JP2014022073A - Manufacturing method and apparatus for square secondary battery - Google Patents

Manufacturing method and apparatus for square secondary battery Download PDF

Info

Publication number
JP2014022073A
JP2014022073A JP2012156834A JP2012156834A JP2014022073A JP 2014022073 A JP2014022073 A JP 2014022073A JP 2012156834 A JP2012156834 A JP 2012156834A JP 2012156834 A JP2012156834 A JP 2012156834A JP 2014022073 A JP2014022073 A JP 2014022073A
Authority
JP
Japan
Prior art keywords
battery
liquid injection
electrode group
pair
injection port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012156834A
Other languages
Japanese (ja)
Inventor
Nobuyuki Hori
伸行 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vehicle Energy Japan Inc
Original Assignee
Hitachi Vehicle Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Vehicle Energy Ltd filed Critical Hitachi Vehicle Energy Ltd
Priority to JP2012156834A priority Critical patent/JP2014022073A/en
Publication of JP2014022073A publication Critical patent/JP2014022073A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Filling, Topping-Up Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a manufacturing method for a square secondary battery which can reduce the manufacturing cost by injecting an electrolyte efficiently into a battery can in the liquid injection process.SOLUTION: A square secondary battery 1 includes a flat electrode group 4, a square battery can 2 for housing an electrode group 4 in such a position that a pair of flat surfaces of the electrode group 4 extend vertically, a battery lid 3 closing the upper part of the battery can 2, and a liquid injection port 7 provided to open in the battery lid 3 and injecting an electrolyte into the battery can 2. The manufacturing method for a square secondary battery includes a liquid injection step for injecting a liquid into the battery can 2, by inserting a liquid injection nozzle 221 into the battery can 2 from the liquid injection port 7, and discharging the electrolyte from the liquid injection nozzle 221 between the electrode group 4 and the battery lid 3, toward one side in the lateral width direction of the electrode group 4.

Description

本発明は、例えば車載用途等に使用される角形二次電池の製造方法および装置に関する。   The present invention relates to a method and apparatus for manufacturing a rectangular secondary battery used for, for example, in-vehicle use.

近年、電気自動車等の動力源として、エネルギー密度の高いリチウムイオン二次電池の開発が進められている。リチウムイオン二次電池は、種々の形状を有したものが存在するが、その中でも角形二次電池は、体積効率が高く、車載用途として採用されている。   In recent years, lithium ion secondary batteries with high energy density have been developed as power sources for electric vehicles and the like. Some lithium ion secondary batteries have various shapes, and among them, the square secondary battery has high volumetric efficiency and is adopted for in-vehicle use.

高性能な二次電池を実現するために、電池缶内の無駄なスペースを削減して電極群の占める容積を増やす傾向にある。かかる状況では、電池缶内に電解液を注液する注液工程により時間を要するため、電池の製造コストの増加や電池特性の劣化が課題となる。   In order to realize a high-performance secondary battery, there is a tendency to reduce the useless space in the battery can and increase the volume occupied by the electrode group. In such a situation, time is required for the injection step of injecting the electrolytic solution into the battery can, so that an increase in the manufacturing cost of the battery and deterioration of the battery characteristics become problems.

例えば、特許文献1には、電極群を電池缶内に収納した後、電解液を注液する電池の製造方法が開示されている。この方法によると、電極群を収納した電池缶と電解液とを加温した状態で、常圧状態と減圧状態とのサイクルを少なくとも2回以上繰り返し、電解液を分割注液することにより注液の効率化が可能になる。   For example, Patent Document 1 discloses a battery manufacturing method in which an electrode group is housed in a battery can and then an electrolytic solution is injected. According to this method, in a state where the battery can containing the electrode group and the electrolytic solution are heated, the cycle of the normal pressure state and the reduced pressure state is repeated at least twice, and the electrolytic solution is divided and injected. Can be made more efficient.

特開2004-241222号公報JP 2004-241222 A

しかしながら、特許文献1に開示されている技術では、電池缶内への電解液の注液方法が考慮されていない。封口板に設けられた注液口より電池缶内に注液された電解液は、比較的隙間の広い電極群の縁を伝って缶底に流入する。電解液を電極群に向かって垂直方向に注液した場合には、電解液は電極群の上面で電極群の幅方向に分岐して流れ、電極群の上面の両端部から缶底方向に流入する。この場合、流入する電解液が電池缶内の空気の排気経路を覆って電池缶内における電解液と空気の置換を阻害するため、缶底部から一定高さの空間に空気が残留する。缶底部の空気は時間とともに電解液に置換されるが、量産性のある処理時間内、例えば数分以内ではほとんど置換が進行せず、電池缶内への電解液の注液に必要な時間が長くなる。   However, the technique disclosed in Patent Document 1 does not consider the method of injecting the electrolyte into the battery can. The electrolyte injected into the battery can from the injection port provided on the sealing plate flows into the bottom of the can through the edge of the electrode group having a relatively wide gap. When the electrolyte is injected vertically toward the electrode group, the electrolyte branches and flows in the width direction of the electrode group on the upper surface of the electrode group, and flows from both ends of the upper surface of the electrode group toward the bottom of the can. To do. In this case, since the inflowing electrolyte covers the air exhaust path in the battery can and inhibits the replacement of the electrolyte and air in the battery can, air remains in a space at a certain height from the bottom of the can. The air at the bottom of the can is replaced with the electrolyte over time, but the replacement hardly progresses within the processing time for mass production, for example within a few minutes, and the time required for pouring the electrolyte into the battery can become longer.

また、注液された電解液の電極群内への浸透を促進するために、電解液の注液に続いて電池缶内を減圧状態にすることがあるが、缶底部に多量の空気が残留していると、この空気が膨張して電解液が押し上げられて注液孔に付着するリスクが高くなる。注液孔近傍に電解液が付着すると、注液終了後に注液孔に注液栓を取り付けてレーザ溶接で封止する時に、溶接の熱により注液孔と注液栓との間に溶接不良を引き起こす可能性がある。従って、溶接不良のリスクを下げるためには、注液を複数回に分けて、一度の注液量を少なく設定する必要があるため、注液工程の時間が長くなり、電池の製造コストが増加する。   In addition, in order to promote the penetration of the injected electrolyte into the electrode group, the inside of the battery can may be decompressed following the injection of the electrolyte, but a large amount of air remains at the bottom of the can. If this is the case, the risk that the air expands and the electrolyte is pushed up and adheres to the liquid injection hole increases. If electrolyte adheres to the vicinity of the liquid injection hole, when the liquid injection hole is attached to the liquid injection hole and sealed by laser welding after the completion of liquid injection, welding failure is caused between the liquid injection hole and the liquid injection plug due to the heat of welding. May cause. Therefore, in order to reduce the risk of poor welding, it is necessary to divide the injection into multiple times and set the injection volume to be small, which increases the time for the injection process and increases the manufacturing cost of the battery. To do.

本発明の目的は、電池缶内への電解液の注液を効率化して、製造コストの安価な角形二次電池の製造方法および装置を提供することである。   An object of the present invention is to provide a method and an apparatus for manufacturing a rectangular secondary battery that is efficient in injecting an electrolytic solution into a battery can and is inexpensive to manufacture.

上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。
本発明は、上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、 扁平状の電極群と、該電極群の一対の扁平面が上下に延在する姿勢状態で前記電極群を収容する角形の電池缶と、該電池缶の上部を閉塞する電池蓋と、該電池蓋に開口して設けられて前記電池缶内に電解液を注液するための注液口と、を有する角形二次電池の製造方法であって、前記注液口から前記電池缶内に注液ノズルを挿入して、該注液ノズルから前記電極群と前記電池蓋との間でかつ前記電極群の横幅方向一方側に向かって前記電解液を吐出して、前記電池缶内に注液する注液工程を含むことを特徴としている。
In order to solve the above problems, for example, the configuration described in the claims is adopted.
The present invention includes a plurality of means for solving the above-described problems. To give an example, the electrode is in a posture in which a flat electrode group and a pair of flat surfaces of the electrode group extend vertically. A rectangular battery can that accommodates a group; a battery lid that closes an upper portion of the battery can; an injection port that is provided in the battery lid so as to inject an electrolyte into the battery can; A method of manufacturing a prismatic secondary battery comprising: a liquid injection nozzle inserted into the battery can from the liquid injection port, and the electrode between the electrode group and the battery lid from the liquid injection nozzle. It includes a liquid injection step of discharging the electrolytic solution toward one side in the lateral width direction of the group and injecting it into the battery can.

