has detection information input means A, reference calibration curve creation means B, reference gradient coefficient calculation means C, theoretical gradient coefficient storage means D, and correction coefficient calculation means E, and is constituted by a microcomputer. Is done.

この化学分析装置の校正方法の工程を、図3に基づき説明する。メーカー側において、交換可能な検出器20を基準装置10に接続し(S1)、この検出器20に予め気体又は液体の複数の濃度が判明している基準対象物質を接触させる(S2)。この検出器20の濃度検出情報が検出情報入力手段Aにより入力され、基準検量線作成手段Bにより基準対象物質の検出値と基準対象物質の濃度値から基準検量線を得て、基準勾配係数算出手段Cにより基準検量線の単位濃度当たりの基準勾配係数を求める(S3)。次に、予め理論勾配係数記憶手段Dに記憶させてある理論検量線の単位濃度当たりの理論勾配係数と等しくなるように、補正係数算出手段Eにより補正する補正係数を算出する(S4)。   The steps of the chemical analyzer calibration method will be described with reference to FIG. On the manufacturer side, a replaceable detector 20 is connected to the reference device 10 (S1), and a reference target substance whose gas or liquid concentrations are known in advance is brought into contact with the detector 20 (S2). The concentration detection information of the detector 20 is input by the detection information input means A, and a reference calibration curve is obtained from the detection value of the reference target substance and the concentration value of the reference target substance by the reference calibration curve creation means B, and the reference gradient coefficient is calculated. A reference gradient coefficient per unit concentration of the reference calibration curve is obtained by means C (S3). Next, a correction coefficient to be corrected by the correction coefficient calculation means E is calculated so as to be equal to the theoretical gradient coefficient per unit concentration of the theoretical calibration curve stored in advance in the theoretical gradient coefficient storage means D (S4).

この基準勾配係数を求める方法を、図4に基づいて説明する。この実施の形態では、交換可能な検出器20として電気化学センサを用い、基準装置10に検出器20接続し、予め気体又は液体の複数の濃度が判明している基準対象物質を接触させ、基準対象物質の濃度のフルスケールの約100%、80%、40%、0%で検出した電流を電圧に変換した出力電圧を測定する。得られた出力電圧と濃度による基準検量線を作成し、基準検量線の傾き即ち単位濃度当たりの基準勾配係数b(y=bX y:濃度 X:出力電圧)を求める。   A method for obtaining the reference gradient coefficient will be described with reference to FIG. In this embodiment, an electrochemical sensor is used as the replaceable detector 20, the detector 20 is connected to the reference device 10, a reference target substance in which a plurality of concentrations of gas or liquid are known in advance is brought into contact, and the reference The output voltage obtained by converting the detected current into a voltage at about 100%, 80%, 40%, and 0% of the full scale of the concentration of the target substance is measured. A reference calibration curve based on the obtained output voltage and concentration is created, and a slope of the reference calibration curve, that is, a reference gradient coefficient b per unit concentration (y = bX y: concentration X: output voltage) is obtained.

次に、補正係数を算出する方法を、図5に基づいて説明する。予め理論勾配係数記憶手段Dに記憶させてある理論検量線の単位濃度当たりの理論勾配係数a(y=aX y:濃度 X:出力電圧)と等しくなるよう補整係数F(a=bF)を算出する。理論勾配係数は電気回路設計時に決めた係数である。この実施の形態では、回路の常数計算等によりaとしているが、回路設計時にa’なるように設計することも可能である。図5においては、検出器1と検出器2として、予め理論勾配係数記憶手段Dに記憶させてある理論検量線の単位濃度当たりの理論勾配係数と等しくなるように補正する補正係数を算出する例を示している。   Next, a method for calculating the correction coefficient will be described with reference to FIG. The compensation coefficient F (a = bF) is calculated so as to be equal to the theoretical slope coefficient a (y = aX y: concentration X: output voltage) per unit concentration of the theoretical calibration curve stored in advance in the theoretical slope coefficient storage means D. To do. The theoretical gradient coefficient is a coefficient determined when designing an electric circuit. In this embodiment, a is set by a constant calculation of the circuit or the like, but it is also possible to design so as to be a 'at the time of circuit design. In FIG. 5, as the detector 1 and the detector 2, an example of calculating a correction coefficient to be corrected so as to be equal to the theoretical gradient coefficient per unit concentration of the theoretical calibration curve stored in advance in the theoretical gradient coefficient storage means D. Is shown.

