JP2014025144A - Method for extracting and separating solvent of noble metal from hydrochloric acid solution - Google Patents

Method for extracting and separating solvent of noble metal from hydrochloric acid solution Download PDF

Info

Publication number
JP2014025144A
JP2014025144A JP2012271448A JP2012271448A JP2014025144A JP 2014025144 A JP2014025144 A JP 2014025144A JP 2012271448 A JP2012271448 A JP 2012271448A JP 2012271448 A JP2012271448 A JP 2012271448A JP 2014025144 A JP2014025144 A JP 2014025144A
Authority
JP
Japan
Prior art keywords
hydrochloric acid
noble metal
acid solution
extracting
separating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012271448A
Other languages
Japanese (ja)
Other versions
JP6061335B2 (en
Inventor
Yuji Sasaki
祐二 佐々木
Hitoshi Mimura
均 三村
Yasuhisa Ikeda
泰久 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Agency filed Critical Japan Atomic Energy Agency
Priority to JP2012271448A priority Critical patent/JP6061335B2/en
Priority to CN201310110007.4A priority patent/CN103509947A/en
Publication of JP2014025144A publication Critical patent/JP2014025144A/en
Application granted granted Critical
Publication of JP6061335B2 publication Critical patent/JP6061335B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Extraction Or Liquid Replacement (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for extracting and separating a solvent of a novel metal, capable of efficiently extracting and separating noble metal elements from a hydrochloric acid solution with easy processes and operations.SOLUTION: A method of extracting and separating a solvent of a novel metal uses methylimino-N,N-bis dialkyl acetamide represented by the following general formula (I): CH-N-(CHCONR), where R represents an alkyl having 8 to 12 carbon atoms. Further, a noble metal is extracted and separated from a hydrochloric acid solution by passing the hydrochloric acid solution containing the noble metal through a noble metal extraction column containing a resin impregnated with the methylimino-N,N-bis dialkyl acetamide as extraction medium. A noble metal is osmium, iridium, platinum, gold or mercury.

Description

本発明は、塩酸溶液からの貴金属の溶媒抽出分離方法に関し、特に、塩酸溶液からオスミウム、イリジウム、パラジウム、白金、金及又は水銀を有機相に抽出分離する方法に関する。   The present invention relates to a method for extracting and separating a noble metal from a hydrochloric acid solution, and more particularly to a method for extracting and separating osmium, iridium, palladium, platinum, gold and mercury from a hydrochloric acid solution into an organic phase.

メチルイミノ−N,N−ビスジアルキルアセトアミド(以下「MIDOA」と略すこともある。)は、2個のアミド基を連結するアルキル基中に窒素原子を含み、2個のカルボニル酸素と窒素で金属と反応できる3座配位性の抽出剤である。本発明者らは、MIDOAが硝酸溶液からのCr、Mo、Pd、Tc、W、Re、Puの抽出剤として有効であることを確認している(特許文献1及び2)。   Methylimino-N, N-bisdialkylacetamide (hereinafter sometimes abbreviated as “MIDOA”) contains a nitrogen atom in an alkyl group connecting two amide groups, and a metal with two carbonyl oxygens and nitrogen. It is a tridentate extractant capable of reacting. The present inventors have confirmed that MIDOA is effective as an extractant for Cr, Mo, Pd, Tc, W, Re, and Pu from a nitric acid solution (Patent Documents 1 and 2).

貴金属は、錯体としての安定性や溶解性が高いことから、塩酸溶液として使用されることが多く、塩酸溶液からの貴金属の回収に対するニーズがある。従来の貴金属の精錬法として、金はアマルガム法や青化法が利用されるが、人体に有害な水銀やシアン化合物を利用するため危険性が高い。活性炭への吸着を利用するオスミウムの回収法が提案されているが、吸着法はpH6以上に調整しなければならない(特許文献3)。アルカリ融解を利用するイリジウムの回収法が提案されているが、650℃の高温が融解に必要となる(特許文献4)。パラジウムの回収について陽イオン交換法が提案されているが、pH2−12の領域で塩酸酸性の条件ではない(特許文献5)。白金の回収について、イリジウムと同様に融解後電解回収法があるが、1400℃の高温が必要である(特許文献6)。水銀について、汚染土壌からの回収法が提案されるが、気化させるために、300℃の高温条件が必要である(特許文献7)。   Since noble metals have high stability and solubility as complexes, they are often used as hydrochloric acid solutions, and there is a need for recovery of noble metals from hydrochloric acid solutions. As a conventional refining method for precious metals, gold uses the amalgam method and the bluening method, but it is highly dangerous because it uses mercury and cyanide compounds that are harmful to the human body. Although a method for recovering osmium using adsorption on activated carbon has been proposed, the adsorption method must be adjusted to pH 6 or higher (Patent Document 3). A method of recovering iridium using alkali melting has been proposed, but a high temperature of 650 ° C. is required for melting (Patent Document 4). Although a cation exchange method has been proposed for the recovery of palladium, it is not a hydrochloric acid acidic condition in the range of pH 2-12 (Patent Document 5). Regarding recovery of platinum, there is a post-melting electrolytic recovery method similar to iridium, but a high temperature of 1400 ° C. is required (Patent Document 6). For mercury, a method for recovering from contaminated soil is proposed, but in order to vaporize, a high temperature condition of 300 ° C. is required (Patent Document 7).

