JP2014024736A - Aluminum nitride single crystal producing device and method - Google Patents

Aluminum nitride single crystal producing device and method Download PDF

Info

Publication number
JP2014024736A
JP2014024736A JP2012168338A JP2012168338A JP2014024736A JP 2014024736 A JP2014024736 A JP 2014024736A JP 2012168338 A JP2012168338 A JP 2012168338A JP 2012168338 A JP2012168338 A JP 2012168338A JP 2014024736 A JP2014024736 A JP 2014024736A
Authority
JP
Japan
Prior art keywords
seed substrate
aluminum nitride
single crystal
holding member
nitride single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012168338A
Other languages
Japanese (ja)
Inventor
Shinji Hatada
真至 畠田
Tomohisa Kato
智久 加藤
Tomonori Miura
知則 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Fujikura Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Fujikura Ltd
Priority to JP2012168338A priority Critical patent/JP2014024736A/en
Publication of JP2014024736A publication Critical patent/JP2014024736A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an aluminum nitride single crystal producing device and method which can facilitate the positioning of a seed substrate relative to a holding member, and can prevent the movement of the seed substrate during crystal growth.SOLUTION: A holding member 35 is integrally formed with a support body 33 formed of a ring-shaped projection projecting upward from the upper surface 35a of the holding member 35. The internal diameter of the ring-shaped projection forming the support body 33 is equal to or slightly larger than the diameter of the seed substrate 14. By fitting the seed substrate 14 inside the ring-shaped projection of the support body 33, the peripheral surface 14b of the seed substrate 14 abuts on a step 33a of the support body 33 to be surrounded thereby.

Description

本発明は、窒化アルミニウム(AlN)の製造装置および製造方法に関し、詳しくは、種子基板の位置ずれを防止する技術に関する。   The present invention relates to an aluminum nitride (AlN) manufacturing apparatus and manufacturing method, and more particularly to a technique for preventing misalignment of a seed substrate.

窒化アルミニウム系半導体は熱伝導率が非常に高く、熱を拡散する上で大変有利である。窒化アルミニウム単結晶の製造方法としては、溶液法ではフラックス法、気相法では有機金属気相成長法、水素化物気相堆積法、昇華法などが挙げられる。特に昇華法は、一般的に成長速度が大きいため、バルク結晶の作製に対して有力な方法である。   Aluminum nitride semiconductors have a very high thermal conductivity and are very advantageous for diffusing heat. Examples of the method for producing the aluminum nitride single crystal include a flux method for the solution method and a metal organic vapor phase growth method, a hydride vapor deposition method, a sublimation method for the vapor phase method, and the like. In particular, the sublimation method is a powerful method for producing a bulk crystal because the growth rate is generally high.

従来の昇華法による窒化アルミニウム単結晶の製造装置として、例えば、特許文献1に記載された窒化アルミニウム単結晶の製造装置を図7に示す。
従来の窒化アルミニウム単結晶の製造装置50は、上部に開口部を有する坩堝(結晶成長容器)52と、前記開口部近傍に設けられた蓋体53と、蓋体53の下方に設けられた保持部材55と、蓋体53および保持部材55の間で狭持される種子基板54とを備えて構成される。
坩堝55及び蓋体53で構成される結晶成長空間57全体は、黒鉛製の外側坩堝58及び外側坩堝58の上面に載置された黒鉛製の外側蓋体59により形成される空間内に配置され、これら外側坩堝58及び坩堝52は結晶成長用炉51内に固定されている。坩堝52の内底部には、窒化アルミニウム粉末等の原料56が収納されており、種子基板54の保持部材55と接しない部分は、原料56と対向している。
As an apparatus for producing an aluminum nitride single crystal by a conventional sublimation method, for example, an apparatus for producing an aluminum nitride single crystal described in Patent Document 1 is shown in FIG.
A conventional aluminum nitride single crystal manufacturing apparatus 50 includes a crucible (crystal growth vessel) 52 having an opening at the top, a lid 53 provided near the opening, and a holding provided below the lid 53. A member 55 and a seed substrate 54 sandwiched between the lid 53 and the holding member 55 are provided.
The entire crystal growth space 57 constituted by the crucible 55 and the lid 53 is disposed in a space formed by the graphite outer crucible 58 and the graphite outer lid 59 placed on the upper surface of the outer crucible 58. The outer crucible 58 and the crucible 52 are fixed in the crystal growth furnace 51. A raw material 56 such as aluminum nitride powder is stored in the inner bottom portion of the crucible 52, and a portion of the seed substrate 54 that does not contact the holding member 55 faces the raw material 56.

窒化アルミニウム単結晶AlNを成長させる際は、加熱手段51によって坩堝(結晶成長容器)52を約2000℃まで加熱して、窒化アルミニウムを主な組成とする原料56を昇華させる。これにより窒化アルミニウム組成の昇華ガスが発生し、種子基板54上に移送される。そして、種子基板54の一方の主面(以下、結晶成長面と称する)に窒化アルミニウムが再結晶化(析出)し、窒化アルミニウム単結晶AlNとして成長する。   When growing aluminum nitride single crystal AlN, the crucible (crystal growth vessel) 52 is heated to about 2000 ° C. by the heating means 51 to sublimate the raw material 56 mainly composed of aluminum nitride. As a result, a sublimation gas having an aluminum nitride composition is generated and transferred onto the seed substrate 54. Then, aluminum nitride is recrystallized (precipitated) on one main surface (hereinafter referred to as a crystal growth surface) of the seed substrate 54 to grow as aluminum nitride single crystal AlN.

しかしながら、上述した特許文献1に開示された従来の窒化アルミニウム単結晶の製造装置では、種子基板を蓋体と保持部材との間に挟持させただけの構成となっている。このような構成では、種子基板を保持部材に載置する際や、種子基板に窒化アルミニウム単結晶を成長させる際に、振動や昇華ガス流によって種子基板が所定位置から移動してしまう可能性があった。種子基板が所定位置からずれると、窒化アルミニウム単結晶が種子基板に対して非対称に成長し、スライスによって基板を得る際の歩留まりの悪化や、スライス不良を引き起こす虞がある。また、種子基板が結晶成長中に移動すると、成長結晶の結晶性の悪化を招き、良好な結晶性をもつ窒化アルミニウム単結晶を得ることが難しくなる。   However, the conventional aluminum nitride single crystal manufacturing apparatus disclosed in Patent Document 1 described above has a configuration in which the seed substrate is simply sandwiched between the lid and the holding member. In such a configuration, when the seed substrate is placed on the holding member or when an aluminum nitride single crystal is grown on the seed substrate, the seed substrate may move from a predetermined position due to vibration or a sublimation gas flow. there were. When the seed substrate deviates from a predetermined position, the aluminum nitride single crystal grows asymmetrically with respect to the seed substrate, and there is a possibility that the yield is deteriorated when the substrate is obtained by slicing or a slice failure is caused. Further, when the seed substrate moves during crystal growth, the crystallinity of the grown crystal is deteriorated, and it becomes difficult to obtain an aluminum nitride single crystal having good crystallinity.

特開2011−132079号公報JP 2011-132079 A

本発明は、このような従来の実情に鑑みてなされたものであり、保持部材に対する種子基板の位置合わせを容易にし、かつ、結晶成長時に種子基板の移動を防止することが可能な窒化アルミニウム単結晶の製造装置および製造方法を提供することを目的とする。   The present invention has been made in view of such a conventional situation, and facilitates the alignment of the seed substrate with respect to the holding member, and can prevent the movement of the seed substrate during crystal growth. An object of the present invention is to provide a crystal manufacturing apparatus and a manufacturing method.

上記課題を解決するために、本発明のいくつかの態様は、次のような窒化アルミニウム単結晶の製造装置および製造方法を提供した。
すなわち、本発明の窒化アルミニウム単結晶の製造装置は、結晶成長容器と、窒化アルミニウム単結晶を成長させる種子基板と、一方の面に前記種子基板を保持するとともに、中心部に前記種子基板の外径より小さな貫通開口を有した保持部材と、を備え、
前記保持部材の前記一面に、前記種子基板の動きを抑制するように、前記種子基板の周縁に沿うように配置した支持体を有することを特徴とする。
In order to solve the above-described problems, some aspects of the present invention provide the following aluminum nitride single crystal manufacturing apparatus and manufacturing method.
That is, the apparatus for producing an aluminum nitride single crystal of the present invention includes a crystal growth container, a seed substrate on which an aluminum nitride single crystal is grown, the seed substrate held on one surface, and an outer portion of the seed substrate at the center. A holding member having a through opening smaller than the diameter,
It has a support body arranged along the peripheral edge of the seed substrate so that the movement of the seed substrate may be suppressed on the one surface of the holding member.

前記支持体は、前記保持部材の前記一面から凹状をなす部材Aであることを特徴とする。   The support is a member A that has a concave shape from the one surface of the holding member.

前記部材Aは、前記種子基板の周縁を取り巻くように連続的に配されていることを特徴とする。   The member A is continuously arranged so as to surround the periphery of the seed substrate.