本発明によれば、電池缶内に電解液を注液する際に、電池缶内の空気と電解液の効率的な置換が可能になるため、注液工程の時間を短縮することができる。なお、上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。   According to the present invention, when the electrolytic solution is injected into the battery can, the air in the battery can and the electrolytic solution can be efficiently replaced, so that the time of the injection process can be shortened. Problems, configurations, and effects other than those described above will be clarified by the following description of the embodiments.

実施形態に係わる角形二次電池の外観斜視図。1 is an external perspective view of a prismatic secondary battery according to an embodiment. 図1に示す角形二次電池の分解斜視図。The disassembled perspective view of the square secondary battery shown in FIG. 実施形態に係わる角形二次電池の製造方法を説明するフローチャート。The flowchart explaining the manufacturing method of the square secondary battery concerning embodiment. 実施形態に係わる角形二次電池の注液装置の概念図。The conceptual diagram of the liquid injection apparatus of the square secondary battery concerning embodiment. 実施形態における注液ノズルを注液口に挿入した状態を示す断面図。Sectional drawing which shows the state which inserted the liquid injection nozzle in embodiment into the liquid injection port. 実施形態における他の注液ノズルを注液口に挿入した状態を示す断面図。Sectional drawing which shows the state which inserted the other injection nozzle in embodiment into the injection hole. 実施形態における他の注液ノズルを注液口に挿入した状態を示す断面図。Sectional drawing which shows the state which inserted the other injection nozzle in embodiment into the injection hole. 電池蓋の注液口近傍を拡大して示す平面図。The top view which expands and shows the injection hole vicinity of a battery cover. 電池缶内に注液された電解液の流れを説明する断面概念図。Sectional conceptual diagram explaining the flow of the electrolyte solution injected into the battery can. 封止栓により注液口を封止した状態を示す断面図。Sectional drawing which shows the state which sealed the liquid injection port with the sealing stopper.

次に、本発明の実施の形態について図面を用いて以下に説明する。   Next, embodiments of the present invention will be described below with reference to the drawings.

図1は、本実施の形態に係わる角形二次電池の外観斜視図、図2は、図1に示す角形二次電池の分解斜視図である。   FIG. 1 is an external perspective view of the prismatic secondary battery according to the present embodiment, and FIG. 2 is an exploded perspective view of the prismatic secondary battery shown in FIG.

角形二次電池1は、電気自動車やハイブリッド自動車、プラグインハイブリッド自動車等に用いられる車載用のリチウムイオン二次電池である。角形二次電池1は、図1および図2に示すように、電池缶2と電池蓋3を備えている。電池缶2は、長方形の底壁面PBと、底壁面PBの二つの長辺部でそれぞれ折曲されて対峙する一対の幅広側壁面PWと、底壁面PBの二つの短辺部でそれぞれ折曲されて対峙する一対の幅狭側壁面PNとを有する角形形状を有しており、上部には、上方に向かって開放された長方形の開口部2aが形成されている。   The prismatic secondary battery 1 is an in-vehicle lithium ion secondary battery used for electric vehicles, hybrid vehicles, plug-in hybrid vehicles, and the like. As shown in FIGS. 1 and 2, the rectangular secondary battery 1 includes a battery can 2 and a battery lid 3. The battery can 2 is bent at a rectangular bottom wall surface PB, a pair of wide side wall surfaces PW that are bent at two long side portions of the bottom wall surface PB, and two short side portions of the bottom wall surface PB. It has a square shape having a pair of narrow side wall surfaces PN facing each other, and a rectangular opening 2a opened upward is formed at the top.

電池缶2には、後述する電極群(捲回体)4が収容されている。そして、電池缶2の開口部2aが、電池蓋3によって封口されている。電池蓋3は、一対の幅広側壁面PWの上端部間および一対の幅狭側壁面PNの上端部間に亘って電池缶2の開口部2aを閉塞する長方形の平板形状を有している。電池缶2と電池蓋3は、共にアルミニウム合金で製作されており、レーザ溶接によって液密に溶接されて、直方体形状の密閉容器を構成する。   The battery can 2 accommodates an electrode group (rolled body) 4 to be described later. The opening 2 a of the battery can 2 is sealed by the battery lid 3. The battery lid 3 has a rectangular flat plate shape that closes the opening 2a of the battery can 2 between the upper ends of the pair of wide side wall surfaces PW and between the upper ends of the pair of narrow side wall surfaces PN. The battery can 2 and the battery lid 3 are both made of an aluminum alloy and are liquid-tightly welded by laser welding to constitute a rectangular parallelepiped sealed container.

電池蓋3には、絶縁部材を介して正極端子5Aと負極端子5Bが配設されている。正極端子5Aと負極端子5Bは、電池蓋3の長辺方向一方側と他方側に離れて配設されている。この正極端子5Aと負極端子5Bを介して電極群4から外部負荷に電力が供給され、また、外部で発電された電力が電極群4に充電される。   The battery lid 3 is provided with a positive electrode terminal 5A and a negative electrode terminal 5B via an insulating member. The positive electrode terminal 5 </ b> A and the negative electrode terminal 5 </ b> B are disposed separately on one side and the other side in the long side direction of the battery lid 3. Electric power is supplied from the electrode group 4 to the external load via the positive electrode terminal 5A and the negative electrode terminal 5B, and the electric power generated outside is charged in the electrode group 4.

そして、電池蓋3には、正極端子5A及び負極端子5Bの他に、ガス排出弁6と注液口7が配設されている。ガス排出弁6は、電池蓋3の長辺方向中央位置に配置され、注液口7は、ガス排出弁6と負極端子5Bとの間の位置に配置されている。ガス排出弁6は、電池缶2内の圧力が所定値よりも上昇すると開放されて、電池缶2内のガスを排出して電池缶2内の圧力を低減し、角形二次電池1の安全性を確保する構成を有している。   In addition to the positive electrode terminal 5A and the negative electrode terminal 5B, the battery cover 3 is provided with a gas discharge valve 6 and a liquid injection port 7. The gas discharge valve 6 is disposed at the central position in the long side direction of the battery lid 3, and the liquid injection port 7 is disposed at a position between the gas discharge valve 6 and the negative electrode terminal 5 </ b> B. The gas discharge valve 6 is opened when the pressure in the battery can 2 rises above a predetermined value, and discharges the gas in the battery can 2 to reduce the pressure in the battery can 2. It has the structure which ensures the property.

注液口7は、電池缶2の開口部2aを電池蓋3で封口した後に、電池缶2内に電解液を注液するのに用いられるものである。電解液の注液は、注液装置200(図4参照)を用いて行われる。注液口7は、電池缶2内に電解液を注液した後、封止栓8によって封止される。注液口7は、電池蓋3の長辺方向中央位置よりも負極端子5B側に偏位した位置に設けられている。   The liquid injection port 7 is used to inject an electrolyte into the battery can 2 after the opening 2 a of the battery can 2 is sealed with the battery lid 3. The electrolytic solution is injected using an injection device 200 (see FIG. 4). The liquid injection port 7 is sealed with a sealing plug 8 after the electrolytic solution is injected into the battery can 2. The liquid injection port 7 is provided at a position displaced toward the negative electrode terminal 5B side from the central position in the long side direction of the battery lid 3.

角形二次電池1の電池缶2内には、図2に示すように、絶縁シート9を介して電極群4が収容されている。電極群4は、正極と負極を間にセパレータを介在させて捲回することによって構成されている。電極群4は、一対の扁平面と一対の湾曲面を有する扁平形状を有しており、捲回軸方向両側には一対の側端部が形成されている。   As shown in FIG. 2, the electrode group 4 is accommodated in the battery can 2 of the prismatic secondary battery 1 through an insulating sheet 9. The electrode group 4 is configured by winding a positive electrode and a negative electrode with a separator interposed therebetween. The electrode group 4 has a flat shape having a pair of flat surfaces and a pair of curved surfaces, and a pair of side end portions are formed on both sides in the winding axis direction.

電極群4は、捲回軸方向が横向きになりかつ一対の扁平面が上下に延在する姿勢状態で電池缶2内に収容されて、電池缶2の各幅広側壁面PWに電極群4の各扁平面がそれぞれ対向し、電池缶2の各幅狭側壁面PNに電極群4の各側端部が対向する。そして、下方の湾曲面が電池缶2の底壁面PBに対向し、上方の湾曲面が電池缶2の開口部2a内に配置されている。   The electrode group 4 is housed in the battery can 2 in a posture state in which the winding axis direction is lateral and the pair of flat surfaces extend vertically, and the electrode group 4 is placed on each wide side wall surface PW of the battery can 2. Each flat surface is opposed to each other, and each side end portion of the electrode group 4 is opposed to each narrow side wall surface PN of the battery can 2. The lower curved surface faces the bottom wall surface PB of the battery can 2, and the upper curved surface is disposed in the opening 2 a of the battery can 2.