特開2009-114129号公報JP 2009-114129 A 特開2010-101641号公報JP 2010-101641 A 特開平9-137237号公報JP-A-9-137237 特開2001-64734号公報Japanese Patent Laid-Open No. 2001-64734 特開平2000-192162号公報Japanese Unexamined Patent Publication No. 2000-192162 特開2008-1917号公報JP 2008-1917 特開平10-296229号公報Japanese Patent Laid-Open No. 10-296229

オスミウム、イリジウム、白金、金又は水銀などの貴金属を塩酸溶液から回収する方法として、次の課題を解決する必要がある。
溶融法では高温で溶融することが必要であるため、長時間を要し大容量を取り扱うことが困難である。
As a method for recovering a noble metal such as osmium, iridium, platinum, gold or mercury from a hydrochloric acid solution, it is necessary to solve the following problems.
Since the melting method requires melting at a high temperature, it takes a long time and it is difficult to handle a large volume.

イオン交換法は、反応に長時間を要し、大容量を取り扱うことが難しい。
溶媒抽出法は、これまでに有効な抽出剤の提案がなく、溶媒抽出で塩酸溶液からの貴金属を回収する報告例はない。
In the ion exchange method, the reaction takes a long time and it is difficult to handle a large volume.
In the solvent extraction method, no effective extractant has been proposed so far, and there are no reports of recovering noble metals from hydrochloric acid solutions by solvent extraction.

本発明は、貴金属の精製及び回収の溶解液として有効な塩酸溶液から、pH調整などの処理を必要とせずに、直接、抽出分離できる溶媒抽出分離法を提供することを目的とする。   An object of the present invention is to provide a solvent extraction / separation method that can directly extract and separate from a hydrochloric acid solution effective as a solution for purifying and recovering noble metals without requiring treatment such as pH adjustment.

本発明者らは、上記課題を解消すべく鋭意検討した結果、特定の構造を有するアセトアミド化合物が、上記課題を解消しうる抽出剤足りうることを知見し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that an acetamide compound having a specific structure can be an extractant capable of solving the above problems, and have completed the present invention.

すなわち本発明は、下記一般式(I):
CH−N−(CHCONR・・・・(I)
(式中、Rは炭素数が8個〜12個のアルキル基を示す)
で表されるメチルイミノ−N−N−ビスジアルキルアセトアミド(以下、この化合物を「MIDAA」という)を抽出剤として用いることを特徴とする塩酸溶液から貴金属を直接有機相に抽出分離する溶媒抽出分離方法を提供するものである。
That is, the present invention provides the following general formula (I):
CH 3 —N— (CH 2 CONR 2 ) 2 ... (I)
(Wherein R represents an alkyl group having 8 to 12 carbon atoms)
A solvent extraction separation method for extracting and separating a noble metal directly from a hydrochloric acid solution into an organic phase, which comprises using methylimino-N-N-bisdialkylacetamide represented by the formula (hereinafter, this compound is referred to as “MIDAA”) as an extractant Is to provide.

MIDAAは以下の特性を有するため、水相から有機相への貴金属の分配比が高く、塩酸溶液からの貴金属の抽出分離に適する。なお、分配比とは、[有機相中の金属イオン濃度]/[水相中の金属イオン濃度]を示す。
(1)疎水性が高く、n−ドデカンとの親和性が高く、さらにそれ以外の多くの有機溶媒に溶解可能である。(2)空気中分解や昇華等の反応が起こらず空気中で安定に存在する。さらに、オスミウム、イリジウム、白金、金、水銀などの貴金属元素との錯体を容易に形成することができる窒素ドナーを含む三座配位子である。(3)炭素、水素、酸素、窒素からなる化合物であり、二次廃棄物の発生量を低減することができる。(4)有機リン化合物、アミン化合物と異なり、毒性が低い。(5)容易に製造できる。
Since MIDAA has the following characteristics, the distribution ratio of the noble metal from the aqueous phase to the organic phase is high, and it is suitable for the extraction and separation of the noble metal from the hydrochloric acid solution. The distribution ratio indicates [metal ion concentration in organic phase] / [metal ion concentration in aqueous phase].
(1) High hydrophobicity, high affinity with n-dodecane, and further soluble in many other organic solvents. (2) Reactions such as decomposition in the air and sublimation do not occur and it exists stably in the air. Furthermore, it is a tridentate ligand containing a nitrogen donor that can easily form a complex with a noble metal element such as osmium, iridium, platinum, gold, and mercury. (3) A compound composed of carbon, hydrogen, oxygen, and nitrogen, and can reduce the amount of secondary waste generated. (4) Unlike organic phosphorus compounds and amine compounds, it has low toxicity. (5) It can be easily manufactured.

