JP2014025793A - Method and apparatus for evaluating crystalline samples - Google Patents

Method and apparatus for evaluating crystalline samples Download PDF

Info

Publication number
JP2014025793A
JP2014025793A JP2012165976A JP2012165976A JP2014025793A JP 2014025793 A JP2014025793 A JP 2014025793A JP 2012165976 A JP2012165976 A JP 2012165976A JP 2012165976 A JP2012165976 A JP 2012165976A JP 2014025793 A JP2014025793 A JP 2014025793A
Authority
JP
Japan
Prior art keywords
crystal sample
scattered light
wave plate
intensity
raman
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012165976A
Other languages
Japanese (ja)
Inventor
Yasuhiro Fujii
康裕 藤井
Takao Shimizu
荘雄 清水
Takahiro Ishizuka
隆浩 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SIGMAKOKI Co Ltd
Original Assignee
SIGMAKOKI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SIGMAKOKI Co Ltd filed Critical SIGMAKOKI Co Ltd
Priority to JP2012165976A priority Critical patent/JP2014025793A/en
Publication of JP2014025793A publication Critical patent/JP2014025793A/en
Pending legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and apparatus for evaluating crystalline samples, which enable evaluation based on changes in intensity of an optical spectrum of a sample without moving the sample.SOLUTION: A crystalline sample evaluation apparatus includes; an irradiator section which irradiates a crystalline sample S with light from a light source 10 via a 1/2 wavelength plate 20; a spectroscope 40 and a photodetector 42 which disperse scattered light from the crystalline sample S that passes through the 1/2 wavelength plate 20 and acquire an optical spectrum of the scattered light; and an arithmetic processing unit 50 which evaluates the crystalline sample S on the basis of the acquired optical spectrum. The 1/2 wavelength plate 20 is rotatably configured around an optical path OA. The arithmetic processing unit 50 performs a process for deriving magnitude of the Raman tensor component of the crystalline sample S on the basis of changes in intensity of the optical spectrum acquired while rotating the 1/2 wavelength plate 20.

Description

本発明は、結晶試料の評価方法及び評価装置に関する。   The present invention relates to a crystal sample evaluation method and an evaluation apparatus.

従来、試料に励起レーザ光を照射したときに生ずるラマン散乱光を検出する共焦点顕微分光装置が知られている(例えば、特許文献1)。上記の共焦点顕微分光装置を用いて、異なる偏光配置で測定した散乱光の分光スペクトルを解析し、ラマンピークの有無を判定することで、結晶の対称性や振動モードの対称性を決定することができる。   Conventionally, a confocal microspectroscopic device that detects Raman scattered light generated when a sample is irradiated with excitation laser light is known (for example, Patent Document 1). Analyzing the spectrum of scattered light measured with different polarization arrangements using the above confocal microspectrophotometer and determining the presence or absence of a Raman peak, thereby determining the symmetry of the crystal and the symmetry of the vibration mode Can do.

特開平2008−299146号公報JP 2008-299146 A

更に、上記の共焦点顕微分光装置を用いて、結晶試料を測定点を中心に回転させながら測定した散乱光の分光スペクトルの強度変化を解析することで、ラマンテンソルの成分を定量的に決定することが可能となる。   Furthermore, the Raman tensor component is quantitatively determined by analyzing the intensity change of the spectral spectrum of the scattered light measured while rotating the crystal sample around the measurement point using the confocal microspectroscopic device. It becomes possible.

しかしながら、試料を回転させる上記手法では、例えば測定点周辺の傷などを目印としてそれらが測定点を中心とする同心円上を移動するように微調整しながら試料を回転させる必要があり、また、試料とともに試料の温度制御や電場等の外場印加を行う装置を回転させる必要が生じるため、測定の手順が煩雑となる。また、上記手法では、試料の表面に目印となる傷などが存在しない場合に測定を行うことができないといった問題点がある。また、外場印加装置によっては回転自体が不可能となる場合がある。   However, in the above-described method of rotating the sample, for example, it is necessary to rotate the sample while finely adjusting the wound around the measurement point as a mark so that they move on a concentric circle centered on the measurement point. At the same time, it is necessary to rotate an apparatus for controlling the temperature of the sample and applying an external field such as an electric field, which makes the measurement procedure complicated. Further, the above method has a problem that measurement cannot be performed when there is no mark or the like on the surface of the sample. Further, depending on the external field application device, rotation itself may be impossible.

本発明は、以上のような課題に鑑みてなされたものであり、その目的とするところは、試料を回転させることなく分光スペクトルの強度変化に基づく評価を行うことが可能な結晶試料の評価方法及び評価装置を提供することにある。   The present invention has been made in view of the problems as described above, and an object of the present invention is to provide a crystal sample evaluation method capable of performing an evaluation based on a change in the intensity of a spectral spectrum without rotating the sample. And providing an evaluation apparatus.

(1)本発明は、結晶試料の評価方法において、
光源からの光を、1/2波長板を介して結晶試料に照射する手順と、
前記結晶試料から発生し前記1/2波長板を透過した散乱光を分光して、前記散乱光の分光スペクトルを取得する取得手順と、
取得された前記分光スペクトルに基づいて、前記結晶試料を評価する評価手順とを含み、
前記1/2波長板は、回転可能に構成され、
前記評価手順では、
前記1/2波長板を回転させた場合に取得される前記分光スペクトルの強度変化に基づいて、前記結晶試料を評価することを特徴とする。
(1) The present invention provides a crystal sample evaluation method,
Irradiating the crystal sample with light from a light source via a half-wave plate;
An acquisition procedure for separating scattered light generated from the crystal sample and transmitted through the half-wave plate to obtain a spectral spectrum of the scattered light;
An evaluation procedure for evaluating the crystal sample based on the acquired spectral spectrum,
The half-wave plate is configured to be rotatable,
In the evaluation procedure,
The crystal sample is evaluated based on a change in the intensity of the spectrum obtained when the half-wave plate is rotated.