前記部材Aは、前記種子基板の周縁を取り巻くように間欠的に複数配されていることを特徴とする。   A plurality of the members A are intermittently arranged so as to surround the periphery of the seed substrate.

前記支持体は、前記保持部材の前記一面から凸状をなす部材Bであることを特徴とする。   The support is a member B that is convex from the one surface of the holding member.

前記部材Bは、前記種子基板の周縁を取り巻くように連続的に配されていることを特徴とする。   The member B is continuously arranged so as to surround the periphery of the seed substrate.

前記部材Bは、前記種子基板の周縁を取り巻くように間欠的に複数配されていることを特徴とする。   A plurality of the members B are intermittently provided so as to surround the periphery of the seed substrate.

前記保持部材と前記支持体とは、一体の部材であることを特徴とする。   The holding member and the support are integral members.

本発明の窒化アルミニウム単結晶の製造方法は、昇華法による窒化アルミニウム単結晶の製造方法であって、
結晶成長容器と、一面に窒化アルミニウム単結晶を成長させる種子基板と、中心部に前記種子基板の外径より小さな貫通開口を有し、一面で前記種子基板を保持する保持部材と、前記保持部材の前記一面に、前記種子基板の動きを抑制するように、前記種子基板の周縁に沿って配置した支持体と、を備え、
前記支持体によって前記種子基板の動きを抑制しながら、窒化アルミニウムを含む昇華ガスを前記種子基板に析出させて、窒化アルミニウム単結晶を得ることを特徴とする。
The method for producing an aluminum nitride single crystal of the present invention is a method for producing an aluminum nitride single crystal by a sublimation method,
A crystal growth container; a seed substrate for growing an aluminum nitride single crystal on one surface; a holding member having a through opening smaller than the outer diameter of the seed substrate at a central portion; and holding the seed substrate on one surface; and the holding member A support body disposed along the periphery of the seed substrate so as to suppress the movement of the seed substrate,
A sublimation gas containing aluminum nitride is deposited on the seed substrate while suppressing the movement of the seed substrate by the support, thereby obtaining an aluminum nitride single crystal.

本発明の窒化アルミニウム単結晶の製造装置および製造方法によれば、結晶成長中に種子基板が結晶成長面に沿った方向に動くことを防止できる。即ち、支持体に嵌め込まれた種子基板は、晶成長面に沿った方向に動こうとすると、周面が支持体の段差に当接するため、結晶成長面に沿った方向に移動することを確実に防止することが可能になる。これによって、種子基板の移動による成長結晶の結晶性の悪化を防ぎ、良好な結晶性をもつ窒化アルミニウム単結晶を製造することができる。   According to the manufacturing apparatus and manufacturing method of an aluminum nitride single crystal of the present invention, it is possible to prevent the seed substrate from moving in the direction along the crystal growth surface during crystal growth. That is, when the seed substrate fitted in the support is moved in the direction along the crystal growth surface, the peripheral surface is in contact with the step of the support, so that it is sure to move in the direction along the crystal growth surface. It becomes possible to prevent. As a result, it is possible to prevent deterioration of crystallinity of the grown crystal due to movement of the seed substrate, and to produce an aluminum nitride single crystal having good crystallinity.

また、支持体は、種子基板を保持部材に載置する際に、種子基板の載置位置を正確に、かつ容易に位置決めすることができる。即ち、支持体は、例えば、種子基板の周面に接する位置に形成されているので、種子基板をこの支持体に嵌め込むだけで、保持部材における種子基板の正しい載置位置に、種子基板を正確に、かつ容易に位置決めして載置することが可能になる。   In addition, the support can accurately and easily position the placement position of the seed substrate when placing the seed substrate on the holding member. That is, since the support is formed, for example, at a position in contact with the peripheral surface of the seed substrate, the seed substrate is placed at the correct placement position of the seed substrate on the holding member simply by fitting the seed substrate into the support. It becomes possible to position and mount accurately and easily.

本発明の第1実施形態に係る窒化アルミニウム単結晶の製造装置の一例を模式的に示す概略構成図である。It is a schematic structure figure showing typically an example of the manufacture device of the aluminum nitride single crystal concerning a 1st embodiment of the present invention. 本発明の第1実施形態に係る保持部材を説明する斜視図、断面図である。It is the perspective view and sectional drawing explaining the holding member which concerns on 1st Embodiment of this invention. 本発明の第2実施形態に係る保持部材を説明する斜視図である。It is a perspective view explaining the holding member concerning a 2nd embodiment of the present invention. 本発明の第3実施形態に係る保持部材を説明する斜視図である。It is a perspective view explaining the holding member concerning a 3rd embodiment of the present invention. 本発明の第4実施形態に係る保持部材を説明する斜視図である。It is a perspective view explaining the holding member which concerns on 4th Embodiment of this invention. 本発明の第5実施形態に係る窒化アルミニウム単結晶の製造装置の一例を模式的に示す概略構成図である。It is a schematic block diagram which shows typically an example of the manufacturing apparatus of the aluminum nitride single crystal which concerns on 5th Embodiment of this invention. 従来の窒化アルミニウム単結晶の製造装置の一例を模式的に示す概略構成図である。It is a schematic block diagram which shows typically an example of the manufacturing apparatus of the conventional aluminum nitride single crystal.

以下、図面を参照しながら、本発明について詳細に説明する。
<第1実施形態>
図1は、本発明の第1実施形態に係る窒化アルミニウム単結晶の製造装置の一例を模式的に示す概略構成図である。本実施形態の窒化アルミニウム単結晶の製造装置は、昇華法によって種子基板上に窒化アルミニウムを昇華再結晶させて、窒化アルミニウム単結晶を成長させる装置である。
Hereinafter, the present invention will be described in detail with reference to the drawings.
<First Embodiment>
FIG. 1 is a schematic configuration diagram schematically showing an example of an aluminum nitride single crystal manufacturing apparatus according to the first embodiment of the present invention. The apparatus for producing an aluminum nitride single crystal of this embodiment is an apparatus for growing an aluminum nitride single crystal by sublimating and recrystallizing aluminum nitride on a seed substrate by a sublimation method.

本実施形態の窒化アルミニウム単結晶の製造装置10は、結晶成長用炉20を備えている。結晶成長用炉20は、上部に開口部を有する結晶成長容器(坩堝)11と、前記開口部に設けられた外側蓋体19と、外側蓋体19の下方に設けられた蓋体13および保持部材15とを備えている。また、蓋体13および保持部材15との間には種子基板14が挟持されている。また、結晶成長容器11及び外側蓋体19からなる結晶成長空間17の外側は、黒鉛などから構成される炉体収納容器18により覆われている。結晶成長容器11の内底部には、窒化アルミニウム粉末等の原料12が収納されている。なお、蓋体13は、特に設けなくてもよいが、蓋体13を設けることによって、種子基板14の鉛直方向への揺動を抑制できる。   The apparatus 10 for producing an aluminum nitride single crystal according to this embodiment includes a crystal growth furnace 20. The crystal growth furnace 20 includes a crystal growth vessel (crucible) 11 having an opening at the top, an outer lid 19 provided at the opening, a lid 13 provided below the outer lid 19 and a holding unit. And a member 15. A seed substrate 14 is sandwiched between the lid 13 and the holding member 15. Further, the outside of the crystal growth space 17 composed of the crystal growth vessel 11 and the outer lid 19 is covered with a furnace body storage vessel 18 made of graphite or the like. A raw material 12 such as aluminum nitride powder is accommodated in the inner bottom of the crystal growth vessel 11. In addition, although the cover body 13 does not need to provide in particular, the rocking | fluctuation to the vertical direction of the seed board | substrate 14 can be suppressed by providing the cover body 13. FIG.

結晶成長用の種子基板14は、例えば、板状又は円板状のSiC単結晶、AlN単結晶、AlN/SiC単結晶(SiC単結晶上に膜厚200〜500μm程度のAlN単結晶膜をヘテロ成長させた単結晶)である。   The seed substrate 14 for crystal growth is, for example, a plate-like or disc-like SiC single crystal, AlN single crystal, AlN / SiC single crystal (an AlN single crystal film having a thickness of about 200 to 500 μm is heterogeneously formed on the SiC single crystal. Single crystal grown).

更に、結晶成長用炉20の外周に沿って、結晶成長用炉20の内部に配された、炉体収納容器18、結晶成長容器11、原料12、種子基板14を加熱する複数の加熱手段21が設けられている。加熱手段21としては特に限定されるものではなく、高周波誘導加熱(高周波コイル)、抵抗加熱及び赤外加熱といった、従来公知のものを用いることができる。加熱温度の制御は、不図示の放射温度計により炉体収納容器18の表面温度を測定しながら、加熱手段21を調整することにより行うことができる。   Furthermore, a plurality of heating means 21 for heating the furnace body storage container 18, the crystal growth container 11, the raw material 12, and the seed substrate 14 disposed inside the crystal growth furnace 20 along the outer periphery of the crystal growth furnace 20. Is provided. The heating means 21 is not particularly limited, and conventionally known ones such as high frequency induction heating (high frequency coil), resistance heating and infrared heating can be used. The heating temperature can be controlled by adjusting the heating means 21 while measuring the surface temperature of the furnace container 18 with a radiation thermometer (not shown).