上記一般式(I)におけるRの具体例としては、オクチル基、デシル基、ドデシル基等を挙げることができる。オクチル基は廉価であり、分配比が良好であること、ドデシル基は水相から有機相に抽出されない新たな第三相を形成しにくく、抽出分離効率が高い。したがって、本発明において抽出剤として用いられる上記MIDAAの具体例としては、メチルイミノビスジオクチルアセトアミド、メチルイミノビスジデシルアセトアミド、メチルイミノビスジドデシルアセトアミドを挙げることができ、特にメチルイミノビスジオクチルアセトアミドが好ましい。   Specific examples of R in the general formula (I) include an octyl group, a decyl group, a dodecyl group, and the like. The octyl group is inexpensive and has a good distribution ratio, and the dodecyl group hardly forms a new third phase that is not extracted from the aqueous phase to the organic phase, and has high extraction and separation efficiency. Therefore, specific examples of the MIDAA used as the extractant in the present invention include methyliminobisdioctylacetamide, methyliminobisdidecylacetamide, methyliminobisdidodecylacetamide, and methyliminobisdioctylacetamide is particularly preferred. preferable.

上記MIDAAは、3−メチルイミノ二酢酸を塩化チオニルやジシクロヘキシルカルボジイミドなどの縮合剤を用いて、酸塩化物を生成し、その後、トリエチルアミンなどの存在下でジメチルアミンやジ−n−オクチルアミンなどの二級アミン化合物を氷点下で冷却しながら添加して緩やかに反応させ、得られた生成物を水、水酸化ナトリウム及び塩酸溶液で洗浄し、シリカゲルカラムに繰り返し通して単離精製することで製造することができる。   The MIDAA uses 3-methyliminodiacetic acid as a condensing agent such as thionyl chloride or dicyclohexylcarbodiimide to produce an acid chloride, and then in the presence of triethylamine or the like, dimethylamine or di-n-octylamine or the like. Produced by adding a quaternary amine compound while cooling under freezing and reacting gently, washing the resulting product with water, sodium hydroxide and hydrochloric acid solution, and repeatedly isolating and purifying it through a silica gel column. Can do.

縮合剤の使用量は、3−メチルイミノ二酢酸100質量部に対して100〜120質量部とするのが、3−メチルイミノ二酢酸を十分に反応させることができると一般に考えられる。これより多い場合は反応液内に残分が多く生じるようになり、精製時においても経済性の点からも不都合である。   The amount of the condensing agent used is generally 100 to 120 parts by mass with respect to 100 parts by mass of 3-methyliminodiacetic acid, and it is generally considered that 3-methyliminodiacetic acid can be sufficiently reacted. When the amount is larger than this, a large amount of residue is generated in the reaction solution, which is inconvenient at the time of purification and economically.

塩素化の反応条件は、アルゴン雰囲気で、塩化チオニルを攪拌しながらゆっくり加える(2〜3時間)。余分な塩化チオニル(沸点79℃)は緩やかに加温することで蒸発させる。また、塩素化に際しては、酢酸エチルなどの溶媒を用いることができる。   The reaction conditions for chlorination are slow addition of thionyl chloride with stirring in an argon atmosphere (2 to 3 hours). Excess thionyl chloride (boiling point 79 ° C.) is evaporated by warming gently. In the chlorination, a solvent such as ethyl acetate can be used.

二級アミン化合物の使用量は、塩素化により得られた化合物100質量部に対して、100〜120質量部とするのが、酸塩化物を十分に反応させると一般に考えられる。これより多い場合は反応液内に残分が多く生じるようになり、精製時においても経済性の点からも不都合である。   It is generally considered that the amount of the secondary amine compound used is 100 to 120 parts by mass with respect to 100 parts by mass of the compound obtained by chlorination when the acid chloride is sufficiently reacted. When the amount is larger than this, a large amount of residue is generated in the reaction solution, which is inconvenient at the time of purification and economically.

本発明の溶媒抽出分離方法は、MIDAAを使用する点を除いて通常の溶媒抽出分離方法の手順を用いることができる。
MIDAAをn−ドデカン(溶剤)に溶解し、振とうさせる(液―液混合法)。溶剤としては、ドデカン、オクタノール、ニトロベンゼン、クロロホルム、トルエンなどを用いることができるが、安全性の観点などからn−ドデカンがもっとも好ましい。
In the solvent extraction / separation method of the present invention, the procedure of a normal solvent extraction / separation method can be used except that MIDAA is used.
MIDAA is dissolved in n-dodecane (solvent) and shaken (liquid-liquid mixing method). As the solvent, dodecane, octanol, nitrobenzene, chloroform, toluene and the like can be used, and n-dodecane is most preferable from the viewpoint of safety.