また本発明は、結晶試料の評価装置において、
光源からの光を、1/2波長板を介して結晶試料に照射する照射部と、
前記結晶試料から発生し前記1/2波長板を透過した散乱光を分光して、前記散乱光の分光スペクトルを取得する分光スペクトル取得部と、
取得された前記分光スペクトルに基づいて、前記結晶試料を評価する評価部とを含み、
前記1/2波長板は、回転可能に構成され、
前記評価部は、
前記1/2波長板を回転させた場合に取得される前記分光スペクトルの強度変化に基づいて、前記結晶試料を評価することを特徴とする。
The present invention also provides a crystal sample evaluation apparatus,
An irradiation unit for irradiating the crystal sample with light from the light source via a half-wave plate;
A spectral spectrum acquisition unit that splits scattered light generated from the crystal sample and transmitted through the half-wave plate, and acquires a spectral spectrum of the scattered light;
An evaluation unit that evaluates the crystal sample based on the acquired spectral spectrum,
The half-wave plate is configured to be rotatable,
The evaluation unit is
The crystal sample is evaluated based on a change in the intensity of the spectrum obtained when the half-wave plate is rotated.

本発明によれば、光源からの光が、回転可能に構成された1/2波長板を透過し、結晶試料からの散乱光が再度当該1/2波長板を透過するように構成し、当該1/2波長板を回転させた場合に取得される前記分光スペクトルの強度変化に基づいて結晶試料を評価することで、試料を回転させることなく分光スペクトルの強度変化に基づく結晶試料の評価を行うことができる。   According to the present invention, the light from the light source is transmitted through the rotatable half-wave plate, and the scattered light from the crystal sample is again transmitted through the half-wave plate. The crystal sample is evaluated based on the intensity change of the spectrum obtained by rotating the half-wave plate, thereby evaluating the crystal sample based on the intensity change of the spectrum without rotating the sample. be able to.

(2)また本発明に係る結晶試料の評価方法では、
前記取得手順では、
前記1/2波長板に入射する前記光源からの入射光と偏光方向が平行な前記散乱光の分光スペクトルと、前記入射光と偏光方向が直交する前記散乱光の分光スペクトルとを取得し、
前記評価手順では、
前記入射光と偏光方向が平行な前記散乱光の分光スペクトルの強度変化と、前記入射光と偏光方向が直交する前記散乱光の分光スペクトルの強度変化とに基づいて、前記結晶試料を評価してもよい。
(2) In the crystal sample evaluation method according to the present invention,
In the acquisition procedure,
Obtaining a spectral spectrum of the scattered light whose polarization direction is parallel to the incident light from the light source incident on the half-wave plate, and a spectral spectrum of the scattered light whose polarization direction is orthogonal to the incident light,
In the evaluation procedure,
The crystal sample is evaluated based on the intensity change of the spectrum of the scattered light whose polarization direction is parallel to the incident light and the intensity change of the spectrum of the scattered light whose polarization direction is orthogonal to the incident light. Also good.

また本発明に係る結晶試料の評価装置では、
前記分光スペクトル取得部は、
前記1/2波長板に入射する前記光源からの入射光と偏光方向が平行な前記散乱光の分光スペクトルと、前記入射光と偏光方向が直交する前記散乱光の分光スペクトルとを取得し、
前記評価部は、
前記入射光と偏光方向が平行な前記散乱光の分光スペクトルの強度変化と、前記入射光と偏光方向が直交する前記散乱光の分光スペクトルの強度変化とに基づいて、前記結晶試料を評価してもよい。
In the crystal sample evaluation apparatus according to the present invention,
The spectrum acquisition unit
Obtaining a spectral spectrum of the scattered light whose polarization direction is parallel to the incident light from the light source incident on the half-wave plate, and a spectral spectrum of the scattered light whose polarization direction is orthogonal to the incident light,
The evaluation unit is
The crystal sample is evaluated based on the intensity change of the spectrum of the scattered light whose polarization direction is parallel to the incident light and the intensity change of the spectrum of the scattered light whose polarization direction is orthogonal to the incident light. Also good.

本発明によれば、試料を回転させることなく分光スペクトルの強度変化に基づく結晶試料の評価を行うことができる。   According to the present invention, it is possible to evaluate a crystal sample based on a change in intensity of a spectral spectrum without rotating the sample.

(3)また本発明に係る結晶試料の評価方法及び評価装置では、
前記散乱光は、ラマン散乱光でもよい。
(3) In the crystal sample evaluation method and evaluation apparatus according to the present invention,
The scattered light may be Raman scattered light.

本実施形態の測定装置(評価装置)の構成の一例を示す図。The figure which shows an example of a structure of the measuring apparatus (evaluation apparatus) of this embodiment. 1/2波長板を回転させた場合における入射光と散乱光の偏光状態について説明するための図。The figure for demonstrating the polarization state of incident light and a scattered light when a half-wave plate is rotated. 本実施形態の手法により測定した、結晶のz軸回りの入射光の偏光方向の回転角に応じた、PT結晶のラマン散乱光の分光スペクトルとラマンピークの強度変化を示す図。The figure which shows the intensity | strength change of the spectral spectrum and Raman peak of the Raman scattered light of PT crystal | crystallization according to the rotation angle of the polarization direction of the incident light around the z-axis of the crystal | crystallization measured by the method of this embodiment. 結晶のx軸(又はy軸)回りの入射光の偏光方向の回転角に応じた、PbTiO結晶(PT結晶)のAモードのラマンピークの強度変化を示す図。In accordance with a rotation angle of the polarization direction of the x-axis of the crystal (or y axis) of the incident light, it shows a change in intensity of the Raman peak of A 1 mode PbTiO 3 crystals (PT crystals). 結晶試料Sを測定点を中心に回転させる手法により測定した、結晶のz軸回りの入射光の偏光方向の回転角に応じた、PT結晶のラマン散乱光の分光スペクトルとラマンピークの強度変化を示す比較例。The spectral change of the Raman scattered light of the PT crystal and the intensity change of the Raman peak according to the rotation angle of the polarization direction of the incident light around the z axis of the crystal measured by the method of rotating the crystal sample S around the measurement point. Comparative example shown. 結晶のz軸回りの入射光の偏光方向の回転角に応じた、平行ニコルにおけるPT結晶のAモードのラマンピークの強度変化を、比較例の手法で取得した場合と、本実施形態の手法で取得した場合とで比較するための図。The case in accordance with the rotation angle of the polarization direction of the z axis of the incident light of the crystal, a change in intensity of the Raman peak of A 1 Mode PT crystal in the parallel Nicols, obtained by the method of Comparative Example, the method of this embodiment The figure for comparing with the case where it acquires with.