この算出した補正係数を検出器20に記録する(S5)。この検出器20の方法としては、次の方法がある。例えば、シール20aに補正係数を記載し、このシール20aを検出器20に貼り付ける。また、検出器20に補正係数を直接印字する、または刻印するなどがある。また、検出器20の取扱書に記載する方法でもよい。   The calculated correction coefficient is recorded in the detector 20 (S5). As a method of the detector 20, there is the following method. For example, the correction coefficient is written on the seal 20 a and the seal 20 a is attached to the detector 20. In addition, the correction coefficient may be directly printed or stamped on the detector 20. Moreover, the method described in the instruction manual of the detector 20 may be used.

この補正係数が記録された検出器20は、メーカー側からユーザー側へ出荷され、ユーザー側では補正係数が記録された検出器20を化学分析装置30に接続する(S6)。この化学分析装置30では、測定開始に当たっては、気体又は液体の測定対象物質を含まない大気中にてゼロ点校正を行った後(S7)、化学分析装置30に検出器20に記録されている補正係数を入力する(S8)。このようにして、測定場所に、濃度の判明したスパン校正物質がなくても、装置校正が可能である。   The detector 20 in which the correction coefficient is recorded is shipped from the manufacturer side to the user side, and the user 20 connects the detector 20 in which the correction coefficient is recorded to the chemical analyzer 30 (S6). In this chemical analyzer 30, at the start of measurement, zero point calibration is performed in the atmosphere not containing a gas or liquid measurement target substance (S 7), and then recorded in the detector 20 in the chemical analyzer 30. A correction coefficient is input (S8). In this way, the apparatus can be calibrated even if there is no span calibration substance whose concentration is known at the measurement location.

この実施の形態の化学分析装置30は、測定対象物質が、少なくとも酸素、水素、オゾン、硫化水素、アルシン、ホスフィンのいずれかであり、図6に酸素、水素、オゾンについての検出値と濃度値から検量線を示す。   In the chemical analyzer 30 of this embodiment, the measurement target substance is at least one of oxygen, hydrogen, ozone, hydrogen sulfide, arsine, and phosphine. FIG. 6 shows detected values and concentration values for oxygen, hydrogen, and ozone. A calibration curve is shown.

[化学分析装置]
この実施の形態の化学分析装置30を、図7乃至図9に基づいて説明する。図7は化学分析装置の正面図、図8は化学分析装置の側面図、図9は化学分析装置の構成ブロック図である。
[Chemical analyzer]
A chemical analysis apparatus 30 according to this embodiment will be described with reference to FIGS. 7 is a front view of the chemical analyzer, FIG. 8 is a side view of the chemical analyzer, and FIG. 9 is a block diagram of the chemical analyzer.

この実施の形態の化学分析装置30は、装置本体31に、電源スイッチ32、操作部33、表示部34を備え、この装置本体31に検出器20が着脱可能になっている。この検出器20は、メーカー側から出荷されて補正係数が記録されたものであり、気体又は液体の測定対象物質の濃度に比例して検出値が変化するように構成される。この測定対象物質が、少なくとも酸素、水素、オゾン、硫化水素、アルシン、ホスフィンのいずれかである。   The chemical analyzer 30 of this embodiment includes a power switch 32, an operation unit 33, and a display unit 34 in an apparatus main body 31, and the detector 20 can be attached to and detached from the apparatus main body 31. The detector 20 is shipped from the manufacturer side and has a correction coefficient recorded thereon, and is configured such that the detection value changes in proportion to the concentration of the gas or liquid measurement target substance. This substance to be measured is at least one of oxygen, hydrogen, ozone, hydrogen sulfide, arsine, and phosphine.

操作部33には、ゼロダイヤル33a、スパンダイヤル33b、アラームダイヤル33c、テストダイヤル33d、モード切替スイッチ33dが設けられている。モード切替スイッチ33dは、「MES」表示に合わせ、測定が行われ、「ALM」表示に合わせ、アラームダイヤル33cを操作して濃度警報する数値が入力され、「FADJ」表示に合わせ、ゼロダイヤル33aを操作してゼロ点校正値が入力され、スパンダイヤル33bを操作して補正係数が入力される。   The operation unit 33 is provided with a zero dial 33a, a span dial 33b, an alarm dial 33c, a test dial 33d, and a mode switch 33d. The mode change-over switch 33d performs measurement in accordance with the “MES” display, operates the alarm dial 33c in accordance with the “ALM” display, inputs a numerical value for concentration alarm, and in accordance with the “FADJ” display, the zero dial 33a Is operated to input a zero point calibration value, and the span dial 33b is operated to input a correction coefficient.