MIDAAの使用量は、溶液の濃度がモル濃度で0.1〜0.2Mとなるようにするのが好ましい。
塩酸の濃度は、抽出対象の貴金属によっても異なり、たとえばイリジウムでは塩酸濃度が高くなると分配比が低くなる傾向にあるが、白金、金、水銀では塩酸濃度が高くなる傾向にある。一般的には1M〜6Mの範囲の塩酸濃度が好ましい。
The amount of MIDAA used is preferably such that the concentration of the solution is 0.1 to 0.2 M in terms of molar concentration.
The concentration of hydrochloric acid varies depending on the noble metal to be extracted. For example, in iridium, the distribution ratio tends to decrease as the hydrochloric acid concentration increases, but in hydrochloric acid, platinum, gold, and mercury tend to increase in hydrochloric acid concentration. In general, hydrochloric acid concentrations in the range of 1M to 6M are preferred.

MIDAAと処理対象である塩酸溶液との混合比は、処理対象である金属の含有量によっても異なるが、1:1の化学反応を起こすことが把握されており、一般的には0.01:1〜1:0.01(=水相:有機相の容積比)の範囲内とするのが好ましい。   Although the mixing ratio of MIDAA and the hydrochloric acid solution to be treated varies depending on the content of the metal to be treated, it is known that a 1: 1 chemical reaction occurs, and generally 0.01: It is preferable to be within the range of 1-1: 0.01 (= water phase: organic phase volume ratio).

振とう条件は、室温ないしは25℃とし、振とう時間は、10分〜20分とするのが好ましい。
本発明の溶媒分離方法には、抽出カラムに貴金属を含む塩酸溶液を通液させるカラム分離も含まれる。抽出カラムの調製は、下記のようにして行うことができる。MIDAAを溶解したアルコールと樹脂を混ぜ、室温で撹拌して樹脂にMIDAAを含浸させる。アルコールとしてはメタノール、エタノールを好適に挙げることができる。アルコール中MIDAA濃度は0.1M程度が好適である。樹脂としてはアンバーライト(登録商標)XAD樹脂(ローム・アンド・ハース社)を好適に挙げることができる。樹脂と溶液の量は、樹脂密度が低く溶液に浮くことを考慮して、アルコール10mlに対して樹脂1〜2gが好適である。その後、固相と液相とを分離して固相のみを回収乾燥し、MIDAA含浸樹脂を得る。MIDAA含浸樹脂を直径1〜10cmのカラムに入れ、抽出カラムとする。抽出カラムに貴金属を含む塩酸溶液を通液して、MIDAA含浸樹脂に貴金属を吸着させて塩酸溶液から回収する。
The shaking condition is preferably room temperature or 25 ° C., and the shaking time is preferably 10 minutes to 20 minutes.
The solvent separation method of the present invention includes column separation in which a hydrochloric acid solution containing a noble metal is passed through an extraction column. The extraction column can be prepared as follows. The alcohol in which MIDAA is dissolved and a resin are mixed, and the resin is impregnated with MIDAA by stirring at room temperature. Preferred examples of alcohol include methanol and ethanol. The MIDAA concentration in alcohol is preferably about 0.1M. Preferred examples of the resin include Amberlite (registered trademark) XAD resin (Rohm and Haas). The amount of the resin and the solution is preferably 1 to 2 g of resin with respect to 10 ml of alcohol in consideration of low resin density and floating in the solution. Thereafter, the solid phase and the liquid phase are separated and only the solid phase is recovered and dried to obtain a MIDAA-impregnated resin. The MIDAA impregnated resin is put into a column having a diameter of 1 to 10 cm to obtain an extraction column. A hydrochloric acid solution containing a noble metal is passed through the extraction column, the noble metal is adsorbed on the MIDAA impregnated resin, and recovered from the hydrochloric acid solution.

本発明の塩酸溶液からの貴金属元素の溶媒抽出方法は、pH調整などの前処理が不要で、大容量の溶液処理が可能である。   The method for extracting a noble metal element from a hydrochloric acid solution according to the present invention does not require a pretreatment such as pH adjustment, and enables a large volume solution treatment.

図1は、MIDOAによる貴金属元素の抽出分配比と塩酸濃度との関係を示すグラフである。有機相は0.1M MIDOA/ドデカンFIG. 1 is a graph showing the relationship between the extraction distribution ratio of noble metal elements by MIDOA and the hydrochloric acid concentration. Organic phase is 0.1M Midoa / Dodecane 図2は、0.1 M MIDOA/ドデカンを用いる、3M HClからの高濃度貴金属の抽出結果を示すグラフである。FIG. 2 is a graph showing the results of extraction of high concentration noble metal from 3M HCl using 0.1 M MIDOA / dodecane. 図3は、0.1M MIDOA含浸樹脂を吸着剤として用いた各種金属の分配係数を塩酸濃度に対してプロットしたグラフである。FIG. 3 is a graph in which the distribution coefficients of various metals using 0.1 M MIDOA impregnated resin as an adsorbent are plotted against the hydrochloric acid concentration.