以下、本実施形態について説明する。なお、以下に説明する本実施形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではない。また本実施形態で説明される構成の全てが、本発明の必須構成要件であるとは限らない。   Hereinafter, this embodiment will be described. In addition, this embodiment demonstrated below does not unduly limit the content of this invention described in the claim. In addition, all the configurations described in the present embodiment are not necessarily essential configuration requirements of the present invention.

1.構成
図1は、本実施形態の測定装置(評価装置)の構成の一例を示す図である。本実施形態の測定装置1は、結晶試料Sのラマン分光測定を行う装置として構成されている。測定装置1は、レーザ光源等の光源10と、ビームエキスパンダ12と、ハーフミラー14(ビームスプリッタ)と、対物レンズ16と、1/2波長板20と、偏光板22(検光子)と、偏光解消板24と、レンズ30,32,34と、アパーチャ36(共焦点ピンホール)と、分光スペクトル取得部として機能する分光器40及び光検出器42と、評価部として機能する演算処理部50とを含む。結晶試料Sは、図示しないステージ装置に支持され、任意の方向に移動可能に構成されている。また、1/2波長板20として、アクロマティック波長板を用いている。また、偏光解消板24に代えて、1/4波長板又は1/2波長板を用いてもよい。
1. Configuration FIG. 1 is a diagram illustrating an example of a configuration of a measurement apparatus (evaluation apparatus) according to the present embodiment. The measuring apparatus 1 of the present embodiment is configured as an apparatus that performs Raman spectroscopic measurement of the crystal sample S. The measuring apparatus 1 includes a light source 10 such as a laser light source, a beam expander 12, a half mirror 14 (beam splitter), an objective lens 16, a half-wave plate 20, a polarizing plate 22 (analyzer), Depolarization plate 24, lenses 30, 32, and 34, aperture 36 (confocal pinhole), spectroscope 40 and photodetector 42 functioning as a spectrum acquisition unit, and arithmetic processing unit 50 functioning as an evaluation unit Including. The crystal sample S is supported by a stage device (not shown) and configured to be movable in an arbitrary direction. Further, an achromatic wave plate is used as the half-wave plate 20. Further, instead of the depolarizing plate 24, a quarter wavelength plate or a half wavelength plate may be used.

光源10からの光は、ビームエキスパンダ12によりビーム径を拡げられた後、ハーフミラー14に入射する。ハーフミラー14で反射した光は、1/2波長板20に入射し、1/2波長板20を透過して、対物レンズ16により結晶試料S上の被測定箇所に集光して照射される。このとき結晶試料Sからは、光源10からの光(入射光)とエネルギーの異なる光がラマン散乱光(非弾性散乱光の一例)として放射される。結晶試料Sから発生したラマン散乱光は、対物レンズ16を介して1/2波長板20に入射し、1/2波長板20を透過してハーフミラー14に入射する。ハーフミラー14を透過したラマン散乱光は、偏光板22及び偏光解消板24を透過し、レンズ30、アパーチャ36、レンズ32及びレンズ34を介して分光器40に入射する。   The light from the light source 10 is incident on the half mirror 14 after the beam diameter is expanded by the beam expander 12. The light reflected by the half mirror 14 enters the half-wave plate 20, passes through the half-wave plate 20, and is condensed and irradiated on the measurement site on the crystal sample S by the objective lens 16. . At this time, light having a different energy from the light from the light source 10 (incident light) is emitted from the crystal sample S as Raman scattered light (an example of inelastically scattered light). The Raman scattered light generated from the crystal sample S enters the half-wave plate 20 through the objective lens 16, passes through the half-wave plate 20, and enters the half mirror 14. The Raman scattered light that has passed through the half mirror 14 passes through the polarizing plate 22 and the depolarizing plate 24, and enters the spectroscope 40 through the lens 30, the aperture 36, the lens 32, and the lens 34.

分光器40に入射したラマン散乱光は、分光器40を構成する回折格子等で分光され、ラインセンサカメラ等で構成された光検出器42に入射する。光検出器42で検出された検出信号(ラマン散乱光の波長毎の強度信号)は、演算処理部50に出力される。   The Raman scattered light that has entered the spectroscope 40 is split by a diffraction grating or the like that constitutes the spectroscope 40, and enters a photodetector 42 that is configured by a line sensor camera or the like. A detection signal (intensity signal for each wavelength of Raman scattered light) detected by the photodetector 42 is output to the arithmetic processing unit 50.

ここで、1/2波長板20は、図示しない回転機構によって、光路OA(光路OAと平行な軸、Z軸)回りに回転可能に構成されている。この回転機構は、演算処理部50からの制御信号により制御される。   Here, the half-wave plate 20 is configured to be rotatable around an optical path OA (an axis parallel to the optical path OA, a Z axis) by a rotation mechanism (not shown). This rotation mechanism is controlled by a control signal from the arithmetic processing unit 50.

本実施形態では、結晶試料Sを回転させながらラマン散乱光の分光スペクトルを測定することに代えて、1/2波長板20を回転させながらラマン散乱光の分光スペクトルを測定するように構成している。図2(A)に示すように、1/2波長板20を角度θ/2だけ回転させると、1/2波長板20を下向きに透過する入射光の偏光方向は角度θだけ回転する。一方、1/2波長板20を上向きに透過するラマン散乱光の偏光方向は角度−θだけ回転する。すなわち、結晶試料Sを固定したまま1/2波長板20を角度θ/2だけ回転させることで、入射光の偏光方向を固定したまま結晶試料Sを角度θだけ回転させる場合(図2(B)を参照)と同等のことを行うことができる。すなわち、本実施形態の測定装置1では、結晶試料S及びそれに付随する装置を回転させることなく、簡単な装置構成及び簡素な測定手順でラマン散乱光の分光スペクトルの強度変化を測定することができる。 In the present embodiment, instead of measuring the spectral spectrum of the Raman scattered light while rotating the crystal sample S, the spectral spectrum of the Raman scattered light is measured while rotating the half-wave plate 20. Yes. As shown in FIG. 2A, when the half-wave plate 20 is rotated by an angle θ r / 2, the polarization direction of incident light transmitted downward through the half-wave plate 20 is rotated by an angle θ r . . On the other hand, the polarization direction of the Raman scattered light that is transmitted upward through the half-wave plate 20 is rotated by an angle −θ r . That is, by rotating the half-wave plate 20 by the angle θ r / 2 while fixing the crystal sample S, the crystal sample S is rotated by the angle θ r while fixing the polarization direction of the incident light (FIG. 2). (See (B)). That is, in the measurement apparatus 1 of the present embodiment, it is possible to measure the change in the intensity of the spectral spectrum of Raman scattered light with a simple apparatus configuration and a simple measurement procedure without rotating the crystal sample S and its associated apparatus. .