表示部34には、測定対象物質の濃度値を表示する表示部34a、測定信号の出力示す表示部34b、測定の濃度を警報する表示部34cが設けられている。   The display unit 34 is provided with a display unit 34a that displays the concentration value of the measurement target substance, a display unit 34b that displays the output of the measurement signal, and a display unit 34c that alarms the measurement concentration.

この装置本体31には、制御装置60が備えられ、この制御装置60はアナログ回路で構成され、演算部61と、ゼロ点校正部62と、補正係数記憶部63とを有し、電源スイッチ32により駆動電源が入り、操作部33からの信号に基づき検出器20により測定対象物質の濃度を測定し、表示部34に表示するように制御する。   The apparatus main body 31 is provided with a control device 60. The control device 60 is constituted by an analog circuit, includes a calculation unit 61, a zero point calibration unit 62, and a correction coefficient storage unit 63, and a power switch 32. Then, the drive power is turned on, and the concentration of the substance to be measured is measured by the detector 20 based on the signal from the operation unit 33 and displayed on the display unit 34.

演算部61は、検出器20からの検出値に基づき測定対象物質の濃度値を得るように構成され、ゼロ点校正部62では、測定対象物質を含まない大気中にて検出器20のゼロ点校正を行い、補正係数記憶部63に化学分析装置の校正方法により得られる補正係数を記憶し、検出器20からの検出値を校正して測定対象物質の濃度値を得る。   The calculation unit 61 is configured to obtain the concentration value of the measurement target substance based on the detection value from the detector 20, and the zero point calibration unit 62 is configured to obtain the zero point of the detector 20 in the atmosphere not including the measurement target substance. Calibration is performed, the correction coefficient obtained by the calibration method of the chemical analyzer is stored in the correction coefficient storage unit 63, and the detected value from the detector 20 is calibrated to obtain the concentration value of the measurement target substance.

この実施の形態では、複数の濃度の判明しているオソンガスに電気化学センサを接触させ、その出力電圧を測定し、得られた出力電圧とオソンガスの濃度から基準検量線を作成し、この基準検量線の傾き即ち1ppmあたりの基準勾配係数b(y=bX y:濃度 X:出力電圧)が予め記憶されている理論勾配係数a(y=aX)と等しくなるよう補正係数F(a=Fb)値を算出し、電気化学センサに記録してある。   In this embodiment, an electrochemical sensor is brought into contact with a plurality of osmone gases having known concentrations, the output voltage is measured, a reference calibration curve is created from the obtained output voltage and the concentration of osmone gas, and this reference calibration is performed. Correction coefficient F (a = Fb) so that the slope of the line, that is, the reference gradient coefficient b per 1 ppm (y = bX y: concentration X: output voltage) is equal to the theoretical gradient coefficient a (y = aX) stored in advance. The value is calculated and recorded on the electrochemical sensor.

測定開始にあたっては、化学分析装置に電気化学センサを接続し、測定対象物質を含まない雰囲気中にてゼロ点校正を行った後、化学分析装置に、電気化学センサに記録されている補正係数F値を電気的に入力することにより、測定現場に標準対象物質が無くても、校正が可能となる。   At the start of measurement, an electrochemical sensor is connected to the chemical analyzer, zero-point calibration is performed in an atmosphere that does not contain the measurement target substance, and then the correction coefficient F recorded in the electrochemical sensor is stored in the chemical analyzer. By inputting the value electrically, calibration is possible even if there is no standard target substance at the measurement site.

オソンガスは、例えば食品工場での室内殺菌に使用されており、その濃度管理にオソンガスモニタが使用されるが、通常のオソンガスモニタであれば、校正時標準ガスを使用することとなるが、オゾンは不安定で濃度の安定なガスを長時間供給するのが難しく問題があったが、この発明では、スタートアップ時での校正にオソンガスを必要とせず、操作も簡単であることから特別に化学知識のある者でなくても容易に操作が可能である。   Osson gas is used for indoor sterilization in food factories, for example, and the Oson gas monitor is used for its concentration control. Although it was difficult to supply unstable and stable gas for a long time, this invention does not require Osson gas for calibration at start-up and is easy to operate. Even if it is not a certain person, operation is possible easily.