以下、本発明を実施例及び比較例を用いてさらに具体的に説明するが、本発明はこれらに制限されるものではない。
[合成例1]MIDOAの調製
3−メチルイミノ二酢酸(和光純薬製)10gと塩化チオニル20gとを用いて塩素化を行った。溶媒としては酢酸エチルを100g用い、反応条件は、50〜60℃、2〜3時間とした。
EXAMPLES Hereinafter, although this invention is demonstrated further more concretely using an Example and a comparative example, this invention is not restrict | limited to these.
[Synthesis Example 1] Preparation of MIDOA Chlorination was performed using 10 g of 3-methyliminodiacetic acid (manufactured by Wako Pure Chemical Industries) and 20 g of thionyl chloride. As a solvent, 100 g of ethyl acetate was used, and the reaction conditions were 50 to 60 ° C. and 2-3 hours.

その後、この反応溶液中にジオクチルアミン20gを5℃以下に冷却しながら2〜3時間かけて添加し、添加終了後、一昼夜反応させた。反応終了後、シリカゲルカラムを用いて単離精製を行い、MIDOAを得た。得られたMIDOAは、無極性溶媒のドデカンに高い溶解性(1.1M以上の濃度の溶液を調製可能)を示した。   Thereafter, 20 g of dioctylamine was added to the reaction solution over 2 to 3 hours while cooling to 5 ° C. or lower, and the reaction was carried out all day and night after the addition was completed. After completion of the reaction, isolation and purification were performed using a silica gel column to obtain MIDOA. The obtained MIDOA showed high solubility in a non-polar solvent dodecane (a solution having a concentration of 1.1 M or more can be prepared).

[実施例1]
有機相として0.1M MIDOA/n−ドデカンを用い、水相として各濃度の塩酸を用いて、Os、Ir、Pt、Au、Hgの溶媒抽出実験を行った。各金属イオンを含む塩酸溶液と0.1M MIDOA濃度のドデカン溶媒を等量ずつ混合、25℃で30分程度振とうして、相分離させた。振とう後の水相及び有機相の金属イオンの分配比を測定した。結果を図1に示す。図の横軸、縦軸はそれぞれ塩酸濃度と分配比である。なお、分配比は抽出実験後の有機相中の金属イオン濃度を水相中の金属イオン濃度で割った比である。図1より、Irを除く各貴金属元素の分配比は、定量的な回収が可能な分配比10を超えている。最も低いIrでも1.3M以下の濃度のHCl溶液から分配比は10を越えており、1.3Mを越える濃度のHCl溶液であっても多段抽出(例えば、5M HCl溶液では2回繰り返すことで、分配比8×8=64を得る)を行うことで定量的な回収が可能な分配比10を超えることがわかる。
[Example 1]
Solvent extraction experiments of Os, Ir, Pt, Au, and Hg were performed using 0.1 M MIDOA / n-dodecane as the organic phase and hydrochloric acid at various concentrations as the aqueous phase. A hydrochloric acid solution containing each metal ion and a dodecane solvent having a concentration of 0.1 M MIDOA were mixed in equal amounts and shaken at 25 ° C. for about 30 minutes to cause phase separation. The distribution ratio of metal ions in the aqueous phase and the organic phase after shaking was measured. The results are shown in FIG. In the figure, the horizontal axis and the vertical axis represent the hydrochloric acid concentration and the distribution ratio, respectively. The distribution ratio is a ratio obtained by dividing the metal ion concentration in the organic phase after the extraction experiment by the metal ion concentration in the aqueous phase. From FIG. 1, the distribution ratio of each noble metal element excluding Ir exceeds the distribution ratio 10 at which quantitative recovery is possible. Even at the lowest Ir, the partition ratio exceeds 10 from an HCl solution with a concentration of 1.3 M or less, and even an HCl solution with a concentration of more than 1.3 M is subjected to multistage extraction (for example, by repeating twice with a 5 M HCl solution). It is understood that a distribution ratio exceeding 10 is obtained by performing a distribution ratio of 8 × 8 = 64).