なお、結晶成長用炉20の外側には、更に窒素ガスなどの不活性ガスを導入し、結晶成長空間17を所定のガス圧に調整可能な圧力調整機構(不図示)を更に備えていることが好ましい。   In addition, a pressure adjusting mechanism (not shown) that can introduce an inert gas such as nitrogen gas and adjust the crystal growth space 17 to a predetermined gas pressure is further provided outside the crystal growth furnace 20. Is preferred.

結晶成長容器11、外側蓋体19及び保持部材15は、黒鉛、窒化硼素、窒化アルミニウム、窒化ガリウム、炭化珪素、窒化珪素、モリブデン、タングステン、タンタル、炭化モリブデン、炭化ジルコニウム、炭化タングステン、炭化タンタル、窒化モリブデン、窒化ジルコニウム、窒化タングステン、窒化タンタルのうち少なくとも一種類から形成されている。これらの材料は、窒化アルミニウム単結晶の結晶成長時の2000℃程度の高温での熱的耐性を有するため、結晶成長容器11、外側蓋体19及び保持部材15の材料として好ましい。   The crystal growth vessel 11, the outer lid 19 and the holding member 15 are made of graphite, boron nitride, aluminum nitride, gallium nitride, silicon carbide, silicon nitride, molybdenum, tungsten, tantalum, molybdenum carbide, zirconium carbide, tungsten carbide, tantalum carbide, It is formed from at least one of molybdenum nitride, zirconium nitride, tungsten nitride, and tantalum nitride. Since these materials have thermal resistance at a high temperature of about 2000 ° C. during crystal growth of an aluminum nitride single crystal, they are preferable as materials for the crystal growth container 11, the outer lid 19, and the holding member 15.

また、結晶成長容器11の内底部には窒化アルミニウム粉末などの原料12が直接収納されるとともに、外側蓋体19と保持部材15との間には種子基板14が設置され、原料12の加熱によって得られるバルク結晶成長に適した窒化アルミニウムの昇華ガスに曝される。よって、結晶成長容器11、外側蓋体19及び保持部材15を構成する材料は、窒化アルミニウムの昇華ガスによる腐食を受けないものが好ましい。   In addition, a raw material 12 such as aluminum nitride powder is directly stored in the inner bottom portion of the crystal growth vessel 11, and a seed substrate 14 is installed between the outer lid 19 and the holding member 15. It is exposed to an aluminum nitride sublimation gas suitable for bulk crystal growth to be obtained. Therefore, the material constituting the crystal growth vessel 11, the outer lid body 19, and the holding member 15 is preferably one that is not subject to corrosion by the sublimation gas of aluminum nitride.

加えて、これらの結晶成長容器11、外側蓋体19及び保持部材15を構成する材料からの窒化アルミニウム単結晶AlNへの汚染(固溶による汚染)を防ぐために、アルミニウムのイオン半径と大きく異なる金属の単体、ないしはその窒化物又は炭化物が望ましい。従って、結晶成長容器11、外側蓋体19及び保持部材15の材料として前記した材料の中でも、特にモリブデン、タングステン、タンタル、窒化モリブデン、窒化タングステン、窒化タンタル、炭化モリブデン、炭化タングステン、炭化タンタルがより好ましい。
なお、酸化物については、放出された酸素により窒化アルミニウム結晶中に酸窒化アルミニウム(AlON)層を形成し、窒化アルミニウムの結晶成長を阻害するため、用いることは好ましくない。
In addition, in order to prevent contamination of aluminum nitride single crystal AlN (contamination due to solid solution) from the materials constituting the crystal growth vessel 11, the outer lid 19 and the holding member 15, a metal which is greatly different from the ionic radius of aluminum The simple substance or its nitride or carbide is desirable. Therefore, among the materials described above as the materials of the crystal growth vessel 11, the outer lid body 19, and the holding member 15, in particular, molybdenum, tungsten, tantalum, molybdenum nitride, tungsten nitride, tantalum nitride, molybdenum carbide, tungsten carbide, and tantalum carbide are more. preferable.
Note that it is not preferable to use an oxide because the released oxygen forms an aluminum oxynitride (AlON) layer in the aluminum nitride crystal and inhibits the crystal growth of the aluminum nitride.

図2は、保持部材を示す一部破断斜視図、および断面図である。
保持部材15は、結晶成長容器11の開口部を覆うように結晶成長容器11の周縁11a上に設置され、その上に種子基板14と蓋体13とが配されている(図1参照)。
保持部材15は、種子基板14の移動を抑制し、かつ種子基板14の載置位置を位置決めするための支持体23が一体に形成されている。本実施形態においては、支持体23は、保持部材15の上面(一面)15aから凹状をなす部材A、具体的には、上面(一面)15aから下方に向かって掘り込まれた、種子基板14の直径と同じか、それよりも僅かに大きい直径をもつ円形溝からなる。
FIG. 2 is a partially broken perspective view and a sectional view showing the holding member.
The holding member 15 is installed on the peripheral edge 11a of the crystal growth container 11 so as to cover the opening of the crystal growth container 11, and the seed substrate 14 and the lid 13 are arranged thereon (see FIG. 1).
The holding member 15 is integrally formed with a support 23 for suppressing the movement of the seed substrate 14 and positioning the placement position of the seed substrate 14. In the present embodiment, the support 23 is a member A that is recessed from the upper surface (one surface) 15a of the holding member 15, specifically, a seed substrate 14 that is dug downward from the upper surface (one surface) 15a. It consists of a circular groove with a diameter equal to or slightly larger than the diameter of

このような支持体23は、種子基板14の周縁を取り巻くように連続的に配されている。また、支持体23は、保持部材15の上面15aから、保持部材15の厚みt1の例えば半分程度の厚みt2の深さまで掘り込まれている。そして、この支持体23の円形溝に種子基板14を嵌め込むことによって、種子基板14の周面14bは支持体23の段差23aに当接し、取り囲まれる。   Such a support body 23 is continuously arranged so as to surround the periphery of the seed substrate 14. Further, the support body 23 is dug from the upper surface 15a of the holding member 15 to a depth of a thickness t2 that is, for example, about half of the thickness t1 of the holding member 15. Then, by inserting the seed substrate 14 into the circular groove of the support 23, the peripheral surface 14 b of the seed substrate 14 comes into contact with and is surrounded by the step 23 a of the support 23.

なお、この支持体23である円形溝の直径は、原料12の加熱による種子基板14の膨張を考慮して、熱膨張後に種子基板14の周面14bと支持体23の段差23aとが最適なクリアランスとなるように設定することが好ましい。   The diameter of the circular groove serving as the support 23 is optimal for the peripheral surface 14b of the seed substrate 14 and the step 23a of the support 23 after thermal expansion in consideration of the expansion of the seed substrate 14 due to the heating of the raw material 12. It is preferable to set the clearance.

支持体23の段差23aの高さ(即ち、厚みt2)は、例えば種子基板14の厚みt3の半分程度であればよい。また、段差23aの高さを種子基板14の厚みt3と同じ程度にすることも好ましい。また、段差23aの鉛直方向の側面は、全体が垂直である必要は無く、例えば、途中から上方に広がるように傾斜した傾斜面を備えていても良い。これによって、種子基板14を支持体23の円形溝に挿入させることを容易にする。   The height (that is, thickness t2) of the step 23a of the support 23 may be about half of the thickness t3 of the seed substrate 14, for example. It is also preferable to set the height of the step 23a to be approximately the same as the thickness t3 of the seed substrate 14. Further, the side surface in the vertical direction of the step 23a does not have to be vertical as a whole, and may include, for example, an inclined surface that is inclined so as to spread upward from the middle. This facilitates insertion of the seed substrate 14 into the circular groove of the support 23.

更に、支持体23の円形溝の中心から、所定の直径をもつ貫通開口24が形成されている。この貫通開口24は、支持体23を成す円形溝の直径よりも小さくなるように形成され、保持部材15の上面15aと、保持部材15の下面15b(即ち、原料12と対向する面)とを貫通している。   Further, a through opening 24 having a predetermined diameter is formed from the center of the circular groove of the support 23. The through-opening 24 is formed so as to be smaller than the diameter of the circular groove forming the support 23, and includes an upper surface 15 a of the holding member 15 and a lower surface 15 b of the holding member 15 (that is, a surface facing the raw material 12). It penetrates.