再び図1を参照すると、演算処理部50(コンピュータ)は、光検出器42からの検出信号に基づき、ラマン散乱光の分光スペクトルを取得する。また、演算処理部50は、1/2波長板20を回転させた場合に取得される前記分光スペクトルの強度変化に基づいて、結晶試料Sのラマンテンソルの成分を定量的に決定する処理を行う。具体的には、前記分光スペクトルにおける所与の波数帯域の強度変化(ラマンピークの強度変化)を関数フィッティングすることで、各ラマンテンソル成分の大きさの比を求める処理を行う。   Referring to FIG. 1 again, the arithmetic processing unit 50 (computer) acquires a spectrum of Raman scattered light based on the detection signal from the photodetector 42. Further, the arithmetic processing unit 50 performs a process of quantitatively determining the Raman tensor component of the crystal sample S based on the intensity change of the spectral spectrum acquired when the half-wave plate 20 is rotated. . Specifically, processing for obtaining the ratio of the magnitudes of the Raman tensor components is performed by function fitting the intensity change (Raman peak intensity change) in a given wavenumber band in the spectrum.

また、演算処理部50は、1/2波長板20に入射する入射光と偏光方向が平行なラマン散乱光の分光スペクトル(第1の分光スペクトル)の強度変化と、1/2波長板20に入射する入射光と偏光方向が直交するラマン散乱光の分光スペクトル(第2の分光スペクトル)の強度変化とに基づいて、結晶試料Sのラマンテンソルの成分を決定する。前記第1の分光スペクトルを取得する場合には、偏光板22の透過軸が入射光の偏光方向と平行(平行ニコルの状態)となるように偏光板22の向きを調整し、前記第2の分光スペクトルを取得する場合には、偏光板22の透過軸が入射光の偏光方向と垂直(直交ニコルの状態)となるように偏光板22の向きを調整する。   In addition, the arithmetic processing unit 50 changes the intensity of the spectral spectrum (first spectral spectrum) of the Raman scattered light whose polarization direction is parallel to the incident light incident on the half-wave plate 20 and the half-wave plate 20. The Raman tensor component of the crystal sample S is determined based on the intensity change of the spectral spectrum (second spectral spectrum) of the Raman scattered light whose polarization direction is orthogonal to the incident incident light. When acquiring the first spectral spectrum, the orientation of the polarizing plate 22 is adjusted so that the transmission axis of the polarizing plate 22 is parallel to the polarization direction of the incident light (parallel Nicol state), and the second spectral spectrum is obtained. When acquiring a spectrum, the orientation of the polarizing plate 22 is adjusted so that the transmission axis of the polarizing plate 22 is perpendicular to the polarization direction of the incident light (in a state of orthogonal Nicols).

ここで、ラマンテンソルTは、次式で表される。   Here, the Raman tensor T is expressed by the following equation.

例えば、正方晶のPbTiO結晶(PT結晶)のAモードのラマンテンソルTは、次式で表される。 For example, the A 1 mode Raman tensor T of a tetragonal PbTiO 3 crystal (PT crystal) is expressed by the following equation.

また、PT結晶のBモードのラマンテンソルTは、次式で表される。 Further, the Raman tensor T of B 1 mode PT crystal is expressed by the following equation.

ここで、入射光の偏光方向を結晶試料Sのz軸回りに回転させる場合(すなわち、光路OA(Z軸)と結晶試料Sのz軸が平行になるように結晶試料Sを配置して1/2波長板20を光路OA回りに回転させる場合)、次式(4)の回転行列Rによって、式(3)は、次式(5)のように変化する。式(5)は、入射光の偏光方向を結晶のz軸回りに回転させた場合に観察される実験室系のラマンテンソルを示す。なお、式(2)については、次式(4)の回転行列Rによっては変化しない。   Here, when the polarization direction of incident light is rotated around the z-axis of the crystal sample S (that is, the crystal sample S is arranged so that the optical path OA (Z-axis) and the z-axis of the crystal sample S are parallel to each other). / 2 When the wavelength plate 20 is rotated around the optical path OA), the equation (3) changes as the following equation (5) by the rotation matrix R of the following equation (4). Equation (5) represents the laboratory Raman tensor observed when the polarization direction of incident light is rotated about the z-axis of the crystal. In addition, about Formula (2), it does not change with the rotation matrix R of following Formula (4).

ここで、θは、1/2波長板20の回転角である。   Here, θ is the rotation angle of the half-wave plate 20.