電極群4の扁平厚さは、電極群4の幅広面と電池缶2の幅広側壁面PWとが間に絶縁シート9を介して接面し、電極群4を電池缶2内に所定の押圧力で押し込むことによって挿入できる寸法に設定されている。電極群4の捲回軸方向長さは、電池缶2内に収容された状態で電極群4の横幅方向両側の一対の側端部と電池缶2の幅狭側壁面PNとの間に所定の間隙が形成される寸法に設定されている。電極群4の捲回軸方向一方側の側端部には、正極金属箔露出部からなる正極接続部4Aが形成され、電極群4の捲回軸方向他方側の側端部には、負極金属箔露出部からなる負極接続部4Bが形成されている。   The flat thickness of the electrode group 4 is such that the wide surface of the electrode group 4 and the wide side wall surface PW of the battery can 2 are in contact with each other through an insulating sheet 9 so that the electrode group 4 is pressed into the battery can 2 by a predetermined amount. It is set to a dimension that can be inserted by pressing with pressure. The length of the electrode group 4 in the winding axis direction is predetermined between the pair of side end portions on both sides in the lateral width direction of the electrode group 4 and the narrow side wall surface PN of the battery can 2 while being accommodated in the battery can 2. The dimension is set such that the gap is formed. 4 A of positive electrode metal foil exposed parts are formed in the side edge part of the winding group direction one side of the electrode group 4, and a negative electrode is formed in the side edge part of the electrode group 4 on the other side of the winding axis direction. A negative electrode connection portion 4B made of a metal foil exposed portion is formed.

正極接続部4Aは、正極集電板11Aを介して正極端子5Aに接続され、負極接続部4Bは、負極集電板11Bを介して負極端子5Bに接続される。正極集電板11Aは、正極端子5Aに一端が接続され、正極端子5Aから電池缶2の缶底(底壁面PB)に向かって延出して、他端が正極接続部4Aに接続される。負極集電板11Bは、負極端子5Bに一端が接続され、負極端子5Bから電池缶2の缶底(底壁面PB)に向かって延出して、他端が負極接続部4Bに接続される。   The positive electrode connection portion 4A is connected to the positive electrode terminal 5A via the positive electrode current collector plate 11A, and the negative electrode connection portion 4B is connected to the negative electrode terminal 5B via the negative electrode current collector plate 11B. One end of the positive electrode current collector plate 11A is connected to the positive electrode terminal 5A, extends from the positive electrode terminal 5A toward the can bottom (bottom wall surface PB) of the battery can 2, and the other end is connected to the positive electrode connection portion 4A. One end of the negative electrode current collector plate 11B is connected to the negative electrode terminal 5B, extends from the negative electrode terminal 5B toward the can bottom (bottom wall surface PB) of the battery can 2, and the other end is connected to the negative electrode connection portion 4B.

正極端子5Aと正極集電板11Aは、アルミニウム合金で製作され、負極端子5Bと負極集電板11Bは、銅合金で製作されている。正極端子5Aと正極集電板11A、および、負極端子5Bと負極集電板11Bは、それぞれ電池蓋3との間に絶縁性シール部材(ガスケット)12A、12Bおよび絶縁部材13A、13Bが介在されており、電池蓋3から電気的に絶縁されている。電池蓋3には、絶縁性シール部材(ガスケット)12A、12Bが係合する貫通穴3a、3bが開口形成されている。   The positive terminal 5A and the positive current collector 11A are made of an aluminum alloy, and the negative terminal 5B and the negative current collector 11B are made of a copper alloy. Insulating seal members (gaskets) 12A and 12B and insulating members 13A and 13B are interposed between the positive electrode terminal 5A and the positive electrode current collector plate 11A, and the negative electrode terminal 5B and the negative electrode current collector plate 11B, respectively, with the battery lid 3. It is electrically insulated from the battery lid 3. The battery lid 3 is formed with through holes 3a and 3b that engage with the insulating sealing members (gaskets) 12A and 12B.

なお、本実施の形態では、電極群4が捲回体の場合を例に説明したが、これに限定されるものではなく、例えば、矩形状を有する複数枚の正極と負極とを間にセパレータを介して積層した積層体を電極群4として用いてもよい。   In the present embodiment, the case where the electrode group 4 is a wound body has been described as an example. However, the present invention is not limited to this. For example, a plurality of rectangular positive electrodes and negative electrodes are interposed between the separators. A laminated body laminated via the electrode may be used as the electrode group 4.

図3は、本実施の形態における角形二次電池の製造工程の手順を示すフローチャートである。
まず、電極群4を作製する(ステップS1)。電極群4は、正極と負極を間にセパレータを介在させて扁平状に捲回することによって作製される。電極群4は、正極接続部4Aと負極接続部4Bに、それぞれ超音波溶接により正極集電板11Aと負極集電板11Bが接続される。正極集電板11Aと負極集電板11Bは、それぞれ電池蓋3に予め取り付けられており、蓋組立体を構成している。そして、蓋組立体の正極集電板11Aと負極集電板11Bに電極群4の正極接続部4Aと負極接続部4Bを接続して支持させることにより発電要素組立体が構成されている。
FIG. 3 is a flowchart showing the procedure of the manufacturing process of the prismatic secondary battery in the present embodiment.
First, the electrode group 4 is produced (step S1). The electrode group 4 is produced by winding a positive electrode and a negative electrode in a flat shape with a separator interposed therebetween. In the electrode group 4, the positive electrode collector plate 11A and the negative electrode collector plate 11B are connected to the positive electrode connector 4A and the negative electrode connector 4B by ultrasonic welding, respectively. Each of the positive electrode current collector plate 11A and the negative electrode current collector plate 11B is attached in advance to the battery lid 3, and constitutes a lid assembly. The power generation element assembly is configured by connecting and supporting the positive electrode connection portion 4A and the negative electrode connection portion 4B of the electrode group 4 to the positive electrode current collector plate 11A and the negative electrode current collector plate 11B of the lid assembly.

次に、発電要素組立体の電極群4の部分を電池缶2内に挿入する(ステップS2)。電極群4は、その周囲を絶縁シート9(図2を参照)で覆われた状態で電池缶2内に挿入される。電極群4は、電極群4の幅広面と電池缶2の幅広側壁面PWとの間に絶縁シート9を介して接面して所定の押圧力で押し込むことによって電池缶2内に挿入される。電極群4は、電池缶2内に収容された状態で電極群4の横幅方向両側の一対の側端部と電池缶2の幅狭側壁面PNとの間に所定の間隙が形成されている。   Next, the electrode group 4 portion of the power generation element assembly is inserted into the battery can 2 (step S2). The electrode group 4 is inserted into the battery can 2 with its periphery covered with an insulating sheet 9 (see FIG. 2). The electrode group 4 is inserted into the battery can 2 by contacting with the insulating sheet 9 between the wide surface of the electrode group 4 and the wide side wall surface PW of the battery can 2 and pressing it with a predetermined pressing force. . In the electrode group 4, a predetermined gap is formed between the pair of side end portions on both sides in the widthwise direction of the electrode group 4 and the narrow side wall surface PN of the battery can 2 while being accommodated in the battery can 2. .

絶縁シート9は、正極集電板11Aと負極集電板11Bごと電極群4を覆い、電極群4と電池缶2との間を絶縁する。電極群4の電池缶2への挿入により、電池缶2の開口部2aは、電池蓋3で閉塞される。かかる状態で、電池蓋3を電池缶2にレーザ溶接して、開口部2aを封口する(ステップS3)。以上の工程により、電解液を注液する前の電池部材1A(図4を参照)が形成される。   The insulating sheet 9 covers the electrode group 4 together with the positive electrode current collector plate 11 </ b> A and the negative electrode current collector plate 11 </ b> B, and insulates the electrode group 4 from the battery can 2. By inserting the electrode group 4 into the battery can 2, the opening 2 a of the battery can 2 is closed by the battery lid 3. In this state, the battery lid 3 is laser welded to the battery can 2 to seal the opening 2a (step S3). Through the above steps, the battery member 1A (see FIG. 4) before the electrolyte solution is injected is formed.

次に、この電池部材1Aを注液装置200(図4を参照)内に搬送して、電池蓋3の注液口7から電池缶2内に電解液を注液する(ステップS4)。ここでは、注液口7から電池缶2内に注液ノズル221を挿入して、注液ノズル221から電極群4と電池蓋3との間でかつ電極群4の横幅方向一方側に向かって電解液を吐出して、電池缶2内に注液する。   Next, the battery member 1A is conveyed into the liquid injection device 200 (see FIG. 4), and the electrolytic solution is injected into the battery can 2 from the liquid injection port 7 of the battery lid 3 (step S4). Here, a liquid injection nozzle 221 is inserted into the battery can 2 from the liquid injection port 7, and from the liquid injection nozzle 221 between the electrode group 4 and the battery lid 3 and toward one side in the lateral width direction of the electrode group 4. The electrolytic solution is discharged and injected into the battery can 2.