[実施例2]
Ir、Pt、Auの抽出容量を測定した。10 mM以上の金属イオン濃度を含む3M HCl溶液を用いて、0.1M MIDOA/n−ドデカン溶媒を等量ずつ混合、振とうして、相分離させた。振とう後の有機相の金属イオン濃度を測定した。図2は、相分離後の有機相の金属イオン濃度と、抽出前の水相の金属イオン濃度とをプロットしたグラフである。有機相中の金属イオン濃度が高いほど多くの金属元素を抽出できることを示す。図2より、1回の溶媒抽出分離でIrは42.7mM、Ptは27.5mM、Auは18.8mMを抽出可能である。同じ操作を複数回繰り返すことにより、水相中に残存している金属イオンを有機相に抽出分離できることがわかる。
[Example 2]
The extraction capacities of Ir, Pt, and Au were measured. Using a 3 M HCl solution containing a metal ion concentration of 10 mM or more, 0.1 M MIDOA / n-dodecane solvent was mixed in equal amounts and shaken to cause phase separation. The metal ion concentration of the organic phase after shaking was measured. FIG. 2 is a graph plotting the metal ion concentration of the organic phase after phase separation and the metal ion concentration of the aqueous phase before extraction. The higher the metal ion concentration in the organic phase, the more metal elements can be extracted. From FIG. 2, it is possible to extract Ir by 42.7 mM, Pt by 27.5 mM, and Au by 18.8 mM by one solvent extraction separation. It can be seen that by repeating the same operation a plurality of times, the metal ions remaining in the aqueous phase can be extracted and separated into the organic phase.

[実施例3]
メチルイミノビスジドデシルアセトアミド(以下、「MIDDdA」と略すこともある。)を用いて実施例2と同様に溶媒抽出実験を行った。得られた結果を表1に示す。0.1M MIDDdA/n−ドデカンの有機相を用いて1M HCl溶液からの各貴金属元素の分配比は、いずれの元素も定量的な回収が可能な分配比10を超えている。
[Example 3]
A solvent extraction experiment was conducted in the same manner as in Example 2 using methyliminobisdidodecylacetamide (hereinafter sometimes abbreviated as “MIDDdA”). The obtained results are shown in Table 1. The distribution ratio of each noble metal element from the 1M HCl solution using the organic phase of 0.1M MIDDdA / n-dodecane exceeds the distribution ratio 10 at which any element can be quantitatively recovered.

[参考例1]
Pdの塩酸溶液を用いて実施例1〜3と同じ実験を行った。結果を図1〜2及び表1に併記する。Pdの分配比は非常に高く、1回の溶媒抽出分離で46.6mMを抽出分離できた。
[Reference Example 1]
The same experiment as in Examples 1 to 3 was performed using a hydrochloric acid solution of Pd. The results are shown in FIGS. The distribution ratio of Pd was very high, and 46.6 mM could be extracted and separated by one solvent extraction separation.

Figure 2014025144
Figure 2014025144

[実施例4]
MIDOAを含浸した樹脂を用いて固液条件での各種貴金属の分配係数(Kd)を求め、塩酸濃度との関係を調べた。
[Example 4]
Using a resin impregnated with MIDOA, the distribution coefficient (Kd) of various noble metals under solid-liquid conditions was determined, and the relationship with the hydrochloric acid concentration was examined.

XAD2000樹脂(ローム・アンド・ハース社)5gを水約50ml及びエタノール約50mlで洗浄した。洗浄した樹脂1g程度を秤量し、0.1M MIDOA/エタノール溶液約10mlと1時間、室温で振り混ぜた。次いで、デカンテーション及びろ過を行い、樹脂のみを回収して風乾した。回収した樹脂を、Os、Ir、Pt、Au、Hgをそれぞれ含む塩酸溶液に添加して振り混ぜ、金属の分配係数(Kd)を求めた。
Kd=([塩酸溶液中の初期金属濃度]−[振り混ぜ後の塩酸溶液中の金属濃度])/([振り混ぜ後の塩酸溶液中の金属濃度]×[塩酸溶液量])/樹脂量(g)
図3は、各種金属の分配係数を塩酸濃度に対してプロットしたグラフである。Os、Pt、Au、Hgの分配係数は、塩酸濃度が0.1M〜10Mの間でおおむね100を越えており、溶液量を樹脂量の10倍とした場合に樹脂中への金属回収率が90%以上であることを意味する。分配係数が最も低いIrでも、溶液量に対する樹脂量の比率を高めることで回収率を向上させることが可能である。
5 g of XAD2000 resin (Rohm and Haas) was washed with about 50 ml of water and about 50 ml of ethanol. About 1 g of the washed resin was weighed and shaken and mixed with about 10 ml of a 0.1 M MIDOA / ethanol solution at room temperature for 1 hour. Subsequently, decantation and filtration were performed, and only the resin was recovered and air-dried. The recovered resin was added to a hydrochloric acid solution containing Os, Ir, Pt, Au, and Hg and shaken to obtain a metal distribution coefficient (Kd).
Kd = ([initial metal concentration in hydrochloric acid solution] − [metal concentration in hydrochloric acid solution after shaking]) / ([metal concentration in hydrochloric acid solution after shaking] × [amount of hydrochloric acid solution]) / resin amount (G)
FIG. 3 is a graph in which distribution coefficients of various metals are plotted against hydrochloric acid concentration. The distribution coefficient of Os, Pt, Au, and Hg is over 100 when the hydrochloric acid concentration is between 0.1M and 10M. When the amount of the solution is 10 times the amount of the resin, the metal recovery rate in the resin is It means 90% or more. Even with Ir having the lowest distribution coefficient, it is possible to improve the recovery rate by increasing the ratio of the resin amount to the solution amount.