光路OAが結晶試料Sのz軸と平行であり入射光の偏光方向が結晶試料Sのx軸と平行である場合、入射光と偏光方向が平行なラマン散乱光の強度Iは、ラマンテンソル成分Txxの二乗に比例し、入射光と偏光方向が直交するラマン散乱光の強度Iは、ラマンテンソル成分Tyxの二乗に比例する。従って、入射光の偏光方向を結晶試料Sのz軸回りに回転させる場合、式(2)から、モードAについては、入射光と偏光方向が平行なラマン散乱光の強度Iはaに比例し、入射光と偏光方向が直交するラマン散乱光の強度Iは0となる。また、式(5)から、モードBについては、入射光と偏光方向が平行なラマン散乱光の強度Iはccos2θに比例し、入射光と偏光方向が直交するラマン散乱光の強度Iはcsin2θに比例する。すなわち、ラマン散乱光の強度は、モードBについては1/2波長板20の回転角θ(結晶のz軸回りの入射光の偏光方向の回転角θ)に依存して変化し、モードAについてはz軸回りの回転角θに依存しないことがわかる。 When the optical path OA is parallel to the z-axis of the crystal sample S and the polarization direction of the incident light is parallel to the x-axis of the crystal sample S, the intensity I of the Raman scattered light whose incident light and the polarization direction are parallel is the Raman tensor component The intensity I of the Raman scattered light that is proportional to the square of T xx and whose polarization direction is orthogonal to the incident light is proportional to the square of the Raman tensor component T yx . Therefore, when rotating the polarization direction of the incident light on the z axis of the crystal sample S, from equation (2), for the mode A 1, the intensity I of the incident light and the polarization direction parallel to the Raman scattered light to a 2 The intensity I of the Raman scattered light that is proportional to the incident light and whose polarization direction is orthogonal is zero. Further, from equation (5), for the mode B 1, the intensity I of the incident light and the polarization direction parallel to the Raman scattered light is proportional to c 2 cos 2 2 [Theta], the Raman scattered light incident light and the polarization directions are orthogonal Intensity I is proportional to c 2 sin 2 2θ. That is, the intensity of the Raman scattered light, for mode B 1 varies depending on the rotation angle of the half wave plate 20 theta (rotation angle of the polarization direction of the z axis of the incident light crystal theta), Mode A It can be seen that 1 does not depend on the rotation angle θ around the z axis.

図3(A)、図3(B)に、結晶試料SとしてPT結晶を用いて、本実施形態の測定装置1により測定したラマン散乱光の分光スペクトルを示す。図3(A)は、入射光と偏光方向が平行なラマン散乱光の分光スペクトルを示し、図3(B)は、入射光と偏光方向が直交するラマン散乱光の分光スペクトルを示す。図3(A)、図3(B)において、横軸は相対波数(ラマンシフト)を示し、縦軸は散乱光の強度を示す。なお、本測定では、1/2波長板20の回転角θを0°〜180°の範囲で20°刻みで変化させる度に分光スペクトルを取得した。また、本測定では、光源10としてArイオンレーザ(波長514.5nm)を用いた。   3A and 3B show a spectrum of Raman scattered light measured by the measuring apparatus 1 of the present embodiment using a PT crystal as the crystal sample S. FIG. FIG. 3A shows a spectrum of Raman scattered light whose incident light and polarization direction are parallel, and FIG. 3B shows a spectrum of Raman scattered light whose incident light and polarization direction are orthogonal. 3A and 3B, the horizontal axis represents the relative wave number (Raman shift), and the vertical axis represents the intensity of the scattered light. In this measurement, a spectroscopic spectrum was acquired every time the rotation angle θ of the half-wave plate 20 was changed in increments of 20 ° in the range of 0 ° to 180 °. In this measurement, an Ar ion laser (wavelength 514.5 nm) was used as the light source 10.

図3(A)、図3(B)に示すように、288cm−1付近には、Bモードのラマンピークが現れ、350cm−1付近には、Aモードのラマンピーク(平行ニコルのみ)が現れている。また、Bモードのラマンピークは、回転角θに応じて変化し、Aモードのラマンピークは、回転角θに依存せずに一定であることがわかる。 FIG. 3 (A), the as shown in FIG. 3 (B), in the vicinity of 288cm -1, appears Raman peak of B 1 mode, in the vicinity of 350 cm -1, A 1 mode Raman peak (parallel Nicol only) Appears. Further, the Raman peak of B 1 mode changes according to the rotation angle theta, the Raman peak of A 1 mode is found to be constant independently of the rotational angle theta.

図3(C)に、図3(A)、図3(B)の分光スペクトルから取得した、回転角θに応じたBモードのラマンピークの強度変化を示す。なお、ラマンピークの強度変化を求める際には、任意の回転角θにおけるラマンピーク強度を基準として、各回転角θにおけるラマンピーク強度との差分をとることで求めることが望ましい。このようにすると、回転角θに依存しないバックグラウンド成分の影響を排除することができる。 FIG. 3C shows a change in the intensity of the Raman peak in the B 1 mode in accordance with the rotation angle θ obtained from the spectrums shown in FIGS. 3A and 3B. When obtaining the change in the intensity of the Raman peak, it is desirable to obtain the difference from the Raman peak intensity at each rotation angle θ with reference to the Raman peak intensity at an arbitrary rotation angle θ. In this way, the influence of the background component that does not depend on the rotation angle θ can be eliminated.

図3(C)を見ると、円形点で示す平行ニコルにおけるBモードのラマンピークは、凡そ実線で示す理論曲線(ccos2θに比例する関数)に従って変化している。また、矩形点で示す直交ニコルにおけるBモードのラマンピークも凡そ実線で示す理論曲線(csin2θに比例する関数)に従って変化している。 As shown in FIG. 3C, the Raman peak of the B 1 mode in parallel Nicol indicated by a circular point changes according to a theoretical curve (a function proportional to c 2 cos 2 2θ) indicated by a solid line. Further, the Raman peak of the B 1 mode in orthogonal Nicol indicated by a rectangular point also changes according to a theoretical curve (a function proportional to c 2 sin 2 2θ) indicated by a solid line.

ここで、円形点で示すピーク強度を、ccos2θに比例する関数にフィッティングする(或いは、矩形点で示すピーク強度を、csin2θに比例する関数にフィッティングする)ことで、振幅成分cを求めることができ、Bモードのラマンテンソル成分cの大きさを決定することができる。同様に、Aモードのラマンピークの強度は、Aモードのラマンテンソル成分aの二乗に比例するため、図3(A)に示すAモードのラマンピークの強度から、ラマンテンソル成分aの大きさを決定することができる。 Here, by fitting the peak intensity indicated by a circular point to a function proportional to c 2 cos 2 2θ (or fitting the peak intensity indicated by a rectangular point to a function proportional to c 2 sin 2 2θ), it is possible to obtain the amplitude component c 2, it is possible to determine the magnitude of the Raman tensor of component c B 1 mode. Similarly, the intensity of the Raman peak of A 1 mode is proportional to the square of the Raman tensor component a of A 1 mode, the intensity of the Raman peak of A 1 mode shown in FIG. 3 (A), the Raman tensor component a The size can be determined.