支持体23を成す円形溝に嵌め込まれた種子基板14は、この貫通開口24によって、原料12と対向する結晶成長面14aの一部が、原料12に対して露呈される。そして、この貫通開口24によって露呈された結晶成長面14aが、原料12の加熱によって生じた窒化アルミニウム蒸気に暴露され、結晶成長面14aに窒化アルミニウム単結晶AlNが成長する。なお、貫通開口24の形状は特に限定されるものではなく、種子基板14の外径よりも小さく、かつ、結晶が成長する種子基板14上の面積が十分確保されていればよい。   In the seed substrate 14 fitted in the circular groove forming the support 23, a part of the crystal growth surface 14 a facing the raw material 12 is exposed to the raw material 12 through the through opening 24. Then, the crystal growth surface 14a exposed by the through opening 24 is exposed to aluminum nitride vapor generated by heating the raw material 12, and an aluminum nitride single crystal AlN grows on the crystal growth surface 14a. The shape of the through-opening 24 is not particularly limited as long as it is smaller than the outer diameter of the seed substrate 14 and has a sufficient area on the seed substrate 14 on which crystals grow.

このような構成の支持体23は、種子基板14が結晶成長面14aに沿った方向に移動することを防止する。即ち、支持体23の円形溝に嵌め込まれた種子基板14は、周面14bが支持体23の段差23aに当接しているため、結晶成長面14aに沿った方向に移動することを確実に防止することが可能になる。これによって、種子基板14の移動による成長結晶の結晶性の悪化を防ぎ、良好な結晶性をもつ窒化アルミニウム単結晶を製造することができる。   The support 23 having such a configuration prevents the seed substrate 14 from moving in a direction along the crystal growth surface 14a. That is, the seed substrate 14 fitted in the circular groove of the support 23 is reliably prevented from moving in the direction along the crystal growth surface 14a because the peripheral surface 14b is in contact with the step 23a of the support 23. It becomes possible to do. Thereby, the deterioration of the crystallinity of the grown crystal due to the movement of the seed substrate 14 can be prevented, and an aluminum nitride single crystal having good crystallinity can be produced.

また、支持体23は、種子基板14を保持部材15に載置する際に、種子基板14の載置位置を正確に位置決めすることができる。即ち、支持体23は、種子基板14の直径と同じか、それよりも僅かに大きい直径の円形溝によって構成されるので、種子基板14をこの支持体23に嵌め込むだけで、保持部材15における種子基板14の正しい載置位置に、種子基板14を正確に、かつ容易に位置決めして載置することが可能になる。   In addition, the support 23 can accurately position the placement position of the seed substrate 14 when placing the seed substrate 14 on the holding member 15. That is, since the support body 23 is configured by a circular groove having a diameter that is the same as or slightly larger than the diameter of the seed substrate 14, the support member 23 can be mounted on the support member 15 by simply fitting the seed substrate 14 into the support body 23. The seed substrate 14 can be accurately and easily positioned and placed at the correct placement position of the seed substrate 14.

なお、本実施形態においては、炉体収納容器18の内部に結晶成長容器11が設置された2重容器構造を例示したが、本発明はこの形態に限定されるものではない。炉体収納容器18と結晶成長容器11との間に他の容器等が配された3重容器構造であってもよいのは勿論である。   In the present embodiment, a double container structure in which the crystal growth container 11 is installed inside the furnace body storage container 18 is illustrated, but the present invention is not limited to this form. Of course, a triple container structure in which another container or the like is disposed between the furnace body storage container 18 and the crystal growth container 11 may be used.

<第2実施形態>
図3は、本発明の第2実施形態に係る窒化アルミニウム単結晶の製造装置の保持部材を示す一部破断斜視図である。
本実施形態における保持部材25は、支持体(部材A)26、即ち、凹状を成す部材Aが、種子基板14の周縁を取り巻くように間欠的に複数配されてなる。この複数の支持体26で囲まれた円状領域の内径は、種子基板14の直径と同じか、それよりも僅かに大きい。複数の支持体26の円弧状の溝に種子基板14を嵌め込むことによって、種子基板14の周面14bは支持体26の段差26aに当接し、取り囲まれる。
Second Embodiment
FIG. 3 is a partially broken perspective view showing a holding member of an apparatus for producing an aluminum nitride single crystal according to a second embodiment of the present invention.
In the present embodiment, the holding member 25 includes a plurality of support bodies (members A) 26, that is, a plurality of concave members A that are intermittently disposed so as to surround the periphery of the seed substrate 14. The inner diameter of the circular region surrounded by the plurality of supports 26 is the same as or slightly larger than the diameter of the seed substrate 14. By fitting the seed substrate 14 into the arc-shaped grooves of the plurality of supports 26, the peripheral surface 14 b of the seed substrate 14 comes into contact with and is surrounded by the step 26 a of the support 26.

なお、この複数の支持体26で囲まれた内径は、原料の加熱による種子基板14の膨張を考慮して、熱膨張後に種子基板14の周面14bと支持体26の段差26aとが最適なクリアランスとなるように設定することが好ましい。   The inner diameter surrounded by the plurality of supports 26 is optimal for the peripheral surface 14b of the seed substrate 14 and the step 26a of the support 26 after thermal expansion in consideration of expansion of the seed substrate 14 due to heating of the raw material. It is preferable to set the clearance.

支持体26を成す溝の深さ、即ちの段差26aの高さは、例えば種子基板14の厚みの半分程度であればよく、種子基板14の厚みと同じ程度にすることも好ましい。また、段差26aの鉛直方向の側面は、全体が垂直である必要は無く、例えば、途中から上方に広がるように傾斜した傾斜面を備えていても良い。これによって、種子基板14を支持体26を成す円弧状の溝内に挿入することを容易にする。   The depth of the groove forming the support 26, that is, the height of the step 26a may be, for example, about half of the thickness of the seed substrate 14, and is preferably the same as the thickness of the seed substrate 14. Further, the side surface in the vertical direction of the step 26a does not need to be entirely vertical, and may include, for example, an inclined surface that is inclined so as to spread upward from the middle. This facilitates the insertion of the seed substrate 14 into the arc-shaped groove forming the support 26.

更に、保持部材25の中心から、所定の直径をもつ貫通開口27が形成されている。この貫通開口27は、保持部材25の上面25aと、保持部材25の下面25b(即ち、原料と対向する面)とを貫通している。この貫通開口27によって、種子基板14の結晶成長面14aが原料に向けて露呈される。   Further, a through opening 27 having a predetermined diameter is formed from the center of the holding member 25. The through opening 27 passes through the upper surface 25a of the holding member 25 and the lower surface 25b of the holding member 25 (that is, the surface facing the raw material). Through the through opening 27, the crystal growth surface 14a of the seed substrate 14 is exposed toward the raw material.

このような実施形態の支持体26も、種子基板14が結晶成長面14aに沿った方向に移動することを防止する。即ち、円弧状の溝を間欠的に形成してなる複数の支持体26に嵌め込まれた種子基板14は、周面14bが支持体26の段差26aに当接しているため、結晶成長面14aに沿った方向に移動することを確実に防止することが可能になる。これによって、種子基板14の移動による成長結晶の結晶性の悪化を防ぎ、良好な結晶性をもつ窒化アルミニウム単結晶を製造することができる。   The support body 26 of such an embodiment also prevents the seed substrate 14 from moving in the direction along the crystal growth surface 14a. That is, since the peripheral surface 14b of the seed substrate 14 fitted in the plurality of supports 26 formed by intermittently forming arc-shaped grooves is in contact with the level difference 26a of the support 26, the seed substrate 14 is formed on the crystal growth surface 14a. It is possible to reliably prevent the movement in the direction along. Thereby, the deterioration of the crystallinity of the grown crystal due to the movement of the seed substrate 14 can be prevented, and an aluminum nitride single crystal having good crystallinity can be produced.

また、支持体26は、種子基板14を保持部材25に載置する際に、種子基板14の載置位置を正確に位置決めすることができる。即ち、複数の支持体26で囲まれた領域の直径は、種子基板14の直径と同じか、それよりも僅かに大きいので、種子基板14をこの複数の支持体26に囲まれた領域に嵌め込むだけで、保持部材25における種子基板14の正しい載置位置に、種子基板14を正確に、かつ容易に位置決めして載置することが可能になる。   Further, the support 26 can accurately position the placement position of the seed substrate 14 when placing the seed substrate 14 on the holding member 25. That is, the diameter of the region surrounded by the plurality of supports 26 is the same as or slightly larger than the diameter of the seed substrate 14, so the seed substrate 14 is fitted into the region surrounded by the plurality of supports 26. It is possible to position and mount the seed substrate 14 accurately and easily at the correct mounting position of the seed substrate 14 in the holding member 25.