そして、電池缶2内に所定量の電解液を注液した後、封止栓8を注液口7に取り付けてレーザ溶接し、注液口7を液密に封止する(ステップS5)。封止後に一定時間静置して、電極群4内の正極板、負極板、およびセパレータ内に電解液を十分に含浸させる(ステップS6)。その後、正極端子5Aと負極端子5Bを介して充放電し、適切な充電状態、温度環境で静置(エージング)することにより(ステップS7)、角形二次電池1(図1を参照)が完成する。   And after pouring a predetermined amount of electrolyte solution in the battery can 2, the sealing stopper 8 is attached to the injection port 7, and laser welding is carried out, and the injection port 7 is sealed liquid-tightly (step S5). After sealing, the sample is allowed to stand for a certain period of time, and the positive electrode plate, the negative electrode plate, and the separator in the electrode group 4 are sufficiently impregnated with the electrolyte (step S6). Thereafter, the battery is charged / discharged through the positive electrode terminal 5A and the negative electrode terminal 5B, and left standing (aging) in an appropriate charged state and temperature environment (step S7), thereby completing the rectangular secondary battery 1 (see FIG. 1). To do.

図4は、本実施の形態における注液装置の全体構成を説明する概念図である。
注液装置200は、電解液を貯留する電解液タンク201と、電解液タンク201に接続された注液通路202と、電池部材1Aを収納する密閉容器210と、容器内の空気を排気する排気通路204と、注液通路202を開閉する注液バルブ203と、排気通路204を開閉する排気バルブ205と、電池部材1Aの注液口7に挿入される注液ノズル221を備えている。
FIG. 4 is a conceptual diagram illustrating the overall configuration of the liquid injection device in the present embodiment.
The liquid injection device 200 includes an electrolytic solution tank 201 that stores an electrolytic solution, a liquid injection passage 202 connected to the electrolytic solution tank 201, a sealed container 210 that houses the battery member 1A, and an exhaust that exhausts air in the container. A passage 204, a liquid injection valve 203 for opening and closing the liquid injection passage 202, an exhaust valve 205 for opening and closing the exhaust passage 204, and a liquid injection nozzle 221 inserted into the liquid injection port 7 of the battery member 1A are provided.

密閉容器210は、上下に分割可能な構造を有しており、電池部材1Aを起立した姿勢状態で保持するケース212と、ケース212の上部を閉塞してケース212との間に密閉された空間を形成するケース蓋211を有している。ケース蓋211には、注液通路202と排気通路204が固定されており、それぞれ密閉容器210内に連通している。   The sealed container 210 has a structure that can be divided vertically, and is a space that is sealed between the case 212 that holds the battery member 1 </ b> A in an upright posture and the case 212 by closing the upper portion of the case 212. A case lid 211 is formed. A liquid injection passage 202 and an exhaust passage 204 are fixed to the case lid 211 and communicate with each other in the sealed container 210.

注液ノズル221は、ケース蓋211に一体に設けられており、基端が注液通路202に連通して接続されている。注液ノズル221は、ケース蓋211から下方に向かって突出しており、電池部材1Aの上方で注液口7の貫通孔21に対向する位置に配置されている。そして、ケース蓋211でケース212の上部を閉塞することによって、注液口7の貫通孔21内に注液ノズル221の先端が挿入されるようになっている。注液ノズル221は、注液口7から電池缶2内に挿入されて電極群4と電池蓋3との間でかつ電極群の横幅方向一方側である負極側の幅狭側壁面PNに向かって電解液を吐出する構成を有する。   The liquid injection nozzle 221 is provided integrally with the case lid 211, and a base end thereof is connected to and connected to the liquid injection passage 202. The liquid injection nozzle 221 protrudes downward from the case lid 211 and is arranged at a position facing the through hole 21 of the liquid injection port 7 above the battery member 1A. The top of the case 212 is closed with the case lid 211 so that the tip of the liquid injection nozzle 221 is inserted into the through hole 21 of the liquid injection port 7. The liquid injection nozzle 221 is inserted into the battery can 2 from the liquid injection port 7 and faces the narrow side wall surface PN on the negative electrode side between the electrode group 4 and the battery lid 3 and on one side in the horizontal width direction of the electrode group. A structure for discharging the electrolytic solution.

図4を用いてステップS4の注液工程の詳細について説明する。
まず、電池部材1Aが注液装置200内に搬送供給されて起立した姿勢状態で予め設定された保持位置に保持されると、密閉容器210のケース蓋211が下降して電池部材1Aが密閉容器210に収納され、同時に電池蓋3の注液口7の貫通孔21に注液ノズル221が挿入される。次に、注液バルブ203を開放して、電解液タンク201から注液通路202に電解液を流入させ、注液通路202から電池缶2内に電解液を注液する。電池缶2内の空気は、電池缶2内に注液された電解液の液量に応じて、注液口7の貫通孔21と注液ノズル221との隙間から電池缶2の外部に排気される。
The details of the liquid injection process in step S4 will be described with reference to FIG.
First, when the battery member 1A is conveyed and supplied into the liquid injection device 200 and is held in a preset holding position, the case lid 211 of the sealed container 210 is lowered and the battery member 1A is moved to the sealed container. The liquid injection nozzle 221 is inserted into the through hole 21 of the liquid injection port 7 of the battery lid 3 at the same time. Next, the liquid injection valve 203 is opened, the electrolytic solution is allowed to flow from the electrolytic solution tank 201 into the liquid injection passage 202, and the electrolytic solution is injected from the liquid injection passage 202 into the battery can 2. The air in the battery can 2 is exhausted to the outside of the battery can 2 from the gap between the through hole 21 of the liquid injection port 7 and the liquid injection nozzle 221 according to the amount of the electrolyte injected into the battery can 2. Is done.

排気通路204の先には、図示しない減圧装置と加圧装置と大気解放弁が配置されており、図示しない切替弁によりいずれか一つを選択して接続を切り替えることができるようになっている。注液を短時間で効率的に行うために、注液バルブ203の開閉により注液動作を複数回に分けて、注液動作の合間に排気バルブ205を開閉する。その際、減圧装置と加圧装置と大気解放弁を用いて電池缶2内の気圧を適切に調節することにより、電極群4内部の空隙にある空気と電解液の置換を促進させることができる。所定量の電解液を注液した後、注液ノズル221を注液口7から退避させ、封止栓8を注液口7に取り付けてレーザ溶接し、注液口7を液密に封止する。   A decompression device (not shown), a pressurization device, and an air release valve (not shown) are arranged at the tip of the exhaust passage 204, and any one of them can be selected and switched by a switching valve (not shown). . In order to perform liquid injection efficiently in a short time, the liquid injection operation is divided into a plurality of times by opening and closing the liquid injection valve 203, and the exhaust valve 205 is opened and closed between the liquid injection operations. At that time, by appropriately adjusting the air pressure in the battery can 2 using the decompression device, the pressurization device, and the air release valve, the replacement of the air in the gap inside the electrode group 4 and the electrolytic solution can be promoted. . After injecting a predetermined amount of electrolytic solution, the injection nozzle 221 is retracted from the injection port 7, the sealing plug 8 is attached to the injection port 7 and laser welding is performed, and the injection port 7 is sealed in a liquid-tight manner. To do.

図5A〜図5Cは、注液ノズルを注液口の貫通孔に挿入した状態を示す断面図である。
注液ノズル221は、電池缶2の一対の幅狭側壁面PNのうちの一方の幅狭側壁面PNに向かって開口する吐出部223を有している。そして、注液口7の貫通孔21に挿入されて電解液が流通される挿入部222と、挿入部222を通過した電解液の流れを吐出部223の方向に向かって変換するための方向変換部224を有している。注液ノズル221は、方向変換部224によって、電解液の流れ方向を電極群4の捲回軸方向に直交する方向から捲回軸方向と略平行になるように変換することができる。吐出部223は、注液口7に近い方の幅狭側壁面PNである負極側の幅狭側壁面PNに向かって開口している。
5A to 5C are cross-sectional views showing a state in which the liquid injection nozzle is inserted into the through hole of the liquid injection port.
The liquid injection nozzle 221 has a discharge part 223 that opens toward one narrow side wall surface PN of the pair of narrow side wall surfaces PN of the battery can 2. Then, an insertion part 222 that is inserted into the through hole 21 of the liquid injection port 7 and through which the electrolyte flows, and a direction change for converting the flow of the electrolyte that has passed through the insertion part 222 toward the discharge part 223. Part 224. The liquid injection nozzle 221 can convert the flow direction of the electrolytic solution from the direction orthogonal to the winding axis direction of the electrode group 4 so as to be substantially parallel to the winding axis direction by the direction conversion unit 224. The discharge part 223 opens toward the narrow side wall surface PN on the negative electrode side, which is the narrow side wall surface PN closer to the liquid injection port 7.