このように、回転角θに応じたラマンピークの強度変化の形、振幅から、ラマンテンソル成分の大きさ(例えば、各ラマンテンソル成分の比)を定量的に決定することが可能となる。結晶試料のラマンテンソル成分を定量的に決定することで、結晶試料の誘電率や圧電率等の巨視的な物性量に関する情報を取得することが可能となる。   Thus, the magnitude of the Raman tensor component (for example, the ratio of each Raman tensor component) can be quantitatively determined from the shape and amplitude of the intensity change of the Raman peak according to the rotation angle θ. By quantitatively determining the Raman tensor component of the crystal sample, it is possible to acquire information on macroscopic physical property quantities such as the dielectric constant and piezoelectricity of the crystal sample.

なお、上記説明では、入射光の偏光方向を結晶試料Sのz軸回りに回転させる場合(すなわち、光路OA(Z軸)と結晶試料Sのz軸が平行になるように結晶試料Sを配置して1/2波長板20を光路OA回りに回転させる場合)について説明したが、入射光の偏光方向を結晶試料Sのx軸回りに回転させる場合(すなわち、光路OAと結晶試料Sのx軸が平行になるように結晶試料Sを配置して1/2波長板20を光路OA回りに回転させる場合)には、次式(6)の回転行列Rによって、式(2)は、式(7)のように変化し、式(3)は、式(8)のように変化する。入射光の偏光方向を結晶試料Sのy軸回りに回転させる場合も同様である。   In the above description, when the polarization direction of the incident light is rotated around the z axis of the crystal sample S (that is, the crystal sample S is arranged so that the optical path OA (Z axis) and the z axis of the crystal sample S are parallel). The case where the half-wave plate 20 is rotated around the optical path OA has been described, but the case where the polarization direction of the incident light is rotated around the x-axis of the crystal sample S (that is, x between the optical path OA and the crystal sample S). When the crystal sample S is arranged so that the axes are parallel and the half-wave plate 20 is rotated about the optical path OA), the equation (2) is expressed by the rotation matrix R of the following equation (6). It changes like (7) and Formula (3) changes like Formula (8). The same applies to the case where the polarization direction of the incident light is rotated around the y-axis of the crystal sample S.

光路OAが結晶試料Sのx軸と平行であり入射光の偏光方向が結晶試料Sのy軸(又はz軸)と平行である場合、入射光と偏光方向が平行なラマン散乱光の強度Iは、ラマンテンソル成分Tyy(又はTzz)の二乗に比例し、入射光と偏光方向が直交するラマン散乱光の強度Iは、ラマンテンソル成分Tzy(又はTyz)の二乗に比例する。従って、入射光の偏光方向を結晶試料Sのx軸回りに回転させる場合には、式(7)から、モードAについても、ラマン散乱光強度Iは回転角θに依存して変化する。すなわち、PT結晶のAモードのラマンピークは、x軸回りの偏光方向の回転角θに応じて、図4(A)又は図4(B)に示すような変化を示す。なお、図4(A)は、Aモードのラマンテンソル成分a、bの関係がa×b<0の場合の強度変化を示し、図4(B)は、a×b>0の場合の強度変化を示す。 When the optical path OA is parallel to the x-axis of the crystal sample S and the polarization direction of the incident light is parallel to the y-axis (or z-axis) of the crystal sample S, the intensity I of the Raman scattered light with the incident light and the polarization direction parallel. Is proportional to the square of the Raman tensor component T yy (or T zz ), and the intensity I of the Raman scattered light whose polarization direction is orthogonal to the incident light is proportional to the square of the Raman tensor component T zy (or T yz ). Therefore, when the polarization direction of the incident light is rotated about the x-axis of the crystal sample S, the Raman scattered light intensity I also changes depending on the rotation angle θ in the mode A 1 from the equation (7). Namely, the Raman peak of A 1 Mode PT crystals, according to the rotation angle of the polarization direction of the x-axis theta, indicating the change as shown in FIG. 4 (A) or FIG. 4 (B). Incidentally, FIG. 4 (A), A 1 mode of the Raman tensor components a, relationship b is <shows the intensity variation of 0, FIG. 4 (B), a × b> a × b where a 0 Indicates intensity change.

このように、結晶試料Sの各軸回りの回転角θに応じたラマンピークの強度変化のパターンを解析することによって、モードの候補が決まり、結晶試料Sの対称性(点群)を決
定することが可能となる。また、各ラマンテンソル成分の比を決定することも可能となる。例えば、PT結晶について、入射光の偏光方向を結晶のz軸回りに回転させて取得したAモードのラマンピークの強度変化と、入射光の偏光方向を結晶のx軸(又はy軸)回りに回転させて取得したAモードのラマンピークの強度変化とを解析することで、Aモードのラマンテンソル成分a、bの比を求めることができる。
As described above, by analyzing the intensity change pattern of the Raman peak according to the rotation angle θ around each axis of the crystal sample S, mode candidates are determined, and the symmetry (point group) of the crystal sample S is determined. It becomes possible. It is also possible to determine the ratio of each Raman tensor component. For example, the PT crystal, x-axis of the intensity variation of the Raman peak of A 1 mode obtained by rotating the polarization direction of the incident light on the z axis of the crystal, the polarization direction of the incident light crystals (or y axis) a change in intensity of a 1 mode of the Raman peaks obtained by rotating by analyzing the Raman tensor components a of a 1 mode, it is possible to find the ratio of b to.