この発明は、気体又は液体の測定対象物質の濃度を検出する化学分析装置の校正方法及び化学分析装置に適用可能であり、使用開始にあたって、測定現場に測定対象の標準物質が無くても、簡単に校正が可能である。   The present invention can be applied to a calibration method and a chemical analysis device for a chemical analyzer that detects the concentration of a gas or liquid measurement target substance. Even when there is no standard substance to be measured at the measurement site, the invention can be easily applied. Calibration is possible.

10 基準装置
11 基準オゾンガス発生装置
12 チャンバー
13 データロガー
14 処理装置
20 検出器
30 化学分析装置
A 検出情報入力手段
B 基準検量線作成手段
C 基準勾配係数算出手段
D 理論勾配係数記憶手段
E 補正係数算出手段
DESCRIPTION OF SYMBOLS 10 Reference apparatus 11 Reference ozone gas generator 12 Chamber 13 Data logger 14 Processing apparatus 20 Detector 30 Chemical analyzer A Detection information input means B Reference calibration curve preparation means C Reference gradient coefficient calculation means D Theoretical gradient coefficient storage means E Correction coefficient calculation means

Claims (7)

気体又は液体の測定対象物質の濃度を側定する化学分析装置に交換可能な検出器を基準装置に接続し、
予め気体又は液体の複数の濃度が判明している基準対象物質に接触させ、基準対象物質の検出値と基準対象物質の濃度値から基準検量線を得て、この基準検量線の単位濃度当たりの基準勾配係数を求め、
予め前記基準装置に記憶させてある理論検量線の単位濃度当たりの理論勾配係数と等しくなるように補正する補正係数を算出し、
この算出した補正係数を前記検出器に記録することを特徴とする化学分析装置の校正方法。
Connect a detector that can be replaced with a chemical analyzer that determines the concentration of the substance to be measured in gas or liquid to the reference device,
A reference calibration curve is obtained from the detected value of the reference target substance and the concentration value of the reference target substance. Find the reference slope coefficient
Calculating a correction coefficient to be corrected to be equal to the theoretical gradient coefficient per unit concentration of the theoretical calibration curve stored in advance in the reference device;
A calibration method for a chemical analyzer, wherein the calculated correction coefficient is recorded in the detector.
前記補正係数が記録された前記検出器を化学分析装置に接続し、
前記化学分析装置に前記検出器に記録された補正係数を入力することを特徴とする請求項1に記載の化学分析装置の校正方法。
Connecting the detector with the correction factor recorded to a chemical analyzer;
2. The method for calibrating a chemical analyzer according to claim 1, wherein a correction coefficient recorded in the detector is input to the chemical analyzer.
前記化学分析装置は、気体又は液体の測定対象物質を含まない大気中にてゼロ点校正を行った後、
前記化学分析装置に前記検出器に記録されている補正係数を入力することを特徴とする請求項2に記載の化学分析装置の校正方法。
The chemical analyzer, after performing zero point calibration in the atmosphere that does not contain a gas or liquid measurement target substance,
3. The chemical analyzer calibration method according to claim 2, wherein a correction coefficient recorded in the detector is input to the chemical analyzer.
前記測定対象物質が、少なくとも酸素、水素、オゾン、硫化水素、アルシン、ホスフィンのいずれかであることを特徴とする請求項1乃至請求項3のいずれか1項に記載の化学分析装置の校正方法。   The chemical analysis apparatus calibration method according to any one of claims 1 to 3, wherein the measurement target substance is at least one of oxygen, hydrogen, ozone, hydrogen sulfide, arsine, and phosphine. . 気体又は液体の測定対象物質の濃度に比例して検出値が変化する検出器と、
前記検出器からの検出値に基づき前記測定対象物質の濃度値を得る演算部と、
請求項1乃至請求項4のいずれか1項に記載の化学分析装置の校正方法により得られる補正係数を入力する補正係数入力部と、を有し、
前記検出器からの検出値を前記補正係数により校正して前記測定対象物質の濃度値を得ることを特徴とする化学分析装置。
A detector whose detection value changes in proportion to the concentration of the measurement target substance in gas or liquid;
A calculation unit for obtaining a concentration value of the substance to be measured based on a detection value from the detector;
A correction coefficient input unit for inputting a correction coefficient obtained by the chemical analyzer calibration method according to any one of claims 1 to 4,
A chemical analysis apparatus characterized in that a concentration value of the substance to be measured is obtained by calibrating a detection value from the detector with the correction coefficient.
前記測定対象物質を含まない大気中にて前記検出器のゼロ点校正を行うゼロ点校正部を有することを特徴とする請求項5に記載の化学分析装置。   The chemical analyzer according to claim 5, further comprising a zero point calibration unit that performs a zero point calibration of the detector in the atmosphere that does not include the measurement target substance. 前記測定対象物質が、少なくとも酸素、水素、オゾン、硫化水素、アルシン、ホスフィンのいずれかであることを特徴とする請求項5または請求項6に記載の化学分析装置。