図5Aに示す注液ノズル221は、注液口7の貫通孔21よりも小径の円筒形状を有する挿入部222と、挿入部222の先端に設けられた方向変換部224aと、負極接続部の方向に向かって開口して方向変換部224aにより方向変換された電解液が吐出される吐出部223と、を有している。方向変換部224aは、挿入部222の軸方向に対して傾斜した傾斜面を有している。傾斜面は、電池缶2の上方から下方に向かって移行するにしたがって吐出部223の方向に向かって漸次移行するように傾斜している。この傾斜面によって電解液の流れ方向を挿入部222の軸方向に直交する方向であって電極群4の捲回軸方向と略平行になる方向に変換することができる。電解液は、図中に太矢印で示すように、注液ノズル221の挿入部222を通過して吐出部223から電池缶2の負極側の幅狭側壁面PNに向かって吐出される。   The liquid injection nozzle 221 shown in FIG. 5A includes an insertion part 222 having a cylindrical shape smaller in diameter than the through hole 21 of the liquid injection port 7, a direction changing part 224a provided at the tip of the insertion part 222, and a negative electrode connection part. And a discharge part 223 that opens toward the direction and discharges the electrolytic solution whose direction is changed by the direction change part 224a. The direction changing portion 224a has an inclined surface that is inclined with respect to the axial direction of the insertion portion 222. The inclined surface is inclined so as to gradually move toward the discharge portion 223 as it moves from the upper side to the lower side of the battery can 2. With this inclined surface, the flow direction of the electrolyte can be changed to a direction orthogonal to the axial direction of the insertion portion 222 and substantially parallel to the winding axis direction of the electrode group 4. As shown by a thick arrow in the drawing, the electrolytic solution passes through the insertion portion 222 of the liquid injection nozzle 221 and is discharged from the discharge portion 223 toward the narrow side wall surface PN on the negative electrode side of the battery can 2.

図5Bに示す注液ノズル221の方向変換部224bは、挿入部222の軸方向に対して直交する直交面を有しており、この直交面によって電解液の流れ方向を挿入部222の軸方向に直交する方向であって電極群4の捲回軸方向と略平行になる方向に変換することができる。電解液は、図5Aに示す構成と同様に、吐出部223から電池缶2の負極側の幅狭側壁面PNに向かって吐出される。   The direction changing part 224b of the liquid injection nozzle 221 shown in FIG. 5B has an orthogonal surface orthogonal to the axial direction of the insertion part 222, and the flow direction of the electrolyte is changed by the orthogonal surface to the axial direction of the insertion part 222. Can be converted to a direction that is orthogonal to the direction of the winding axis and substantially parallel to the winding axis direction of the electrode group 4. Similarly to the configuration shown in FIG. 5A, the electrolytic solution is discharged from the discharge portion 223 toward the narrow side wall surface PN on the negative electrode side of the battery can 2.

図5A及び図5Bに示す注液ノズル221の場合、突出部223が挿入部222の外径よりも径方向外側に突出していないので、注液口7の貫通孔21の大きさを挿入部222の外径よりも若干大きい大きさとすることができる。したがって、貫通孔21の大きさが大きくなるのを防ぎ、電池蓋3の剛性を高く維持でき、電池蓋3の製造を容易なものにできる。また、貫通孔21の大きさを小さくすることで、封止栓8も小型化でき、それに応じて封止栓8の溶接面積も小さくでき、溶接不良のリスクを低減することができる。   In the case of the liquid injection nozzle 221 shown in FIGS. 5A and 5B, the protruding portion 223 does not protrude outward in the radial direction from the outer diameter of the insertion portion 222, so the size of the through hole 21 of the liquid injection port 7 is set to the insertion portion 222. It is possible to make the size slightly larger than the outer diameter. Therefore, the through hole 21 can be prevented from becoming large, the battery lid 3 can be maintained with high rigidity, and the battery lid 3 can be easily manufactured. Further, by reducing the size of the through hole 21, the sealing plug 8 can be reduced in size, and the welding area of the sealing plug 8 can be reduced accordingly, thereby reducing the risk of welding failure.

注液ノズル221の方向変換部224の形状には、上記目的を達する範囲において特に制限は無く、例えば図5Cに示す方向変換部224cのように、電池缶2の上方から下方に向かって移行するにしたがって吐出部の方向に向かって漸次移行する凹曲面であっても良く、また、注液ノズル221の吐出部223が注液ノズル221の直径方向の外形に対して突出する構成を有していても良い。   The shape of the direction changing part 224 of the liquid injection nozzle 221 is not particularly limited as long as the above purpose is achieved. For example, like the direction changing part 224c shown in FIG. 5C, the shape changes from the upper side to the lower side of the battery can 2. Accordingly, it may be a concave curved surface that gradually transitions in the direction of the discharge portion, and the discharge portion 223 of the liquid injection nozzle 221 has a configuration that protrudes with respect to the outer shape of the liquid injection nozzle 221 in the diameter direction. May be.

電解液は、注液ノズル221の挿入部222内を電極群4に向かって略垂直方向に流れた後に、方向変換部224(224a、224b、224c)により負極接続部側の幅狭側壁面PNの方向(図5A〜図5Cでは左側)に向かって開口した吐出部223に向けて略90°流れる方向が変換されて吐出部223から電池缶2内に吐出され、電池缶2内を負極側の幅狭側壁面PNに向かって捲回軸方向と略平行な方向に流れる。   The electrolyte flows in the insertion portion 222 of the injection nozzle 221 in the substantially vertical direction toward the electrode group 4, and then the narrow side wall surface PN on the negative electrode connection portion side by the direction changing portion 224 (224a, 224b, 224c). The direction of flowing approximately 90 ° toward the discharge part 223 that opens toward the direction (left side in FIGS. 5A to 5C) is converted and discharged from the discharge part 223 into the battery can 2, and the inside of the battery can 2 passes through the negative electrode side Flows in a direction substantially parallel to the winding axis direction toward the narrow side wall surface PN.

図5Cに示す注液ノズル221の場合、吐出部223が挿入部222の径方向外側に突出しているので、吐出部223から吐出させた電解液が飛散し難く、吐出方向を正確に制御することができる。特に、方向変換部224cは、凹曲面によって電解液の流れを変換しているので、流れの方向性を付けやすく、所定の方向に向かって真っ直ぐに吐出させることができる。ただし、開口部223が注液ノズル221の直径方向に突出しているので、突出長さが大きくなるのに応じて注液口7の貫通孔21の直径を大きくする必要がある。注液口7の貫通孔21の直径を大きくし過ぎると電池蓋3の剛性が弱くなり、変形し易くなるため、好ましくない。従って、注液ノズル221の開口部は、注液ノズル221の直径方向の外形に対して極力突出しない構造が望ましい。   In the case of the liquid injection nozzle 221 shown in FIG. 5C, since the discharge part 223 protrudes radially outside the insertion part 222, the electrolyte discharged from the discharge part 223 is difficult to scatter and the discharge direction is accurately controlled. Can do. In particular, since the direction changing portion 224c converts the flow of the electrolyte solution by the concave curved surface, it is easy to attach the direction of the flow and can be discharged straight in a predetermined direction. However, since the opening 223 protrudes in the diameter direction of the liquid injection nozzle 221, it is necessary to increase the diameter of the through hole 21 of the liquid injection port 7 as the protrusion length increases. If the diameter of the through hole 21 of the liquid injection port 7 is made too large, the rigidity of the battery lid 3 becomes weak and easily deformed, which is not preferable. Therefore, it is desirable that the opening of the liquid injection nozzle 221 has a structure that does not protrude as much as possible with respect to the outer shape of the liquid injection nozzle 221 in the diameter direction.