図5(A)、図5(B)は、結晶試料Sを測定点を中心に結晶のz軸回りに回転させる手法(図2(B)を参照)によって、PT結晶について測定したラマン散乱光の分光スペクトルを示す比較例である。図5(A)は、入射光と偏光方向が平行なラマン散乱光の分光スペクトルを示し、図5(B)は、入射光と偏光方向が直交するラマン散乱光の分光スペクトルを示す。図5(C)は、図5(A)、図5(B)の分光スペクトルから取得した、Bモードのラマンピークの強度変化を示す図である。図5(C)に示すように、比較例においては、Bモードのラマンピークの強度変化の測定値のばらつきが大きく、実線で示す理論値から外れている。また、図5(A)、図5(B)に示すように、比較例においては、結晶のz軸回りの回転角θに依存しないはずのAモードのラマンピークが、回転角θに応じて変化してしまっている。従って、図5(A)、図5(B)に示すような分光スペクトルを取得した場合には、350cm−1に現れるピークがAモードのラマンピークであるのか否かを決定することができない。これら比較例における測定誤差は、結晶試料Sを回転させる際に測定点等がばらつくことに起因するものと考えられる。 FIGS. 5A and 5B show Raman scattered light measured for a PT crystal by a method (see FIG. 2B) in which the crystal sample S is rotated around the measurement point around the z axis of the crystal. It is a comparative example which shows the spectrum of these. FIG. 5A shows a spectrum of Raman scattered light whose incident light and polarization direction are parallel, and FIG. 5B shows a spectrum of Raman scattered light whose incident light and polarization direction are orthogonal. FIG. 5 (C) FIG. 5 (A), the obtained from spectrum of FIG. 5 (B), is a diagram illustrating a change in intensity of the Raman peak of B 1 mode. As shown in FIG. 5 (C), in the comparative example, the variation of the measured values of the intensity change of B 1 mode Raman peak is large, it deviates from the theoretical value indicated by the solid line. Further, as shown in FIG. 5 (A), FIG. 5 (B), the in the comparative example, the Raman peak of A 1 mode should not depend on the rotation angle of the z axis of the crystal θ is, depending on the rotation angle θ Has changed. Therefore, when a spectrum as shown in FIGS. 5A and 5B is acquired, it cannot be determined whether or not the peak appearing at 350 cm −1 is an A 1 mode Raman peak. . The measurement error in these comparative examples is considered to be caused by variations in measurement points and the like when the crystal sample S is rotated.

図6は、PT結晶についての平行ニコルにおけるAモードのラマンピークの強度変化を、比較例の手法で取得した場合と、本実施形態の手法で取得した場合とで比較するための図である。図6を見ると、矩形点で示す比較例の手法で取得したラマンピークは、理論直線(aに比例する関数)との誤差が結晶のz軸回りの回転角θによって大きくばらついているのに対して、円形点で示す本実施形態の手法で取得したラマンピークは、理論値との誤差が回転角θに関わらず小さいことがわかる。 FIG. 6 is a diagram for comparing the intensity change of the A 1 mode Raman peak in parallel Nicol with respect to the PT crystal between the case of being obtained by the method of the comparative example and the case of being obtained by the method of the present embodiment. . Turning to FIG. 6, the Raman peak obtained by the method of comparative example shown by a rectangle point, the error between the theoretical straight line (function proportional to a 2) is varied greatly by the θ rotation angle around the z-axis of the crystal On the other hand, it can be seen that the Raman peak obtained by the method of the present embodiment indicated by a circular point has a small error from the theoretical value regardless of the rotation angle θ.

このように、本実施形態の測定装置及び測定方法によれば、結晶試料Sを測定点を中心に回転させる手法と比べて、精度良くラマンピークの強度変化を測定することができ、結晶試料Sのラマンテンソル成分をより高精度に定量測定することが可能となる。   As described above, according to the measurement apparatus and the measurement method of the present embodiment, it is possible to measure the intensity change of the Raman peak with higher accuracy than the method of rotating the crystal sample S around the measurement point. It becomes possible to quantitatively measure the Raman tensor component of.

本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更を加えることができる。   The technical scope of the present invention is not limited to the above-described embodiment, and appropriate modifications can be made without departing from the spirit of the present invention.

例えば、上記実施形態では、散乱光としてラマン散乱光について測定を行う場合について説明したが、本発明を、非弾性散乱であるブリルアン散乱光を測定する場合に適用してもよい。   For example, in the above-described embodiment, the case of measuring Raman scattered light as scattered light has been described. However, the present invention may be applied to measuring Brillouin scattered light that is inelastic scattering.

1 測定装置(評価装置)、10 光源、12 ビームエキスパンダ、14 ハーフミラー、16 対物レンズ、20 1/2波長板、22 偏光板、24 偏光解消板、30,32,34 レンズ、36 アパーチャ、40 分光器、42 光検出器、50 演算処理部(評価部)、S 結晶試料 DESCRIPTION OF SYMBOLS 1 Measurement apparatus (evaluation apparatus), 10 light source, 12 beam expander, 14 half mirror, 16 objective lens, 20 1/2 wavelength plate, 22 polarizing plate, 24 depolarization plate, 30, 32, 34 lens, 36 aperture, 40 spectroscope, 42 photodetector, 50 arithmetic processing unit (evaluation unit), S crystal sample

Claims (4)