The chemical analysis apparatus according to claim 5 or 6, wherein the measurement target substance is at least one of oxygen, hydrogen, ozone, hydrogen sulfide, arsine, and phosphine.

JP2012167558A 2012-07-27 2012-07-27 Chemical analyzer calibration method and chemical analyzer Active JP6128772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012167558A JP6128772B2 (en) 2012-07-27 2012-07-27 Chemical analyzer calibration method and chemical analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012167558A JP6128772B2 (en) 2012-07-27 2012-07-27 Chemical analyzer calibration method and chemical analyzer

Publications (2)

Publication Number Publication Date
JP2014025854A true JP2014025854A (en) 2014-02-06
JP6128772B2 JP6128772B2 (en) 2017-05-17

Family

ID=50199629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012167558A Active JP6128772B2 (en) 2012-07-27 2012-07-27 Chemical analyzer calibration method and chemical analyzer

Country Status (1)

Country Link
JP (1) JP6128772B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017078665A (en) * 2015-10-21 2017-04-27 グリーンブルー株式会社 Method of auto-calibrating ozonometer
KR20200016053A (en) * 2018-08-06 2020-02-14 강순기 Software fusion experiment design-based active experiment system
JP2021001768A (en) * 2019-06-20 2021-01-07 株式会社アプリクス Chemical analyzer calibration method
CN113495096A (en) * 2020-06-18 2021-10-12 浙江全世科技有限公司 FID-TVOC detector-based calibration method
CN114002378A (en) * 2021-09-30 2022-02-01 四川希尔得科技有限公司 Concentration detection method of gas concentration sensor
CN114397396A (en) * 2021-12-29 2022-04-26 杭州春来科技有限公司 Automatic calibration method and system for VOCs detection and analysis
CN114965867A (en) * 2021-02-26 2022-08-30 杭州三花研究院有限公司 Gas concentration detection method, gas detection device and control method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5775397A (en) * 1980-10-29 1982-05-11 Hitachi Ltd Gas alarm unit
JPH04191650A (en) * 1990-11-26 1992-07-09 Shimadzu Corp Measuring apparatus for ion
JPH10311815A (en) * 1997-05-09 1998-11-24 Japan Storage Battery Co Ltd Method for judging deterioration of electrochemical carbon monoxide gas sensor and calibrating method
JP2000002682A (en) * 1998-06-12 2000-01-07 Horiba Ltd Gas analyzer
JP2000046779A (en) * 1998-07-24 2000-02-18 Ngk Spark Plug Co Ltd Gas sensor controller
JP2000338075A (en) * 1999-05-31 2000-12-08 Apurikusu:Kk Electrochemical analysis method and device
JP2009047431A (en) * 2007-08-13 2009-03-05 Rinnai Corp Gas concentration detector and gas concentration detecting method
JP2011506966A (en) * 2007-12-10 2011-03-03 バイエル・ヘルスケア・エルエルシー Slope-based correction
JPWO2011034170A1 (en) * 2009-09-18 2013-02-14 日立化成工業株式会社 Ion selective electrode cartridge

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5775397A (en) * 1980-10-29 1982-05-11 Hitachi Ltd Gas alarm unit
JPH04191650A (en) * 1990-11-26 1992-07-09 Shimadzu Corp Measuring apparatus for ion
JPH10311815A (en) * 1997-05-09 1998-11-24 Japan Storage Battery Co Ltd Method for judging deterioration of electrochemical carbon monoxide gas sensor and calibrating method
JP2000002682A (en) * 1998-06-12 2000-01-07 Horiba Ltd Gas analyzer
JP2000046779A (en) * 1998-07-24 2000-02-18 Ngk Spark Plug Co Ltd Gas sensor controller
JP2000338075A (en) * 1999-05-31 2000-12-08 Apurikusu:Kk Electrochemical analysis method and device
JP2009047431A (en) * 2007-08-13 2009-03-05 Rinnai Corp Gas concentration detector and gas concentration detecting method
JP2011506966A (en) * 2007-12-10 2011-03-03 バイエル・ヘルスケア・エルエルシー Slope-based correction
JPWO2011034170A1 (en) * 2009-09-18 2013-02-14 日立化成工業株式会社 Ion selective electrode cartridge

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017078665A (en) * 2015-10-21 2017-04-27 グリーンブルー株式会社 Method of auto-calibrating ozonometer
KR20200016053A (en) * 2018-08-06 2020-02-14 강순기 Software fusion experiment design-based active experiment system
KR102094235B1 (en) * 2018-08-06 2020-03-30 강순기 Software fusion experiment design-based active experiment system
JP2021001768A (en) * 2019-06-20 2021-01-07 株式会社アプリクス Chemical analyzer calibration method
CN113495096A (en) * 2020-06-18 2021-10-12 浙江全世科技有限公司 FID-TVOC detector-based calibration method
CN113495096B (en) * 2020-06-18 2024-04-09 中控全世科技(杭州)有限公司 Calibration method based on FID-TVOC detector
CN114965867A (en) * 2021-02-26 2022-08-30 杭州三花研究院有限公司 Gas concentration detection method, gas detection device and control method thereof
CN114002378A (en) * 2021-09-30 2022-02-01 四川希尔得科技有限公司 Concentration detection method of gas concentration sensor
CN114002378B (en) * 2021-09-30 2024-04-26 四川希尔得科技有限公司 Concentration detection method of gas concentration sensor
CN114397396A (en) * 2021-12-29 2022-04-26 杭州春来科技有限公司 Automatic calibration method and system for VOCs detection and analysis
CN114397396B (en) * 2021-12-29 2023-08-01 杭州春来科技有限公司 Automatic calibration method and system for VOCs detection and analysis

Also Published As

Publication number Publication date
JP6128772B2 (en) 2017-05-17

Similar Documents

Publication Publication Date Title
JP6128772B2 (en) Chemical analyzer calibration method and chemical analyzer
Ashton et al. The effects of temperature on pH measurement
US20060042351A1 (en) Self-testing and self-calibrating detector
US9945826B2 (en) Functional test for gas sensors
US8691074B2 (en) Method for operating a measuring device having at least one probe, which has at least one ion selective electrode
EA026690B1 (en) Method and apparatus for measuring the killing effectiveness of a disinfectant for microorganisms and spores thereof
EP1980848B1 (en) Electrochemical sensor with short-circuiting switch and method of zero-calibration
CN103380367B (en) Moisture content detection device
Asakai et al. Investigation of iodine liberation process in redox titration of potassium iodate with sodium thiosulfate
CN111537487A (en) Temperature compensation method and device of optical oxygen sensor
JP4701020B2 (en) Water quality meter that can provide temperature and humidity data
JP6952578B2 (en) Oxygen concentration measuring device and oxygen concentration measuring method
US20150075255A1 (en) Moisture concentration detecting device
JP4532357B2 (en) Concentration measuring device
CN107607143B (en) Method for correcting baseline drift of sensor and detection equipment
JP7234040B2 (en) Oxygen concentration measurement system and oxygen concentration measurement method
JP5811632B2 (en) Carbon dioxide concentration meter
JP2021001768A (en) Chemical analyzer calibration method
CN203658306U (en) Temperature compensation circuit for oxygen sensor
CN214583355U (en) Hydrogen peroxide concentration sensor calibrator
JP4322555B2 (en) Residual chlorine concentration measuring method and residual chlorine concentration measuring device
CN112964290A (en) Hydrogen peroxide concentration sensor calibrator
US9915629B2 (en) Method for identifying pH, device for same, and method for identifying ion concentration
JP2024011528A (en) Measurement device
Walsh et al. Response of electrochemical oxygen sensors to inert gas–air and carbon dioxide–air mixtures: Measurements and mathematical modelling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170411

R150 Certificate of patent or registration of utility model

Ref document number: 6128772

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250