図6は、電池蓋の注液口近傍を拡大して示す平面図である。
注液口7は、例えば図5や図6に示すように、電池蓋3の表面に凹設された平面視略円形の凹部22と、凹部22の凹部底面23に開口して電池蓋3を貫通する貫通孔21を有している。貫通孔21は、丸穴形状を有しており、凹部22の中心位置に開口形成されている。貫通孔21は、図5A〜図5Cに示すように、直径d1を有しており、凹部22は、貫通孔21よりも大きな直径d2を有している。貫通孔21の上端部の周囲には、全周に亘って凹部底面23が配置されている。注液口7は、例えば電池蓋3をプレス成形する際に一体に成形することができる。
FIG. 6 is an enlarged plan view showing the vicinity of the liquid injection port of the battery lid.
For example, as shown in FIG. 5 and FIG. 6, the liquid injection port 7 is opened to the concave portion 22 having a substantially circular shape in a plan view and provided in the concave bottom surface 23 of the concave portion 22. It has a through-hole 21 that penetrates. The through hole 21 has a round hole shape and is formed at the center position of the recess 22. As shown in FIGS. 5A to 5C, the through hole 21 has a diameter d 1, and the recess 22 has a larger diameter d 2 than the through hole 21. A concave bottom surface 23 is disposed around the upper end of the through hole 21 over the entire circumference. The liquid injection port 7 can be integrally formed when the battery lid 3 is press-molded, for example.

図7は、本実施の形態の注液方法により電池缶内に注液された電解液の流れを説明する断面概念図である。   FIG. 7 is a conceptual cross-sectional view illustrating the flow of the electrolyte solution injected into the battery can by the injection method of the present embodiment.

注液装置200では、注液ノズル221が貫通孔21に挿入されると、注液ノズル221の先端から電解液を吐出させて、電池缶2内に電解液を注液する。   In the liquid injection device 200, when the liquid injection nozzle 221 is inserted into the through hole 21, the electrolytic solution is discharged from the tip of the liquid injection nozzle 221 to inject the electrolytic solution into the battery can 2.

注液ノズル221の先端は、電解液が電極群4の捲回軸方向と略平行に吐出されるように負極側の幅狭側壁面PNに向かって開口している。注液ノズル221から吐出された電解液は、図7に矢印で示すように、電池缶2内で電池蓋3と電極群4との間に形成される上部空間を伝って、負極側の幅狭側壁面PNに向かって流れる。そして、電極群4の捲回軸方向の一方端部と電池缶2の幅狭側壁面PNとの間に流れ込み、電池缶2の底壁面PBに向かって下方に流れ、底壁面PBに達すると底壁面PBに沿って正極接続部の方向に向かって流れる。   The tip of the liquid injection nozzle 221 opens toward the narrow side wall surface PN on the negative electrode side so that the electrolyte is discharged substantially parallel to the winding axis direction of the electrode group 4. As shown by an arrow in FIG. 7, the electrolyte discharged from the liquid injection nozzle 221 travels through the upper space formed between the battery lid 3 and the electrode group 4 in the battery can 2 and has a width on the negative electrode side. It flows toward the narrow side wall surface PN. Then, it flows between one end of the electrode group 4 in the winding axis direction and the narrow side wall surface PN of the battery can 2, flows downward toward the bottom wall surface PB of the battery can 2, and reaches the bottom wall surface PB. It flows toward the positive electrode connecting portion along the bottom wall surface PB.

そして、底壁面PBと電極群4の間に形成される下部空間が電解液で満たされると、電解液は、電池缶2内で電極群4の捲回軸方向の他方端部と正極接続部側の幅狭側壁面PNとの間を電池缶2の上方に向かって流れる。   When the lower space formed between the bottom wall surface PB and the electrode group 4 is filled with the electrolytic solution, the electrolytic solution is contained in the battery can 2 in the direction of the winding axis of the electrode group 4 and the positive electrode connecting portion. It flows toward the upper side of the battery can 2 between the narrow side wall surface PN on the side.

このように、ステップS4の注液工程において、電解液は、注液口7から近い方である負極側の幅狭側壁面PNに向かって吐出される。したがって、電極群4と電池蓋3との間の上部空間から電極群4の負極側の側端部と電池缶2の負極側の幅狭側壁面PNとの間の間隙に電解液を迅速に流し込むことができ、短時間で電池缶2の缶底まで到達させることができる。そして、電池缶2の缶底の空気を、電極群4の正極側の側端部と電池缶2の正極側の幅狭側壁部PNとの間の間隙に通過させて、電極群4と電池蓋3との間の上部空間に到達させることができる。電池缶2内の空気は、図5A〜図5Cに破線矢印で示すように、注液口7の貫通孔21と注液ノズル221との隙間から電池缶2の外部に排気される。したがって、電池缶2内における空気と電解液との効率的な置換が可能となり、注液工程の時間を短縮することができる。   Thus, in the liquid injection process of step S4, the electrolytic solution is discharged toward the narrow side wall surface PN on the negative electrode side that is closer to the liquid injection port 7. Accordingly, the electrolytic solution is quickly transferred from the upper space between the electrode group 4 and the battery lid 3 to the gap between the side end portion on the negative electrode side of the electrode group 4 and the narrow side wall surface PN on the negative electrode side of the battery can 2. It can be poured and can reach the bottom of the battery can 2 in a short time. Then, the air at the bottom of the battery can 2 is passed through the gap between the side end portion on the positive electrode side of the electrode group 4 and the narrow side wall portion PN on the positive electrode side of the battery can 2, so that the electrode group 4 and the battery It is possible to reach the upper space between the lid 3. The air in the battery can 2 is exhausted to the outside of the battery can 2 through a gap between the through hole 21 of the liquid injection port 7 and the liquid injection nozzle 221 as indicated by broken line arrows in FIGS. 5A to 5C. Therefore, efficient replacement of the air and the electrolyte in the battery can 2 is possible, and the time of the liquid injection process can be shortened.

一連の電解液の流れにより、電池缶2内の空気は電池缶2の底壁面PBと電極群4の間に形成される下部空間に留まることなく注液口7より電池缶2の外に排出される。電解液の注液量の増加に伴い、電池缶2内で電解液の液面が上昇し、主として電極群4の捲回群方向両端の正極接続部と負極接続部から電極群4の内部に電解液が浸透する。   Due to the flow of the electrolyte solution, the air in the battery can 2 is discharged out of the battery can 2 from the liquid injection port 7 without remaining in the lower space formed between the bottom wall surface PB of the battery can 2 and the electrode group 4. Is done. As the injection amount of the electrolytic solution increases, the liquid level of the electrolytic solution rises in the battery can 2, mainly from the positive electrode connecting portion and the negative electrode connecting portion at both ends in the winding group direction of the electrode group 4 to the inside of the electrode group 4. Electrolyte penetrates.

本実施形態では、電池缶2の底壁面PBと電極群4との間に形成される下部空間に空気を滞留させることなく電解液を注液できるので、電池缶2内の空気と電解液との置換を効率的に行うことができる。また、電解液の注液後に電極群4への電解液の浸透を促進するために注液装置200の内部を減圧した場合に、当該空間の空気の膨張による電解液の液面上昇が無いので、電解液が注液口7近傍の溶接部に付着することが無い。   In the present embodiment, the electrolytic solution can be injected without retaining air in the lower space formed between the bottom wall surface PB of the battery can 2 and the electrode group 4. Can be efficiently replaced. Further, when the inside of the liquid injection device 200 is depressurized in order to promote the penetration of the electrolytic solution into the electrode group 4 after the electrolytic solution has been injected, there is no rise in the liquid level of the electrolytic solution due to the expansion of air in the space. In addition, the electrolytic solution does not adhere to the welded portion in the vicinity of the injection port 7.

図8は、封止栓により注液口を封止した状態を示す断面図である。
注液口7は、電解液を注液した後、封止栓8によって封止される。封止栓8は、注液口7の凹部22に嵌合可能な円板部8aと、円板部8aの下面から突出して注液口7の貫通孔21内に嵌合可能な凸部8bを有しており、円板部8aと凸部8bとの間には注液口7の凹部底面23に接面する段差面8cが形成されている。
FIG. 8 is a cross-sectional view showing a state in which the liquid injection port is sealed with a sealing plug.
The liquid injection port 7 is sealed with a sealing plug 8 after injecting an electrolytic solution. The sealing plug 8 includes a disc portion 8a that can be fitted into the concave portion 22 of the liquid injection port 7, and a convex portion 8b that protrudes from the lower surface of the disc portion 8a and can be fitted into the through hole 21 of the liquid injection port 7. A step surface 8c is formed between the disc portion 8a and the convex portion 8b. The step surface 8c contacts the concave bottom surface 23 of the liquid injection port 7.

封止栓8は、凸部8bが注液口7の貫通孔21内に嵌合され、円板部8aが注液口7の凹部22に嵌合されて、段差面8cが注液口7の凹部底面23に接面した状態で、溶接部wが円板部8aと凹部22との境界部分に沿って全周に亘って形成されるように、電池蓋3にレーザ溶接される。   As for the sealing plug 8, the convex part 8b is fitted in the through-hole 21 of the liquid injection port 7, the disk part 8a is fitted in the concave part 22 of the liquid injection port 7, and the step surface 8c is the liquid injection port 7. The welded portion w is laser welded to the battery lid 3 so that the welded portion w is formed over the entire circumference along the boundary portion between the disc portion 8 a and the recessed portion 22 in a state of being in contact with the recessed portion bottom surface 23.