光源からの光を、1/2波長板を介して結晶試料に照射する手順と、
前記結晶試料から発生し前記1/2波長板を透過した散乱光を分光して、前記散乱光の分光スペクトルを取得する取得手順と、
取得された前記分光スペクトルに基づいて、前記結晶試料を評価する評価手順とを含み、
前記1/2波長板は、回転可能に構成され、
前記評価手順では、
前記1/2波長板を回転させた場合に取得される前記分光スペクトルの強度変化に基づいて、前記結晶試料を評価することを特徴とする結晶試料の評価方法。
Irradiating the crystal sample with light from a light source via a half-wave plate;
An acquisition procedure for separating scattered light generated from the crystal sample and transmitted through the half-wave plate to obtain a spectral spectrum of the scattered light;
An evaluation procedure for evaluating the crystal sample based on the acquired spectral spectrum,
The half-wave plate is configured to be rotatable,
In the evaluation procedure,
A method for evaluating a crystal sample, comprising: evaluating the crystal sample based on an intensity change of the spectral spectrum acquired when the half-wave plate is rotated.
請求項1において、
前記取得手順では、
前記1/2波長板に入射する前記光源からの入射光と偏光方向が平行な前記散乱光の分光スペクトルと、前記入射光と偏光方向が直交する前記散乱光の分光スペクトルとを取得し、
前記評価手順では、
前記入射光と偏光方向が平行な前記散乱光の分光スペクトルの強度変化と、前記入射光と偏光方向が直交する前記散乱光の分光スペクトルの強度変化とに基づいて、前記結晶試料を評価することを特徴とする結晶試料の評価方法。
In claim 1,
In the acquisition procedure,
Obtaining a spectral spectrum of the scattered light whose polarization direction is parallel to the incident light from the light source incident on the half-wave plate, and a spectral spectrum of the scattered light whose polarization direction is orthogonal to the incident light,
In the evaluation procedure,
Evaluating the crystal sample on the basis of a change in intensity of a spectrum of the scattered light whose polarization direction is parallel to the incident light and a change in intensity of the spectrum of the scattered light whose polarization direction is orthogonal to the incident light. A method for evaluating a crystal sample characterized by
請求項1又は2において、
前記散乱光は、ラマン散乱光であることを特徴とする結晶試料の評価方法。
In claim 1 or 2,
The method for evaluating a crystal sample, wherein the scattered light is Raman scattered light.
光源からの光を、1/2波長板を介して結晶試料に照射する照射部と、
前記結晶試料から発生し前記1/2波長板を透過した散乱光を分光して、前記散乱光の分光スペクトルを取得する分光スペクトル取得部と、
取得された前記分光スペクトルに基づいて、前記結晶試料を評価する評価部とを含み、
前記1/2波長板は、回転可能に構成され、
前記評価部は、
前記1/2波長板を回転させた場合に取得される前記分光スペクトルの強度変化に基づいて、前記結晶試料を評価することを特徴とする結晶試料の評価装置。
An irradiation unit for irradiating the crystal sample with light from the light source via a half-wave plate;
A spectral spectrum acquisition unit that splits scattered light generated from the crystal sample and transmitted through the half-wave plate, and acquires a spectral spectrum of the scattered light;
An evaluation unit that evaluates the crystal sample based on the acquired spectral spectrum,
The half-wave plate is configured to be rotatable,
The evaluation unit is
An apparatus for evaluating a crystal sample, wherein the crystal sample is evaluated based on a change in intensity of the spectral spectrum acquired when the half-wave plate is rotated.
JP2012165976A 2012-07-26 2012-07-26 Method and apparatus for evaluating crystalline samples Pending JP2014025793A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012165976A JP2014025793A (en) 2012-07-26 2012-07-26 Method and apparatus for evaluating crystalline samples

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012165976A JP2014025793A (en) 2012-07-26 2012-07-26 Method and apparatus for evaluating crystalline samples

Publications (1)

Publication Number Publication Date
JP2014025793A true JP2014025793A (en) 2014-02-06

Family

ID=50199571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012165976A Pending JP2014025793A (en) 2012-07-26 2012-07-26 Method and apparatus for evaluating crystalline samples

Country Status (1)

Country Link
JP (1) JP2014025793A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020126013A (en) * 2019-02-06 2020-08-20 株式会社東レリサーチセンター Measurement tool, and measurement device and measurement method including the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62242842A (en) * 1986-04-14 1987-10-23 Mitsubishi Electric Corp Analysis of crystal orientation
JP2004177133A (en) * 2002-11-22 2004-06-24 Fujitsu Ltd Evaluation method and evaluation device for ferroelectric crystal
JP2008299146A (en) * 2007-05-31 2008-12-11 Tokyo Instruments Inc Confocal microscopic spectroscope
JP2009524035A (en) * 2006-01-20 2009-06-25 エコール ポリテクニク Ellipsometric Raman system and method for analyzing samples
CN102426163A (en) * 2011-08-18 2012-04-25 天津大学 Micro-raman spectrum experiment apparatus for adjustable polarization direction continuous collaboration/covariation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62242842A (en) * 1986-04-14 1987-10-23 Mitsubishi Electric Corp Analysis of crystal orientation
JP2004177133A (en) * 2002-11-22 2004-06-24 Fujitsu Ltd Evaluation method and evaluation device for ferroelectric crystal
JP2009524035A (en) * 2006-01-20 2009-06-25 エコール ポリテクニク Ellipsometric Raman system and method for analyzing samples
JP2008299146A (en) * 2007-05-31 2008-12-11 Tokyo Instruments Inc Confocal microscopic spectroscope
CN102426163A (en) * 2011-08-18 2012-04-25 天津大学 Micro-raman spectrum experiment apparatus for adjustable polarization direction continuous collaboration/covariation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020126013A (en) * 2019-02-06 2020-08-20 株式会社東レリサーチセンター Measurement tool, and measurement device and measurement method including the same

Similar Documents

Publication Publication Date Title
US8009292B2 (en) Single polarizer focused-beam ellipsometer
JP2011141288A5 (en)
US20140063495A1 (en) Optical device
JP5140451B2 (en) Birefringence measuring method, apparatus and program
JP4791752B2 (en) Near-field polarimeter
JP2009103598A (en) Spectroscopic ellipsometer and polarization analysis method
US20170045397A1 (en) Device for analysing a specimen and corresponding method
Watad et al. Spectro-ellipsometric surface plasmon resonance sensor using a liquid crystal achromatic waveplate
KR20170055661A (en) Apparatus of real time imaging spectroscopic ellipsometry for large-area thin film measurements
JP2000509830A (en) Rotation compensator-type spectroscopic ellipsometer system with regression calibration with photoarray detector
Hu et al. A liquid crystal variable retarder-based reflectance difference spectrometer for fast, high precision spectroscopic measurements
JP2014025793A (en) Method and apparatus for evaluating crystalline samples
JP6239336B2 (en) Circular dichroism measuring method and circular dichroic measuring device
JP5041508B2 (en) Optical characteristic measuring apparatus and method
JP5747317B2 (en) Polarization measuring apparatus and polarization measuring method
JP5991230B2 (en) Phase difference measuring method and apparatus
JP2006258594A (en) Automatic double refraction measuring instrument and double refraction measuring method using it
Wolfe et al. High-speed imaging polarimeter
JP6239335B2 (en) Circular dichroism measuring method and circular dichroic measuring device
JP7253801B2 (en) Interferometer, Fourier transform spectrometer and component analyzer
JP2015114266A (en) Polarization analyzing apparatus
Jian et al. Polarization detection with polarization interference imaging spectrometer
Schmidt et al. Polarization-modulated infrared reflection difference microspectroscopy: Experiment and model
Schulz et al. High accuracy polarimetric calibration of quartz control plates
JP3436704B2 (en) Birefringence measuring method and apparatus therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160622

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161214