[参考例2]
Pdの塩酸溶液を用いて実施例4と同じ実験を行った。結果を図3に併記する。Pdの分配係数は、塩酸濃度が低いほど高く、塩酸濃度が高くなるに従って低くなるが、分配係数は10を越えており、溶液量に対する樹脂量の比率を高めることで回収率を向上させることが可能である。
[Reference Example 2]
The same experiment as in Example 4 was performed using a hydrochloric acid solution of Pd. The results are also shown in FIG. The distribution coefficient of Pd increases as the hydrochloric acid concentration decreases and decreases as the hydrochloric acid concentration increases. However, the distribution coefficient exceeds 10, and the recovery rate can be improved by increasing the ratio of the resin amount to the solution amount. Is possible.

図3から、各種貴金属の分配係数が塩酸濃度に依存していることがわかる。このことから、目的の貴金属にあわせて塩酸濃度を調節することで、塩酸溶液から貴金属を抽出できるといえる。   FIG. 3 shows that the distribution coefficients of various noble metals depend on the hydrochloric acid concentration. From this, it can be said that the noble metal can be extracted from the hydrochloric acid solution by adjusting the hydrochloric acid concentration according to the target noble metal.

MIDOAは、塩酸溶液中のOs、Ir、Pt、Au、Hgに高い分配比を示し、これらの貴金属を効率よく抽出分離できる。本方法は、塩酸溶液からの貴金属の回収や精錬の効率を高めることができる。   Midoa shows a high distribution ratio to Os, Ir, Pt, Au, and Hg in a hydrochloric acid solution, and can extract and separate these noble metals efficiently. This method can increase the efficiency of recovery and refining of noble metals from hydrochloric acid solution.

Claims (5)

下記一般式(I):
CH−N−(CHCONR・・・(I)
(式中、Rは炭素数が8個〜12個のアルキル基を示す)
で表されるメチルイミノ−N,N−ビスジアルキルアセトアミドを抽出剤として用いる塩酸溶液からの貴金属の溶媒分離方法。
The following general formula (I):
CH 3 -N- (CH 2 CONR 2 ) 2 ··· (I)
(Wherein R represents an alkyl group having 8 to 12 carbon atoms)
A method for separating a noble metal from a hydrochloric acid solution using methylimino-N, N-bisdialkylacetamide represented by the formula as an extractant.
前記貴金属は、オスミウム、イリジウム、白金、金及又は水銀である、請求項1に記載の溶媒分離方法。   The solvent separation method according to claim 1, wherein the noble metal is osmium, iridium, platinum, gold, or mercury. 下記一般式(I):
CH−N−(CHCONR・・・(I)
(式中、Rは炭素数が8個〜12個のアルキル基を示す)
で表されるメチルイミノ−N,N−ビスジアルキルアセトアミドを含浸させた樹脂を抽出媒体とする貴金属抽出カラム。
The following general formula (I):
CH 3 -N- (CH 2 CONR 2 ) 2 ··· (I)
(Wherein R represents an alkyl group having 8 to 12 carbon atoms)
A noble metal extraction column using as an extraction medium a resin impregnated with methylimino-N, N-bisdialkylacetamide.
請求項3に記載の貴金属抽出カラムに貴金属を含む塩酸溶液を通液することにより、塩酸溶液から貴金属を抽出分離する方法。   A method for extracting and separating a noble metal from a hydrochloric acid solution by passing a hydrochloric acid solution containing the noble metal through the noble metal extraction column according to claim 3. 前記貴金属は、オスミウム、イリジウム、白金、金及又は水銀である、請求項4に記載の貴金属を抽出分離する方法。   The method for extracting and separating the noble metal according to claim 4, wherein the noble metal is osmium, iridium, platinum, gold, or mercury.
JP2012271448A 2012-06-18 2012-12-12 Solvent extraction separation of osmium, iridium, platinum, gold or mercury from hydrochloric acid solution Expired - Fee Related JP6061335B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012271448A JP6061335B2 (en) 2012-06-18 2012-12-12 Solvent extraction separation of osmium, iridium, platinum, gold or mercury from hydrochloric acid solution
CN201310110007.4A CN103509947A (en) 2012-06-18 2013-03-29 Solvent extraction separation method for extracting and separating precious metal from hydrochloric acid solution

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012136715 2012-06-18
JP2012136715 2012-06-18
JP2012271448A JP6061335B2 (en) 2012-06-18 2012-12-12 Solvent extraction separation of osmium, iridium, platinum, gold or mercury from hydrochloric acid solution

Publications (2)

Publication Number Publication Date
JP2014025144A true JP2014025144A (en) 2014-02-06
JP6061335B2 JP6061335B2 (en) 2017-01-18