封止栓8は、図8に示すように、封止栓8の段差面8cが注液口7の凹部底面23に接面した状態で溶接されるので、面接触している面積をより広く確保することができ、注液口7を確実に封止することができる。そして、封止栓8の段差面8cと注液口7の凹部底面23との間は、貫通孔21の周りに沿って全周に亘って接面されているので、密閉の信頼性を向上させることができる。   As shown in FIG. 8, the sealing plug 8 is welded in a state where the stepped surface 8 c of the sealing plug 8 is in contact with the concave bottom surface 23 of the liquid injection port 7, so that the surface contact area is wider. The liquid injection port 7 can be reliably sealed. And since the level | step difference surface 8c of the sealing plug 8 and the recessed part bottom face 23 of the injection port 7 are contacted over the perimeter along the periphery of the through-hole 21, the reliability of sealing is improved. Can be made.

本実施の形態における電解液の注液方法によれば、電解液が注液口7近傍の溶接部に付着するのを防ぐことができるので、封止栓8をレーザ溶接する際に、溶接不良が発生するリスクをなくすことができる。   According to the method of injecting the electrolytic solution in the present embodiment, the electrolytic solution can be prevented from adhering to the welded portion in the vicinity of the injection port 7, so that welding failure occurs when the sealing plug 8 is laser welded. Can eliminate the risk of occurrence.

なお、上述の実施形態では、注液口7に近い方の幅狭側壁面PNである負極側の幅狭側壁面PNに向かって吐出する場合を例に説明したが、注液口7から遠い方の幅狭側壁面PNである正極側の幅狭側壁面PNに向かって吐出させてもよい。注液口7に近い方向幅狭側壁面PNに向かって吐出させた場合、吐出速度を上昇させすぎると、電池缶2内で電解液の跳ね返りが発生し、跳ね返り量が多くなると注液口7に付着する可能性がある。そのような場合は、注液口7から遠い方の幅狭側壁面PNである正極側の幅狭側壁面PNに向かって吐出させることで、電池缶2内における電解液の跳ね返りを抑制して、跳ね返った電解液が注液口7に付着するのを効果的に防ぐことができる。   In the above-described embodiment, the case where the discharge is performed toward the narrow side wall surface PN on the negative electrode side that is the narrow side wall surface PN closer to the liquid injection port 7 is described as an example, but it is far from the liquid injection port 7. You may make it discharge toward the narrow side wall surface PN of the positive electrode side which is the narrow side wall surface PN of one side. When discharging toward the narrow side wall surface PN in the direction close to the liquid injection port 7, if the discharge speed is increased too much, the electrolyte rebounds in the battery can 2, and when the amount of rebound increases, the liquid injection port 7 There is a possibility to adhere to. In such a case, the rebound of the electrolyte in the battery can 2 is suppressed by discharging toward the narrow side wall surface PN on the positive electrode side which is the narrow side wall surface PN far from the liquid injection port 7. Thus, it is possible to effectively prevent the boiled electrolyte from adhering to the liquid injection port 7.

以上、本発明の実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。例えば、前記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。さらに、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。   Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various designs can be made without departing from the spirit of the present invention described in the claims. It can be changed. For example, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described. Further, a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment. Furthermore, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.

1 角形二次電池
1A 電池部材
2 電池缶
3 電池蓋
4 電極群
7 注液口
8 封止栓
21 貫通孔
22 凹部
23 凹部底面
200 注液装置
202 注液通路
204 排気通路
210 密閉容器
211 ケース蓋
212 ケース
221 注液ノズル
222 挿入部
223 吐出部
224 方向変換部
DESCRIPTION OF SYMBOLS 1 Square secondary battery 1A Battery member 2 Battery can 3 Battery cover 4 Electrode group 7 Injection port 8 Seal plug 21 Through hole 22 Recess 23 Recess bottom 200 Injection device 202 Injection passage 204 Exhaust passage 210 Sealed container 211 Case cover 212 Case 221 Injection nozzle 222 Insertion part 223 Discharge part 224 Direction conversion part

Claims (8)

扁平状の電極群と、該電極群の一対の扁平面が上下に延在する姿勢状態で前記電極群を収容する角形の電池缶と、該電池缶の上部を閉塞する電池蓋と、該電池蓋に開口して設けられて前記電池缶内に電解液を注液するための注液口と、を有する角形二次電池の製造方法であって、
前記注液口から前記電池缶内に注液ノズルを挿入して、該注液ノズルから前記電極群と前記電池蓋との間でかつ前記電極群の横幅方向一方側に向かって前記電解液を吐出して、前記電池缶内に注液する注液工程を含むことを特徴とする角形二次電池の製造方法。
A flat electrode group, a rectangular battery can that accommodates the electrode group in a posture in which a pair of flat surfaces of the electrode group extend vertically, a battery lid that closes an upper portion of the battery can, and the battery A method for producing a prismatic secondary battery having a liquid injection port for injecting an electrolytic solution into the battery can provided to be opened in a lid,
An injection nozzle is inserted into the battery can from the injection port, and the electrolyte solution is inserted from the injection nozzle between the electrode group and the battery lid toward one side in the width direction of the electrode group. A method for producing a prismatic secondary battery, comprising a liquid injection step of discharging and injecting the liquid into the battery can.
前記角形二次電池は、前記電池缶が前記電極群の一対の扁平面に対向する一対の幅広側壁面と、前記電極群の横幅方向両側の一対の側端部に対向する一対の幅狭側壁面とを有し、前記注液口が前記電池蓋の一方の幅狭側壁面側に偏位した位置に設けられており、
前記注液工程では、前記一対の幅狭側壁面のうちの前記注液口に近い方の幅狭側壁面に向かって前記電解液を吐出させることを特徴とする請求項1に記載の角形二次電池の製造方法。
The prismatic secondary battery includes a pair of wide side walls facing the pair of flat surfaces of the electrode group and a pair of narrow sides facing a pair of side end portions on both sides in the lateral width direction of the electrode group. And the liquid injection port is provided at a position deviated to one narrow side wall surface side of the battery lid,
2. The square-shaped two-part structure according to claim 1, wherein in the liquid injection step, the electrolyte solution is discharged toward a narrow side wall surface closer to the liquid injection port of the pair of narrow side wall surfaces. A method for manufacturing a secondary battery.
前記角形二次電池は、前記電池缶が前記電極群の一対の扁平面に対向する一対の幅広側壁面と、前記電極群の横幅方向両側の一対の側端部に対向する一対の幅狭側壁面とを有し、前記注液口が前記電池蓋の一方の幅狭側壁面側に偏位した位置に設けられており、
前記注液工程では、前記一対の幅狭側壁面のうちの前記注液口に遠い側の幅狭側壁面に向かって前記電解液を吐出させることを特徴とする請求項1に記載の角形二次電池の製造方法。
The prismatic secondary battery includes a pair of wide side walls facing the pair of flat surfaces of the electrode group and a pair of narrow sides facing a pair of side end portions on both sides in the lateral width direction of the electrode group. And the liquid injection port is provided at a position deviated to one narrow side wall surface side of the battery lid,
2. The square two according to claim 1, wherein in the liquid injection step, the electrolyte solution is discharged toward a narrow side wall surface farther from the liquid injection port of the pair of narrow side wall surfaces. A method for manufacturing a secondary battery.
扁平状の電極群と、該電極群の一対の扁平面が上下に延在する姿勢状態で前記電極群を収容する角形の電池缶と、該電池缶の上部を閉塞する電池蓋と、該電池蓋に開口して設けられて前記電池缶内に電解液を注液するための注液口と、を有する角形二次電池の製造装置であって、
前記注液口から前記電池缶内に挿入されて前記電極群と前記電池蓋との間でかつ前記電極群の横幅方向一方側に向かって前記電解液を吐出する注液ノズルを有することを特徴とする角形二次電池の製造装置。
A flat electrode group, a rectangular battery can that accommodates the electrode group in a posture in which a pair of flat surfaces of the electrode group extend vertically, a battery lid that closes an upper portion of the battery can, and the battery A rectangular secondary battery manufacturing apparatus having a liquid injection port for injecting an electrolytic solution into the battery can provided to be opened in a lid;
A liquid injection nozzle that is inserted into the battery can from the liquid injection port and discharges the electrolytic solution between the electrode group and the battery lid and toward one side in the width direction of the electrode group. An apparatus for manufacturing a rectangular secondary battery.
前記電池缶は、前記電極群の一対の扁平面に対向する一対の幅広側壁面と、前記電極群の横幅方向両側の一対の側端部に対向する一対の幅狭側壁面を有しており、
前記注液ノズルは、前記一対の幅狭側壁面のうちの一方の幅狭側壁面に向かって開口する吐出部を有することを特徴とする請求項4に記載の角形二次電池の製造装置。
The battery can has a pair of wide side wall surfaces facing a pair of flat surfaces of the electrode group, and a pair of narrow side wall surfaces facing a pair of side end portions on both sides in the lateral width direction of the electrode group. ,
The said injection nozzle has a discharge part opened toward one narrow side wall surface of said pair of narrow side wall surfaces, The manufacturing apparatus of the square secondary battery of Claim 4 characterized by the above-mentioned.
前記電池蓋は、前記一対の幅狭側壁面のうちの一方側に偏位した位置に前記注液口が設けられており、
前記吐出部は、前記一対の幅狭側壁面のうちの前記注液口に近い方の幅狭側壁面に向かって開口して設けられていることを特徴とする請求項5に記載の角形二次電池の製造装置。
The battery lid is provided with the liquid injection port at a position displaced to one side of the pair of narrow side wall surfaces,
6. The rectangular two-side body according to claim 5, wherein the discharge portion is provided to open toward a narrow side wall surface closer to the liquid injection port of the pair of narrow side wall surfaces. Secondary battery manufacturing equipment.
前記注液ノズルは、前記注液口に挿入されて前記電解液が流通される挿入部と、該挿入部を通過した前記電解液の流れを前記吐出部の方向に向かって変換するための方向変換部を有することを特徴とする請求項6に記載の角形二次電池の製造装置。   The liquid injection nozzle is inserted into the liquid injection port, the insertion portion through which the electrolytic solution is circulated, and a direction for converting the flow of the electrolytic solution that has passed through the insertion portion toward the discharge portion The square secondary battery manufacturing apparatus according to claim 6, further comprising a conversion unit. 前記方向変換部は、前記電池缶の上方から下方に向かって移行するにしたがって前記吐出部の方向に向かって漸次移行する傾斜面又は凹曲面を有することを特徴とする請求項7に記載の角形二次電池の製造装置。   8. The square according to claim 7, wherein the direction changing portion has an inclined surface or a concave curved surface that gradually moves toward the direction of the discharge portion as it moves downward from above the battery can. Secondary battery manufacturing equipment.
JP2012156834A 2012-07-12 2012-07-12 Manufacturing method and apparatus for square secondary battery Pending JP2014022073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012156834A JP2014022073A (en) 2012-07-12 2012-07-12 Manufacturing method and apparatus for square secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012156834A JP2014022073A (en) 2012-07-12 2012-07-12 Manufacturing method and apparatus for square secondary battery

Publications (1)

Publication Number Publication Date
JP2014022073A true JP2014022073A (en) 2014-02-03

Family

ID=50196758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012156834A Pending JP2014022073A (en) 2012-07-12 2012-07-12 Manufacturing method and apparatus for square secondary battery

Country Status (1)

Country Link
JP (1) JP2014022073A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014022337A (en) * 2012-07-23 2014-02-03 Sharp Corp Nonaqueous secondary battery and liquid injection method therefor
JP2016173948A (en) * 2015-03-17 2016-09-29 株式会社Gsユアサ Method for manufacturing power storage device, power storage device, and method for suppressing the reduction in voltage of power storage device
US9960406B2 (en) 2014-06-09 2018-05-01 Gs Yuasa International Ltd. Energy storage device and method of manufacturing energy storage device
JP2019102194A (en) * 2017-11-29 2019-06-24 トヨタ自動車株式会社 Device for injecting electrolytic solution for secondary battery
CN110085777A (en) * 2018-01-26 2019-08-02 三洋电机株式会社 Electrical storage device
CN114430071A (en) * 2022-01-28 2022-05-03 佛山市天劲新能源科技有限公司 Lithium ion battery formation device and process capable of exhausting and replenishing liquid
CN114792860A (en) * 2021-01-25 2022-07-26 通用汽车环球科技运作有限责任公司 Battery system, battery pack handling system and electrolyte drain and refill station

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10334884A (en) * 1997-05-28 1998-12-18 Toshiba Battery Co Ltd Filling method for nonaqueous electrolyte, and nonaqueous electrolyte filler
JP2001273884A (en) * 2000-03-28 2001-10-05 Yuasa Corp Sealed type battery and manufacturing method thereof
JP2008091065A (en) * 2006-09-29 2008-04-17 Matsushita Electric Ind Co Ltd Liquid injection method and liquid injection device of lithium secondary battery
JP2011150868A (en) * 2010-01-21 2011-08-04 Nissan Motor Co Ltd Device and method for injecting electrolyte

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10334884A (en) * 1997-05-28 1998-12-18 Toshiba Battery Co Ltd Filling method for nonaqueous electrolyte, and nonaqueous electrolyte filler
JP2001273884A (en) * 2000-03-28 2001-10-05 Yuasa Corp Sealed type battery and manufacturing method thereof
JP2008091065A (en) * 2006-09-29 2008-04-17 Matsushita Electric Ind Co Ltd Liquid injection method and liquid injection device of lithium secondary battery
JP2011150868A (en) * 2010-01-21 2011-08-04 Nissan Motor Co Ltd Device and method for injecting electrolyte

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014022337A (en) * 2012-07-23 2014-02-03 Sharp Corp Nonaqueous secondary battery and liquid injection method therefor
US9960406B2 (en) 2014-06-09 2018-05-01 Gs Yuasa International Ltd. Energy storage device and method of manufacturing energy storage device
JP2016173948A (en) * 2015-03-17 2016-09-29 株式会社Gsユアサ Method for manufacturing power storage device, power storage device, and method for suppressing the reduction in voltage of power storage device
JP2019102194A (en) * 2017-11-29 2019-06-24 トヨタ自動車株式会社 Device for injecting electrolytic solution for secondary battery
JP7004203B2 (en) 2017-11-29 2022-01-21 トヨタ自動車株式会社 Electrolyte injection device for storage batteries
CN110085777A (en) * 2018-01-26 2019-08-02 三洋电机株式会社 Electrical storage device
CN110085777B (en) * 2018-01-26 2023-05-19 三洋电机株式会社 Power storage device
CN114792860A (en) * 2021-01-25 2022-07-26 通用汽车环球科技运作有限责任公司 Battery system, battery pack handling system and electrolyte drain and refill station
CN114792860B (en) * 2021-01-25 2024-03-01 通用汽车环球科技运作有限责任公司 Battery system, battery pack handling system, and electrolyte drain and refill station
US11955666B2 (en) 2021-01-25 2024-04-09 GM Global Technology Operations LLC Battery system, battery pack handling system and electrolyte evacuation and refill station
CN114430071A (en) * 2022-01-28 2022-05-03 佛山市天劲新能源科技有限公司 Lithium ion battery formation device and process capable of exhausting and replenishing liquid
CN114430071B (en) * 2022-01-28 2022-10-21 佛山市天劲新能源科技有限公司 Lithium ion battery formation device and process capable of exhausting and replenishing liquid

Similar Documents

Publication Publication Date Title
JP2014022073A (en) Manufacturing method and apparatus for square secondary battery
JP6390624B2 (en) Power storage device
JP5877762B2 (en) Prismatic secondary battery
JP5336023B1 (en) Prismatic secondary battery
JP2010129546A (en) Cap assembly and secondary battery using the same
KR101657334B1 (en) Secondary battery
JP5374531B2 (en) battery
KR101797838B1 (en) Sealed battery and manufacturing method of same
KR100880385B1 (en) Secondary Battery Containing Insulating Member of Improving Safety
JP6052056B2 (en) Power storage device
WO2013132632A1 (en) Sealed cell and method for manufacturing same
KR100965718B1 (en) Secondary Battery
JP2010176989A (en) Method of manufacturing battery, and battery
JP2011150902A (en) Lithium ion secondary battery
KR101222301B1 (en) Secondary battery
JPWO2015098865A1 (en) Capacitors
JP2013191450A (en) Method and device for manufacturing square secondary battery
KR102489229B1 (en) Cylindrical Battery Having no Beading Part and Method For Manufacturing Thereof
JP2014026788A (en) Square secondary battery
JP2013251123A (en) Square secondary battery
JP6014161B2 (en) Method for manufacturing rectangular energy storage device
JP2014130726A (en) Power storage element manufacturing method
CN203415649U (en) Electrode terminal, cover plate component, and battery containing cover plate component
JP2016091653A (en) Battery pack and secondary battery cell
KR100760786B1 (en) Secondary battery and the same using method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20140807

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140828

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150901

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160105