<第3実施形態>
図4は、本発明の第3実施形態に係る窒化アルミニウム単結晶の製造装置の保持部材を示す一部破断斜視図である。
本実施形態における保持部材35は、支持体33、即ち保持部材35の上面(一面)35aから凸状をなす部材Bが、種子基板14の周縁を取り巻くように連続的に配されてなる。具体的には、保持部材(部材B)35の上面(一面)35aから上方に向かって突出したリング状の突条からなる支持体33が保持部材35に対して一体に形成されてなる。この支持体33を成すリング状の突条の内径は、種子基板14の直径と同じか、それよりも僅かに大きい。この支持体33のリング状の突条に種子基板14を嵌め込むことによって、種子基板14の周面14bは支持体33の段差33aに当接し、取り囲まれる。
<Third Embodiment>
FIG. 4 is a partially broken perspective view showing a holding member of an aluminum nitride single crystal manufacturing apparatus according to a third embodiment of the present invention.
In the present embodiment, the holding member 35 is formed by continuously arranging the support 33, that is, the member B having a convex shape from the upper surface (one surface) 35 a of the holding member 35 so as to surround the periphery of the seed substrate 14. Specifically, a support 33 made of a ring-shaped protrusion protruding upward from an upper surface (one surface) 35 a of the holding member (member B) 35 is formed integrally with the holding member 35. The inner diameter of the ring-shaped protrusion forming the support 33 is the same as or slightly larger than the diameter of the seed substrate 14. By inserting the seed substrate 14 into the ring-shaped protrusion of the support 33, the peripheral surface 14 b of the seed substrate 14 abuts on and is surrounded by the step 33 a of the support 33.

なお、この支持体23であるリング状の突条の内径は、原料の加熱による種子基板14の膨張を考慮して、熱膨張後に種子基板14の周面14bと支持体33の段差33aとが最適なクリアランスとなるように設定することが好ましい。   Note that the inner diameter of the ring-shaped ridge that is the support 23 is such that the peripheral surface 14b of the seed substrate 14 and the step 33a of the support 33 after thermal expansion take into account the expansion of the seed substrate 14 due to heating of the raw material. It is preferable to set so as to obtain an optimum clearance.

また、支持体33は、保持部材35と一体に形成される以外にも、別に形成した支持体を成すリング状の突条を、保持部材の上面に接着したり溶着した構成であってもよい。   Further, the support 33 may be formed integrally with the holding member 35, or may have a structure in which a ring-shaped protrusion forming a separately formed support is bonded or welded to the upper surface of the holding member. .

支持体33を成す突条の高さ、即ちの段差33aの高さは、例えば種子基板14の厚みの半分程度であればよく、種子基板14の厚みと同じ程度にすることも好ましい。また、段差33aの鉛直方向の側面は、全体が垂直である必要は無く、例えば、途中から上方に広がるように傾斜した傾斜面を備えていても良い。これによって、種子基板14を支持体33を成すリング状の突条内に挿入することを容易にする。   The height of the protrusion forming the support 33, that is, the height of the step 33a may be, for example, about half of the thickness of the seed substrate 14, and is preferably the same as the thickness of the seed substrate 14. Further, the side surface in the vertical direction of the step 33a does not need to be entirely vertical, and may include, for example, an inclined surface that is inclined so as to spread upward from the middle. This facilitates the insertion of the seed substrate 14 into the ring-shaped protrusion that forms the support 33.

更に、保持部材35の中心から、所定の直径をもつ貫通開口34が形成されている。この貫通開口34は、支持体33を成すリング状の突条の内径よりも小さくなるように形成され、保持部材35の上面35aと、保持部材35の下面35b(即ち、原料と対向する面)とを貫通している。この貫通開口34によって、種子基板14の結晶成長面14aが原料に向けて露呈される。   Further, a through opening 34 having a predetermined diameter is formed from the center of the holding member 35. The through-opening 34 is formed to be smaller than the inner diameter of the ring-shaped protrusion forming the support 33, and the upper surface 35a of the holding member 35 and the lower surface 35b of the holding member 35 (that is, the surface facing the raw material). And penetrates. Through the through opening 34, the crystal growth surface 14a of the seed substrate 14 is exposed toward the raw material.

このような実施形態の支持体33も、種子基板14が結晶成長面14aに沿った方向に移動することを防止する。即ち、支持体33の上面35aに一体に形成されたリング状の突条内に嵌め込まれた種子基板14は、周面14bが支持体33の段差33aに当接しているため、結晶成長面14aに沿った方向に移動することを確実に防止することが可能になる。これによって、種子基板14の移動による成長結晶の結晶性の悪化を防ぎ、良好な結晶性をもつ窒化アルミニウム単結晶を製造することができる。   The support 33 in such an embodiment also prevents the seed substrate 14 from moving in the direction along the crystal growth surface 14a. That is, since the peripheral surface 14b of the seed substrate 14 fitted in the ring-shaped protrusion integrally formed on the upper surface 35a of the support 33 is in contact with the step 33a of the support 33, the crystal growth surface 14a It is possible to reliably prevent movement in the direction along the line. Thereby, the deterioration of the crystallinity of the grown crystal due to the movement of the seed substrate 14 can be prevented, and an aluminum nitride single crystal having good crystallinity can be produced.

また、支持体33は、種子基板14を保持部材35に載置する際に、種子基板14の載置位置を正確に位置決めすることができる。即ち、支持体33は、種子基板14の直径と同じか、それよりも僅かに大きい内径をもつリング状の突条によって構成されるので、種子基板14をこの支持体33に嵌め込むだけで、保持部材35における種子基板14の正しい載置位置に、種子基板14を正確に、かつ容易に位置決めして載置することが可能になる。   Further, the support 33 can accurately position the placement position of the seed substrate 14 when placing the seed substrate 14 on the holding member 35. That is, since the support 33 is formed by a ring-shaped protrusion having an inner diameter that is the same as or slightly larger than the diameter of the seed substrate 14, simply inserting the seed substrate 14 into the support 33, The seed substrate 14 can be accurately and easily positioned and placed at the correct placement position of the seed substrate 14 on the holding member 35.

<第4実施形態>
図5は、本発明の第4実施形態に係る窒化アルミニウム単結晶の製造装置の保持部材を示す一部破断斜視図である。
本実施形態における保持部材45は、支持体43、即ち保持部材45の上面(一面)45aから凸状をなす部材Bが、種子基板14の周縁を取り巻くように間欠的に配されてなる。具体的には、保持部材(部材B)45の上面(一面)45aから上方に向かって突出したリング状の突条からなる支持体43が、種子基板の周縁に沿って複数形成されている。この支持体43は、保持部材45の上面(一面)45aに、少なくとも3箇所以上、互いに離間して配されていればよい。そして、保持部材45を2箇所以上、種子基板14の周縁よりも外側に配した時に、残りの支持体43も種子基板14の周縁よりも外側に配する。これによって、複数の支持体43は、種子基板14の直径と同じか、それよりも僅かに大きい直径の仮想円Rに沿って、種子基板14の周縁を取り巻くように間欠的に配置される。
<Fourth embodiment>
FIG. 5 is a partially broken perspective view showing a holding member of an aluminum nitride single crystal manufacturing apparatus according to a fourth embodiment of the present invention.
In the present embodiment, the holding member 45 is formed by intermittently arranging the support 43, that is, the member B having a convex shape from the upper surface (one surface) 45 a of the holding member 45 so as to surround the periphery of the seed substrate 14. Specifically, a plurality of support bodies 43 formed of ring-shaped protrusions protruding upward from the upper surface (one surface) 45a of the holding member (member B) 45 are formed along the periphery of the seed substrate. The support 43 may be disposed on the upper surface (one surface) 45a of the holding member 45 so as to be separated from each other at least at three or more locations. When two or more holding members 45 are disposed outside the periphery of the seed substrate 14, the remaining supports 43 are also disposed outside the periphery of the seed substrate 14. Accordingly, the plurality of supports 43 are intermittently arranged so as to surround the periphery of the seed substrate 14 along the virtual circle R having a diameter that is the same as or slightly larger than the diameter of the seed substrate 14.

支持体43を成すそれぞれの突起の高さは、例えば種子基板14の厚みの半分程度であればよく、種子基板14の厚みと同じ程度にすることも好ましい。支持体43を成すそれぞれの突起の形状は、図3に示したような種子基板14の周縁の一部に沿った形状以外にも、例えば、円柱状の突起、三角柱や四角柱などの突起などであってもよい。   The height of each protrusion constituting the support 43 may be, for example, about half the thickness of the seed substrate 14, and is preferably set to the same level as the thickness of the seed substrate 14. The shape of each protrusion constituting the support 43 is not limited to the shape along a part of the periphery of the seed substrate 14 as shown in FIG. 3, for example, a cylindrical protrusion, a protrusion such as a triangular prism or a quadrangular prism, etc. It may be.

更に、保持部材45の中心から、所定の直径をもつ貫通開口44が形成されている。この貫通開口44は、保持部材45の上面45aと、保持部材45の下面45b(即ち、原料と対向する面)とを貫通している。この貫通開口44によって、種子基板14の結晶成長面14aが原料に向けて露呈される。   Further, a through opening 44 having a predetermined diameter is formed from the center of the holding member 45. The through-opening 44 penetrates the upper surface 45a of the holding member 45 and the lower surface 45b of the holding member 45 (that is, the surface facing the raw material). Through the through opening 44, the crystal growth surface 14a of the seed substrate 14 is exposed toward the raw material.

このような実施形態の支持体43も、種子基板14が結晶成長面14aに沿った方向に移動することを防止する。即ち、保持部材45の上面45aに複数形成された支持体43に取り囲まれた種子基板14は、周面14bが支持体43の複数の突起に当接しているため、結晶成長面14aに沿った方向に移動することを確実に防止することが可能になる。これによって、種子基板14の移動による成長結晶の結晶性の悪化を防ぎ、良好な結晶性をもつ窒化アルミニウム単結晶を製造することができる。   The support 43 in such an embodiment also prevents the seed substrate 14 from moving in the direction along the crystal growth surface 14a. That is, the seed substrate 14 surrounded by the plurality of support bodies 43 formed on the upper surface 45a of the holding member 45 has a circumferential surface 14b in contact with the plurality of protrusions of the support body 43. Therefore, the seed substrate 14 extends along the crystal growth surface 14a. It is possible to reliably prevent movement in the direction. Thereby, the deterioration of the crystallinity of the grown crystal due to the movement of the seed substrate 14 can be prevented, and an aluminum nitride single crystal having good crystallinity can be produced.

また、支持体43は、種子基板14を保持部材45に載置する際に、種子基板14の載置位置を正確に位置決めすることができる。即ち、複数の支持体43は、種子基板14の直径と同じか、それよりも僅かに大きい直径の仮想円Rに沿って形成されているので、種子基板14をこの複数の支持体43の内側に嵌め込むだけで、保持部材45における種子基板14の正しい載置位置に、種子基板14を正確に、かつ容易に位置決めして載置することが可能になる。   Further, the support body 43 can accurately position the placement position of the seed substrate 14 when placing the seed substrate 14 on the holding member 45. That is, the plurality of supports 43 are formed along a virtual circle R having a diameter that is the same as or slightly larger than the diameter of the seed substrate 14. It is possible to accurately and easily position and place the seed substrate 14 at the correct placement position of the seed substrate 14 in the holding member 45 simply by fitting into the holding member 45.

<第5実施形態>
上述した第1実施形態においては、結晶成長容器内で原料を加熱して昇華ガスを発生させているが、原料の昇華ガスを結晶成長容器の外部から導入する構成も好ましい。
図6は、第5実施形態の窒化アルミニウム単結晶の製造装置を示す概略構成図である。
この第4実施形態は、CVD法(化学気相成長法)等の気相法によって種子基板上に窒化アルミニウム単結晶を成長させる装置である。
<Fifth Embodiment>
In the first embodiment described above, the raw material is heated in the crystal growth vessel to generate the sublimation gas, but a configuration in which the sublimation gas of the raw material is introduced from the outside of the crystal growth vessel is also preferable.
FIG. 6 is a schematic configuration diagram showing an aluminum nitride single crystal manufacturing apparatus according to a fifth embodiment.
The fourth embodiment is an apparatus for growing an aluminum nitride single crystal on a seed substrate by a vapor phase method such as a CVD method (chemical vapor deposition method).

窒化アルミニウム単結晶の製造装置60は、石英等よりなる結晶成長容器61と、結晶成長容器61の下部に設けられた原料ガスを導入する原料ガス供給部63及び原料ガス供給口63aと、原料ガス供給部63に対向して設けられたサセプタ(蓋体)64と、サセプタ64の下方に設けられた保持部材15と、保持部材15により保持されるサセプタ64の下面側に設置された種子基板14とを備えて構成される。原料ガス供給部63及び原料ガス供給口63aからは、窒化アルミニウムの原料ガスとなる、トリメチルアルミニウムの蒸気、窒素、水素、アンモニア等が導入される。   An aluminum nitride single crystal manufacturing apparatus 60 includes a crystal growth vessel 61 made of quartz or the like, a raw material gas supply unit 63 and a raw material gas supply port 63a for introducing a raw material gas provided at a lower portion of the crystal growth vessel 61, and a raw material gas. A susceptor (lid) 64 provided to face the supply unit 63, a holding member 15 provided below the susceptor 64, and a seed substrate 14 installed on the lower surface side of the susceptor 64 held by the holding member 15. And is configured. From the source gas supply unit 63 and the source gas supply port 63a, trimethylaluminum vapor, nitrogen, hydrogen, ammonia, or the like, which is a source gas of aluminum nitride, is introduced.

結晶成長容器61の外周に沿って、結晶成長容器61の内部空間及び種子基板14を加熱する複数の加熱手段61が設けられている。また、結晶成長容器61及び加熱手段69はチャンバー68によって覆われている。チャンバー68の天井部には窒素ガス等のガス導入部65及びガス排出部66が設けられている。これにより、チャンバー60の内部を、所定のガス圧力に調整できるようになっている。   A plurality of heating means 61 for heating the internal space of the crystal growth container 61 and the seed substrate 14 are provided along the outer periphery of the crystal growth container 61. The crystal growth vessel 61 and the heating means 69 are covered with a chamber 68. A gas inlet 65 such as nitrogen gas and a gas outlet 66 are provided on the ceiling of the chamber 68. Thereby, the inside of the chamber 60 can be adjusted to a predetermined gas pressure.

本実施形態においても、種子基板14を保持する保持部材15には、図2に示したような支持体23が一体に形成されている。支持体23によって、種子基板14の移動を抑制し、かつ種子基板14の載置位置を位置決めを容易にする。   Also in this embodiment, the support member 23 as shown in FIG. 2 is integrally formed with the holding member 15 that holds the seed substrate 14. The support 23 suppresses movement of the seed substrate 14 and facilitates positioning of the placement position of the seed substrate 14.

従来の気相法による窒化アルミニウム単結晶の製造装置では、一般的に、種子基板はサセプタの下面に接着剤などで固定されていた。しかしながら、本実施形態の窒化アルミニウム単結晶の製造装置60では、保持部材15に形成された支持体23によって、種子基板14の移動や脱落を防ぎつつ、所定の位置で保持することができる。従って、種子基板14のサセプタからの移動や脱落に起因する窒化アルミニウム単結晶の成長欠陥の発生を確実に抑制することができる。よって、良好な結晶性をもつ窒化アルミニウム単結晶を製造することができる。   In a conventional apparatus for producing an aluminum nitride single crystal by a vapor phase method, the seed substrate is generally fixed to the lower surface of the susceptor with an adhesive or the like. However, in the aluminum nitride single crystal manufacturing apparatus 60 according to this embodiment, the support 23 formed on the holding member 15 can hold the seed substrate 14 at a predetermined position while preventing the seed substrate 14 from moving or dropping off. Therefore, it is possible to reliably suppress the occurrence of growth defects of the aluminum nitride single crystal due to the movement or dropping of the seed substrate 14 from the susceptor. Therefore, an aluminum nitride single crystal having good crystallinity can be produced.

<製造方法>
次に、図1に示した窒化アルミニウム単結晶の製造装置を用いた、窒化アルミニウム単結晶の製造方法を説明する。本発明の窒化アルミニウム単結晶の製造装置10を用いて、窒化アルミニウム単結晶AlNを製造する際には、まず、窒化アルミニウム粉末等の原料12を結晶成長容器(坩堝)11内底部にセットする。次に、保持部材15に種子基板14を載置するが、この時、種子基板14の結晶成長面14a側を下に向けて、円形溝である支持体23に嵌め込むだけで、種子基板14を保持部材15の所定位置に容易に位置決めすることができる。
<Manufacturing method>
Next, an aluminum nitride single crystal manufacturing method using the aluminum nitride single crystal manufacturing apparatus shown in FIG. 1 will be described. When the aluminum nitride single crystal AlN is manufactured using the aluminum nitride single crystal manufacturing apparatus 10 of the present invention, first, a raw material 12 such as aluminum nitride powder is set on the inner bottom of the crystal growth vessel (crucible) 11. Next, the seed substrate 14 is placed on the holding member 15. At this time, the seed substrate 14 is simply fitted into the support 23 that is a circular groove with the crystal growth surface 14 a side of the seed substrate 14 facing down. Can be easily positioned at a predetermined position of the holding member 15.

この後、結晶成長容器11内を準密閉状態とする。次いで、不図示の真空ポンプを稼動させてガス排出口より炉体収納容器18内部の大気を除去し、結晶成長容器11内の圧力を減圧させる。続いて、結晶成長容器11内に窒素ガスを導入する。これにより、窒化アルミニウム単結晶の成長は、高純度窒素ガス雰囲気下で行われる。   Thereafter, the inside of the crystal growth vessel 11 is put in a semi-sealed state. Next, a vacuum pump (not shown) is operated to remove the atmosphere inside the furnace body storage container 18 from the gas discharge port, and the pressure in the crystal growth container 11 is reduced. Subsequently, nitrogen gas is introduced into the crystal growth vessel 11. Thereby, the growth of the aluminum nitride single crystal is performed in a high purity nitrogen gas atmosphere.

そして、ヒータ等の加熱手段によって炉体収納容器18を介して結晶成長容器11を加熱する。窒化アルミニウム単結晶成長時は炉体収納容器18の温度を1700〜2300℃で一定制御する。なお、窒化アルミニウム単結晶成長時は、炉体収納容器18下端の温度(原料温度)は、炉体収納容器18上側の温度(結晶成長部温度)よりも高温となるように設定する。   Then, the crystal growth vessel 11 is heated via the furnace body storage vessel 18 by heating means such as a heater. During the growth of the aluminum nitride single crystal, the temperature of the furnace body storage container 18 is constantly controlled at 1700 to 2300 ° C. During aluminum nitride single crystal growth, the temperature (raw material temperature) at the lower end of the furnace body storage container 18 is set to be higher than the temperature (crystal growth part temperature) above the furnace body storage container 18.

結晶成長は、前述の設定温度まで加熱した後に結晶成長用炉20を減圧することで開始され、100torr以上600torr以下に定圧保持することで行われる。
また、加熱中は、結晶成長用炉20内の窒素ガスを排出しつつ、窒素ガスを結晶成長用炉20内に供給することにより、結晶成長用炉20内の窒素ガス圧力及び流量を適切に調整する。
Crystal growth is started by depressurizing the crystal growth furnace 20 after heating to the above-mentioned set temperature, and is performed by maintaining a constant pressure of 100 to 600 torr.
During heating, the nitrogen gas in the crystal growth furnace 20 is discharged while the nitrogen gas is supplied into the crystal growth furnace 20 so that the nitrogen gas pressure and flow rate in the crystal growth furnace 20 are appropriately adjusted. adjust.

加熱によって昇華させて分解気化された原料12の昇華ガスは、窒素ガス雰囲気下で保持部材15の貫通開口に露出した種子基板14の結晶成長面14a上に析出し、結晶成長することで、種子基板14上に窒化アルミニウム単結晶AlNとなり成長する。   The sublimation gas of the raw material 12 sublimated by vaporization by heating is deposited on the crystal growth surface 14a of the seed substrate 14 exposed at the through-opening of the holding member 15 in a nitrogen gas atmosphere, and is grown as a seed. It grows on the substrate 14 as aluminum nitride single crystal AlN.

このような窒化アルミニウム単結晶の成長時においても、支持体23の凹状を成す円形溝に嵌め込まれた種子基板14は、周面14bが支持体23の段差23aに当接しているため、結晶成長面14aに沿った方向に移動することを確実に防止することが可能になる。これによって、種子基板14の移動による成長結晶の結晶性の悪化を防ぎ、良好な結晶性をもつ窒化アルミニウム単結晶を製造することができる。   Even during the growth of such an aluminum nitride single crystal, the seed substrate 14 fitted in the circular groove forming the concave shape of the support 23 has a peripheral surface 14b that is in contact with the step 23a of the support 23. It is possible to reliably prevent movement in the direction along the surface 14a. Thereby, the deterioration of the crystallinity of the grown crystal due to the movement of the seed substrate 14 can be prevented, and an aluminum nitride single crystal having good crystallinity can be produced.

以下、実施例を示して本発明をさらに詳細に説明するが、本発明は以下の実施例に限定されるものではない。
図1に示した窒化アルミニウム単結晶の製造装置10にて種子基板14上に窒化アルミニウム単結晶の成長を行った。種子基板14としては、円板状の6H−SiC単結晶(直径50mm、厚さ600μm)を用いた。なお、成長面の方位および極性は(0001)Si面および(000−1)C面とした。保持部材15には1mm厚の円板状部材を用い、中心部にΦ30mmの裏面まで貫通する穴を穿ち、リング状部材とした。
EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated further in detail, this invention is not limited to a following example.
The aluminum nitride single crystal was grown on the seed substrate 14 with the aluminum nitride single crystal manufacturing apparatus 10 shown in FIG. As the seed substrate 14, a disk-shaped 6H—SiC single crystal (diameter 50 mm, thickness 600 μm) was used. The orientation and polarity of the growth surface were (0001) Si plane and (000-1) C plane. A 1 mm-thick disc-shaped member was used as the holding member 15, and a hole penetrating to the back surface of Φ30 mm was formed in the center portion to form a ring-shaped member.

また、支持体23が一体に形成された保持部材15は、炭化タンタル製のものを使用した。結晶成長容器11を装置内に設置した後、不図示のドライポンプ及びターボ分子ポンプを逐次稼動することにより、結晶成長用炉20内にある大気を除去し、結晶成長用炉20内圧力を5×10−6torrまで減圧した。この後、窒素ガスを装置内に導入し、700torrまで昇圧した。 Further, the holding member 15 in which the support 23 is integrally formed is made of tantalum carbide. After the crystal growth vessel 11 is installed in the apparatus, a dry pump and a turbo molecular pump (not shown) are sequentially operated to remove the atmosphere in the crystal growth furnace 20 and to increase the pressure in the crystal growth furnace 20 to 5. The pressure was reduced to × 10 −6 torr. Thereafter, nitrogen gas was introduced into the apparatus and the pressure was increased to 700 torr.

次に、結晶成長容器11の温度を約2000℃に昇温したのち、結晶成長用炉20内圧力を100〜600torrへ減圧させることで、窒化アルミニウム結晶成長を開始した。成長開始から10〜120時間経過したところで、結晶成長用炉20内圧力を窒素ガスにより700torrまで昇圧し、その後、種子基板14および原料温度を室温まで冷却させることで結晶成長を終了させた。得られた窒化アルミニウム単結晶のサイズは直径30mm厚さは0.1〜5mmであり、成長速度は10〜120μm/hであった。   Next, after the temperature of the crystal growth vessel 11 was raised to about 2000 ° C., the pressure in the crystal growth furnace 20 was reduced to 100 to 600 torr to start aluminum nitride crystal growth. When 10 to 120 hours had elapsed from the start of growth, the pressure in the crystal growth furnace 20 was increased to 700 torr with nitrogen gas, and then the seed substrate 14 and the raw material temperature were cooled to room temperature, thereby terminating the crystal growth. The obtained aluminum nitride single crystal had a diameter of 30 mm, a thickness of 0.1 to 5 mm, and a growth rate of 10 to 120 μm / h.

この結晶を成長方向に対し、垂直および水平方向に1mm厚の板状に切断し、評価用の試料を作製した。評価用試料は表面を平坦かつ鏡面に研磨し、切断加工によるダメージを表面から極力取り除いた。評価については、相の同定をラマン散乱測定から、結晶性はX線ラングカメラによるX線トポグラフィー法により分析した。ラマン散乱測定から、得られた結晶の相が2H構造を有する(0001)AlN結晶であることがわかった。また、X線トポグラフィー像により従来の種子基板の接着保持による成長と比較して保持部材による成長では結晶欠陥密度が2桁低いことが判明した。これらの結果は、保持部材を用いて種子基板を保持したことにより、(0001)面内方向の熱歪みが緩和され、結晶性が向上したことを示している。   This crystal was cut into a 1 mm-thick plate in the vertical and horizontal directions with respect to the growth direction, and a sample for evaluation was produced. The sample for evaluation was polished to a mirror surface with a flat surface, and damage due to cutting was removed from the surface as much as possible. For evaluation, phase identification was analyzed from Raman scattering measurement, and crystallinity was analyzed by X-ray topography using an X-ray Lang camera. From the Raman scattering measurement, it was found that the obtained crystal phase was a (0001) AlN crystal having a 2H structure. Further, it was found from the X-ray topography image that the crystal defect density was lower by two orders of magnitude in the growth by the holding member as compared with the growth by the conventional adhesion holding of the seed substrate. These results indicate that holding the seed substrate using the holding member alleviated thermal strain in the (0001) in-plane direction and improved crystallinity.

10…製造装置、20…結晶成長用炉、11…結晶成長容器(坩堝)、12…原料、13…蓋体、14…種子基板、15…保持部材、23…支持体、AlN…窒化アルミニウム単結晶。   DESCRIPTION OF SYMBOLS 10 ... Manufacturing apparatus, 20 ... Crystal growth furnace, 11 ... Crystal growth container (crucible), 12 ... Raw material, 13 ... Lid, 14 ... Seed substrate, 15 ... Holding member, 23 ... Support, AlN ... Aluminum nitride single crystal.

Claims (9)

結晶成長容器と、窒化アルミニウム単結晶を成長させる種子基板と、一方の面に前記種子基板を保持するとともに、中心部に前記種子基板の外径より小さな貫通開口を有した保持部材と、を備え、
前記保持部材の前記一面に、前記種子基板の動きを抑制するように、前記種子基板の周縁に沿うように配置した支持体を有することを特徴とする窒化アルミニウム単結晶の製造装置。
A crystal growth container; a seed substrate for growing an aluminum nitride single crystal; and a holding member that holds the seed substrate on one surface and has a through opening smaller than the outer diameter of the seed substrate in the center. ,
An apparatus for producing an aluminum nitride single crystal, comprising: a support body disposed along the periphery of the seed substrate so as to suppress movement of the seed substrate on the one surface of the holding member.
前記支持体は、前記保持部材の前記一面から凹状をなす部材Aであることを特徴とする請求項1に記載の窒化アルミニウム単結晶の製造装置。   The said support body is the member A which makes concave shape from the said one surface of the said holding member, The manufacturing apparatus of the aluminum nitride single crystal of Claim 1 characterized by the above-mentioned. 前記部材Aは、前記種子基板の周縁を取り巻くように連続的に配されていることを特徴とする請求項2に記載の窒化アルミニウム単結晶の製造装置。   The said member A is continuously arrange | positioned so that the periphery of the said seed substrate may be surrounded, The manufacturing apparatus of the aluminum nitride single crystal of Claim 2 characterized by the above-mentioned. 前記部材Aは、前記種子基板の周縁を取り巻くように間欠的に複数配されていることを特徴とする請求項2に記載の窒化アルミニウム単結晶の製造装置。   The apparatus for producing an aluminum nitride single crystal according to claim 2, wherein a plurality of the members A are intermittently provided so as to surround the periphery of the seed substrate. 前記支持体は、前記保持部材の前記一面から凸状をなす部材Bであることを特徴とする請求項1に記載の窒化アルミニウム単結晶の製造装置。   The said support body is the member B which makes convex shape from the said one surface of the said holding member, The manufacturing apparatus of the aluminum nitride single crystal of Claim 1 characterized by the above-mentioned. 前記部材Bは、前記種子基板の周縁を取り巻くように連続的に配されていることを特徴とする請求項5に記載の窒化アルミニウム単結晶の製造装置。   The said member B is continuously distribute | arranged so that the periphery of the said seed substrate may be surrounded, The manufacturing apparatus of the aluminum nitride single crystal of Claim 5 characterized by the above-mentioned. 前記部材Bは、前記種子基板の周縁を取り巻くように間欠的に複数配されていることを特徴とする請求項5に記載の窒化アルミニウム単結晶の製造装置。   6. The apparatus for producing an aluminum nitride single crystal according to claim 5, wherein a plurality of the members B are intermittently arranged so as to surround the periphery of the seed substrate. 前記保持部材と前記支持体とは、一体の部材であることを特徴とする請求項1ないし7いずれか1項に記載の窒化アルミニウム単結晶の製造装置。   The said holding member and the said support body are integral members, The manufacturing apparatus of the aluminum nitride single crystal of any one of Claim 1 thru | or 7 characterized by the above-mentioned. 昇華法による窒化アルミニウム単結晶の製造方法であって、
結晶成長容器と、一面に窒化アルミニウム単結晶を成長させる種子基板と、中心部に前記種子基板の外径より小さな貫通開口を有し、一面で前記種子基板を保持する保持部材と、前記保持部材の前記一面に、前記種子基板の動きを抑制するように、前記種子基板の周縁に沿って配置した支持体と、を備え、
前記支持体によって前記種子基板の動きを抑制しながら、窒化アルミニウムを含む昇華ガスを前記種子基板に析出させて、窒化アルミニウム単結晶を得ることを特徴とする窒化アルミニウム単結晶の製造方法。
A method for producing an aluminum nitride single crystal by a sublimation method,
A crystal growth container; a seed substrate for growing an aluminum nitride single crystal on one surface; a holding member having a through opening smaller than the outer diameter of the seed substrate at a central portion; and holding the seed substrate on one surface; and the holding member A support body disposed along the periphery of the seed substrate so as to suppress the movement of the seed substrate,
A method for producing an aluminum nitride single crystal, wherein a sublimation gas containing aluminum nitride is deposited on the seed substrate while suppressing the movement of the seed substrate by the support.
JP2012168338A 2012-07-30 2012-07-30 Aluminum nitride single crystal producing device and method Pending JP2014024736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012168338A JP2014024736A (en) 2012-07-30 2012-07-30 Aluminum nitride single crystal producing device and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012168338A JP2014024736A (en) 2012-07-30 2012-07-30 Aluminum nitride single crystal producing device and method

Publications (1)

Publication Number Publication Date
JP2014024736A true JP2014024736A (en) 2014-02-06

Family

ID=50198735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012168338A Pending JP2014024736A (en) 2012-07-30 2012-07-30 Aluminum nitride single crystal producing device and method

Country Status (1)

Country Link
JP (1) JP2014024736A (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6287484A (en) * 1985-10-11 1987-04-21 Hitachi Ltd Ring susceptor for molecular beam epitaxial apparatus
JPH0455397A (en) * 1990-06-20 1992-02-24 Mitsui Eng & Shipbuild Co Ltd Production of alpha-sic single crystal
JPH07201747A (en) * 1993-12-28 1995-08-04 Nippon Steel Corp Formation of compound semiconductor layer
JPH07321043A (en) * 1994-05-19 1995-12-08 Kawasaki Steel Corp Susceptor for thin film growth
JP2004134620A (en) * 2002-10-11 2004-04-30 Yamaha Corp Gallium nitride epitaxy method
JP2006021964A (en) * 2004-07-08 2006-01-26 Sumitomo Electric Ind Ltd Ain single crystal and its growth method
WO2010122801A1 (en) * 2009-04-24 2010-10-28 独立行政法人産業技術総合研究所 Apparatus for manufacturing aluminum nitride single crystal, method for manufacturing aluminum nitride single crystal, and aluminum nitride single crystal
JP2010254499A (en) * 2009-04-22 2010-11-11 Tokuyama Corp Method for producing group iii nitride crystal substrate
JP2011132079A (en) * 2009-12-25 2011-07-07 National Institute Of Advanced Industrial Science & Technology Aluminum nitride single crystal, method and apparatus for manufacturing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6287484A (en) * 1985-10-11 1987-04-21 Hitachi Ltd Ring susceptor for molecular beam epitaxial apparatus
JPH0455397A (en) * 1990-06-20 1992-02-24 Mitsui Eng & Shipbuild Co Ltd Production of alpha-sic single crystal
JPH07201747A (en) * 1993-12-28 1995-08-04 Nippon Steel Corp Formation of compound semiconductor layer
JPH07321043A (en) * 1994-05-19 1995-12-08 Kawasaki Steel Corp Susceptor for thin film growth
JP2004134620A (en) * 2002-10-11 2004-04-30 Yamaha Corp Gallium nitride epitaxy method
JP2006021964A (en) * 2004-07-08 2006-01-26 Sumitomo Electric Ind Ltd Ain single crystal and its growth method
JP2010254499A (en) * 2009-04-22 2010-11-11 Tokuyama Corp Method for producing group iii nitride crystal substrate
WO2010122801A1 (en) * 2009-04-24 2010-10-28 独立行政法人産業技術総合研究所 Apparatus for manufacturing aluminum nitride single crystal, method for manufacturing aluminum nitride single crystal, and aluminum nitride single crystal
JP2011132079A (en) * 2009-12-25 2011-07-07 National Institute Of Advanced Industrial Science & Technology Aluminum nitride single crystal, method and apparatus for manufacturing the same

Similar Documents

Publication Publication Date Title
JP6311834B2 (en) Manufacturing method of nitride semiconductor substrate
US10438795B2 (en) Self-centering wafer carrier system for chemical vapor deposition
US6786969B2 (en) Method and apparatus for producing single crystal, substrate for growing single crystal and method for heating single crystal
JP5289045B2 (en) Method and apparatus for producing silicon carbide crystal
CN107109694B (en) Crystal growth device, method for producing silicon carbide single crystal, silicon carbide single crystal substrate, and silicon carbide epitaxial substrate
JP7184836B2 (en) System for horizontal growth of high-quality semiconductor single crystals and method for producing same
WO2015182246A1 (en) Silicon-carbide-ingot manufacturing method, silicon-carbide seed substrate, and silicon-carbide substrate
JP5517123B2 (en) Aluminum nitride single crystal and method and apparatus for manufacturing the same
US20210123157A1 (en) METHOD FOR PREPARING A SiC INGOT, METHOD FOR PREPARING A SiC WAFER, AND A DEVICE FOR PREPARING A SiC INGOT
US9799735B2 (en) Method of manufacturing silicon carbide single crystal and silicon carbide single crystal substrate
US20170121844A1 (en) Method for manufacturing silicon carbide single crystal and silicon carbide substrate
JP2005343722A (en) METHOD FOR GROWING AlN CRYSTAL, AlN CRYSTAL SUBSTRATE AND SEMICONDUCTOR DEVICE
JP2014024736A (en) Aluminum nitride single crystal producing device and method
JP2013075793A (en) Apparatus and method for producing single crystal
JP2016190762A (en) Manufacturing apparatus for aluminum nitride single crystal
US20140190413A1 (en) Apparatus for fabricating ingot
JP5867856B2 (en) Seed crystal holding member, aluminum nitride single crystal manufacturing method and manufacturing apparatus thereof
JP2014084240A (en) Apparatus for producing single crystal of aluminum nitride
JP2006103997A (en) Method for manufacturing semiconductor crystal
JP6196859B2 (en) Wafer mounting material
US20240150930A1 (en) System and method of producing monocrystalline layers on a substrate
US20240044044A1 (en) Crystal growth device and method for growing a semiconductor
US20240052520A1 (en) System and method of producing monocrystalline layers on a substrate
JP2018197173A (en) Aluminum nitride single crystal manufacturing device
JP2018197175A (en) Aluminum nitride single crystal manufacturing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160419

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160906