Family

ID=50199046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012271448A Expired - Fee Related JP6061335B2 (en) 2012-06-18 2012-12-12 Solvent extraction separation of osmium, iridium, platinum, gold or mercury from hydrochloric acid solution

Country Status (1)

Country Link
JP (1) JP6061335B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105256145A (en) * 2015-11-18 2016-01-20 金川集团股份有限公司 Method for extracting noble metal from waste vehicle exhaust catalyst
CN106086435A (en) * 2016-07-31 2016-11-09 贵州宏达环保科技有限公司 A kind of recovery copper, cobalt, nickel, silver method from cupric kiln slag
JP2020152931A (en) * 2019-03-18 2020-09-24 国立研究開発法人日本原子力研究開発機構 Electrolytic reduction recovery method of metal ion in organic solvent

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010101641A (en) * 2008-10-21 2010-05-06 Japan Atomic Energy Agency Method for extracting and separating solvent of metals using methyliminobisdialkyl acetamide is used as extractant
JP2011047665A (en) * 2009-08-25 2011-03-10 Japan Atomic Energy Agency Solid extractant for radioactive element
JP2012144448A (en) * 2011-01-07 2012-08-02 Japan Atomic Energy Agency Process for producing methyliminobisdialkyl acetamide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010101641A (en) * 2008-10-21 2010-05-06 Japan Atomic Energy Agency Method for extracting and separating solvent of metals using methyliminobisdialkyl acetamide is used as extractant
JP2011047665A (en) * 2009-08-25 2011-03-10 Japan Atomic Energy Agency Solid extractant for radioactive element
JP2012144448A (en) * 2011-01-07 2012-08-02 Japan Atomic Energy Agency Process for producing methyliminobisdialkyl acetamide

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105256145A (en) * 2015-11-18 2016-01-20 金川集团股份有限公司 Method for extracting noble metal from waste vehicle exhaust catalyst
CN106086435A (en) * 2016-07-31 2016-11-09 贵州宏达环保科技有限公司 A kind of recovery copper, cobalt, nickel, silver method from cupric kiln slag
CN106086435B (en) * 2016-07-31 2018-01-30 贵州宏达环保科技有限公司 One kind reclaims copper, cobalt, nickel, silver-colored method from cupric kiln slag
JP2020152931A (en) * 2019-03-18 2020-09-24 国立研究開発法人日本原子力研究開発機構 Electrolytic reduction recovery method of metal ion in organic solvent

Also Published As

Publication number Publication date
JP6061335B2 (en) 2017-01-18

Similar Documents

Publication Publication Date Title
US9481638B2 (en) Scandium extraction method
AU2013230403B2 (en) Method for preparing solid nitrosyl ruthenium nitrate by using waste catalyst containing ruthenium
JP6061335B2 (en) Solvent extraction separation of osmium, iridium, platinum, gold or mercury from hydrochloric acid solution
JP6083862B2 (en) Extraction and separation method of rare metals using nitrilotriacetamide
JP2010101641A (en) Method for extracting and separating solvent of metals using methyliminobisdialkyl acetamide is used as extractant
Narita et al. The first effective extractant for trivalent rhodium in hydrochloric acid solution
JP2011125840A (en) Amide-containing tertiary amine compound and platinum group metal separation/collection using the same
JP3122948B1 (en) Method for producing high purity cobalt
WO2019244612A1 (en) Method for producing hexafluoro-1,3-butadiene
JP5818315B2 (en) Metal selective extractant
JP4862148B2 (en) Metal separation and recovery method
CN109456275A (en) A kind of preparation method of 1H-1,2,3- triazole
JP5114704B2 (en) Method for separating metal and method for recovering metal
Feng et al. Highly selective extraction of Pd (II) using functionalized molecule of 2-[(2-ethylhexyl) thio] benzoxazole and its Pd (II) extraction mechanism
JP2013166996A (en) Palladium extractant, and separation method of palladium
KR20150024019A (en) Method of recovery of high purity platinum from a leaching solution of spent catalyst
EP2644586B1 (en) Process for preparing adamantane polyol
CN103509947A (en) Solvent extraction separation method for extracting and separating precious metal from hydrochloric acid solution
JP2016191136A (en) Method for extracting and separating rare metal in various acid solution using sulfur-based extractant
JP6797396B2 (en) Metal extractant, metal extraction method, and metal recovery method
JP4422835B2 (en) Ruthenium purification method
CN110590675B (en) Preparation of novel ionic liquid monomer and polymer thereof and application of novel ionic liquid monomer and polymer thereof in separation of tea polyphenol
JP2019034945A (en) Method for producing 2,3,5-trimethyl benzoquinone by oxidation of 2,3,6-trimethylphenol
JP2015145529A (en) Silver recovery method
JPS63162044A (en) Separation of catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161208

R150 Certificate of patent or registration of utility model

Ref document number: 6061335

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees